JPH1080762A - Method for predicting flow-out of slag in molten steel ladle and device therefor - Google Patents

Method for predicting flow-out of slag in molten steel ladle and device therefor

Info

Publication number
JPH1080762A
JPH1080762A JP23685496A JP23685496A JPH1080762A JP H1080762 A JPH1080762 A JP H1080762A JP 23685496 A JP23685496 A JP 23685496A JP 23685496 A JP23685496 A JP 23685496A JP H1080762 A JPH1080762 A JP H1080762A
Authority
JP
Japan
Prior art keywords
molten steel
slag
time
level
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23685496A
Other languages
Japanese (ja)
Other versions
JP3358457B2 (en
Inventor
Yoshihiro Akechi
吉弘 明智
Iwao Kaminaga
巌 神長
Hideji Uemi
秀司 上見
Tetsuo Taniguchi
哲男 谷口
Takashi Itakura
孝 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23685496A priority Critical patent/JP3358457B2/en
Publication of JPH1080762A publication Critical patent/JPH1080762A/en
Application granted granted Critical
Publication of JP3358457B2 publication Critical patent/JP3358457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the flow-out of slag by continuously measuring just the upper part of a leading hole with microwave, detecting the point of time when the surface position starts the variation having short period, adding a prescribed time and judging as the slag flow-out timing. SOLUTION: The slag 3 is floated up on molten steel 2 in a molten steel ladle 1, and the molten steel 2 is flowed out from the leading hole 4 of the ladle 1 and a microwave level meter 10 is set at the upper part of the leading hole 4. The radiation heat from the molten steel surface is prevented with a heat insulating board 11. When the molten steel level becomes a specific level, the measured result of the level meter 10 is started to vary in the short period. When the molten steel in the ladle 10 becomes little, the molten steel is sucked into the leading hole 4 in a swirling state and the turbulence is developed on the surface level, and this turbulence remarkably appears in the molten steel having rich fluidity and does not remarkably appear in the slag having poor fluidity. The flow-out timing of the slag is obtd. by adding the prescribed time to the point of time when the variation is detected and the prescribed time is decided in consideration of the shape and the size of the ladle 10 and kind of the molten steel, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】溶鋼を次工程の容器に注ぐ際
に、スラグを除いて溶鋼のみを排出させるためのスラグ
の流出時期を予測する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for predicting a slag outflow timing for discharging only molten steel except for slag when the molten steel is poured into a container in a next process.

【0002】[0002]

【従来の技術】一般に精錬中の溶鋼の表面には、鋼の酸
化防止のためスラグが浮遊している。溶鋼は、底部に設
けた導出口を通して溶鋼鍋から次工程の受皿に溶鋼を排
出されるが、この際、比重の大きな溶鋼が先に流出す
る。しかし、溶鋼の量が少なくなってくると、比重の小
さいスラグも巻き込まれて共に流出(以下、共流出と称
す)を始める。共流出したスラグは、鋼の品質及び歩留
りを低下させるため、このスラグの共流出を迅速に検出
し溶鋼の排出を停止させることが、重要な技術となる。
2. Description of the Related Art Generally, slag floats on the surface of molten steel during refining to prevent oxidation of the steel. The molten steel is discharged from the molten steel ladle to the receiving tray of the next process through the outlet provided at the bottom, and at this time, the molten steel having a large specific gravity flows out first. However, as the amount of molten steel decreases, slag having a low specific gravity is also involved and starts to flow out together (hereinafter referred to as co-flow). Since the co-leached slag reduces the quality and yield of steel, it is an important technique to quickly detect the co-flow of the slag and stop the discharge of molten steel.

【0003】従来、スラグの共流出を検知するために、
導出口を通過して導出管内にあるスラグを検出する技術
の開発が進められてきた。
Conventionally, in order to detect co-spill of slag,
Technology for detecting slag in the outlet pipe after passing through the outlet has been developed.

【0004】例えば、特開昭61−30271号公報に
記載されるスラグ検出装置では、導波管を介して導出に
マイクロ波を発信して反射波を測定し、溶鋼とスラグの
反射率の相違に基づいて、スラグが共流出し始めたとき
に生じる反射率の変化を捉える(以下、反射率法と称
す)。この装置の概要を図5に示す。溶鋼鍋1内の溶鋼
2は導出管4から流出するが、この流れにマイクロ波を
発信する。発振器20によって発振されたマイクロ波
は、サーキュレータ21及びインピーダンスを合わせる
ためのスタブチューナ22を経て導波管23によって導
出まで導かれて発信される。反射波は、導波管23及び
スタブチューナ22を経てサーキュレータ21で分離さ
れ、測定回路へ導かれる。溶鋼流にスラグがある程度混
入してくるとその反射係数が変化するので、反射波を測
定することによってこの変化を検知することができる。
For example, in a slag detection device described in Japanese Patent Application Laid-Open No. Sho 61-30271, a reflected microwave is measured by transmitting a microwave through a waveguide to measure the difference between the reflectance of molten steel and the slag. Based on the above, the change in the reflectance that occurs when the slag starts to flow out is captured (hereinafter referred to as the reflectance method). FIG. 5 shows an outline of this apparatus. The molten steel 2 in the molten steel ladle 1 flows out of the outlet pipe 4 and transmits a microwave to this flow. The microwave oscillated by the oscillator 20 is guided and transmitted by the waveguide 23 through the circulator 21 and the stub tuner 22 for matching the impedance. The reflected wave is separated by the circulator 21 via the waveguide 23 and the stub tuner 22, and is guided to a measurement circuit. When the slag is mixed into the molten steel flow to some extent, the reflection coefficient changes, so that the change can be detected by measuring the reflected wave.

【0005】又、特公平7−41402号公報には、導
出管を囲んで送信コイルと受信コイルを配置し、スラグ
が混入したときの導電率の変化からスラグを検出する技
術が記載されている(以下、導電率法と称す)。
[0005] Japanese Patent Publication No. Hei 7-41402 discloses a technique in which a transmission coil and a reception coil are arranged around an outlet pipe, and slag is detected from a change in conductivity when slag is mixed. (Hereinafter, referred to as the conductivity method).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
反射率法及び導電率法では、いずれもスラグの流出が始
まった後に、導出管に達したスラグを検出するものであ
る。さらに導出口の閉口は閉鎖蓋をスライドさせること
によって行われるため、検出後閉口迄には数秒の時間を
要する。このため、スラグの流出を未然に防止すること
ができないのみならず、迅速に防止することができない
という問題があった。
However, in both the reflectance method and the conductivity method, the slag that reaches the outlet pipe is detected after the slag starts flowing out. Furthermore, since the closing of the outlet is performed by sliding the closing lid, it takes several seconds to close the outlet after detection. For this reason, there is a problem that not only the outflow of the slag cannot be prevented, but also the slag cannot be quickly prevented.

【0007】この発明は上記の問題を解決するために行
われたもので、スラグが導出口に達する以前にスラグ流
出の時期を予測し、その流出を未然に防ぐことを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problem, and has as its object to predict the time of slag outflow before the slag reaches the outlet and prevent the outflow thereof.

【0008】[0008]

【課題を解決するための手段】前述の課題を解決するた
めの第一の手段は、表面にスラグが浮遊する溶鋼鍋内の
溶鋼を溶鋼鍋底面に設けた導出口から排出する際に、ス
ラグの流出開始時期を予測する方法であって、以下の
(a)〜(c)の工程からなる溶鋼鍋のスラグ流出予測
方法である。 (a)前記導出口の直上の溶鋼の表面位置をマイクロ波
を用いて連続的に測定する工程、(b)前記表面位置が
短周期の変動を開始した時点を検出する工程、(c)前
記時点に所定の時間を加えスラグ流出時期を演算する工
程。
The first means for solving the above-mentioned problem is that when the molten steel in the molten steel pot in which the slag floats on the surface is discharged from the outlet provided on the bottom of the molten steel pot, the slag is discharged. This is a method for predicting the outflow start time of a slag of a molten steel ladle including the following steps (a) to (c). (A) a step of continuously measuring the surface position of the molten steel immediately above the outlet using microwaves; (b) a step of detecting a point in time when the surface position starts to change in a short cycle; (c) Calculating a slag outflow time by adding a predetermined time to the time point.

【0009】前記第一の手段によれば、溶鋼の表面位置
を測定するために、測定波を発信し溶鋼表面で反射させ
て発信位置から溶鋼表面までの距離を測定するが、この
測定波としてその波長からマイクロ波が最も適してい
る。溶鋼鍋内には粉塵が舞っており、例えば光のように
波長が短い測定波では溶鋼表面に達する前に散乱される
率が高く、又、浮遊するスラグを殆ど透過しない。反対
に波長が長い測定波では回折する傾向が大きく指向性に
劣り減衰が甚だしく、更に導出口の直上の溶鋼レベルだ
けでなく溶鋼全面の平均レベルを測定してしまい、測定
感度が低下する。
According to the first means, in order to measure the surface position of the molten steel, a measuring wave is transmitted and reflected on the surface of the molten steel to measure the distance from the transmitting position to the surface of the molten steel. Microwaves are most suitable at that wavelength. Dust is scattered in the molten steel pot. For example, a measurement wave having a short wavelength such as light has a high scattering rate before reaching the molten steel surface, and hardly transmits floating slag. On the other hand, a measurement wave having a long wavelength tends to be diffracted, is poor in directivity, is extremely attenuated, and further measures not only the level of molten steel immediately above the outlet but also the average level of the entire surface of the molten steel, thereby lowering the measurement sensitivity.

【0010】マイクロ波は、波長がcmオーダであり、
粉塵による散乱も少なく且つ誘電体であるスラグ層も透
過するので、測定波にはマイクロ波を用いる。
[0010] The microwave has a wavelength on the order of cm,
Microwave is used as the measurement wave because scattering by dust is small and the slag layer which is a dielectric is also transmitted.

【0011】導出口から溶鋼を排出するとき、当初は溶
鋼鍋内の溶鋼の表面位置(以下、溶鋼レベルと称す)は
全面が一様に低下する。しかし、レベルがある程度低下
すると、溶鋼に導出口を中心とする渦巻き状の流れが起
こる。この渦巻き状の流れが起こると、それまで緩やか
に低下してきた溶鋼レベルは急に短周期で変動を始め、
測定値の推移にそれまでとは異なった変化が現れる。こ
の時点では、スラグの共流出は未だ始まらないが、間も
なくスラグの共流出が始まる。
When the molten steel is discharged from the outlet, the surface position of the molten steel in the molten steel pot (hereinafter, referred to as the molten steel level) is uniformly reduced over the entire surface. However, when the level is reduced to some extent, a spiral flow around the outlet occurs in the molten steel. When this spiral flow occurs, the molten steel level, which has been gradually decreasing until then, suddenly starts to fluctuate in a short period,
A different change appears in the transition of the measured value. At this point, the co-spill of the slag has not yet begun, but will soon commence.

【0012】この溶鋼レベルの測定値を時間の経過とと
もに測定すると短周期の変動が始まった時点が検出され
る。
When the measured value of the molten steel level is measured with the passage of time, the point at which the short-period fluctuation starts is detected.

【0013】検出された時点に所定の時間を加えるとス
ラグの流出時期が算定されるが、この所定の時間は溶鋼
鍋の形状寸法及び溶鋼の種類等を考慮して決められる。
When a predetermined time is added to the detected time, the outflow time of the slag is calculated. The predetermined time is determined in consideration of the shape and size of the molten steel pot and the type of the molten steel.

【0014】前述の課題を解決する第二の手段は、以下
の(a)〜(c)の構成要件からなる溶鋼鍋のスラグ流
出予測方法及び装置である。 (a)溶鋼鍋の導出口の上方に設置されたマイクロ波レ
ベル計と、(b)前記マイクロ波レベル計に設けられた
防熱板と、(c)前記マイクロ波レベル計からの信号を
経時的に処理し、信号の変化が単調な変化から短周期の
変動に変わった変化時点を検出し、この変化時点に所定
の時間を加えてスラグ流出時期を算出する演算装置。
A second means for solving the above-mentioned problem is a method and an apparatus for predicting slag outflow of a slag of a molten steel ladle comprising the following components (a) to (c). (A) a microwave level meter installed above the outlet of the molten steel pot, (b) a heat shield provided on the microwave level meter, and (c) a signal from the microwave level meter over time. An arithmetic unit that detects a change point in time when a signal change has changed from a monotonous change to a short-period change, and adds a predetermined time to the change point to calculate a slag outflow timing.

【0015】前記第二の手段によれば、マイクロ波レベ
ル計を溶鋼鍋の上方に設置し、溶鋼に向けてマイクロ波
を発信し、反射波を測定するとスラグ表面での反射波と
溶鋼表面での反射波とが受信される。そして、これらの
表面までの距離が発信から受信までにかかった時間によ
って求められる。
According to the second means, the microwave level meter is installed above the molten steel pan, and the microwave is transmitted toward the molten steel. When the reflected wave is measured, the reflected wave on the slag surface and the reflected wave on the molten steel surface are measured. Is received. Then, the distance to these surfaces is determined by the time taken from transmission to reception.

【0016】設置されたマイクロ波レベル計は直接溶鋼
からの輻射熱を受けるので、これを防ぐために防熱板を
設ける。マイクロ波は誘電体を透過するので、防熱板に
は耐熱性にも優れるレンガやセラミックスを使用するこ
とができる。
Since the installed microwave level meter receives radiant heat directly from molten steel, a heat shield is provided to prevent this. Since microwaves pass through the dielectric, bricks or ceramics having excellent heat resistance can be used for the heat insulating plate.

【0017】マイクロ波レベル計は刻々と測定したレベ
ルを出力するが、出力した信号は演算装置に入力され、
その経時的変化が調べられる。この調査により、演算装
置では、信号が単調な変化から短周期の変動に変わった
変化時点を検出する。
The microwave level meter outputs a level measured every moment, and the output signal is input to an arithmetic unit.
The change over time is examined. By this investigation, the arithmetic unit detects a change point in time when the signal changes from a monotonous change to a short-period change.

【0018】検出された変化時点は演算器に入力され
る。演算器では予め記憶する溶鋼鍋の形状寸法等及び溶
鋼から所定の時間を演算し、この所定の時間を入力され
た変化時点に加えてスラグ流出時期を算出する。
The detected change point is input to a computing unit. The arithmetic unit calculates a predetermined time from the shape and dimensions of the molten steel pot and the molten steel stored in advance, and calculates the slag outflow timing in addition to the predetermined time at the input change point.

【0019】[0019]

【発明の実施の形態】この発明を図を用いて説明する。
マイクロ波を用いて湯面レベルを測定すると、図2に示
す反射波が得られる。マイクロ波は指向性アンテナから
発信されるが、導出口の直上に絞って溶鋼レベルを測定
するためには、レベル計を湯面に近づけた方がよく、防
熱板を必要とする。図で、縦軸は受信波高、横軸はレベ
ル計を基準とした位置を示すが、R,S,Tの位置で反
射波が受信されている。これらは、各々Rが防熱板、S
がスラグ、Tが溶鋼の表面位置である。このように、マ
イクロ波を用いるとスラグレベルとともに溶鋼レベルも
測定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
When the level of the molten metal is measured using a microwave, a reflected wave shown in FIG. 2 is obtained. The microwave is transmitted from the directional antenna, but in order to measure the molten steel level by squeezing it just above the outlet, it is better to bring the level meter closer to the molten metal surface and a heat shield is required. In the figure, the vertical axis indicates the received wave height, and the horizontal axis indicates the position with reference to the level meter. The reflected waves are received at the R, S, and T positions. In these, R is a heat insulating plate, S is
Is the slag, and T is the surface position of the molten steel. Thus, the use of microwaves measures the slag level as well as the molten steel level.

【0020】このマイクロ波を用いて、溶鋼排出中の湯
面レベルを測定した場合の経時的変化を図3に示す。ス
ラグレベルも溶鋼レベルもともにA時点まではほぼ一定
の速さで単調に低下して行く。そして、A時点でスラグ
レベルはややその速さを増すが、その変化時点は瞬時に
は捉えにくい。
FIG. 3 shows the change over time when the level of the molten metal during the discharge of molten steel is measured using this microwave. Both the slag level and the molten steel level monotonously decrease at a substantially constant rate until the point A. Then, at the time point A, the slag level slightly increases in speed, but the change time point is hard to catch instantaneously.

【0021】一方、溶鋼レベルはA時点に達すると低下
する速さがやや増す傾向はスラグレベルと同様である
が、これに加えて急に短周期で変動し始める。この現象
は極めて顕著であり、即座にA時点を検出することがで
きる。
On the other hand, the molten steel level gradually decreases when reaching the point A, as in the case of the slag level, but in addition to this, it suddenly starts to fluctuate in a short cycle. This phenomenon is extremely remarkable, and the time point A can be detected immediately.

【0022】溶鋼レベルが低下する速さが増したのは、
溶鋼鍋内の溶鋼量が少なくなり導出口の直上の表面レベ
ルが下がり始めたためである。又、溶鋼レベルに短周期
の変動が起きたのは渦巻き状に導出口に吸い込まれる流
れによるレベルの乱れである。この乱れは流動性に富む
溶鋼では顕著に現れるが、流動性が劣るスラグでは顕著
に現れない。
The speed at which the level of molten steel decreases has increased.
This is because the amount of molten steel in the molten steel pot was reduced and the surface level immediately above the outlet started to decrease. Also, the short-period fluctuation in the molten steel level is caused by a level disturbance due to the flow sucked into the outlet in a spiral shape. This turbulence is remarkable in molten steel with high fluidity, but not in slag with poor fluidity.

【0023】[0023]

【実施例】溶鋼鍋から連続鋳造機のタンディッシュに溶
鋼を注入する際に、この発明の装置を用いてスラグの流
出時期を予測した。
EXAMPLE When molten steel was poured from a steel ladle into a tundish of a continuous casting machine, the outflow time of slag was predicted using the apparatus of the present invention.

【0024】用いた装置を図1に示す。溶鋼鍋1内に
は、溶鋼2の上にスラグ3が浮いており、導出口4から
溶鋼2を流出させる。導出口4の上方に、マイクロ波レ
ベル計10を設置し、防熱板11によって湯面からの輻
射熱を防ぎ、且つ冷風を送って約40℃以下に保持し
た。そして、測定信号を演算装置12に送り、演算装置
12で信号を処理し、更に、処理結果に基づいてスラグ
3の流出開始時期を予測させた。尚、4′は導出管であ
る。
FIG. 1 shows the apparatus used. In the molten steel pot 1, the slag 3 floats on the molten steel 2, and the molten steel 2 flows out from the outlet 4. The microwave level meter 10 was installed above the outlet 4, the radiant heat from the hot water surface was prevented by the heat insulating plate 11, and the temperature was kept at about 40 ° C. or lower by sending cool air. Then, the measurement signal was sent to the arithmetic unit 12, the signal was processed by the arithmetic unit 12, and the outflow start time of the slag 3 was predicted based on the processing result. Reference numeral 4 'denotes an outlet pipe.

【0025】マイクロ波レベル計は送受信一体型で、ア
ンテナにはホーン型を用いた。発信周波数は5.8GH
z である。防熱板には、アルミナ(AI2O3:92wt% ) 製で
厚さ約9mmの板を用いた。発信周波数10GHz につい
ても試験を行ったが、この場合は約5mmの防熱板を用
いた。
The microwave level meter was a transmission / reception integrated type, and a horn type antenna was used. Transmission frequency is 5.8GH
z. A plate made of alumina (AI 2 O 3 : 92 wt%) and having a thickness of about 9 mm was used as the heat insulating plate. The test was also performed at a transmission frequency of 10 GHz. In this case, a heat shield plate of about 5 mm was used.

【0026】演算装置12には、スラグレベルと溶鋼レ
ベルの他に、予測に必要なスラグ層の厚さや溶鋼の流出
速度を1秒間隔で演算させ、これらの情報と鋼種や溶湯
温度等の別に与えた情報とを総合し、予測を行わせた。
予測結果を、プロセスコンピュータ(図示せず)に送
り、溶鋼流出停止時期が来たとき導出口4を閉鎖板5に
より閉じ溶鋼の注入を停止させた。
The arithmetic unit 12 calculates the slag layer thickness and the molten steel outflow velocity necessary for the prediction at intervals of one second in addition to the slag level and the molten steel level. Based on the information provided, a prediction was made.
The prediction result was sent to a process computer (not shown), and when the timing of stopping molten steel outflow came, the outlet 4 was closed by the closing plate 5 to stop the injection of molten steel.

【0027】予測結果は、発信周波数が5.8GHz の
場合と10GHz の場合とで同様であり、5.8GHz
の場合の結果を図4に示す。図には、同時に測定した従
来の反射率法によるスラグ流出量も示した。図の左縦軸
はこの発明の方法による湯面レベルで右縦軸はスラグ流
出量、横軸は時間軸である。
The prediction result is similar between the case where the transmission frequency is 5.8 GHz and the case where the transmission frequency is 10 GHz, and is 5.8 GHz.
FIG. 4 shows the results in the case of (1). The figure also shows the slag outflow measured by the conventional reflectance method measured at the same time. The left vertical axis in the figure is the level of the molten metal according to the method of the present invention, the right vertical axis is the slag outflow, and the horizontal axis is the time axis.

【0028】この発明では、溶鋼レベルに短周期の変動
が現れたA時点から40秒後のP時点がスラグ流出開始
時期と予測された。
In the present invention, a point P at 40 seconds after point A at which a short-period fluctuation in the molten steel level appears was predicted to be a slag outflow start time.

【0029】一方、反射率測定法ではQ時点でスラグの
共流出が検知され、その後スラグ流出量が急速に増加す
ることが測定された。この測定されたスラグ流出曲線S
を外挿して点線で示すと、予測されたP時点とよく一致
していた。
On the other hand, in the reflectance measurement method, co-flow of slag was detected at the time point Q, and thereafter, it was measured that the slag flow rate rapidly increased. This measured slag outflow curve S
Was extrapolated and indicated by the dotted line, which was in good agreement with the predicted P time point.

【0030】[0030]

【発明の効果】以上述べたように、この発明によれば溶
鋼の排出に際し、溶鋼鍋導出口の直上で溶鋼レベルを測
定し、溶鋼流出終期でスラグが流出する前にレベルの低
下曲線が短周期で変動する時点を検出し、これに基づき
スラグの流出開始時期を未然に予測する。このため、ス
ラグの流出を完全に防止することが可能となり、鋼の品
質と歩留りが大幅に向上する。
As described above, according to the present invention, when the molten steel is discharged, the level of the molten steel is measured immediately above the outlet of the molten steel ladle, and the level decrease curve is short before the slag flows out at the end of the molten steel outflow. A time point that fluctuates in a cycle is detected, and a slag outflow start time is predicted based on this. Therefore, it is possible to completely prevent the slag from flowing out, and the quality and yield of steel are greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施例に用いたスラグ流出予測装置の模
式図である。
FIG. 1 is a schematic diagram of a slag outflow prediction device used in an embodiment of the present invention.

【図2】発信されたマイクロ波の反射波の受信波高を示
す図である。
FIG. 2 is a diagram showing a received wave height of a reflected wave of a transmitted microwave.

【図3】発明の原理を説明するためのスラグレベルと溶
鋼レベルの変化曲線を示す図である。
FIG. 3 is a diagram showing a change curve of a slag level and a molten steel level for explaining the principle of the invention.

【図4】発明の実施例で予測されたスラグ流出開始時期
を示す図である。
FIG. 4 is a diagram showing a slag outflow start time predicted in the embodiment of the present invention.

【図5】従来のスラグ検出装置の模式図である。FIG. 5 is a schematic diagram of a conventional slag detection device.

【符号の説明】[Explanation of symbols]

1 溶鋼鍋 2 溶鋼 3 スラグ 4 導出口 5 閉鎖板 10 マイクロ波レベル計 11 防熱板 12 演算装置。 DESCRIPTION OF SYMBOLS 1 Molten steel pot 2 Molten steel 3 Slag 4 Outlet 5 Closing plate 10 Microwave level meter 11 Heat insulation plate 12 Arithmetic unit.

フロントページの続き (72)発明者 谷口 哲男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 板倉 孝 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Continuing on the front page (72) Inventor Tetsuo Taniguchi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Takashi Itakura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Stock In company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面にスラグが浮遊する溶鋼鍋内の溶鋼を
溶鋼鍋底面に設けた導出口から排出する際に、スラグの
流出開始時期を予測する方法であって、以下の(a)〜
(c)の工程からなることを特徴とする溶鋼鍋のスラグ
流出予測方法。 (a)前記導出口の直上の溶鋼の表面位置をマイクロ波
を用いて連続的に測定する工程、(b)前記測定結果か
ら前記表面位置が短周期の変動を開始した時点を検出す
る工程、(c)前記時点に所定の時間を加えスラグ流出
時期を演算する工程。
1. A method for predicting the start time of slag outflow when molten steel in a molten steel pot in which slag floats on the surface is discharged from an outlet provided in the bottom face of the molten steel pot.
A method for predicting slag outflow of a molten steel ladle, comprising the step (c). (A) a step of continuously measuring the surface position of the molten steel immediately above the outlet using a microwave, (b) a step of detecting a point in time when the surface position starts to change in a short period from the measurement result, (C) calculating a slag outflow time by adding a predetermined time to the time point.
【請求項2】以下の(a)〜(c)の構成要件を有する
ことを特徴とする溶鋼鍋のスラグ流出予測装置。 (a)溶鋼鍋の導出口の上方に設置され、導出口の直上
の溶鋼表面位置を測定するマイクロ波レベル計と、
(b)前記マイクロ波レベル計に設けられた防熱板と、
(c)前記マイクロ波レベル計からの信号を経時的に処
理し、信号の変化が単調な変化から短周期の変動に変わ
った変化時点を検出し、この変化時点に所定の時間を加
えてスラグ流出時期を算出する演算装置。
2. An apparatus for predicting slag outflow of a molten steel ladle, having the following components (a) to (c). (A) a microwave level meter installed above the outlet of the molten steel pot and measuring the position of the molten steel surface immediately above the outlet,
(B) a heat shield provided on the microwave level meter;
(C) processing the signal from the microwave level meter over time to detect a change time point at which the signal change changes from a monotonous change to a short-period change, and add a predetermined time to the change time to add a slug; An arithmetic unit that calculates the outflow time.
JP23685496A 1996-09-06 1996-09-06 Method and apparatus for predicting slag outflow of molten steel ladle Expired - Fee Related JP3358457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23685496A JP3358457B2 (en) 1996-09-06 1996-09-06 Method and apparatus for predicting slag outflow of molten steel ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23685496A JP3358457B2 (en) 1996-09-06 1996-09-06 Method and apparatus for predicting slag outflow of molten steel ladle

Publications (2)

Publication Number Publication Date
JPH1080762A true JPH1080762A (en) 1998-03-31
JP3358457B2 JP3358457B2 (en) 2002-12-16

Family

ID=17006794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23685496A Expired - Fee Related JP3358457B2 (en) 1996-09-06 1996-09-06 Method and apparatus for predicting slag outflow of molten steel ladle

Country Status (1)

Country Link
JP (1) JP3358457B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090387A1 (en) 2008-01-18 2009-08-19 Corus Staal BV Method and apparatus for monitoring the surfaces of slag and molten metal in a mould
JP2011043343A (en) * 2009-08-19 2011-03-03 Wire Device:Kk Slag thickness measuring method and measuring apparatus by microwave
JP2014153077A (en) * 2013-02-05 2014-08-25 Nippon Steel & Sumitomo Metal Method for measuring thickness of slag floating on molten metal surface
CN105300480A (en) * 2015-10-19 2016-02-03 山东钢铁股份有限公司 Device and method for liquid level height measurement of continuous casting tundish
WO2016016967A1 (en) * 2014-07-30 2016-02-04 新日鐵住金株式会社 Method for measuring thickness of slag floating on surface of molten metal
JP2016036825A (en) * 2014-08-07 2016-03-22 新日鐵住金株式会社 Molten metal injection method
KR20200032862A (en) * 2018-09-19 2020-03-27 현대제철 주식회사 Apparatus for controlling sliding gate of ladle and method thereof
JP2021133377A (en) * 2020-02-25 2021-09-13 スズキ株式会社 Melting furnace molten metal surface detection method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090387A1 (en) 2008-01-18 2009-08-19 Corus Staal BV Method and apparatus for monitoring the surfaces of slag and molten metal in a mould
US8717222B2 (en) 2008-01-18 2014-05-06 Tata Steel Ijmuiden B.V. Method and apparatus for monitoring the surfaces of slag and molten metal in a mould
JP2011043343A (en) * 2009-08-19 2011-03-03 Wire Device:Kk Slag thickness measuring method and measuring apparatus by microwave
JP2014153077A (en) * 2013-02-05 2014-08-25 Nippon Steel & Sumitomo Metal Method for measuring thickness of slag floating on molten metal surface
WO2016016967A1 (en) * 2014-07-30 2016-02-04 新日鐵住金株式会社 Method for measuring thickness of slag floating on surface of molten metal
JP2016036825A (en) * 2014-08-07 2016-03-22 新日鐵住金株式会社 Molten metal injection method
CN105300480A (en) * 2015-10-19 2016-02-03 山东钢铁股份有限公司 Device and method for liquid level height measurement of continuous casting tundish
KR20200032862A (en) * 2018-09-19 2020-03-27 현대제철 주식회사 Apparatus for controlling sliding gate of ladle and method thereof
JP2021133377A (en) * 2020-02-25 2021-09-13 スズキ株式会社 Melting furnace molten metal surface detection method and device

Also Published As

Publication number Publication date
JP3358457B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US6255983B1 (en) Degasser guide
RU2703606C2 (en) Method of measuring, system and sensor for continuous casting machine
US4210023A (en) Method and apparatus for measuring slag foaming using microwave lever meter
US6130637A (en) Measuring the thickness of hot slag in steelmaking
JP3358457B2 (en) Method and apparatus for predicting slag outflow of molten steel ladle
WO2016016967A1 (en) Method for measuring thickness of slag floating on surface of molten metal
JP2014153077A (en) Method for measuring thickness of slag floating on molten metal surface
JPH03505994A (en) Method and device for measuring the amount of disturbance when pouring molten metal from a container
EP0132296B1 (en) Apparatus for detecting slag outflow
WO2013002220A1 (en) Method for measuring melt layer thickness of mold powder for continuous casting
KR20120132637A (en) Device and method for closing an outflow opening of a metallurgical vessel
JP5800241B2 (en) Measuring method of molten metal level and mold powder thickness in continuous casting mold
JPH10197502A (en) Central solid phase rate sensing method for cast piece by continuous casting
JP2720611B2 (en) Steel continuous casting method
JP2022120835A (en) Level meter, mold device, and method for operating mold device
RU2033890C1 (en) Method for measuring metal level in mold
JPS6013009A (en) Method and device for measuring blast furnace charge
JPH0481734B2 (en)
KR20200087255A (en) Level measuring device
JP2005262283A (en) Method for detecting solidifying condition in mold during continuous casting
JP2005147698A (en) Measuring method and system for molten metal level in ladle
JPH04262841A (en) Instrument and method for measuring flow speed on surface of molten steel in continuous casting mold
JP2001108508A (en) Frequency type liquid level detecting method with ultrasonic wave and its device
JPH01127161A (en) Method for measuring profile of crater end solidification in continuous casting
Kobayashi et al. Prediction and control of slag slopping in BOF using microwave gauge

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020910

LAPS Cancellation because of no payment of annual fees