JPH11145349A - Heat sink for forced cooling - Google Patents

Heat sink for forced cooling

Info

Publication number
JPH11145349A
JPH11145349A JP30529597A JP30529597A JPH11145349A JP H11145349 A JPH11145349 A JP H11145349A JP 30529597 A JP30529597 A JP 30529597A JP 30529597 A JP30529597 A JP 30529597A JP H11145349 A JPH11145349 A JP H11145349A
Authority
JP
Japan
Prior art keywords
fins
fin
heat
heat sink
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30529597A
Other languages
Japanese (ja)
Inventor
Mitsuru Honma
満 本間
Yoshifumi Sasao
桂史 笹尾
Atsuo Nishihara
淳夫 西原
Tadakatsu Nakajima
忠克 中島
Takayuki Shin
隆之 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30529597A priority Critical patent/JPH11145349A/en
Publication of JPH11145349A publication Critical patent/JPH11145349A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the heat transfer of a collision surface by reducing the height of a part of fins standing almost in parallel on a metallic plate, and constituting a structure in which an eddy is generated in a fin widthwise direction, in the vicinity of the metallic plate which is in contact with a heat generating member. SOLUTION: In a heat sink on a heat generating member 2, a plurality of fins composed of aluminum having high thermal conductivity which are different in height are laminated in a plurality of layers at specified intervals, and high fins 4 and low fins 10 are formed alternately. A blowing means has a structure which sends cooling air blown by a fan or the like to a high heat generating member 2 via a nozzle 3, in the direction almost perpendicular to a board 1. Cooling air 21 at this time flows in from the upper part of the fins via the nozzle 3 and collides against a fin base 5 in a perpendicular direction, along the fins 4. Between the fins 4, the cooling air 21 flows in the direction of a flow 22. In the vicinity of a fin base 5, the flow 23 is disturbed by the fins 10 and flows out. As a result, the cooling air 21 flows in eddy in the vicinity of the fin base 5, so that heat transfer near the fin roots is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子素子などの発熱
部材を有する電子機器において、電子機器筐体内に積層
される単数あるいは複数の基板上に配置された電子素子
の噴流冷却構造に係わり、基板上に実装された複数の発
熱部材を効率よく冷却する強制冷却用ヒートシンクに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jet cooling structure for an electronic device having a heat generating member such as an electronic device, which is disposed on one or more substrates stacked in the housing of the electronic device. The present invention relates to a heat sink for forced cooling that efficiently cools a plurality of heat generating members mounted thereon.

【0002】[0002]

【従来の技術】近年、コンピュータ等の電子機器では、
処理能力の向上,小型化,低コスト化等が強く要求さ
れ、電子機器に搭載される電子素子の発熱量、並びに搭
載数は増加傾向にある。一方、筐体サイズの小型化が進
むため、筐体内部の発熱密度は益々増加している。ま
た、演算処理用の電子素子には、信号伝搬遅延時間を短
縮するために、多数のチップをセラミック等の基板上に
搭載し、一括して冷却するマルチチップモジュールとい
う実装形態が多く用いられる。マルチチップモジュール
は、発熱量及び発熱密度が非常に大きく、それらの冷却
が非常に困難である。
2. Description of the Related Art In recent years, in electronic devices such as computers,
There is a strong demand for improvements in processing capacity, miniaturization, cost reduction, and the like, and the amount of heat generated by electronic elements mounted in electronic devices and the number of mounted electronic elements are increasing. On the other hand, as the size of the housing has been reduced, the heat generation density inside the housing has been increasing. In addition, in order to reduce the signal propagation delay time, a mounting form of a multi-chip module in which a large number of chips are mounted on a substrate such as a ceramic and cooled collectively is used for the electronic element for arithmetic processing. The multi-chip module has a very large heat value and heat generation density, and it is very difficult to cool them.

【0003】筐体内の発熱部材は、過度な温度上昇によ
る素子の損傷や誤動作防止のためにそれらを定格温度以
下に保つ必要がある。そのため、電子機器の冷却には、
放熱面積を拡大して冷却性能を向上させるヒートシンク
を用いた構造が多く見られる。特に、高発熱する電子素
子には、その発熱密度と仕様温度に応じて様々な強制冷
却用ヒートシンクがその部材表面に設置される。
It is necessary to keep the heat-generating members in the housing at or below the rated temperature in order to prevent damage or malfunction of the elements due to excessive temperature rise. Therefore, for cooling electronic equipment,
There are many structures using a heat sink that increases the heat radiation area and improves the cooling performance. In particular, in an electronic element that generates high heat, various heat sinks for forced cooling are installed on the surface of the member according to the heat generation density and the specified temperature.

【0004】そのヒートシンクは、高熱伝導性の材質例
えばアルミニウムや銅製であり、一般的に一金属製平面
板に複数の平行平面板を1〜3mm程度の間隔で複数並
べた平板フィン形ヒートシンクや金属製平面板上に角柱
あるいは円柱が多数配置されたピンフィン形ヒートシン
クが多く用いられている。平板フィン形ヒートシンク
は、製作が比較的容易且つ安価であり、放熱面積が多く
取れる割に圧力損失が小さいという利点がある。
The heat sink is made of a material having high thermal conductivity, for example, aluminum or copper. Generally, a flat fin type heat sink in which a plurality of parallel flat plates are arranged on a single metal flat plate at an interval of about 1 to 3 mm or a metal is used. A pin fin-type heat sink having a large number of prisms or cylinders arranged on a flat plate is often used. Flat fin heat sinks have the advantage of being relatively easy and inexpensive to manufacture and of having a small pressure loss for a large heat dissipation area.

【0005】強制空冷構造では、主にファンあるいはブ
ロアを用いて、それぞれの発熱部材に冷却空気が送風さ
れる。その送風方式には、基板に概略水平方向から送風
する平行流方式の冷却構造と、基板に対して概略垂直方
向から送風する噴流方式の冷却構造があり、特に発熱密
度の高い発熱部材の冷却には、交換熱量の大きい噴流方
式の冷却構造が有効である。噴流冷却構造では、前者に
比べて衝突面の熱伝達が非常に高いこと、各発熱部材を
個別冷却できるため、発熱部材位置によらず冷却できる
などの利点がある。
In the forced air cooling structure, cooling air is sent to each heat generating member mainly using a fan or a blower. There are two types of cooling systems: a parallel flow type cooling structure that blows the substrate from a substantially horizontal direction and a jet flow type cooling structure that blows the substrate from a substantially vertical direction. In this case, a jet-type cooling structure having a large exchange heat quantity is effective. The jet cooling structure has the advantages that the heat transfer on the collision surface is much higher than the former, and that each heat-generating member can be individually cooled, so that it can be cooled regardless of the position of the heat-generating member.

【0006】図5に、噴流冷却時のフィン及びフィン間
空気の温度分布の実験結果を示す。図のヒートシンク
は、幅W,高さW/2,厚さ1mmで、ノズル幅W/3,
入口流速12m/sの場合である。フィン面の温度分布
は、ノズルからの噴流口付近で温度が低くなっており、
フィン根元近傍で、温度が高い。また、フィン間の空気
温度は、よどみ点且つフィン根元近傍が高く、空気出口
部分(フィン右側)は、フィンの半分以下の領域でほと
んどの空気が流れ出ていることが分かる。
FIG. 5 shows the experimental results of the temperature distribution of the fins and the air between the fins during jet cooling. The heat sink shown has a width W, a height W / 2 and a thickness 1 mm, and a nozzle width W / 3,
This is a case where the inlet flow velocity is 12 m / s. As for the temperature distribution on the fin surface, the temperature is low near the jet port from the nozzle,
The temperature is high near the root of the fin. Further, it can be seen that the air temperature between the fins is high near the stagnation point and near the root of the fin, and most of the air flows out of the air outlet portion (right side of the fin) in a region that is less than half of the fin.

【0007】さらに、フィン間で主流が流れていない部
分(フィン右上)には、循環流による空気の温度上昇が
確認される。衝突噴流では、これらの温度分布から分か
るように、フィン根元付近(衝突面近傍)で非常に熱伝
達が大きく、また、フィン上部(図右上)に冷却効果の
小さい領域が存在しており、これらの改善によりヒート
シンク性能を高めることができる。
Further, in a portion where the main flow does not flow between the fins (upper right of the fins), an increase in the temperature of the air due to the circulating flow is confirmed. As can be seen from these temperature distributions, in the impinging jet, heat transfer is very large near the root of the fin (near the collision surface), and there is a region with a small cooling effect above the fin (upper right in the figure). Can improve the heat sink performance.

【0008】高発熱密度化するマルチチップモジュール
等の高発熱部材には、噴流冷却が有効であるが、従来の
ヒートシンクを高発熱部材に設置し、冷却能力に応じて
単に冷却流入量を増加させるだけでは、冷却性能以上に
圧力損失が増大するだけで、効果的な冷却手段とは言い
難い。また、その場合、ブロアの大型化,フィン部の風
切り音の増加等、筐体の小型化による新たな課題もあ
る。
[0008] Jet cooling is effective for a high heat generating member such as a multi-chip module having a high heat generation density. However, a conventional heat sink is installed on the high heat generating member, and the cooling inflow amount is simply increased according to the cooling capacity. In this case, only the pressure loss increases beyond the cooling performance, and it cannot be said to be an effective cooling means. In this case, there are also new problems due to the downsizing of the housing, such as an increase in the size of the blower and an increase in wind noise at the fins.

【0009】交換熱量の大きい噴流冷却構造を用いる場
合でも、小型化を図るために低圧損且つ高性能なヒート
シンクが必要とされる。しかし、従来の噴流冷却は、ピ
ンフィンや平板フィンの諸寸法を最適化して使用してい
るケースが多い。また、図6に示す従来の噴流冷却の構
造例(特開平6−120387 号公報)は、噴流入口側を最適
化し、冷却性能を向上させるものである。
Even when a jet cooling structure having a large exchange heat quantity is used, a low-pressure-drop and high-performance heat sink is required for downsizing. However, in the conventional jet cooling, the dimensions of the pin fins and the plate fins are optimized and used in many cases. A conventional jet cooling structure example shown in FIG. 6 (Japanese Patent Laid-Open Publication No. Hei 6-12087) optimizes the jet inlet side to improve the cooling performance.

【0010】[0010]

【発明が解決しようとする課題】従来の噴流冷却の構造
例は、平板フィンやピンフィンを用いて、発熱密度の高
いマルチチップモジュール等を冷却する構造が多く、冷
却流体の衝突側であるヒートシンク形状を高性能化につ
いて考慮されてなかった。放熱性能を上げる手段とし
て、流量の増加等で対応できる場合もあるが、小型軽量
化傾向にある電子機器にとって、筐体に占める送風源
(ブロア,ファン)サイズが大きくなる問題がある。こ
のため、低風量(低圧損)で高発熱部材を十分に冷却で
きる冷却構造(高性能ヒートシンク)が必要となる。
Many conventional jet cooling structures use a flat fin or a pin fin to cool a multi-chip module or the like having a high heat generation density. The performance was not considered. As a means of improving the heat radiation performance, there are cases where the flow rate can be increased by increasing the flow rate. However, there is a problem that the size of the air blower (blower, fan) occupying the housing becomes large for electronic devices that are becoming smaller and lighter. For this reason, a cooling structure (high-performance heat sink) that can sufficiently cool the high heat generating member with a low air flow (low pressure loss) is required.

【0011】そこで、本発明の目的は、発熱密度の高い
発熱部材を低圧損のもとで効率よく冷却できるヒートシ
ンク構造を提供することである。
It is an object of the present invention to provide a heat sink structure capable of efficiently cooling a heat generating member having a high heat generation density under low pressure loss.

【0012】[0012]

【課題を解決するための手段】上記目的であるヒートシ
ンクの高性能化は、図5の結果から衝突面熱伝達の向上
及びフィン面の有効活用などがその目的達成手段であ
る。そのために、本発明では、金属平面板に概略平行に
立てられたフィンの一部のフィン高さを低くし、発熱部
材に接触する金属平面板近傍でフィン幅方向に渦ができ
る構造にし、衝突面の熱伝達を上げた。
Means for attaining the object of the present invention, which is the object of the present invention, is to improve the heat transfer at the collision surface and to effectively utilize the fin surface, based on the results shown in FIG. For this reason, in the present invention, the height of a part of the fins set substantially parallel to the metal flat plate is reduced, and a vortex is formed in the fin width direction in the vicinity of the metal flat plate in contact with the heat generating member. Increased surface heat transfer.

【0013】あるいは、このフィンを最大フィン高さの
半分程度にし、フィン全体に空気が流れるようにし、フ
ィン全体の熱交換量を高めた。
Alternatively, the fins are made about half the maximum fin height to allow air to flow through the entire fins, thereby increasing the heat exchange amount of the entire fins.

【0014】[0014]

【発明の実施の形態】図1に本発明の強制冷却用ヒート
シンクの第一の実施例の斜視断面図を示す。電子機器の
筐体内部は、複数の基板が積層される実装形態になって
おり、その基板1には、様々な部品が搭載される。その
中で発熱量の大きい部材例えばマルチチップモジュール
などは、交換熱量の大きい噴流冷却を用いる場合が多
い。発熱部材2上には、ヒートシンクが例えば熱伝導性
接着剤あるいは、熱伝導性グリースを介して設置され、
その上部には冷却空気を噴出するノズル3が設置され
る。
FIG. 1 is a perspective sectional view showing a first embodiment of a heat sink for forced cooling according to the present invention. The inside of the housing of the electronic device has a mounting configuration in which a plurality of substrates are stacked, and various components are mounted on the substrate 1. Among them, a member having a large calorific value, for example, a multi-chip module or the like, often uses jet cooling having a large heat exchange amount. A heat sink is provided on the heat generating member 2 via, for example, a heat conductive adhesive or a heat conductive grease.
A nozzle 3 for ejecting cooling air is provided on the upper part.

【0015】発熱部材2上のヒートシンクは、高熱伝導
性の材質例えばアルミニウムや銅製であり、金属製平面
板に高さの異なる複数の平行平面板が0.5 〜3mm程度
の間隔で複数積層されたものである。本実施例では、高
さの高いフィン4と低いフィン10が交互に製作されて
いるが、その並びは違ってもかまわない。この構造は、
フィンが面方向に平行に立てられているため、従来の平
板フィンと同程度の作り易さである。
The heat sink on the heat generating member 2 is made of a material having high thermal conductivity, for example, aluminum or copper. A plurality of parallel flat plates having different heights are laminated on a metal flat plate at intervals of about 0.5 to 3 mm. It is a thing. In this embodiment, the high fins 4 and the low fins 10 are alternately manufactured, but the arrangement may be different. This structure
Since the fins are set up in parallel with the plane direction, the fins are as easy to make as the conventional flat plate fins.

【0016】本実施例の送風手段は、ファンあるいはブ
ロアなどで送風された冷却空気をノズル3を介して高発
熱部材(例えばマルチチップモジュール)2に、基板1
と概略垂直方向に送風する構造である。この時の気流な
流れについて説明すると、冷却空気21は、ノズル3を
介してフィン上部より流入し、フィン4に沿ってフィン
ベース5に対して垂直方向に衝突する。フィン4間では
流れ22の方向に、フィンベース5近傍ではフィン10
により流れ23を乱して流出する。上述した図5の実験
結果から分かるように、フィン4上部に比べて、高流速
でフィンベース5近傍を渦状に流れるため、フィン根元
付近の熱伝達が上昇する。
The air blowing means of the present embodiment transmits cooling air blown by a fan or a blower to a high heat generating member (for example, a multi-chip module) 2 through a nozzle 3 and a substrate 1.
This is a structure that blows air in a substantially vertical direction. Explaining the air flow at this time, the cooling air 21 flows from the upper part of the fin through the nozzle 3 and collides with the fin base 5 in the vertical direction along the fin 4. In the direction of the flow 22 between the fins 4, the fins 10 near the fin base 5
This disturbs the flow 23 and flows out. As can be seen from the above-described experimental results in FIG. 5, the heat flows near the fin base 5 at a higher flow velocity than in the upper part of the fin 4, so that the heat transfer near the root of the fin increases.

【0017】図2(a)ないし(d)に他の実施例を示
す。図1の高さの低いフィンの形状を変えたものであ
る。図2(a)及び(b)は、高さの高いフィン4間の
低いフィン11及び12にフィンベース5に対して傾き
を設けたものである。また、図2(c)及び(d)は、
フィン13及び14の断面を矩形状に変えたものであ
る。これらに図1の実施例と同様に噴流冷却すると、フ
ィンベース5近傍で乱れが発生し易くなり、ヒートシン
クの冷却性能を向上することができる。
FIGS. 2A to 2D show another embodiment. This is a modification of the shape of the low fin in FIG. FIGS. 2A and 2B show the case where the lower fins 11 and 12 between the higher fins 4 are inclined with respect to the fin base 5. 2 (c) and (d)
The cross section of the fins 13 and 14 is changed to a rectangular shape. When jet cooling is performed on them in the same manner as in the embodiment of FIG. 1, turbulence is likely to occur near the fin base 5, and the cooling performance of the heat sink can be improved.

【0018】図3に本発明の第3の実施例の斜視図を示
す。基板1上に発熱部材2が搭載され、発熱部材には本
発明のヒートシンクが設置され、ノズル3から冷却空気
21がフィンベース5に対して概略垂直方向から流入す
る図1と同様な噴流構造になっている。本実施例の高さ
Hのフィン4は、高さxのフィンと交互に設置されてい
る。それぞれのフィン高さは、x<0.5H の関係があ
り、フィン15により冷却空気21の流入部とフィンベ
ース5面の間で流路抵抗を設け、フィン出口側上端にお
ける伝熱特性を促進させるものである。
FIG. 3 is a perspective view of a third embodiment of the present invention. A heat generating member 2 is mounted on a substrate 1, a heat sink of the present invention is installed on the heat generating member, and a cooling structure similar to that of FIG. Has become. The fins 4 of the height H of this embodiment are alternately provided with the fins of the height x. The fin heights have a relation of x <0.5H, and the fin 15 provides a flow path resistance between the inflow portion of the cooling air 21 and the surface of the fin base 5 to promote heat transfer characteristics at the upper end of the fin outlet side. It is to let.

【0019】この実施例では、冷却空気21がフィンベ
ース付近による流れ25だけでなく、フィン上部の流れ
26を誘導する。このため、図5の実験結果に見られる
フィン間空気の滞留部は少なくなり、フィン部でも効率
よく熱交換することができる。
In this embodiment, the cooling air 21 induces a flow 26 near the fin base as well as a flow 26 above the fins. For this reason, the stagnation portion of the air between the fins, which is seen in the experimental results of FIG. 5, is reduced, and the fin portions can also exchange heat efficiently.

【0020】図4に本発明の第4の実施例の斜視図を示
す。基板1上に発熱部材2が搭載され、発熱部材には本
発明のヒートシンクが設置され、ノズル3から冷却空気
21がフィンベース5に対して概略垂直方向から流入す
る図1及び図2と同様な噴流構造になっている。本実施
例では、フィン16の高さをフィンベース5面上で各々
変化させており、発熱部材2に発熱分布がある場合や、
中心部の温度が高い場合など、フィンベース面上でそれ
らを調節できる。
FIG. 4 is a perspective view of a fourth embodiment of the present invention. A heat generating member 2 is mounted on a substrate 1, a heat sink of the present invention is installed on the heat generating member, and cooling air 21 flows from a nozzle 3 into a fin base 5 from a direction substantially perpendicular to FIG. 1 and FIG. It has a jet structure. In the present embodiment, the heights of the fins 16 are changed on the fin base 5 surface, and when the heat generating member 2 has a heat distribution,
They can be adjusted on the fin base surface, such as when the temperature in the center is high.

【0021】図6に本発明のヒートシンク(一例)と従
来の平板フィン形ヒートシンクでフィン面の静圧分布を
測定した結果を示す。平板フィンの寸法は、フィン幅
W,高さW/2,ノズル幅0.44W で、本発明のヒー
トシンクの形状では、その平板フィンのフィン間中央に
高さW/9のフィンが成形されている。同一流量をノズ
ルから流入した時のフィン面静圧分布を図右側に示す。
図中に、それぞれノズル部圧損P及び循環領域Aの位置
を示す。
FIG. 6 shows the results of measuring the static pressure distribution on the fin surface using the heat sink of the present invention (one example) and the conventional flat fin heat sink. The dimensions of the flat fins are fin width W, height W / 2, and nozzle width 0.44 W. In the shape of the heat sink of the present invention, a fin having a height W / 9 is formed in the center between the flat fins. I have. The fin surface static pressure distribution when the same flow rate flows from the nozzle is shown on the right side of the figure.
In the drawing, the positions of the nozzle portion pressure loss P and the circulation area A are shown.

【0022】本発明のヒートシンクでは、P1/P2
1.1 程度で、循環領域は、A1>A2となっており、全
体の圧損上昇が小さい形状で、ヒートシンク内の高静圧
部分がフィン全体に広がっている。よって、本発明のヒ
ートシンクを噴流構造に用いた場合、従来のヒートシン
クに比べてフィン全体を放熱面として利用しているた
め、対象とする発熱部材を効率よく冷却することができ
る。
In the heat sink of the present invention, P 1 / P 2 =
Around 1.1, the circulation area is A 1 > A 2 , the shape of the entire pressure loss is small, and the high static pressure portion in the heat sink extends over the entire fin. Therefore, when the heat sink of the present invention is used in the jet structure, the entire heat generating member is used as a heat radiating surface as compared with the conventional heat sink, so that the target heat generating member can be efficiently cooled.

【0023】[0023]

【発明の効果】本発明によれば、電子素子などの発熱部
材を有する電子機器において、電子機器筐体内に積層さ
れる単数あるいは複数の基板上に実装された複数の発熱
部材を効率よく冷却することができる。
According to the present invention, in an electronic device having a heat generating member such as an electronic element, a plurality of heat generating members mounted on one or a plurality of substrates stacked in an electronic device housing can be efficiently cooled. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における第一の実施例である強制冷却用
ヒートシンクの斜視図。
FIG. 1 is a perspective view of a heat sink for forced cooling according to a first embodiment of the present invention.

【図2】図1におけるフィンの部分正面図。FIG. 2 is a partial front view of a fin in FIG. 1;

【図3】本発明における第三の実施例である強制冷却用
ヒートシンクの斜視図。
FIG. 3 is a perspective view of a heat sink for forced cooling according to a third embodiment of the present invention.

【図4】本発明における第四の実施例である強制冷却用
ヒートシンクの斜視図。
FIG. 4 is a perspective view of a heat sink for forced cooling according to a fourth embodiment of the present invention.

【図5】噴流構造のヒートシンク温度分布の一例を示す
図。
FIG. 5 is a diagram showing an example of a heat sink temperature distribution of a jet structure.

【図6】従来例と本発明のヒートシンクの静圧分布の比
較を示す図。
FIG. 6 is a diagram showing a comparison between static pressure distributions of a conventional example and a heat sink of the present invention.

【図7】従来例の冷却用ヒートシンクの斜視図。FIG. 7 is a perspective view of a conventional cooling heat sink.

【符号の説明】[Explanation of symbols]

1…基板、2…発熱部材、3…ノズル、4…フィン、5
…フィンベース、10…フィン、21…冷却空気。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Heating member, 3 ... Nozzle, 4 ... Fin, 5
... fin base, 10 ... fin, 21 ... cooling air.

フロントページの続き (72)発明者 中島 忠克 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 新 隆之 神奈川県秦野市堀山下1番地 株式会社日 立製作所汎用コンピュータ事業部内Continued on the front page (72) Inventor Tadakatsu Nakajima 502 Kandachicho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. Inside

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体素子面に接触する金属平面板上に概
略平行に立てられた複数の第一フィンを有し、前記金属
平面板に対し、概略垂直方向に冷却媒体を送風する構造
であって、前記隣接する第一フィンの間に前記第一フィ
ンの高さよりも低い第二フィンを有する構造であること
を特徴とする強制冷却用ヒートシンク。
1. A structure having a plurality of first fins standing substantially in parallel on a metal flat plate in contact with a semiconductor element surface, and blowing a cooling medium in a direction substantially perpendicular to the metal flat plate. A forced fin heat sink having a second fin lower than the height of the first fin between the adjacent first fins.
JP30529597A 1997-11-07 1997-11-07 Heat sink for forced cooling Pending JPH11145349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30529597A JPH11145349A (en) 1997-11-07 1997-11-07 Heat sink for forced cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30529597A JPH11145349A (en) 1997-11-07 1997-11-07 Heat sink for forced cooling

Publications (1)

Publication Number Publication Date
JPH11145349A true JPH11145349A (en) 1999-05-28

Family

ID=17943387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30529597A Pending JPH11145349A (en) 1997-11-07 1997-11-07 Heat sink for forced cooling

Country Status (1)

Country Link
JP (1) JPH11145349A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049400A3 (en) * 2000-12-12 2002-08-22 Celletra Ltd Forced convection cooling system for electronic equipment
JP2008253108A (en) * 2007-03-30 2008-10-16 Thk Co Ltd Drive guide device
JP2010032922A (en) * 2008-07-30 2010-02-12 Nec Corp Heat generation part cooler, and liquid crystal projector device
JP2013077606A (en) * 2011-09-29 2013-04-25 Icom Inc Radiator
WO2015008326A1 (en) * 2013-07-16 2015-01-22 三協立山株式会社 Heat sink and method for manufacturing heat sink

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049400A3 (en) * 2000-12-12 2002-08-22 Celletra Ltd Forced convection cooling system for electronic equipment
JP2008253108A (en) * 2007-03-30 2008-10-16 Thk Co Ltd Drive guide device
JP2010032922A (en) * 2008-07-30 2010-02-12 Nec Corp Heat generation part cooler, and liquid crystal projector device
JP2013077606A (en) * 2011-09-29 2013-04-25 Icom Inc Radiator
WO2015008326A1 (en) * 2013-07-16 2015-01-22 三協立山株式会社 Heat sink and method for manufacturing heat sink
JPWO2015008326A1 (en) * 2013-07-16 2017-03-02 三協立山株式会社 Heat sink and heat sink manufacturing method

Similar Documents

Publication Publication Date Title
US6942025B2 (en) Uniform heat dissipating and cooling heat sink
US5304845A (en) Apparatus for an air impingement heat sink using secondary flow generators
US6031720A (en) Cooling system for semiconductor die carrier
JPH09223883A (en) Cooling equipment of electronic apparatus
JP4532422B2 (en) Heat sink with centrifugal fan
US6736192B2 (en) CPU cooler
US6755242B2 (en) Active heat sink structure with directed air flow
JPH10200278A (en) Cooler
JPH08288438A (en) Cooling device for electronic equipment
JP3340053B2 (en) Heat dissipation structure and electronic device using the same
JP2760341B2 (en) Semiconductor element cooling structure
JPH11145349A (en) Heat sink for forced cooling
JPH1012781A (en) Forced cooling heat sink
US20030168208A1 (en) Electronic component cooling apparatus
JP2003338595A (en) Cooling device for electronic component
JP3840970B2 (en) heatsink
JP2010093034A (en) Cooling device for electronic component
JPH08125366A (en) Device for cooling electronic part
JPH10163389A (en) Heat sink
JPH11307705A (en) Heat sink for forced air cooling and its cooling method
JPH06244575A (en) Radiator
JPH1098139A (en) Forcedly air cooled structure and electronic equipment thereof
JPH0412559A (en) Cooling structure of electronic device
JP2002185173A (en) Electronic module and mounting apparatus
JPH10190265A (en) Pin fin type heat radiator