JP3512626B2 - Branch structure of dielectric waveguide - Google Patents

Branch structure of dielectric waveguide

Info

Publication number
JP3512626B2
JP3512626B2 JP07628398A JP7628398A JP3512626B2 JP 3512626 B2 JP3512626 B2 JP 3512626B2 JP 07628398 A JP07628398 A JP 07628398A JP 7628398 A JP7628398 A JP 7628398A JP 3512626 B2 JP3512626 B2 JP 3512626B2
Authority
JP
Japan
Prior art keywords
dielectric waveguide
conductor
line
dielectric
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07628398A
Other languages
Japanese (ja)
Other versions
JPH11274820A (en
Inventor
健 竹之下
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07628398A priority Critical patent/JP3512626B2/en
Priority to US09/137,195 priority patent/US6057747A/en
Priority to DE69839785T priority patent/DE69839785D1/en
Priority to EP03020457A priority patent/EP1396903B1/en
Priority to EP08021077A priority patent/EP2043192B1/en
Priority to EP03020458A priority patent/EP1396901B1/en
Priority to EP98115812A priority patent/EP0898322B1/en
Priority to DE69841265T priority patent/DE69841265D1/en
Priority to DE69836302T priority patent/DE69836302T2/en
Publication of JPH11274820A publication Critical patent/JPH11274820A/en
Priority to US09/497,792 priority patent/US6380825B1/en
Priority to US09/498,128 priority patent/US6359535B1/en
Application granted granted Critical
Publication of JP3512626B2 publication Critical patent/JP3512626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波帯やミ
リ波帯等の高周波信号を伝達するための誘電体導波管線
路の分岐構造に関し、特に1本の誘電体導波管線路を平
行な3本の誘電体導波管線路に分岐し、しかも分岐後の
電力比を任意に設定しうる誘電体導波管線路の分岐構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a branch structure of a dielectric waveguide line for transmitting a high-frequency signal in a microwave band, a millimeter wave band, or the like. The present invention relates to a branch structure of a dielectric waveguide line which branches into three different dielectric waveguide lines, and in which the power ratio after the branch can be set arbitrarily.

【0002】[0002]

【従来の技術】マイクロ波帯やミリ波帯等の高周波信号
を扱う高周波回路において高周波信号を伝送するための
伝送線路には小型で伝送損失が小さいことが求められて
おり、特に回路を構成する基板上または基板内に形成で
きると小型化の面で有利となることから、従来、そのよ
うな伝送線路としてストリップ線路やマイクロストリッ
プ線路・コプレーナ線路・誘電体導波管線路などが用い
られてきた。
2. Description of the Related Art In a high-frequency circuit for handling a high-frequency signal such as a microwave band or a millimeter wave band, a transmission line for transmitting a high-frequency signal is required to be small and small in transmission loss. Conventionally, strip lines, microstrip lines, coplanar lines, dielectric waveguide lines, and the like have been used as such transmission lines because forming them on or within a substrate is advantageous in terms of miniaturization. .

【0003】これらのうちストリップ線路・マイクロス
トリップ線路・コプレーナ線路は誘電体基板と導体層か
ら成る信号線路とグランド導体層とで構成されており、
信号線路とグランド導体層の周囲の空間および誘電体中
を高周波信号の電磁波が伝播するものであるが、これら
の線路は30GHz帯域までの信号伝送に対しては問題な
いが、30GHz以上では伝送損失が生じやすい。
Of these, strip lines, microstrip lines, and coplanar lines are composed of a signal line composed of a dielectric substrate and a conductor layer, and a ground conductor layer.
Electromagnetic waves of high-frequency signals propagate in the space around the signal line and the ground conductor layer and in the dielectric. These lines have no problem for signal transmission up to the 30 GHz band. Tends to occur.

【0004】これに対して導波管型の線路は30GHz以
上のミリ波帯域においても伝送損失が小さい点で有利で
あり、このような導波管の優れた伝送特性を活かし、多
層基板内に形成可能な線路も提案されている。
On the other hand, a waveguide type line is advantageous in that transmission loss is small even in a millimeter wave band of 30 GHz or more. Formable lines have also been proposed.

【0005】例えば特開平6−53711 号公報によれば、
誘電体基板を一対の導体層で挟み、さらに導体層間を接
続する2列の複数の貫通導体、例えばビアホールによっ
て側壁を形成した導波管線路が提案されている。この導
波管線路によれば、誘電体材料の四方を導体層とビアホ
ールによる疑似的な導体壁で囲むことによって導体壁内
の領域を信号伝送用の線路としたものであり、構成がい
たって簡単となって装置全体の小型化も図り得るという
ものである。
For example, according to JP-A-6-53711,
There has been proposed a waveguide line in which a dielectric substrate is sandwiched between a pair of conductor layers, and a plurality of through conductors in two rows connecting between the conductor layers, for example, sidewalls formed by via holes. According to this waveguide line, the area inside the conductor wall is used as a line for signal transmission by surrounding the four sides of the dielectric material with a pseudo conductor wall composed of a conductor layer and a via hole. Thus, the size of the entire apparatus can be reduced.

【0006】[0006]

【発明が解決しようとする課題】一般に、高周波回路を
構成する場合、特にアレイアンテナの給電線等を形成す
る場合等には伝送線路の配線回路において分岐を設ける
ことが必要となる。
In general, when a high-frequency circuit is formed, particularly when a feed line or the like of an array antenna is formed, it is necessary to provide a branch in a wiring circuit of a transmission line.

【0007】しかしながら、ストリップ線路やマイクロ
ストリップ線路・コプレーナ線路は信号線路がグランド
導体層で完全に覆われていないため、伝送線路の途中に
分岐を設けるとその分岐から電磁波の放射が起こり、伝
送損失が大きくなるという問題点があった。
However, since the signal line of the strip line, the microstrip line, and the coplanar line is not completely covered with the ground conductor layer, if a branch is provided in the middle of the transmission line, electromagnetic waves are emitted from the branch, resulting in transmission loss. However, there was a problem that the size became large.

【0008】また、誘電体導波管線路としては、例えば
誘電体線路を2枚のグランド導体板で挟持し、グランド
導体板間の誘電体線路以外の部分に空気が満たされた構
造のNRDガイドがある。これに分岐を設けるためには
屈曲した2本の線路を結合させて方向性結合器を形成す
る方法が用いられるが、線路に屈曲部がある場合はその
形状によっては異なる伝播モードが発生して伝送損失が
大きくなることがあるため設計上の制約が大きいという
問題点があった。また、誘電体線路は通常はフッ素樹脂
等で作製されているが、特に高周波領域で使用するもの
は線路の寸法が小さくなるため、屈曲部等の加工が困難
であり量産が難しいという問題点もあった。さらに、高
周波回路の配線として誘電体基板上または基板内に形成
することが困難であるという問題点もあった。
Further, as the dielectric waveguide line, for example, an NRD guide having a structure in which a dielectric line is sandwiched between two ground conductor plates and a portion between the ground conductor plates other than the dielectric line is filled with air. There is. In order to provide a branch, a method of forming a directional coupler by combining two bent lines is used. However, if the line has a bent portion, a different propagation mode occurs depending on its shape. There is a problem in that transmission loss may be large and design restrictions are large. In addition, the dielectric line is usually made of a fluororesin or the like, but especially for those used in a high frequency region, since the line size becomes small, there is also a problem that it is difficult to process a bent portion and the like and mass production is difficult. there were. Further, there is a problem that it is difficult to form a wiring for a high-frequency circuit on or in a dielectric substrate.

【0009】また、通常の導波管は金属の壁で囲まれた
空間を電磁波が伝播する構造となっており、誘電体によ
る損失がないため高周波での損失が小さく、分岐があっ
ても放射損失はないが、誘電体を利用した伝送線路と比
較して寸法が大きくなるという問題点があった。これに
対し、導波管内に比誘電率がεr の誘電体を充填した誘
電体導波管は通常の1/√εr の寸法で作製できるが、
これも誘電体基板上または基板内に形成することが困難
であるという問題点があった。
In addition, a normal waveguide has a structure in which an electromagnetic wave propagates in a space surrounded by a metal wall. Since there is no loss due to a dielectric, a loss at a high frequency is small, and even if there is a branch, radiation occurs. Although there is no loss, there is a problem that the size is larger than that of a transmission line using a dielectric. On the other hand, a dielectric waveguide in which a dielectric having a relative permittivity of ε r is filled in a waveguide can be manufactured with a normal dimension of 1 / √ε r .
This also has the problem that it is difficult to form it on or in a dielectric substrate.

【0010】さらに、特開平6−53711 号公報に提案さ
れたような誘電体導波管線路において、その一対の導体
層と2列のビアホールによる疑似的な導体壁で囲まれた
信号伝送用の線路に単純に分岐を設けた場合、電磁界に
乱れが生じることから伝送損失が大きくなるという問題
点があった。
Furthermore, in a dielectric waveguide line proposed in Japanese Patent Application Laid-Open No. 6-53711, a signal transmission line surrounded by a quasi conductor wall formed by a pair of conductor layers and two rows of via holes. When a branch is simply provided on a line, there is a problem that a transmission loss increases because an electromagnetic field is disturbed.

【0011】従って、誘電体基板内にアレイアンテナの
給電線等を形成するための分岐を設けた伝送線路の配線
回路を作製して高周波回路を構成するために、誘電体基
板内に形成でき、電磁波の放射が無く伝送損失が小さい
誘電体導波管線路の分岐構造が求められていた。
Therefore, in order to form a high-frequency circuit by forming a transmission line wiring circuit provided with a branch for forming a feed line or the like of an array antenna in the dielectric substrate, it can be formed in the dielectric substrate. There has been a demand for a branch structure of a dielectric waveguide line which does not emit electromagnetic waves and has a small transmission loss.

【0012】本発明は上記事情に鑑みて案出されたもの
であり、その目的は、誘電体基板内に形成でき、高周波
信号の電磁波の放射・漏洩が無く、1本の線路を3本の
線路に分岐可能で、分岐後の電力比を任意に設定可能で
伝送損失が小さい良好な伝送特性を有する誘電体導波管
線路の分岐構造を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to form a single line into three lines without being radiated or leaked from a high frequency signal electromagnetic wave, which can be formed in a dielectric substrate. An object of the present invention is to provide a branch structure of a dielectric waveguide line that can be branched into a line, can set an arbitrary power ratio after the branch, has a small transmission loss, and has good transmission characteristics.

【0013】[0013]

【課題を解決するための手段】本発明者等は、上記の問
題点に対して検討を重ねた結果、誘電体導波管線路につ
いて、誘電体基板中に2列の貫通導体群の上下をこれら
貫通導体群と電気的に導通した一対の導体層で完全に覆
って形成される構造の誘電体導波管線路から成る伝送線
路を設け、第1の伝送線路に対して互いに平行に配置し
た第2および第3の伝送線路を高周波信号の伝送方向が
互いに平行となるように接続し、さらに第2および第3
の伝送線路に対して互いに平行に配置した第4乃至第5
の伝送線路を高周波信号の伝送方向が互いに平行となる
ように接続した分岐において2列の貫通導体群の貫通導
体の配列を所定の配列構造とすることにより、高周波信
号の電磁波の放射・漏洩がほとんど無く、分岐後の電力
比を任意に設定可能で、しかも低伝送損失な、良好な伝
送特性を有する伝送線路の分岐構造とできることを見出
した。
Means for Solving the Problems The inventors of the present invention have studied the above problems, and as a result, have found that a dielectric waveguide line has two rows of penetrating conductors arranged above and below a dielectric substrate. A transmission line composed of a dielectric waveguide line having a structure completely formed by a pair of conductor layers electrically connected to the through conductor group is provided, and the transmission lines are arranged parallel to the first transmission line. The second and third transmission lines are connected so that the transmission directions of the high-frequency signals are parallel to each other, and the second and third transmission lines are further connected.
4th to 5th arranged in parallel to each other
In the branch where the transmission lines of the high-frequency signals are connected so that the transmission directions of the high-frequency signals are parallel to each other, the arrangement of the penetrating conductors of the two rows of penetrating conductors has a predetermined arrangement structure. It has been found that there is almost no branching structure of the transmission line which can set the power ratio after branching arbitrarily and has good transmission characteristics with low transmission loss.

【0014】本発明の誘電体導波管線路の分岐構造は、
誘電体基板を挟持する一対の導体層と、高周波信号の伝
送方向に前記高周波信号の遮断波長の2分の1以下の繰
り返し間隔で、かつ前記伝送方向と直交する方向に一定
の幅dで前記導体層間を電気的に接続するよう形成され
た2列の貫通導体群とを具備し、前記導体層および前記
貫通導体群に囲まれた領域によって高周波信号を伝送す
る第1乃至第6の誘電体導波管線路を、該第1の誘電体
導波管線路の一端側に前記第2および第3の誘電体導波
管線路を高周波信号の伝送方向が平行となるようにその
一方端側を対向させて併設するとともに、前記第2およ
び第3の誘電体導波管線路の他方端側に前記第4乃至第
6の誘電体導波管線路を第5の誘電体導波管線路の両側
に第4および第6の誘電体導波管線路を配置して高周波
信号の伝送方向が平行となるようにその一端側を対向さ
せて併設して成り、前記第2および第3の誘電体導波管
線路は一方端側および他方端側の先端を揃えて外側の前
記貫通導体群の間隔Aが前記一定の幅dに対して2d≦
A≦3dとなるように平行に配置するとともに隣り合う
列の貫通導体群の一方端側および他方端側の先端間をそ
れぞれ第1および第2の補助接続用貫通導体群で接続
し、かつその一方端側の両端と前記第1の誘電体導波管
線路の一端側の先端とを前記高周波信号の伝送方向の長
さLが0<L<dの第1の接続用貫通導体群で接続
するとともに、前記第4乃至第6の誘電体導波管線路は
一端側の先端を揃えて前記第4の誘電体導波管線路およ
び前記第6の誘電体導波管線路の外側の前記貫通導体群
の間隔Bが前記一定の幅dに対して3d≦B≦4dとな
るように平行に配置するとともに前記第4および第5の
誘電体導波管線路の隣り合う貫通導体群の先端間を第3
の補助接続用貫通導体群で、前記第5および第6の誘電
体導波管線路の隣り合う貫通導体群の先端間を第4の補
助接続用貫通導体群で接続し、かつその一端側の両端と
前記第2および第3の誘電体導波管線路の他方端側の両
端との間を前記高周波信号の伝送方向の長さLが0<
<dの第2の接続用貫通導体群で接続したことを特
徴とするものである。
The branch structure of the dielectric waveguide according to the present invention is as follows.
A pair of conductor layers sandwiching the dielectric substrate, and a repetition interval of a half or less of a cutoff wavelength of the high-frequency signal in a transmission direction of the high-frequency signal, and a constant width d in a direction orthogonal to the transmission direction. A first to a sixth dielectric body, comprising: two rows of through conductor groups formed so as to electrically connect the conductor layers; and transmitting a high-frequency signal by a region surrounded by the conductor layers and the through conductor groups. One end of the waveguide line is connected to one end of the first dielectric waveguide so that the transmission direction of the high-frequency signal is parallel to the second and third dielectric waveguides. The fourth and sixth dielectric waveguide lines are provided on opposite sides of the fifth dielectric waveguide line at the other ends of the second and third dielectric waveguide lines. And the fourth and sixth dielectric waveguide lines are arranged in The second and third dielectric waveguide lines are arranged such that the ends on one end and the other end are aligned with each other to form the outer through conductor group. The interval A is 2d ≦ for the constant width d.
A first and a second auxiliary connection penetrating conductor group respectively connect between the one end side and the other end side of the penetrating conductor group in the adjacent row and are arranged in parallel so that A ≦ 3d. On the other hand the transmission direction of the length L 1 of the two ends of the end side and the tip of one end of the first dielectric waveguide line said high-frequency signal is 0 <L 1 <first connection through conductor groups of d And the fourth to sixth dielectric waveguide lines are arranged such that their ends on one end side are aligned with each other and are outside of the fourth and sixth dielectric waveguide lines. The through-conductor groups are arranged in parallel so that the distance B between the through-conductor groups is 3d ≦ B ≦ 4d with respect to the constant width d, and the adjacent through-conductor groups of the fourth and fifth dielectric waveguide lines are arranged. Third between tips
Of the through-conductor groups for auxiliary connection, the tip ends of the through-conductor groups adjacent to the fifth and sixth dielectric waveguide lines are connected by a fourth through-conductor group for auxiliary connection, and one end of the wherein between the two ends of the other end side of both ends and the second and third dielectric waveguide line transmission direction of the length L 2 of the high-frequency signal is 0 <
The connection is made by a second connection through conductor group of L 2 <d.

【0015】また、本発明の誘電体導波管線路の分岐構
造は、上記構成の本発明の誘電体導波管線路の分岐構造
において、前記第2および第3の誘電体導波管線路の少
なくとも一方の前記2列の貫通導体群の間および/また
は前記第4乃至第5の誘電体導波管線路の少なくとも1
つの前記2列の貫通導体群の間に分岐後の電力比調整用
の貫通導体を形成したことを特徴とするものである。
Further, according to the branch structure of the dielectric waveguide line of the present invention, in the branch structure of the dielectric waveguide line of the present invention having the above-mentioned structure, the branch structure of the second and third dielectric waveguide lines is provided. Between at least one of the two rows of through conductor groups and / or at least one of the fourth and fifth dielectric waveguide lines;
A through conductor for adjusting the power ratio after branching is formed between the two rows of through conductor groups.

【0016】[0016]

【発明の実施の形態】以下、本発明の誘電体導波管線路
の分岐構造について図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A branch structure of a dielectric waveguide according to the present invention will be described below with reference to the drawings.

【0017】図1(a)および(b)は、それぞれ本発
明の誘電体導波管線路の分岐構造に係る誘電体導波管線
路の構成例を説明するための概略斜視図である。図1に
おいて、1は誘電体基板、2は誘電体基板1を挟持する
一対の導体層、3は一対の導体層2間を電気的に接続す
るよう形成された貫通導体であり、4は高周波信号の伝
送方向にその高周波信号の遮断波長の2分の1以下の繰
り返し間隔pで、かつその伝送方向と直交する方向に一
定の幅dで貫通導体3を配設することにより形成された
2列の貫通導体群である。
FIGS. 1A and 1B are schematic perspective views for explaining an example of the configuration of a dielectric waveguide line according to the branching structure of the dielectric waveguide line of the present invention. In FIG. 1, reference numeral 1 denotes a dielectric substrate, 2 denotes a pair of conductor layers sandwiching the dielectric substrate 1, 3 denotes a through conductor formed to electrically connect the pair of conductor layers 2, and 4 denotes a high frequency. 2 formed by arranging the through conductors 3 in the signal transmission direction at a repetition interval p of not more than half the cutoff wavelength of the high-frequency signal and with a constant width d in a direction orthogonal to the transmission direction. It is a group of through conductors in a row.

【0018】図1によれば、所定の厚みaの平板状の誘
電体基板1を挟持する位置に一対の導体層2・2が形成
されている。導体層2・2は誘電体基板1の少なくとも
伝送線路形成位置を挟む上下面に形成されている。ま
た、導体層2・2間には導体層2・2間を電気的に接続
する貫通導体3が多数設けられている。これら貫通導体
3は、図示するように、高周波信号の伝送方向すなわち
線路形成方向にこの線路により伝送される高周波信号の
遮断波長の2分の1以下の所定の繰り返し間隔pで、か
つ前記伝送方向と直交する方向に所定の一定の間隔
(幅)dをもって2列に形成されることにより、伝送線
路となる貫通導体群4を形成している。
According to FIG. 1, a pair of conductor layers 2 are formed at positions sandwiching a flat dielectric substrate 1 having a predetermined thickness a. The conductor layers 2 are formed on the upper and lower surfaces of at least the transmission line forming position of the dielectric substrate 1. A large number of through conductors 3 are provided between the conductor layers 2 to electrically connect the conductor layers 2 to each other. As shown in the figure, the through conductors 3 have a predetermined repetition interval p of not more than half the cutoff wavelength of the high-frequency signal transmitted by the line in the transmission direction of the high-frequency signal, that is, the line forming direction, and Are formed in two rows at a predetermined constant interval (width) d in a direction orthogonal to the above, thereby forming a through conductor group 4 serving as a transmission line.

【0019】平行に配置された一対の導体層2・2間に
はTEM波が伝播できるため、貫通導体群4の各列にお
ける貫通導体3の間隔pが遮断波長の2分の1よりも大
きいと、この線路に電磁波を給電してもここで作られる
疑似的な導波管に沿って伝播しなくなる。しかし、貫通
導体3の間隔pが遮断波長の2分の1以下であると電気
的な側壁を形成することとなって、電磁波は伝送線路に
対して垂直方向に伝播することができず、反射しながら
伝送線路方向に伝播されることとなる。その結果、この
ような構造の導体層2と貫通導体群4とにより囲まれる
断面積がa×dのサイズの領域により誘電体導波管と非
常に良く類似した良好な伝送特性が得られる。
Since the TEM wave can propagate between the pair of conductor layers 2 arranged in parallel, the distance p between the through conductors 3 in each row of the through conductor group 4 is larger than one half of the cutoff wavelength. Then, even if this line is supplied with electromagnetic waves, it does not propagate along the pseudo waveguide made here. However, if the distance p between the penetrating conductors 3 is less than half the cutoff wavelength, an electric side wall is formed, and the electromagnetic wave cannot propagate in the direction perpendicular to the transmission line, and is not reflected. The light is then propagated in the direction of the transmission line. As a result, a good transmission characteristic very similar to that of a dielectric waveguide can be obtained in a region having a cross section of a × d size surrounded by the conductor layer 2 and the through conductor group 4 having such a structure.

【0020】ここで、誘電体基板1の厚みaに対する制
限は特にないが、シングルモードで用いる場合には前記
一定の幅dに対して2分の1程度または2倍程度とする
ことがよく、図1の例では誘電体導波管のH面とE面に
当たる部分が各々導体層2と貫通導体群4で形成され、
図1(a)のように幅dに対して厚みaを2分の1程度
とすれば、誘電体導波管のH面とE面に当たる部分が各
々導体層2と貫通導体群4で形成されることとなり、図
1(b)のように幅dに対して厚みaを2倍程度とすれ
ば、誘電体導波管のE面とH面に当たる部分が各々導体
層2と貫通導体群4で形成されることとなる。
Here, there is no particular limitation on the thickness a of the dielectric substrate 1, but when used in the single mode, it is preferable that the thickness is about one half or two times the predetermined width d. In the example of FIG. 1, portions corresponding to the H plane and the E plane of the dielectric waveguide are formed by the conductor layer 2 and the through conductor group 4, respectively.
If the thickness a is about half the width d as shown in FIG. 1A, portions corresponding to the H plane and the E plane of the dielectric waveguide are formed by the conductor layer 2 and the through conductor group 4, respectively. If the thickness a is about twice as large as the width d as shown in FIG. 1B, the portions corresponding to the E-plane and the H-plane of the dielectric waveguide are respectively the conductor layer 2 and the through conductor group. 4 will be formed.

【0021】なお、5は貫通導体群4の各列を形成する
貫通導体3同士を電気的に接続する補助導体層であり、
所望により適宜形成される。このような補助導体層を形
成することによって、導波管線路内部から見ると線路の
側壁は貫通導体群4と補助導体層5とによって細かな格
子状になり、線路からの電磁波の遮蔽効果をより高める
ことができる。
Reference numeral 5 denotes an auxiliary conductor layer for electrically connecting the through conductors 3 forming each column of the through conductor group 4 to each other.
It is formed appropriately as required. By forming such an auxiliary conductor layer, when viewed from the inside of the waveguide line, the side wall of the line is formed into a fine lattice shape by the through conductor group 4 and the auxiliary conductor layer 5, and the shielding effect of electromagnetic waves from the line is reduced. Can be more enhanced.

【0022】また、この図1の例では貫通導体群4は2
列に形成したが、この貫通導体群4を4列あるいは6列
に配設して貫通導体群4による疑似的な導体壁を2重・
3重に形成することにより、導体壁からの電磁波の漏れ
をより効果的に防止することもできる。
Further, in the example shown in FIG.
Although the through conductor groups 4 are arranged in four or six rows, the pseudo conductor walls formed by the through conductor groups 4 are doubled.
By forming it three times, it is possible to more effectively prevent leakage of electromagnetic waves from the conductor wall.

【0023】このような導波管線路構造によれば、誘電
体基板1の比誘電率をεr とすると導波管サイズは通常
の導波管の1/√εr の大きさになる。従って、誘電体
基板1を構成する材料を比誘電率の大きいものとするほ
ど導波管サイズを小さくすることができて高周波回路の
小型化を図ることができ、高密度に配線が形成される多
層配線基板または半導体素子収納用パッケージの伝送線
路としても利用可能な大きさとなる。
According to such a waveguide structure, a waveguide size when the relative dielectric constant of the dielectric substrate 1 and epsilon r is the magnitude of 1 / √ε r of conventional waveguide. Therefore, as the material forming the dielectric substrate 1 has a higher relative dielectric constant, the waveguide size can be reduced, the high-frequency circuit can be reduced in size, and the wiring can be formed with high density. The size can be used as a transmission line of a multilayer wiring board or a package for housing a semiconductor element.

【0024】なお、貫通導体群4を構成する貫通導体3
は前述のように遮断波長の2分の1以下の繰り返し間隔
pで配設されており、この繰り返し間隔pは良好な伝送
特性を実現するためには一定の繰り返し間隔とすること
が望ましいが、遮断波長の2分の1以下の間隔であれば
適宜変化させたりいくつかの値を組み合わせたりしても
よい。
The through conductors 3 constituting the through conductor group 4
Are arranged at a repetition interval p equal to or less than a half of the cutoff wavelength as described above. The repetition interval p is desirably a constant repetition interval in order to realize good transmission characteristics. As long as the interval is equal to or less than a half of the cutoff wavelength, the interval may be appropriately changed or some values may be combined.

【0025】また、誘電体基板1としては、誘電体とし
て機能し高周波信号の伝送を妨げることのない特性を有
するものであればとりわけ限定するものではないが、伝
送線路を形成する際の精度および製造の容易性の点から
は、誘電体基板1はセラミックスからなることが望まし
い。
The dielectric substrate 1 is not particularly limited as long as it functions as a dielectric and does not hinder the transmission of a high-frequency signal. It is desirable that the dielectric substrate 1 be made of ceramics from the viewpoint of ease of manufacture.

【0026】このようなセラミックスとしてはこれまで
様々な比誘電率を持つセラミックスが知られているが、
本発明に係る誘電体導波管線路によって高周波信号を伝
送するためには常誘電体であることが望ましい。これ
は、一般に強誘電体セラミックスは高周波領域では誘電
損失が大きく伝送損失が大きくなるためである。従っ
て、誘電体基板1の比誘電率εr は4〜100 程度が適当
である。
As such ceramics, ceramics having various relative dielectric constants are known.
In order to transmit a high-frequency signal by the dielectric waveguide according to the present invention, it is preferable that the dielectric waveguide is a paraelectric. This is because ferroelectric ceramics generally have large dielectric loss and high transmission loss in a high frequency range. Therefore, the relative permittivity ε r of the dielectric substrate 1 is suitably about 4 to 100.

【0027】また、一般に多層配線基板や半導体素子収
納用パッケージに形成される配線層の線幅は最大でも1
mmであることから、比誘電率が100 の材料を用い、上
部がH面すなわち磁界が上側の面に平行に巻く電磁界分
布になるように用いた場合、用いることのできる最小の
周波数は15GHzと算出され、マイクロ波帯の領域でも
利用可能となる。一方、一般的に誘電体基板1として用
いられる樹脂からなる誘電体は、比誘電率εr が2程度
であるため、線幅が1mmの場合、約100 GHz以上で
ないと利用することができないものとなる。
In general, the line width of a wiring layer formed on a multilayer wiring board or a package for housing a semiconductor element has a maximum of 1
mm, the minimum frequency that can be used is 15 GHz when a material having a relative dielectric constant of 100 is used and the upper part is an H plane, that is, an electromagnetic field distribution in which the magnetic field is wound parallel to the upper surface. , And can be used in the microwave band region. On the other hand, a dielectric made of a resin generally used as the dielectric substrate 1 has a relative dielectric constant ε r of about 2, and therefore cannot be used unless the line width is 1 mm or more than about 100 GHz. It becomes.

【0028】また、このような常誘電体セラミックスの
中にはアルミナやシリカ等のように誘電正接が非常に小
さなものが多いが、全ての常誘電体セラミックスが利用
可能であるわけではない。誘電体導波管線路の場合は導
体による損失はほとんどなく、信号伝送時の損失のほと
んどは誘電体による損失であり、誘電体による損失α
(dB/m)は下記のように表わされる。 α=27.3×tanδ/〔λ/{1−(λ/λc 2
1/2 〕 式中、tanδは誘電体の誘電正接、λは誘電体中の波
長、λc は遮断波長である。規格化された矩形導波管
(WRJシリーズ)形状に準ずると、上式中の{1−
(λ/λc 2 1/2 は0.75程度である。
Further, among such paraelectric ceramics, there are many such as alumina and silica, whose dielectric loss tangent is very small, but not all paraelectric ceramics can be used. In the case of a dielectric waveguide line, there is almost no loss due to the conductor, and most of the loss during signal transmission is a loss due to the dielectric, and the loss due to the dielectric α
(DB / m) is expressed as follows. α = 27.3 × tan δ / [λ / {1- (λ / λ c ) 2 }
1/2 ] where tan δ is the dielectric loss tangent of the dielectric, λ is the wavelength in the dielectric, and λ c is the cutoff wavelength. According to the standardized rectangular waveguide (WRJ series) shape, {1-
(Λ / λ c ) 21/2 is about 0.75.

【0029】従って、実用に供し得る伝送損失である−
100 (dB/m)以下にするには、下記の関係が成立す
るように誘電体を選択することが必要である。 f×εr 1/2 ×tanδ≦0.8 式中、fは使用する周波数(GHz)である。
Therefore, the transmission loss is practically usable.
In order to make it 100 (dB / m) or less, it is necessary to select a dielectric so that the following relationship is satisfied. f × ε r 1/2 × tan δ ≦ 0.8 In the equation, f is a frequency (GHz) to be used.

【0030】このような誘電体基板1としては、例えば
アルミナセラミックスやガラスセラミックス・窒化アル
ミニウムセラミックス等があり、例えばセラミックス原
料粉末に適当な有機溶剤や溶媒を添加混合して泥漿状に
なすとともにこれを従来周知のドクターブレード法やカ
レンダーロール法等を採用してシート状となすことによ
って複数枚のセラミックグリーンシートを得、しかる
後、これらセラミックグリーンシートの各々に適当な打
ち抜き加工を施すとともにこれらを積層し、アルミナセ
ラミックスの場合は1500〜1700℃、ガラスセラミックス
の場合は850 〜1000℃、窒化アルミニウムセラミックス
の場合は1600〜1900℃の温度で焼成することによって製
作される。
Examples of such a dielectric substrate 1 include alumina ceramics, glass ceramics, and aluminum nitride ceramics. For example, an appropriate organic solvent or a solvent is added to and mixed with ceramic raw material powder to form a slurry. A plurality of ceramic green sheets are obtained by forming a sheet by employing a conventionally known doctor blade method, calender roll method, or the like. Thereafter, each of these ceramic green sheets is subjected to appropriate punching and laminated. It is manufactured by firing at a temperature of 1500 to 1700 ° C for alumina ceramics, 850 to 1000 ° C for glass ceramics, and 1600 to 1900 ° C for aluminum nitride ceramics.

【0031】また、一対の導体層2としては、例えば誘
電体基板1がアルミナセラミックスから成る場合、タン
グステン等の金属粉末に適当なアルミナ・シリカ・マグ
ネシア等の酸化物や有機溶剤・溶媒等を添加混合してペ
ースト状にしたものを厚膜印刷法により少なくとも伝送
線路を完全に覆うようにセラミックグリーンシート上に
印刷し、しかる後、約1600℃の高温で焼成し、厚み10〜
15μm以上となるようにして形成する。
When the dielectric substrate 1 is made of alumina ceramics, for example, a suitable oxide such as alumina, silica, magnesia, or an organic solvent or solvent is added to a metal powder such as tungsten when the dielectric substrate 1 is made of alumina ceramics. The mixed paste is printed on a ceramic green sheet by a thick film printing method so as to completely cover at least the transmission line, and then fired at a high temperature of about 1600 ° C. to a thickness of 10 to
It is formed to have a thickness of 15 μm or more.

【0032】なお、金属粉末としては、ガラスセラミッ
クスの場合は銅・金・銀が、窒化アルミニウムセラミッ
クスの場合はタングステン・モリブデンが好適である。
また、導体層2の厚みは一般的に5〜50μm程度とされ
る。
The metal powder is preferably copper / gold / silver for glass ceramics, and tungsten / molybdenum for aluminum nitride ceramics.
The thickness of the conductor layer 2 is generally about 5 to 50 μm.

【0033】また、貫通導体3としては、例えばビアホ
ール導体やスルーホール導体等により形成すればよく、
その断面形状も製作が容易な円形の他、矩形や菱形等の
多角形であってもよい。これら貫通導体3は、例えばセ
ラミックグリーンシートに打ち抜き加工を施して作製し
た貫通孔に前記導体層2と同様の金属ペーストを埋め込
み、しかる後、誘電体基板1と同時に焼成し形成する。
なお、貫通導体3は直径50〜300 μmが適当である。こ
のような誘電体導波管線路による本発明の誘電体導波管
線路の分岐構造の実施の形態の一例を図2に平面図で示
す。
The through conductor 3 may be formed of, for example, a via-hole conductor or a through-hole conductor.
The cross-sectional shape may be a polygon, such as a rectangle or a rhombus, in addition to a circle which is easy to manufacture. The through conductors 3 are formed by embedding a metal paste similar to that of the conductor layer 2 in a through hole formed by, for example, punching a ceramic green sheet, and then firing the same at the same time as the dielectric substrate 1.
The diameter of the through conductor 3 is suitably 50 to 300 μm. FIG. 2 is a plan view showing an example of the embodiment of the branch structure of the dielectric waveguide line of the present invention using such a dielectric waveguide line.

【0034】図2において、3は誘電体基板(図示せ
ず)中に高周波信号の伝送方向に高周波信号の遮断波長
の2分の1以下の繰り返し間隔pで、かつその伝送方向
と直交する方向に一定の幅dで、誘電体基板を挟持する
一対の導体層(図示せず)間を電気的に接続するよう形
成された貫通導体、4a〜4hはそのような貫通導体3
により構成された貫通導体群である。5は一対の導体層
と貫通導体群4aとにより構成される第1の誘電体導波
管線路を、6は一対の導体層と貫通導体群4b・4cと
により構成される第2の誘電体導波管線路を、7は一対
の導体層と貫通導体群4c・4dとにより構成される第
3の誘電体導波管線路を、8は一対の導体層と貫通導体
群4e・4fとにより構成される第4の誘電体導波管線
路を、9は一対の導体層と貫通導体群4f・4gとによ
り構成される第5の誘電体導波管線路を、10は一対の導
体層と貫通導体群4g・4hとにより構成される第6の
誘電体導波管線路を示している。
In FIG. 2, reference numeral 3 denotes a direction in a dielectric substrate (not shown) at a repetition interval p equal to or less than half the cutoff wavelength of the high-frequency signal in the transmission direction of the high-frequency signal and at a direction orthogonal to the transmission direction. The through conductors 4a to 4h are formed to electrically connect a pair of conductor layers (not shown) sandwiching the dielectric substrate with a constant width d.
Is a group of through conductors constituted by: Reference numeral 5 denotes a first dielectric waveguide line composed of a pair of conductor layers and a group of through conductors 4a, and reference numeral 6 denotes a second dielectric waveguide composed of a pair of conductor layers and a group of through conductors 4b and 4c. 7 is a third dielectric waveguide line composed of a pair of conductor layers and through conductor groups 4c and 4d, and 8 is a third dielectric waveguide line composed of a pair of conductor layers and through conductor groups 4e and 4f. 9 is a fifth dielectric waveguide line composed of a pair of conductor layers and through conductor groups 4f and 4g, and 10 is a pair of conductor layers. The figure shows a sixth dielectric waveguide line composed of through conductor groups 4g and 4h.

【0035】第2の誘電体導波管線路6と第3の誘電体
導波管線路7とは互いに一方の列の貫通導体群4cを共
有させて配置され、第4の誘電体導波管線路8および第
6の誘電体導波管線路10は第5の誘電体導波管線路9の
両側にそれぞれ一方の列の貫通導体群4fおよび4gを
第5の誘電体導波管線路9と共有させて配置されてお
り、各誘電体導波管線路5〜10はそれぞれの高周波信号
の伝送方向が平行となるように配置されている。この例
では、第2および第3の誘電体導波管線路6・7の外側
の貫通導体群4b・4dの間隔Aが前記一定の幅dに対
して2d=Aであり、第4および第6の誘電体導波管線
路8・10の外側の貫通導体群4e・4hの間隔Bが前記
一定の幅dに対して3d=Bである場合を示している。
The second dielectric waveguide line 6 and the third dielectric waveguide line 7 are arranged so as to share the through conductor group 4c in one row with each other. The line 8 and the sixth dielectric waveguide line 10 are respectively provided on both sides of the fifth dielectric waveguide line 9 with the through conductor groups 4f and 4g in one row and the fifth dielectric waveguide line 9 respectively. The dielectric waveguide lines 5 to 10 are arranged so that the transmission directions of the respective high-frequency signals are parallel to each other. In this example, the distance A between the through conductor groups 4b and 4d outside the second and third dielectric waveguide lines 6 and 7 is 2d = A with respect to the constant width d, and the fourth and the fourth 6 shows a case where the distance B between the through conductor groups 4e and 4h outside the dielectric waveguide lines 8 and 10 is 3d = B with respect to the constant width d.

【0036】4iは、第1の誘電体導波管線路5の一端
側の先端と、高周波信号の伝送方向が平行となるように
その一方端側を対向させて併設された第2および第3の
誘電体導波管線路6・7の一方端側の両端との間を接続
する第1の接続用貫通導体群であり、この例では、第1
の誘電体導波管線路5の先端の貫通導体5aに対して高
周波信号の伝送方向と直角方向に配設された貫通導体群
と、貫通導体群4bおよび4cを延長するように配設さ
れた貫通導体群とにより階段状に形成した例を示してい
る。11はこの第1の接続用貫通導体群4iにより構成さ
れる第1の接続用誘電体導波管線路を示している。
Reference numeral 4i denotes a second and a third juxtaposed one end of the first dielectric waveguide line 5 and one end of the first dielectric waveguide line 5 opposing each other so that the transmission direction of the high-frequency signal is parallel. Is a first group of through conductors for connection that connects between both ends on one end side of the dielectric waveguide lines 6 and 7.
And a through conductor group disposed in a direction perpendicular to the transmission direction of the high-frequency signal with respect to the through conductor 5a at the tip of the dielectric waveguide line 5, and the through conductor groups 4b and 4c are arranged to extend. An example in which a through conductor group is used to form a step is shown. Reference numeral 11 denotes a first connection dielectric waveguide line constituted by the first connection through conductor group 4i.

【0037】また、4jは、第2および第3の誘電体導
波管線路6・7の他方端側の両端と、高周波信号の伝送
方向が平行となるようにその一端側を対向させて併設さ
れた第4〜第6の誘電体導波管線路8〜10の一端側の両
端との間を接続する第2の接続用貫通導体群であり、こ
の例では、第2および第3の誘電体導波管線路6・7の
他方端側の先端の貫通導体6a・7aに対して高周波信
号の伝送方向と直角方向に配設された貫通導体群と、貫
通導体群4eおよび4hを延長するように配設された貫
通導体群とにより階段状に形成した例を示している。12
はこの第2の接続用貫通導体群4jにより構成される第
2の接続用誘電体導波管線路を示している。
Reference numeral 4j denotes a pair of second and third dielectric waveguide lines 6 and 7, one end of which is opposed to the other end so that the transmission direction of the high-frequency signal is parallel. The second through-conductor group for connection connects between both ends of the fourth to sixth dielectric waveguide lines 8 to 10 on one end side, and in this example, the second and third dielectric conductors are used. The penetrating conductor group disposed in the direction perpendicular to the transmission direction of the high-frequency signal with respect to the penetrating conductors 6a and 7a at the other ends of the body waveguide lines 6, 7 and the penetrating conductor groups 4e and 4h are extended. An example is shown in which the through conductor group is arranged in a stepwise manner. 12
Indicates a second dielectric waveguide line for connection constituted by the second through conductor group for connection 4j.

【0038】このような構成によれば、分岐前の第1の
誘電体導波管線路5の幅dを第1の接続用貫通導体群4
iを介して広げて第2の誘電体導波管線路6および第3
の誘電体導波管線路7に高周波信号の伝送方向が平行と
なるように接続し、さらに第2および第3の誘電体導波
管線路6・7の幅2dを第2の接続用貫通導体群4jを
介して広げて第4〜第6の誘電体導波管線路8〜10に高
周波信号の伝送方向が平行となるように接続して、第1
の誘電体導波管線路5から第2および第3の誘電体導波
管線路6・7を介して第4〜第6の誘電体導波管線路8
〜10のそれぞれに高周波信号を分岐することにより、小
型の構造で1本の誘電体導波管線路を3本の誘電体導波
管線路に分岐することができ、第1および第2の接続用
貫通導体群4i・4jを介してそれぞれ分岐することに
より分岐による特性インピーダンスの不整合を小さくで
き、分岐前後で同位相の電界の面の向きが変化しないた
め、各分岐部での高周波信号の反射が小さくなり、その
結果、伝送損失の小さい分岐構造となる。
According to such a configuration, the width d of the first dielectric waveguide line 5 before branching is set to the first connecting through conductor group 4.
i and the second dielectric waveguide line 6 and the third
And the width 2d of the second and third dielectric waveguide lines 6 and 7 is changed to the second through conductor for connection. It is spread through the group 4j and connected to the fourth to sixth dielectric waveguide lines 8 to 10 so that the transmission direction of the high-frequency signal becomes parallel.
4th to 6th dielectric waveguide lines 8 from the 2nd and 3rd dielectric waveguide lines 6 and 7 from the dielectric waveguide line 5 of FIG.
By branching the high-frequency signal to each of the first through third through ten, a single dielectric waveguide line can be branched into three dielectric waveguide lines with a small structure, and the first and second connections can be made. By branching through the through conductor groups 4i and 4j for use, mismatching of characteristic impedance due to branching can be reduced, and the direction of the surface of the electric field having the same phase before and after branching does not change. The reflection is reduced, and as a result, a branch structure with small transmission loss is obtained.

【0039】なお、第1の接続用貫通導体群4iの信号
伝送方向の長さL1 および第2の接続用貫通導体群4j
の信号伝送方向の長さL2 は、0<L1 <dおよび0<
2<dに設定することが好適であり、長さL1 ,L2
を一定の幅d以上に長くしても、特性インピーダンスの
不整合を小さくして分岐部での高周波信号の反射を小さ
くする効果は小さなものとなる。
Note that the length L 1 of the first connection through conductor group 4i in the signal transmission direction and the second connection through conductor group 4j
The length L 2 in the signal transmission direction is 0 <L 1 <d and 0 <
It is preferable to set L 2 <d, and the lengths L 1 and L 2
Is longer than a certain width d, the effect of reducing the mismatch of the characteristic impedance and reducing the reflection of the high-frequency signal at the branch portion is small.

【0040】また、第1および第2の接続用貫通導体群
4i・4jにおける貫通導体3の繰り返し間隔は、各誘
電体導波管線路4a〜4hにおける繰り返し間隔pと同
様に高周波信号の遮断波長の2分の1以下とすることが
望ましく、それにより第1および第2の接続用誘電体導
波管線路11・12においても電気的な側壁が形成されるこ
ととなる。
The repetition interval of the penetrating conductors 3 in the first and second connection penetrating conductor groups 4i and 4j is the same as the repetition interval p in each of the dielectric waveguide lines 4a to 4h. It is desirable that the thickness be equal to or less than one-half of that, so that the first and second connecting dielectric waveguide lines 11 and 12 also form electrical side walls.

【0041】また、第1の誘電体導波管線路5から第2
および第3の誘電体導波管線路6・7への分岐後の電力
比、ならびに第2および第3の誘電体導波管線路6・7
から第4〜第6の誘電体導波管線路8〜10への分岐後の
電力比は、それぞれ第1の誘電体導波管線路5の中心線
と第2および第3の誘電体導波管線路6・7の中心線す
なわち共有している貫通導体群4cを通る直線との位置
関係、ならびに第2および第3の誘電体導波管線路6・
7の各中心線と第4および第5の誘電体導波管線路8・
9の中心線(貫通導体群4fを通る直線)および第5お
よび第6の誘電体導波管線路9・10の中心線(貫通導体
群4gを通る直線)との位置関係により、それぞれ分岐
部での特性インピーダンスを変化させることなく任意の
電力比に設定することができる。すなわち、それぞれの
中心線を信号伝送方向に直角に距離h(0<h<d/
2)だけ移動させることにより、その距離hの大きさに
応じて分岐後の電力比を任意に設定することができる。
Further, the first dielectric waveguide line 5
Power ratio after branching to third and third dielectric waveguide lines 6.7, and second and third dielectric waveguide lines 6.7
The power ratio after branching from the first to sixth dielectric waveguide lines 8 to 10 is respectively the center line of the first dielectric waveguide line 5 and the second and third dielectric waveguide lines. The positional relationship between the center lines of the pipe lines 6 and 7, that is, the straight lines passing through the shared through conductor group 4 c, and the second and third dielectric waveguide lines 6 and 7.
7 and the fourth and fifth dielectric waveguide lines 8.
9 and a center line (a straight line passing through the through conductor group 4g) of the fifth and sixth dielectric waveguide lines 9 and 10 (a straight line passing through the through conductor group 4g). Can be set to any power ratio without changing the characteristic impedance at That is, each center line is perpendicular to the signal transmission direction at a distance h (0 <h <d /
By moving only by 2), the power ratio after branching can be arbitrarily set according to the magnitude of the distance h.

【0042】例えば、図2に示したように、第1の誘電
体導波管線路5の中心線と第2および第3の誘電体導波
管線路6・7の中心線とをほぼ一致させ、第2の誘電体
導波管線路6の中心線と第4および第5の誘電体導波管
線路8・9の中心線とを、ならびに第3の誘電体導波管
線路7の中心線と第5および第6の誘電体導波管線路9
・10の中心線とをほぼ一致させた場合には、第1の誘電
体導波管線路5から第2および第3の誘電体導波管線路
6・7に分岐したときの分岐後の電力比はほぼ1:1の
等分岐となり、第2および第3の誘電体導波管線路6・
7から第4〜第6の誘電体導波管線路8〜10に分岐した
ときの分岐後の電力比はほぼ1:3:1となる。この電
力比の値は信号の周波数により変化する。
For example, as shown in FIG. 2, the center line of the first dielectric waveguide line 5 and the center lines of the second and third dielectric waveguide lines 6 and 7 are made substantially coincident with each other. , The center line of the second dielectric waveguide line 6, the center line of the fourth and fifth dielectric waveguide lines 8 and 9, and the center line of the third dielectric waveguide line 7. And fifth and sixth dielectric waveguide lines 9
When the center line of 10 is substantially matched, the power after branching when branching from the first dielectric waveguide line 5 to the second and third dielectric waveguide lines 6 and 7 The ratio becomes approximately 1: 1 equally branched, and the second and third dielectric waveguide lines 6.
The power ratio after branching from the seventh to fourth to sixth dielectric waveguide lines 8 to 10 is approximately 1: 3: 1. The value of the power ratio changes depending on the frequency of the signal.

【0043】次に、本発明の誘電体導波管線路の分岐構
造の実施の形態の他の例を図3に平面図で示す。
FIG. 3 is a plan view showing another example of the embodiment of the branch structure of the dielectric waveguide according to the present invention.

【0044】図3において、3は誘電体基板(図示せ
ず)中に高周波信号の伝送方向に高周波信号の遮断波長
の2分の1以下の繰り返し間隔pで、かつその伝送方向
と直交する方向に一定の幅dで、誘電体基板を挟持する
一対の導体層(図示せず)間を電気的に接続するよう形
成された貫通導体、14a〜14kはそのような貫通導体3
により構成された貫通導体群である。15は一対の導体層
と貫通導体群14aとにより構成される第1の誘電体導波
管線路を、16は一対の導体層と貫通導体群14b・14cと
により構成される第2の誘電体導波管線路を、17は一対
の導体層と貫通導体群14d・14eとにより構成される第
3の誘電体導波管線路を、18は一対の導体層と貫通導体
群14f・14gとにより構成される第4の誘電体導波管線
路を、19は一対の導体層と貫通導体群14h・14iとによ
り構成される第5の誘電体導波管線路を、20は一対の導
体層と貫通導体群14j・14kとにより構成される第6の
誘電体導波管線路を示している。
In FIG. 3, reference numeral 3 denotes a direction in which a high-frequency signal is transmitted in a dielectric substrate (not shown) at a repetition interval p equal to or less than half the cutoff wavelength of the high-frequency signal and orthogonal to the transmission direction. A through conductor formed to electrically connect a pair of conductor layers (not shown) sandwiching the dielectric substrate with a constant width d.
Is a group of through conductors constituted by: Reference numeral 15 denotes a first dielectric waveguide line constituted by a pair of conductor layers and a group of through conductors 14a, and reference numeral 16 denotes a second dielectric waveguide constituted by a pair of conductor layers and a group of through conductors 14b and 14c. A waveguide line 17 is a third dielectric waveguide line composed of a pair of conductor layers and through conductor groups 14d and 14e, and 18 is a third dielectric waveguide line composed of a pair of conductor layers and through conductor groups 14f and 14g. The fourth dielectric waveguide line is constituted, 19 is a fifth dielectric waveguide line constituted by a pair of conductor layers and through conductor groups 14h and 14i, and 20 is a pair of conductor layers. A sixth dielectric waveguide line constituted by through conductor groups 14j and 14k is shown.

【0045】第2の誘電体導波管線路16と第3の誘電体
導波管線路17とは、一方端側および他方端側の先端を揃
えて外側の貫通導体群14bと14eとの間隔Aが前記一定
の幅dに対して2d≦A≦3d(この例では2d≠Aの
場合を示している)となるように平行に配置するととも
に隣り合う列の貫通導体群14cと14dとの一方端側およ
び他方端側の先端間をそれぞれ第1の補助接続用貫通導
体群14nおよび第2の補助接続貫通導体群14oで接続し
て配置されている。また、第4〜第6の誘電体導波管線
路18〜20は、それぞれ一端側の先端を揃えて第4の誘電
体導波管線路18および第6の誘電体導波管線路20の外側
の貫通導体群14fと14kとの間隔Bが前記一定の幅dに
対して3d≦B≦4d(この例では3d≠Bの場合を示
している)となるように平行に配置するとともに、第4
および第5の誘電体導波管線路18・19の隣り合う列の貫
通導体群14gと14hとの先端間を第3の補助接続用貫通
導体群14pで接続し、第5および第6の誘電体導波管線
路19・20の隣り合う列の貫通導体群14iと14jとの先端
間を第4の補助接続用貫通導体群14qで接続して配置さ
れており、各誘電体導波管線路15〜20はそれぞれの高周
波信号の伝送方向が平行となるように配置されている。
The second dielectric waveguide 16 and the third dielectric waveguide 17 are spaced apart from each other at the ends of the one end side and the other end side so that the distance between the outer through conductor groups 14b and 14e is equal. A is arranged in parallel so that A is 2d ≦ A ≦ 3d with respect to the constant width d (in this example, 2d ≠ A), and the through conductor groups 14c and 14d in adjacent rows are arranged in parallel. A first auxiliary connection through-conductor group 14n and a second auxiliary connection through-conductor group 14o are connected between the one end and the other end, respectively. Further, the fourth to sixth dielectric waveguide lines 18 to 20 are arranged outside the fourth dielectric waveguide line 18 and the sixth dielectric waveguide line 20 by aligning the ends at one end. Are arranged in parallel so that the distance B between the through conductor groups 14f and 14k is 3d ≦ B ≦ 4d (in this example, 3d ≠ B) with respect to the constant width d. 4
A third auxiliary connection penetrating conductor group 14p connects the distal ends of the penetrating conductor groups 14g and 14h in the adjacent rows of the fifth dielectric waveguide lines 18 and 19 to form the fifth and sixth dielectric conductors. The end portions of the through conductor groups 14i and 14j in adjacent rows of the body waveguide lines 19 and 20 are connected by a fourth auxiliary connection through conductor group 14q and arranged. 15 to 20 are arranged such that the transmission directions of the respective high-frequency signals are parallel.

【0046】14lは、第1の誘電体導波管線路15の一端
側の先端と、高周波信号の伝送方向が平行となるように
その一方端側を対向させて併設された第2および第3の
誘電体導波管線路16・17の一方端側の両端との間を接続
する第1の接続用貫通導体群であり、この例では、第1
の誘電体導波管線路15の先端の貫通導体15aに対して高
周波信号の伝送方向と直角方向に配設された貫通導体群
と、貫通導体群14bおよび14eを延長するように配設さ
れた貫通導体群とにより階段状に形成した例を示してい
る。21はこの第1の接続用貫通導体群14lにより構成さ
れる第1の接続用誘電体導波管線路を示している。
Reference numeral 14l denotes a second and a third juxtaposed with one end of the first dielectric waveguide line 15 opposed to one end so that the transmission direction of the high-frequency signal is parallel. A first group of through conductors for connection that connects between both ends on one end side of the dielectric waveguide lines 16 and 17 of the first embodiment.
And a through-conductor group disposed in a direction perpendicular to the transmission direction of the high-frequency signal with respect to the through-conductor 15a at the tip of the dielectric waveguide line 15, and the through-conductor groups 14b and 14e are arranged to extend. An example in which a through conductor group is used to form a step is shown. Reference numeral 21 denotes a first connection dielectric waveguide line constituted by the first connection through conductor group 14l.

【0047】また、14mは、第2および第3の誘電体導
波管線路16・17の他方端側の両端と、高周波信号の伝送
方向が平行となるようにその一端側を対向させて併設さ
れた第4〜第6の誘電体導波管線路18〜20の一端側の両
端との間を接続する第2の接続用貫通導体群であり、こ
の例では、第2および第3の誘電体導波管線路16・17の
他方端側の先端の貫通導体16a・17aに対して高周波信
号の伝送方向と直角方向に配設された貫通導体群と、貫
通導体群14fおよび14kを延長するように配設された貫
通導体群とにより階段状に形成した例を示している。22
はこの第2の接続用貫通導体群14mにより構成される第
2の接続用誘電体導波管線路を示している。
Further, 14 m is provided with both ends on the other end side of the second and third dielectric waveguide lines 16 and 17 such that one end side thereof is opposed so that the transmission direction of the high-frequency signal is parallel. The second through-conductor group for connection connects between the first and second ends of the fourth to sixth dielectric waveguide lines 18 to 20. In this example, the second and third dielectric conductors are used. The through-conductor groups disposed in the direction perpendicular to the transmission direction of the high-frequency signal with respect to the through-conductors 16a and 17a at the other ends of the body waveguide lines 16 and 17, and the through-conductor groups 14f and 14k are extended. An example is shown in which the through conductor group is arranged in a stepwise manner. twenty two
Indicates a second dielectric waveguide line for connection constituted by the second through conductor group 14m for connection.

【0048】このような構成によれば、分岐前の第1の
誘電体導波管線路15の幅dを第1の接続用貫通導体群14
lを介して2d≦A≦3dである間隔Aに広げて、両端
の貫通導体群14b・14eの間隔がその間隔Aとなるよう
に互いに平行に併設された第2の誘電体導波管線路16お
よび第3の誘電体導波管線路17に高周波信号の伝送方向
が平行となるように接続し、さらに第2および第3の誘
電体導波管線路16・17の幅Aを第2の接続用貫通導体群
14mを介して3d≦B≦4dである間隔Bに広げて、両
端の間隔がその間隔Bとなるように互いに平行に併設さ
れた第4〜第6の誘電体導波管線路18〜20に高周波信号
の伝送方向が平行となるように接続して、第1の誘電体
導波管線路15から第2および第3の誘電体導波管線路16
・17を介して第4〜第6の誘電体導波管線路18〜20のそ
れぞれに高周波信号を分岐することにより、小型の構造
で1本の誘電体導波管線路を3本の誘電体導波管線路に
分岐することができ、第1および第2の接続用貫通導体
群14l・14mを介してそれぞれ分岐することにより分岐
による特性インピーダンスの不整合を小さくでき、分岐
前後で同位相の電界の面の向きが変化しないため、各分
岐部での高周波信号の反射が小さくなり、その結果、伝
送損失の小さい分岐構造となる。
According to such a configuration, the width d of the first dielectric waveguide line 15 before branching is set to the first connecting through conductor group 14.
The second dielectric waveguide lines are extended in parallel to each other so that the distance between the penetrating conductor groups 14b and 14e at both ends becomes the distance A by extending the distance A through 2d ≦ A ≦ 3d. 16 and the third dielectric waveguide line 17 are connected so that the transmission direction of the high-frequency signal is parallel, and the width A of the second and third dielectric waveguide lines 16 and 17 is set to the second width. Connection through conductor group
Fourth to sixth dielectric waveguide lines 18 to 20 which are extended in parallel to each other so that the distance between both ends becomes the distance B by extending the distance B between 3d ≦ B ≦ 4d via 14m. The first and second dielectric waveguide lines 15 and 16 are connected so that the transmission directions of the high-frequency signals are parallel.
By dividing a high-frequency signal into each of the fourth to sixth dielectric waveguide lines 18 to 20 via 17, one dielectric waveguide line can be reduced to three dielectric members with a small structure. By branching through the waveguide line, and branching through the first and second connection through conductor groups 14l and 14m, mismatching of characteristic impedance due to branching can be reduced. Since the direction of the surface of the electric field does not change, the reflection of the high-frequency signal at each branching portion decreases, and as a result, a branching structure having a small transmission loss is obtained.

【0049】このような構成によれば、第2の誘電体導
波管線路16と第3の誘電体導波管線路とをA−2dの間
隔で離して、また第4の誘電体導波管線路18と第5の誘
電体導波管線路19と第6の誘電体導波管線路20とをB−
3dを任意の比で分けた間隔で離してそれぞれ配置する
こととなり、各分岐部においてSパラメータのうちS11
は幾分劣化することとなるが、配線の自由度が高くな
り、アイソレーション性も向上することとなる。
According to such a configuration, the second dielectric waveguide line 16 and the third dielectric waveguide line are separated from each other at an interval of A-2d, and the fourth dielectric waveguide line is separated from the fourth dielectric waveguide line. The pipe line 18, the fifth dielectric waveguide line 19 and the sixth dielectric waveguide line 20 are
3d to be be arranged apart at intervals divided in any ratio, S 11 of S parameters at each bifurcation
Is somewhat deteriorated, but the degree of freedom of wiring is increased, and the isolation is also improved.

【0050】なお、この場合の第1の接続用貫通導体群
14lの信号伝送方向の長さL1 および第2の接続用貫通
導体群14mの信号伝送方向の長さL2 も、0<L1 <d
および0<L2 <dに設定することが好適であり、長さ
1 ,L2 を一定の幅d以上に長くしても、特性インピ
ーダンスの不整合を小さくして分岐部での高周波信号の
反射を小さくする効果は小さなものとなる。
In this case, the first through conductor group for connection is used.
Length L 2 is also the signal transmission direction of 14l length L 1 and the signal transmission direction of the second connection through conductor groups 14m, 0 <L 1 <d
And 0 <L 2 <d, and even if the lengths L 1 and L 2 are made longer than a certain width d, the characteristic impedance mismatch is reduced and the high-frequency signal at the branch portion is reduced. The effect of reducing the reflection of light is small.

【0051】また、第1および第2の接続用貫通導体群
14l・14mにおける貫通導体3の繰り返し間隔も、各誘
電体導波管線路14a〜14kにおける繰り返し間隔pと同
様に高周波信号の遮断波長の2分の1以下とすることが
望ましく、それにより第1および第2の接続用誘電体導
波管線路21・22においても電気的な側壁が形成されるこ
ととなる。
Further, the first and second through conductor groups for connection
The repetition interval of the through conductor 3 at 14 l · 14 m is preferably not more than half the cutoff wavelength of the high-frequency signal, similarly to the repetition interval p of each of the dielectric waveguide lines 14 a to 14 k. Also, electrical side walls are formed in the second connecting dielectric waveguide lines 21 and 22 as well.

【0052】また、第1〜第4の補助接続用貫通導体群
14n〜14qの長さL3 ,L4 ,L5は、それぞれ0<L
3 <d,0<L4 <d,0<L5 <dとするのが好適で
ある。各補助接続用貫通導体群14n〜14qの長さをこれ
以上長くすると反射による損失が大きくなる場合があ
る。また、第1〜第4の補助接続用貫通導体群14n〜14
qにおける貫通導体3の繰り返し間隔も、高周波信号の
遮断波長の2分の1以下とすることが望ましく、それに
より第1〜第4の補助接続用貫通導体群14n〜14qにお
いても電気的な側壁が形成されることとなる。
In addition, the first through fourth auxiliary connection through conductor groups
The lengths L 3 , L 4 , and L 5 of 14n to 14q are each 0 <L
3 <it is preferable to a d, 0 <L 4 <d , 0 <L 5 <d. If the length of each of the auxiliary connection through conductor groups 14n to 14q is made longer, the loss due to reflection may increase. Further, the first to fourth auxiliary connection through conductor groups 14n to 14n
Also, it is desirable that the repetition interval of the through conductors 3 in q is not more than one half of the cutoff wavelength of the high-frequency signal, so that the first to fourth auxiliary connection through conductor groups 14n to 14q also have electric side walls. Is formed.

【0053】また、第1の誘電体導波管線路15から第2
および第3の誘電体導波管線路16・17への分岐後の電力
比、ならびに第2および第3の誘電体導波管線路16・17
から第4〜第6の誘電体導波管線路18〜20への分岐後の
電力比は、それぞれ第1の誘電体導波管線路15の中心線
と第2および第3の誘電体導波管線路16・17間の中心線
すなわち貫通導体群14c・14d間の中心線との位置関
係、ならびに第2および第3の誘電体導波管線路16・17
の各中心線と第4および第5の誘電体導波管線路18・19
間の中心線(貫通導体群14g・14h間の中心線)および
第5および第6の誘電体導波管線路19・20の中心線(貫
通導体群14i・14j間の中心線)との位置関係により、
それぞれ分岐部での特性インピーダンスを変化させるこ
となく任意の電力比に設定することができる。すなわ
ち、それぞれの中心線を信号伝送方向に直角に距離h
(0<h<d/2)だけ移動させることにより、その距
離hの大きさに応じて分岐後の電力比を任意に設定する
ことができる。
The first dielectric waveguide line 15 is connected to the second
Power ratio after branching to the second and third dielectric waveguide lines 16 and 17, and the second and third dielectric waveguide lines 16 and 17
The power ratio after branching from the first to sixth dielectric waveguide lines 18 to 20 is the center ratio of the first dielectric waveguide line 15 and the second and third dielectric waveguide lines, respectively. The positional relationship between the center line between the pipe lines 16 and 17, that is, the center line between the through conductor groups 14c and 14d, and the second and third dielectric waveguide lines 16 and 17
Center lines and the fourth and fifth dielectric waveguide lines 18 and 19
Between the center line between them (the center line between the through conductor groups 14g and 14h) and the center lines of the fifth and sixth dielectric waveguide lines 19 and 20 (the center line between the through conductor groups 14i and 14j). By relationship
Any power ratio can be set without changing the characteristic impedance at each branch. That is, each center line is perpendicular to the signal transmission direction at a distance h.
By moving by (0 <h <d / 2), the power ratio after branching can be set arbitrarily according to the magnitude of the distance h.

【0054】例えば、図3に示したように、第1の誘電
体導波管線路15の中心線と第2および第3の誘電体導波
管線路16・17の中心線とをほぼ一致させ、第2の誘電体
導波管線路16の中心線と第4および第5の誘電体導波管
線路18・19の中心線とを、ならびに第3の誘電体導波管
線路17の中心線と第5および第6の誘電体導波管線路19
・20の中心線とをほぼ一致させた場合には、第1の誘電
体導波管線路15から第2および第3の誘電体導波管線路
16・17に分岐したときの分岐後の電力比はほぼ1:1の
等分岐となり、第2および第3の誘電体導波管線路16・
17から第4〜第6の誘電体導波管線路18〜20に分岐した
ときの分岐後の電力比はほぼ1:3:1となる。この電
力比の値は信号の周波数により異なるものとなる。
For example, as shown in FIG. 3, the center line of the first dielectric waveguide line 15 and the center lines of the second and third dielectric waveguide lines 16 and 17 are substantially matched. , The center line of the second dielectric waveguide 16, the center line of the fourth and fifth dielectric waveguides 18 and 19, and the center line of the third dielectric waveguide 17. And fifth and sixth dielectric waveguide lines 19
When the center line of 20 is substantially coincident with the first dielectric waveguide line 15, the second and third dielectric waveguide lines
The power ratio after branching to 16 and 17 is approximately equal to 1: 1 and the second and third dielectric waveguide lines 16 and 17 have the same power ratio.
The power ratio after branching from the 17 to the fourth to sixth dielectric waveguide lines 18 to 20 is approximately 1: 3: 1. The value of the power ratio differs depending on the frequency of the signal.

【0055】なお、以上の図2の例ではA=2d,B=
3dの場合を、図3の例ではA≠2d,B≠3dの場合
を示したが、それぞれ2d≦A≦3dおよび3d≦B≦
4dの範囲で任意に設定して組み合わせてよいことは言
うまでもない。
In the example of FIG. 2, A = 2d and B =
Although the case of 3d is shown in the example of FIG. 3 where A ≠ 2d and B ≠ 3d, 2d ≦ A ≦ 3d and 3d ≦ B ≦
Needless to say, any combination may be set within the range of 4d.

【0056】次に、本発明の誘電体導波管線路の分岐構
造の実施の形態のさらに他の例を図4に平面図で示す。
Next, still another example of the embodiment of the branch structure of the dielectric waveguide line of the present invention is shown in a plan view in FIG.

【0057】図4の構成は、第2の誘電体導波管線路16
の2列の貫通導体群14b・14cの間に分岐後の電力比調
整用の貫通導体23を設けたことを除き図3と同様であ
り、図3と同様の箇所には同じ符号を付してある。
FIG. 4 shows a configuration of the second dielectric waveguide line 16.
This is the same as FIG. 3 except that a through conductor 23 for adjusting the power ratio after branching is provided between the two rows of through conductor groups 14b and 14c. It is.

【0058】このような構成によれば、貫通導体23を設
けた第2の誘電体導波管線路16の遮断周波数が高くな
る。そのため、導波管の最低次のTE10モードについて
考えると、第2の誘電体導波管線路16の遮断周波数未満
では第3の誘電体導波管線路17のみに信号が伝播し、遮
断周波数以上では第2および第3の誘電体導波管線路16
・17の両方に信号が伝播することとなり、高次モードが
発生する周波数以下では高周波数になるほど第2の誘電
体導波管線路16に信号の伝播する比率が大きくなること
となる。従って、分岐前の第1の誘電体導波管線路15を
第2および第3の誘電体導波管線路16・17に分岐したと
き分岐後の電力比が1:1の等分岐ではなくなる。これ
により、第2の誘電体導波管線路16に設ける貫通導体23
の位置と本数を適当に選ぶことにより、分岐後の電力を
任意の電力比に調整することができる。
According to such a configuration, the cutoff frequency of the second dielectric waveguide 16 provided with the through conductor 23 is increased. Therefore, considering the lowest order TE 10 mode of the waveguide is less than the cut-off frequency of the second dielectric waveguide line 16 signal is propagated only in the third dielectric waveguide line 17, the cut-off frequency The second and third dielectric waveguide lines 16 have been described above.
The signal propagates to both of the two, and the lower the frequency at which the higher-order mode occurs, the higher the frequency, the greater the ratio of signal propagation to the second dielectric waveguide line 16. Therefore, when the first dielectric waveguide line 15 before branching is branched into the second and third dielectric waveguide lines 16 and 17, the power ratio after branching is not equal branching of 1: 1. Thereby, the through conductor 23 provided in the second dielectric waveguide line 16 is formed.
By appropriately selecting the position and the number of the power supply, the power after branching can be adjusted to an arbitrary power ratio.

【0059】なお、分岐後の電力比調整用の貫通導体23
は、その他の誘電体導波管線路17〜20のいずれに設けて
も、複数の誘電体導波管線路16〜20に同時に設けてもよ
く、または接続用誘電体導波管線路21・22に設けてもよ
い。また、貫通導体群14cと14d、14gと14hおよび14
jと14kの中心線とをずらせることと組み合わせて、任
意の電力比とするようにしてもよい。
The through conductor 23 for adjusting the power ratio after branching
May be provided on any of the other dielectric waveguide lines 17 to 20, may be provided simultaneously on a plurality of dielectric waveguide lines 16 to 20, or may be provided on the connecting dielectric waveguide lines 21 and 22. May be provided. Also, the through conductor groups 14c and 14d, 14g and 14h and 14
An arbitrary power ratio may be set in combination with shifting the center line between j and 14k.

【0060】[0060]

【実施例】図2に示した構成の本発明の誘電体導波管線
路の分岐構造について、分岐を含む伝送線路の伝送特性
を有限要素法により計算した。導体層2および貫通導体
3の材料には導電率が5.8 ×107 (1/Ωm)の純銅を
用い、誘電体基板1には比誘電率εr が5で誘電正接t
anδが0.001 のホウ珪酸ガラス75重量%とアルミナ25
重量%とを焼成して作製したガラスセラミックス焼結体
を用い、誘電体基板1の厚みa=0.62mm、貫通導体3
の直径を0.1 mm、貫通導体群4の繰り返し間隔p=0.
25mm、貫通導体群4の一定の幅d=1.2 mmとし、第
1〜第6の誘電体導波管線路5〜10の線路の長さはそれ
ぞれ2.25mmとして、Sパラメータの周波数特性を算出
した。
EXAMPLE For the branch structure of the dielectric waveguide line of the present invention having the structure shown in FIG. 2, the transmission characteristics of the transmission line including the branch were calculated by the finite element method. The conductor layer 2 and the through conductor 3 are made of pure copper having a conductivity of 5.8 × 10 7 (1 / Ωm), and the dielectric substrate 1 has a relative permittivity ε r of 5 and a dielectric loss tangent t.
75% by weight of borosilicate glass having an δ of 0.001 and 25 of alumina
% Of the dielectric substrate 1 and a through conductor 3
Is 0.1 mm, and the repetition interval of the through conductor group 4 is p = 0.
The frequency characteristics of the S parameters were calculated by assuming that 25 mm, the fixed width d of the through conductor group 4 was 1.2 mm, and the lengths of the first to sixth dielectric waveguide lines 5 to 10 were 2.25 mm, respectively. .

【0061】その結果を図5に線図で示す。図5におい
て横軸は周波数(GHz)、縦軸はSパラメータのうち
11・S21・S31・S41の値(dB)を示し、図中の特
性曲線は各Sパラメータの周波数特性を表わしている。
なお、ここでS11は第1の誘電体導波管線路5から入っ
て第1の誘電体導波管線路5から出てくる成分を、S21
は第1の誘電体導波管線路5から入って第4の誘電体導
波管線路8から出てくる成分を、S31は第1の誘電体導
波管線路5から入って第5の誘電体導波管線路9から出
てくる成分を、S41は第1の誘電体導波管線路5から入
って第6の誘電体導波管線路10から出てくる成分を表わ
すものである。
The results are shown in a diagram in FIG. In FIG. 5, the horizontal axis represents the frequency (GHz), and the vertical axis represents the values (dB) of S 11 , S 21 , S 31, and S 41 among the S parameters, and the characteristic curve in the figure represents the frequency characteristic of each S parameter. It represents.
Incidentally, here S 11 comes out of the first dielectric waveguide line 5 enters from the first dielectric waveguide line 5 component, S 21
It is a component exiting from the fourth dielectric waveguide line 8 enters the first dielectric waveguide line 5, S 31 is the fifth in from the first dielectric waveguide line 5 S 41 represents a component coming out of the dielectric waveguide line 9, and S 41 represents a component coming out of the sixth dielectric waveguide line 10 entering from the first dielectric waveguide line 5. .

【0062】この結果より、S11は66〜90GHzで−10
dB以下となり、特に第1の接続用貫通導体群4i(第
1の接続用誘電体導波管線路11)の長さL1 が誘電体導
波管線路の管内波長の1/4の長さに当たる周波数であ
る77GHz近傍で信号の反射が小さく、入力側である第
1の誘電体導波管線路5を高周波信号が良好に透過する
ことが分かる。また、出力側である3つの誘電体導波管
線路8・9・10からの出力電力の比率は、77GHzで
3:10:3となっている。
[0062] From this result, it S 11 in 66~90GHz -10
dB or less, and in particular, the length L1 of the first connecting through conductor group 4i (the first connecting dielectric waveguide line 11) is 1 / of the guide wavelength of the dielectric waveguide line. It can be seen that the signal reflection is small in the vicinity of 77 GHz which is the frequency corresponding to the above, and that the high frequency signal is transmitted well through the first dielectric waveguide line 5 on the input side. Further, the ratio of the output power from the three dielectric waveguide lines 8, 9, and 10 on the output side is 3: 10: 3 at 77 GHz.

【0063】次に、第1の誘電体導波管線路5の中心線
に対して第2および第3の誘電体導波管線路6・7の中
心線を線路に垂直にd/10だけ図において左側へずらせ
て同様にSパラメータの周波数特性を求めたところ、第
4〜第6の誘電体導波管線路8〜10からの出力電力比率
は77GHzで6:10:3となり、分岐後の電力比を調整
できることが確認できた。
Next, the center lines of the second and third dielectric waveguide lines 6 and 7 are perpendicular to the center line of the first dielectric waveguide line 5 by d / 10. In the same manner, the frequency characteristic of the S parameter was obtained by shifting to the left side. The output power ratio from the fourth to sixth dielectric waveguide lines 8 to 10 was 6: 10: 3 at 77 GHz, It was confirmed that the power ratio could be adjusted.

【0064】次に、第2の誘電体導波管線路6の先端に
貫通導体群4bから線路に垂直方向にd/10の位置に貫
通導体23を設けて、同様にSパラメータの周波数特性を
求めたところ、第4〜第6の誘電体導波管線路8〜10か
らの出力電力比率は77GHzで5:12:3となり、これ
によっても分岐後の電力比を調整できることが確認でき
た。
Next, a penetrating conductor 23 is provided at the end of the second dielectric waveguide line 6 at a position of d / 10 in a direction perpendicular to the line from the penetrating conductor group 4b, and the frequency characteristic of the S parameter is similarly determined. As a result, the output power ratio from the fourth to sixth dielectric waveguide lines 8 to 10 was 5: 12: 3 at 77 GHz, and it was confirmed that the power ratio after branching could also be adjusted.

【0065】さらに、図3に示した構成の本発明の誘電
体導波管線路についても同様にSパラメータの周波数特
性を求めて評価したところ、いずれも同様に伝送損失が
小さい良好な伝送特性を有しており、しかも中心線の位
置関係の設定や電力比調整用の貫通導体23の配設により
分岐後の電力比を調整できることが確認できた。
Further, the dielectric waveguide line of the present invention having the structure shown in FIG. 3 was similarly evaluated by obtaining the S-parameter frequency characteristics. It has been confirmed that the power ratio after branching can be adjusted by setting the positional relationship of the center line and disposing the through conductor 23 for adjusting the power ratio.

【0066】以上により、本発明の誘電体導波管線路の
分岐構造によれば、誘電体基板内に形成でき、高周波信
号の電磁波の放射・漏洩が無く、1本の線路を3本の線
路に分岐可能で、分岐後の電力比を任意に設定可能で伝
送損失が小さい良好な伝送特性を有することが確認でき
た。
As described above, according to the branch structure of the dielectric waveguide line of the present invention, one line can be formed into a dielectric substrate without radiation / leakage of electromagnetic waves of high-frequency signals, and one line can be replaced with three lines. It can be confirmed that the transmission ratio can be set to any value, the power ratio after the branching can be set arbitrarily, and the transmission characteristics are good and the transmission characteristics are small.

【0067】なお、本発明は以上の実施の形態の例に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種々の変更や改良を加えることは何ら差し支えない。
例えば、第1〜第3の誘電体導波管線路の幅をそれぞれ
別の値としてもよい。また、第1および第2の接続用貫
通導体群は、階段状に配設するのみならず、直線状に配
設してもよく、あるいは円弧状に配設しても、その他の
任意の形状に配設してもよい。
It should be noted that the present invention is not limited to the above-described embodiments, and that various changes and improvements can be made without departing from the scope of the present invention.
For example, the widths of the first to third dielectric waveguide lines may be different values. Further, the first and second connection through conductor groups may be arranged not only in a step shape but also in a linear shape or in an arc shape, or in any other shape. May be arranged.

【0068】[0068]

【発明の効果】以上詳述した通り、本発明の誘電体導波
管線路の分岐構造によれば、第1〜第6の誘電体導波管
線路を上記の所定の構成で接続したことにより、1本の
誘電体導波管線路を3本の誘電体導波管線路に分岐する
構造として、分岐部前後の誘電体導波管線路の特性イン
ピーダンスの不整合を小さくできるため分岐部での高周
波信号の反射が小さくなり、しかも高周波信号の分岐部
における伝播モードに乱れが生じることがないため、伝
送損失の小さい良好な誘電体導波管線路の分岐構造を提
供することができた。
As described in detail above, according to the branch structure of the dielectric waveguide line of the present invention, the first to sixth dielectric waveguide lines are connected in the above-mentioned predetermined configuration. A structure in which one dielectric waveguide line is branched into three dielectric waveguide lines. Since the mismatch in characteristic impedance of the dielectric waveguide lines before and after the branch portion can be reduced, Since the reflection of the high-frequency signal is reduced and the propagation mode of the high-frequency signal is not disturbed at the branch portion, a good branching structure of the dielectric waveguide line with small transmission loss can be provided.

【0069】また、本発明の誘電体導波管線路の分岐構
造によれば、第2〜第6の誘電体導波管線路の2列の貫
通導体群の間に貫通導体を形成することにより、分岐後
の電力比を任意に調整することができる。
Further, according to the branch structure of the dielectric waveguide line of the present invention, a through conductor is formed between two rows of through conductor groups of the second to sixth dielectric waveguide lines. , The power ratio after the branch can be arbitrarily adjusted.

【0070】なお、本発明の誘電体導波管線路の分岐構
造によれば、第1〜第3の誘電体導波管線路の分岐構造
の構成を繰り返し設けることにより、1本の誘電体導波
管線路を4本以上の任意の数の誘電体導波管線路に分岐
することも可能である。
According to the branch structure of the dielectric waveguide line of the present invention, the structure of the branch structure of the first to third dielectric waveguide lines is repeatedly provided to thereby form one dielectric waveguide. It is also possible to branch the waveguide line into any number of four or more dielectric waveguide lines.

【0071】以上により、本発明によれば、誘電体基板
内に形成でき、高周波信号の電磁波の放射・漏洩が無
く、1本の線路を3本の線路に分岐可能で、分岐後の電
力比を任意に設定可能で伝送損失が小さい良好な伝送特
性を有する誘電体導波管線路の分岐構造を提供すること
ができた。
As described above, according to the present invention, a single line can be branched into three lines without radiation and leakage of high-frequency signal electromagnetic waves, and the power ratio after the branch can be formed. Can be set arbitrarily and a branch structure of the dielectric waveguide line having good transmission characteristics with small transmission loss can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)および(b)はそれぞれ本発明に係る誘
電体導波管線路の例を説明するための概略斜視図であ
る。
FIGS. 1A and 1B are schematic perspective views illustrating examples of a dielectric waveguide according to the present invention.

【図2】本発明の誘電体導波管線路の分岐構造の実施の
形態の一例を説明するための平面図である。
FIG. 2 is a plan view for explaining an example of an embodiment of a branch structure of a dielectric waveguide according to the present invention.

【図3】本発明の誘電体導波管線路の分岐構造の実施の
形態の他の例を説明するための平面図である。
FIG. 3 is a plan view for explaining another example of the embodiment of the branch structure of the dielectric waveguide according to the present invention.

【図4】本発明の誘電体導波管線路の分岐構造の実施の
形態の他の例を説明するための平面図である。
FIG. 4 is a plan view for explaining another example of the embodiment of the branch structure of the dielectric waveguide according to the present invention.

【図5】本発明の誘電体導波管線路の分岐構造における
Sパラメータの周波数特性を示す線図である。
FIG. 5 is a diagram showing frequency characteristics of S parameters in a branch structure of a dielectric waveguide according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・・・・・・・・誘電体基板 2・・・・・・・・・・・・・導体層 3・・・・・・・・・・・・・貫通導体 4a〜4h、14a〜14k・・・貫通導体群 4i、4j、14l、14m・・・接続用貫通導体群 14n〜14q・・・・・・・・・補助接続用貫通導体群 5〜10、15〜20・・・・・・・第1〜第6の誘電体導波
管線路 23・・・・・・・・・・・・・電力比調整用の貫通導体 d・・・・・・・・・・・・・一定の幅(貫通導体群間
の幅)
1. Dielectric substrate 2 Conductive layer 3 Through conductor 4a 4h, 14a to 14k: through conductor groups 4i, 4j, 14l, 14m: connection through conductor groups 14n to 14q: auxiliary connection through conductor groups 5 to 10, 15 ... 20 first through sixth dielectric waveguide lines 23 through conductor d for power ratio adjustment・ ・ ・ ・ ・ ・ Constant width (width between through conductor groups)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体基板を挟持する一対の導体層と、
高周波信号の伝送方向に前記高周波信号の遮断波長の2
分の1以下の繰り返し間隔で、かつ前記伝送方向と直交
する方向に一定の幅dで前記導体層間を電気的に接続す
るよう形成された2列の貫通導体群とを具備し、前記導
体層および前記貫通導体群に囲まれた領域によって高周
波信号を伝送する第1乃至第6の誘電体導波管線路を、 該第1の誘電体導波管線路の一端側に前記第2および第
3の誘電体導波管線路を高周波信号の伝送方向が平行と
なるようにその一方端側を対向させて併設するととも
に、前記第2および第3の誘電体導波管線路の他方端側
に前記第4乃至第6の誘電体導波管線路を第5の誘電体
導波管線路の両側に第4および第6の誘電体導波管線路
を配置して高周波信号の伝送方向が平行となるようにそ
の一端側を対向させて併設して成り、 前記第2および第3の誘電体導波管線路は一方端側およ
び他方端側の先端を揃えて外側の前記貫通導体群の間隔
Aが前記一定の幅dに対して2d≦A≦3dとなるよう
に平行に配置するとともに隣り合う列の貫通導体群の一
方端側および他方端側の先端間をそれぞれ第1および第
2の補助接続用貫通導体群で接続し、かつその一方端側
の両端と前記第1の誘電体導波管線路の一端側の先端と
前記高周波信号の伝送方向の長さL が0<L <d
第1の接続用貫通導体群で接続するとともに、 前記第4乃至第6の誘電体導波管線路は一端側の先端を
揃えて前記第4の誘電体導波管線路および前記第6の誘
電体導波管線路の外側の前記貫通導体群の間隔Bが前記
一定の幅dに対して3d≦B≦4dとなるように平行に
配置するとともに前記第4および第5の誘電体導波管線
路の隣り合う貫通導体群の先端間を第3の補助接続用貫
通導体群で、前記第5および第6の誘電体導波管線路の
隣り合う貫通導体群の先端間を第4の補助接続用貫通導
体群で接続し、かつその一端側の両端と前記第2および
第3の誘電体導波管線路の他方端側の両端との間を前記
高周波信号の伝送方向の長さL が0<L <dの第2
の接続用貫通導体群で接続したことを特徴とする誘電体
導波管線路の分岐構造。
A pair of conductor layers sandwiching a dielectric substrate;
In the transmission direction of the high frequency signal, the cutoff wavelength of the high frequency signal is 2
Two rows of through conductor groups formed so as to electrically connect the conductor layers with a constant width d in a direction orthogonal to the transmission direction at a repetition interval equal to or less than 1 / And first to sixth dielectric waveguide lines for transmitting a high-frequency signal by a region surrounded by the through conductor group; and the second and third dielectric waveguide lines on one end side of the first dielectric waveguide line. Of the second and third dielectric waveguide lines is provided at one end side of the second and third dielectric waveguide lines so that the transmission directions of the high-frequency signals are parallel. The fourth to sixth dielectric waveguide lines are arranged on both sides of the fifth dielectric waveguide line, and the fourth and sixth dielectric waveguide lines are arranged so that the transmission direction of the high-frequency signal is parallel. And the second and third dielectric waveguides are provided side by side so as to face each other. The paths are arranged in parallel so that the ends A on the one end side and the other end side are aligned so that the interval A between the outer through-hole conductor groups is 2d ≦ A ≦ 3d with respect to the constant width d. The first and second auxiliary through-conductor groups for auxiliary connection are respectively connected between the one end side and the other end side of the through-conductor group, and both ends on one end side and the first dielectric waveguide line are connected to each other. wherein a distal end of the one end side transmission direction of the length L 1 of the high-frequency signal is 0 <L 1 <d
And the fourth through sixth dielectric waveguide lines are aligned at one end and the fourth dielectric waveguide line and the sixth through hole are connected together. The distance B between the through conductor groups outside the dielectric waveguide line is set in parallel so that 3d ≦ B ≦ 4d with respect to the constant width d, and the fourth and fifth dielectric waveguides are arranged. A third auxiliary connection through-conductor group is provided between the ends of adjacent through-conductor groups of the pipe line, and a fourth auxiliary connection group is provided between the adjacent through-conductor groups of the fifth and sixth dielectric waveguide lines. connected by connection through conductor groups, and the between the ends of the other end side of both ends and the second and third dielectric waveguide line of one end
Transmission direction of the length L 2 of the high-frequency signal is 0 <L 2 <second d
A branch structure of a dielectric waveguide line characterized by being connected by a connecting through conductor group.
【請求項2】 請求項1記載の誘電体導波管線路の分岐
構造において、前記第2および第3の誘電体導波管線路
の少なくとも一方の前記2列の貫通導体群の間および/
または前記第4乃至第5の誘電体導波管線路の少なくと
も1つの前記2列の貫通導体群の間に分岐後の電力比調
整用の貫通導体を形成したことを特徴とする誘電体導波
管線路の分岐構造。
2. The branch structure of a dielectric waveguide line according to claim 1, wherein at least one of said second and third dielectric waveguide lines is between said two rows of through conductor groups and / or
Alternatively, a through conductor for adjusting a power ratio after branching is formed between at least one of the two rows of through conductor groups of the fourth and fifth dielectric waveguide lines. Branch structure of pipe line.
JP07628398A 1997-08-22 1998-03-24 Branch structure of dielectric waveguide Expired - Fee Related JP3512626B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP07628398A JP3512626B2 (en) 1998-03-24 1998-03-24 Branch structure of dielectric waveguide
US09/137,195 US6057747A (en) 1997-08-22 1998-08-20 Dielectric waveguide line and its branch structure
DE69841265T DE69841265D1 (en) 1997-08-22 1998-08-21 Elbow for dielectric waveguide
EP08021077A EP2043192B1 (en) 1997-08-22 1998-08-21 Dielectric waveguide bend
EP03020458A EP1396901B1 (en) 1997-08-22 1998-08-21 Dielectric waveguide bend
EP98115812A EP0898322B1 (en) 1997-08-22 1998-08-21 Dielectric waveguide line and its branch structure
DE69839785T DE69839785D1 (en) 1997-08-22 1998-08-21 Dielectric waveguide and its branch structure
DE69836302T DE69836302T2 (en) 1997-08-22 1998-08-21 Dielectric waveguide and its branch structure
EP03020457A EP1396903B1 (en) 1997-08-22 1998-08-21 Dielectric waveguide line and its branch structure
US09/497,792 US6380825B1 (en) 1997-08-22 2000-02-03 Branch tee dielectric waveguide line
US09/498,128 US6359535B1 (en) 1997-08-22 2000-02-03 Dielectric waveguide line bend formed by rows of through conductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07628398A JP3512626B2 (en) 1998-03-24 1998-03-24 Branch structure of dielectric waveguide

Publications (2)

Publication Number Publication Date
JPH11274820A JPH11274820A (en) 1999-10-08
JP3512626B2 true JP3512626B2 (en) 2004-03-31

Family

ID=13600982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07628398A Expired - Fee Related JP3512626B2 (en) 1997-08-22 1998-03-24 Branch structure of dielectric waveguide

Country Status (1)

Country Link
JP (1) JP3512626B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996640B2 (en) * 2009-03-10 2012-08-08 株式会社東芝 Antenna device, radar device
CN104241793A (en) * 2014-09-23 2014-12-24 长飞光纤光缆股份有限公司 Bent waveguide used for microwave transmission

Also Published As

Publication number Publication date
JPH11274820A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
US5982256A (en) Wiring board equipped with a line for transmitting a high frequency signal
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
US6057747A (en) Dielectric waveguide line and its branch structure
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
JP3493265B2 (en) Dielectric waveguide line and wiring board
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3686736B2 (en) Dielectric waveguide line and wiring board
JPH10303611A (en) Coupling structure for high frequency transmission line and multi-layer wiring board having the same
JPH11308001A (en) Connection structure for dielectric waveguide line
JP2001156510A (en) Layered magic t
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JP3512626B2 (en) Branch structure of dielectric waveguide
JPH11308025A (en) Directional coupler
JP3439973B2 (en) Branch structure of dielectric waveguide
JP3522120B2 (en) Connection structure of dielectric waveguide line
JP4803869B2 (en) Connection structure of dielectric waveguide line
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP3517097B2 (en) Branch structure of dielectric waveguide
JP4203405B2 (en) Branch structure of waveguide structure and antenna substrate
JP2004104816A (en) Dielectric waveguide line and wiring board
JPH10215104A (en) Connection structure for dielectric waveguide line
JP2004357042A (en) Connection structure between dielectric waveguide line and waveguide, as well as antenna substrate and filter substrate using its structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees