JP2005262283A - Method for detecting solidifying condition in mold during continuous casting - Google Patents

Method for detecting solidifying condition in mold during continuous casting Download PDF

Info

Publication number
JP2005262283A
JP2005262283A JP2004079690A JP2004079690A JP2005262283A JP 2005262283 A JP2005262283 A JP 2005262283A JP 2004079690 A JP2004079690 A JP 2004079690A JP 2004079690 A JP2004079690 A JP 2004079690A JP 2005262283 A JP2005262283 A JP 2005262283A
Authority
JP
Japan
Prior art keywords
mold
solidified shell
thickness
reflected wave
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004079690A
Other languages
Japanese (ja)
Inventor
Junichi Yotsutsuji
淳一 四辻
Akio Nagamune
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004079690A priority Critical patent/JP2005262283A/en
Publication of JP2005262283A publication Critical patent/JP2005262283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately measuring the thickness of a solidified shell in a mold and the inflow thickness of molding powder on real time by utilizing ultrasonic waves in continuous casting. <P>SOLUTION: An ultrasonic transmitter 7 is placed in the continuous casting mold 1. An ultrasonic wave is transmitted from the ultrasonic transmitter, and respective propagation times are measured with regard to reflected waves from the boundary between the mold and a molding powder layer 5, the boundary between the molding powder layer and the solidified shell 3, and the boundary between the solidified shell and molten steel 2. The inflow thickness of the molding powder and the thickness of the solidified shell are found on the basis of the measured propagation times. In that event the reflected wave from the boundary between the molding powder layer and the solidified shell is distinguished from the reflected wave from the boundary between the solidified shell and the molten steel because their phases are different. Accurate measurement is possible by using ultrasonic waves having a wavelength well smaller than the inflow thickness of the molding powder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、連続鋳造における鋳型内の凝固状態検知方法に関し、詳しくは、鋳型内の凝固シェルの厚み、並びに、鋳型と凝固シェルとの間に流入するモールドパウダーの流入厚みをオンラインで計測する凝固状態検知方法に関するものである。   The present invention relates to a method for detecting a solidification state in a mold in continuous casting. The present invention relates to a state detection method.

鋼の連続鋳造過程においては、鋳型内の冷却状態の制御、つまり凝固シェルの厚さの監視が、鋳片の品質及び操業の安定性を確保する上で重要である。特に、初期凝固シェル厚みの不均一性が大きいと、鋳片が鋳造中にブレークアウトを起こしたり、鋳片に縦割れが生じるなどの問題を発生する。凝固シェルにこのような不均一性が起こる原因は、主に冷却状態の不安定さから生じるものであり、不安定さの原因としては、鋳型内へ供給する溶鋼量の変動、鋳型における冷却のムラ、鋳型内溶鋼の湯面変動などが考えられる。また、鋳型内溶鋼の保温や酸化防止、溶鋼中から浮上してくる介在物の吸収、凝固シェルと鋳型との潤滑などのためにモールドパウダーを使用している場合には、鋳型と凝固シェルとの間に流れ込むモールドパウダーの流入厚みも冷却状態に関係してくる。つまり、初期凝固シェル厚みやモールドパウダーの流入厚みを監視することにより、鋳型内の冷却状態を把握することが可能となる。   In the continuous casting process of steel, it is important to control the cooling state in the mold, that is, to monitor the thickness of the solidified shell, in order to ensure the quality of the slab and the stability of the operation. In particular, when the thickness of the initial solidified shell thickness is large, problems such as breakout of the slab during casting and vertical cracking of the slab occur. The cause of such inhomogeneity in the solidified shell is mainly due to instability of the cooling state. The instability is caused by fluctuations in the amount of molten steel supplied into the mold and cooling of the mold. Unevenness, fluctuations in the molten steel surface of the molten steel in the mold, etc. can be considered. In addition, if mold powder is used to keep the molten steel in the mold warm and prevent oxidation, absorb inclusions floating from the molten steel, and lubricate the solidified shell and mold, The inflow thickness of the mold powder that flows in between is also related to the cooling state. That is, it is possible to grasp the cooling state in the mold by monitoring the initial solidified shell thickness and the inflow thickness of the mold powder.

このような計測の従来の方法としては、以下の方法が提案されている。例えば、特許文献1には、連続鋳造用鋳型の壁内に超音波探触子を設け、鋳型内部に向けて超音波を発信し、その反射波に基づいて鋳型内の凝固シェルの厚みを求める方法が提案されている。特許文献2には、連続鋳造用鋳型の鋳造方向の温度分布を計測し、この計測値から予測した熱流束値を境界条件とする熱伝導方程式を解き、凝固シェルの厚み及びモールドパウダーの流入厚みを求める方法が提案されている。また、特許文献3には、連続鋳造用鋳型の鋳造方向の温度分布を計測し、この計測値から鋳型における鋳造方向の熱流束を算出し、求めた熱流束によって順次凝固シェル厚みを算出する方法が提案されている。
特開昭59−156558号公報 特開2000−317594号公報 特開平10−277716号公報
The following methods have been proposed as conventional methods for such measurement. For example, in Patent Document 1, an ultrasonic probe is provided in the wall of a continuous casting mold, ultrasonic waves are transmitted toward the inside of the mold, and the thickness of the solidified shell in the mold is obtained based on the reflected wave. A method has been proposed. Patent Document 2 measures the temperature distribution in the casting direction of a continuous casting mold, solves the heat conduction equation using the heat flux value predicted from the measured value as a boundary condition, and determines the thickness of the solidified shell and the inflow thickness of the mold powder. A method for obtaining the value has been proposed. Patent Document 3 discloses a method of measuring a temperature distribution in a casting direction of a continuous casting mold, calculating a heat flux in the casting direction in the mold from the measured value, and sequentially calculating a solidified shell thickness based on the obtained heat flux. Has been proposed.
JP 59-156558 A JP 2000-317594 A Japanese Patent Laid-Open No. 10-277716

しかしながら、上記従来技術には、幾つかの問題点があり、その主たるものを挙げれば、以下の如くである。即ち、特許文献1では、凝固シェル厚みを測定するだけであり、モールドパウダーの流入厚みは測定していない。これは、モールドパウダーの流入厚みが凝固シェル厚みに比べて薄く、精度良く計測できなかったものと思われる。また、凝固シェル厚みの計測に関しても、鋳型内の溶鋼湯面近傍の凝固シェル厚みが薄い部位においてはノイズが多く、特許文献1に開示された方法では精度良く測定することができない。   However, the above prior art has some problems, and the main ones are as follows. That is, in Patent Document 1, only the thickness of the solidified shell is measured, and the inflow thickness of the mold powder is not measured. This is probably because the inflow thickness of the mold powder was smaller than the thickness of the solidified shell and could not be measured accurately. In addition, regarding the measurement of the solidified shell thickness, there is a lot of noise at a portion where the thickness of the solidified shell near the molten steel surface in the mold is thin, and the method disclosed in Patent Document 1 cannot be measured with high accuracy.

一方、特許文献2及び特許文献3では、鋳型の測温値に基づいて凝固シェルの厚み或いはモールドパウダーの流入厚みを求めているため、湯面変動などによって鋳型内の凝固状態が変化した場合、凝固シェルから鋳型への熱伝導の時間分は必ず計測値に時間遅れが生じ、リアルタイムで測定できないという点である。これを防止するために、過去のプロフィールを参考・学習して、予測という手段を採ったとしても、それが測定時点における厚みなどの値であるとは確実にはいえない。   On the other hand, in Patent Document 2 and Patent Document 3, since the thickness of the solidified shell or the inflow thickness of the mold powder is obtained based on the temperature measurement value of the mold, when the solidified state in the mold is changed due to the molten metal surface fluctuation, The time of heat conduction from the solidified shell to the mold is always a time delay in the measured value and cannot be measured in real time. In order to prevent this, even if a measure of prediction is taken by referring to / learning a past profile, it cannot be surely a value such as thickness at the time of measurement.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造において、鋳型内の凝固シェルの厚み並びに鋳型と凝固シェルとの間に流入するモールドパウダーの流入厚みを、超音波を利用することにより、オンラインでリアルタイムに且つ精度良く計測することのできる、鋳型内の凝固状態検知方法を提供することである。   The present invention has been made in view of the above circumstances, and an object thereof is to exceed the thickness of the solidified shell in the mold and the inflow thickness of the mold powder flowing between the mold and the solidified shell in continuous casting. It is to provide a method for detecting a solidification state in a mold, which can be measured online in real time and with high accuracy by using sound waves.

上記課題を解決するための第1の発明に係る連続鋳造における鋳型内の凝固状態検知方法は、連続鋳造用鋳型に超音波発信器を設置し、当該超音波発信器から発信された超音波の、鋳型とモールドパウダー層との境界からの反射波、モールドパウダー層と凝固シェルとの境界からの反射波及び凝固シェルと溶鋼との境界からの反射波のそれぞれの伝播時間を計測し、計測した伝播時間に基づいてモールドパウダーの流入厚み及び凝固シェルの厚みを求めることを特徴とするものである。   The solidification state detection method in the casting mold in the continuous casting according to the first invention for solving the above-mentioned problem is that an ultrasonic transmitter is installed in the casting mold for continuous casting, and the ultrasonic wave transmitted from the ultrasonic transmitter is transmitted. The propagation time of each of the reflected wave from the boundary between the mold and the mold powder layer, the reflected wave from the boundary between the mold powder layer and the solidified shell, and the reflected wave from the boundary between the solidified shell and the molten steel was measured and measured. The inflow thickness of the mold powder and the thickness of the solidified shell are obtained based on the propagation time.

第2の発明に係る連続鋳造における鋳型内の凝固状態検知方法は、第1の発明において、モールドパウダー層と凝固シェルとの境界からの反射波と、凝固シェルと溶鋼との境界からの反射波とでは、反射波の位相が異なることを利用してそれぞれの反射波を特定することを特徴とするものである。   According to a second aspect of the present invention, there is provided a method for detecting a solidification state in a mold in continuous casting. In the first invention, a reflected wave from a boundary between a mold powder layer and a solidified shell and a reflected wave from a boundary between the solidified shell and molten steel. In this case, each reflected wave is identified by utilizing the fact that the phase of the reflected wave is different.

第3の発明に係る連続鋳造における鋳型内の凝固状態検知方法は、第1または第2の発明において、モールドパウダーの流入厚みよりも十分に小さい波長の超音波を用い、モールドパウダー層内で発生する多重反射波の信号を周波数解析することによってモールドパウダーの流入厚みを求め、且つ、計測信号から多重反射波の成分を除去することによって凝固シェルと溶鋼との境界からの反射波を特定することを特徴とするものである。   The solidification state detection method in the mold in the continuous casting according to the third invention is generated in the mold powder layer using the ultrasonic wave having a wavelength sufficiently smaller than the inflow thickness of the mold powder in the first or second invention. The inflow thickness of the mold powder is obtained by analyzing the frequency of the multiple reflected wave signal to be detected, and the reflected wave from the boundary between the solidified shell and the molten steel is identified by removing the multiple reflected wave component from the measurement signal. It is characterized by.

上記構成の本願発明によれば、連続鋳造において、鋳型内の凝固シェル厚みと、鋳型と凝固シェルとの間に流入するモールドパウダーの流入厚みとが、リアルタイムで且つ精度良く計測可能となり、連続鋳造時の鋳型内における凝固・冷却状態をリアルタイムで把握することが可能となり、ブレークアウトや鋳片の縦割れなどの操業異常及び品質異常を未然に防止することができるので、鋳造速度の高速化や鋳片品質の向上が達成され、工業上有益な効果がもたらされる。   According to the present invention having the above-described configuration, in continuous casting, the thickness of the solidified shell in the mold and the inflow thickness of the mold powder flowing between the mold and the solidified shell can be measured in real time with high accuracy. It is possible to grasp the solidification / cooling state in the mold in real time in real time, and it is possible to prevent operational abnormalities and quality abnormalities such as breakouts and vertical cracks of the slab, so that the casting speed can be increased. An improvement in slab quality is achieved and an industrially beneficial effect is achieved.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施の形態の1例を示す図であって、本発明を実施した連続鋳造用鋳型部の概略断面図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing an example of an embodiment of the present invention, and is a schematic cross-sectional view of a continuous casting mold part embodying the present invention.

図1において、水冷構造の銅製の鋳型1で囲まれた空間には、浸漬ノズル(図示せず)から溶鋼2が注入され、注入された溶鋼2は鋳型1によって冷却され、鋳型1と接触する側に凝固シェル3を生成する。この凝固シェル3を外殻とし、内部を未凝固の溶鋼2とする鋳片は、鋳型1の下方に設置されたピンチロール(図示せず)によって鋳型1の下方に連続的に引き抜かれる。この引き抜き中、鋳型1内の溶鋼湯面6の位置はほぼ一定位置に調整される。この溶鋼湯面6の上には、溶鋼2の保温や酸化防止、及び、凝固シェル3と鋳型1との潤滑などを目的としてモールドパウダー4が添加されている。モールドパウダー4は、溶鋼2の熱により加熱・溶融し、溶鋼2と接触する範囲には溶融パウダー層4aを形成している。この溶融パウダー層4aは、鋳型1と凝固シェル3との間隙に流入し、モールドパウダー層5を形成している。溶鋼湯面6の近傍のモールドパウダー層5及びモールドパウダー層5の凝固シェル3と接触する部位は溶融状態であり、この溶融状態のモールドパウダー層5が、主に鋳型1と凝固シェル3との潤滑剤として機能する。   In FIG. 1, molten steel 2 is injected from an immersion nozzle (not shown) into a space surrounded by a water-cooled copper mold 1, and the injected molten steel 2 is cooled by the mold 1 and comes into contact with the mold 1. A solidified shell 3 is produced on the side. The slab with the solidified shell 3 as an outer shell and the inside of the unsolidified molten steel 2 is continuously drawn below the mold 1 by a pinch roll (not shown) installed below the mold 1. During this drawing, the position of the molten steel surface 6 in the mold 1 is adjusted to a substantially constant position. Molded powder 4 is added on the molten steel surface 6 for the purpose of keeping the molten steel 2 warm and preventing oxidation, and lubricating the solidified shell 3 and the mold 1. The mold powder 4 is heated and melted by the heat of the molten steel 2, and a molten powder layer 4 a is formed in a range in contact with the molten steel 2. The molten powder layer 4 a flows into the gap between the mold 1 and the solidified shell 3 to form a mold powder layer 5. The mold powder layer 5 in the vicinity of the molten steel surface 6 and the portion of the mold powder layer 5 in contact with the solidified shell 3 are in a molten state, and the mold powder layer 5 in the molten state is mainly formed between the mold 1 and the solidified shell 3. Functions as a lubricant.

凝固シェル3の厚みが幅方向で不均一になると鋳片に縦割れが発生し、また、モールドパウダー層5の厚み、即ち、モールドパウダー4の流入厚みが厚くなり、熱が鋳型1へ逃げにくくなるなどの要因によって凝固シェル3の厚みが不足すると、ブレークアウトの原因になる。そのため、凝固シェル3の厚みのみならず、モールドパウダー層5の厚みも監視することが必要である。   If the thickness of the solidified shell 3 becomes non-uniform in the width direction, vertical cracks occur in the slab, and the thickness of the mold powder layer 5, that is, the inflow thickness of the mold powder 4 increases, so that heat does not easily escape to the mold 1. If the thickness of the solidified shell 3 is insufficient due to factors such as Therefore, it is necessary to monitor not only the thickness of the solidified shell 3 but also the thickness of the mold powder layer 5.

鋳型1の溶鋼湯面6の近傍には、超音波探触子7を埋め込むための設置孔8が設けられており、凝固シェル3に向けて超音波を発信し、且つ、反射波を受信するための超音波探触子7が設置孔8の内部に設置されている。超音波探触子7の埋め込みの際に注意する点は、発信する超音波が鋳型1の内面に対して所定の角度で伝播して、反射波が超音波探触子7の位置に戻って来るようにすることであり、そのために、斜角超音波探触子を用いたり、反射板を設けるなどしてもよい。また、超音波探触子7を鋳型1に密着させるために、ねじ切りなどを施し、超音波探触子7を鋳型1に固定してもよい。   An installation hole 8 for embedding the ultrasonic probe 7 is provided in the vicinity of the molten steel surface 6 of the mold 1 to transmit ultrasonic waves toward the solidified shell 3 and receive reflected waves. An ultrasonic probe 7 is installed in the installation hole 8. The point to be noted when embedding the ultrasonic probe 7 is that the transmitted ultrasonic wave propagates at a predetermined angle with respect to the inner surface of the mold 1, and the reflected wave returns to the position of the ultrasonic probe 7. For this purpose, an oblique ultrasonic probe may be used, or a reflector may be provided. In addition, in order to bring the ultrasonic probe 7 into close contact with the mold 1, threading or the like may be performed to fix the ultrasonic probe 7 to the mold 1.

図1は、鋳型1の背面から超音波探触子7を埋め込んだ例であり、鋳型1の背面に、鋳型内の溶鋼流動を制御するための電磁石などが設置されており、鋳型1の背面からの埋め込みが困難な場合には、例えば、図2に鋳型1の上面から超音波探触子7を埋め込んだ例を示すように、鋳型1の上面から超音波探触子7を埋め込んでもよい。また、鋳型1の横方向及び縦方向に多チャンネル設置し、凝固状態の分布を取れるようにしてもよい。図3は鋳型1の横方向に多チャンネル配置した例を示す図であり、鋳型1を上面から見た図であり、図3において1aは鋳型長辺、1bは鋳型短辺である。   FIG. 1 shows an example in which an ultrasonic probe 7 is embedded from the back surface of a mold 1. An electromagnet or the like for controlling the flow of molten steel in the mold is installed on the back surface of the mold 1. When it is difficult to embed the ultrasonic probe 7, the ultrasonic probe 7 may be embedded from the upper surface of the mold 1, for example, as shown in FIG. 2 in which the ultrasonic probe 7 is embedded from the upper surface of the mold 1. . Alternatively, multiple channels may be installed in the lateral direction and longitudinal direction of the mold 1 so as to obtain a solidified state distribution. FIG. 3 is a diagram showing an example in which multiple channels are arranged in the lateral direction of the mold 1, and is a view of the mold 1 as viewed from the top. In FIG. 3, 1 a is a mold long side and 1 b is a mold short side.

超音波探触子7のサイズは、使用する周波数によって異なってくる。使用する超音波が低周波数の場合には、超音波探触子7が大きくなり、鋳型1内への設置は困難と思われるので、鋳型1の外側(溶鋼などが接している面とは反対側)に設置することが好ましい。この場合、超音波の伝播を促進させるために、設置した超音波探触子と鋳型1との隙間は極力小さくすると同時に、温度による音速の変化が少ない充填材を超音波探触子と鋳型1との隙間に充填するなどすることが好ましい。使用する超音波が高周波数の場合には超音波探触子7は小さくなり、鋳型1の内部に埋設することができる。   The size of the ultrasonic probe 7 varies depending on the frequency used. When the ultrasonic wave to be used is a low frequency, the ultrasonic probe 7 becomes large, and it is difficult to install the ultrasonic probe 7 in the mold 1, so the outer side of the mold 1 (opposite to the surface on which the molten steel is in contact) Side). In this case, in order to promote the propagation of the ultrasonic wave, the gap between the installed ultrasonic probe and the mold 1 is made as small as possible, and at the same time, a filler with a small change in sound speed due to temperature is used as the ultrasonic probe and the mold 1. It is preferable to fill the gap between When the ultrasonic wave used has a high frequency, the ultrasonic probe 7 becomes small and can be embedded in the mold 1.

超音波探触子7は超音波送受信処理装置9によって制御され、超音波の送受信を行う。図4に、超音波探触子7から発振された超音波の伝播の様子を概略図で示す。尚、図4は、図1に示すA部を拡大して示す図である。   The ultrasonic probe 7 is controlled by an ultrasonic transmission / reception processor 9 to transmit / receive ultrasonic waves. FIG. 4 is a schematic view showing how the ultrasonic wave oscillated from the ultrasonic probe 7 propagates. FIG. 4 is an enlarged view of a portion A shown in FIG.

図4に示すように、超音波探触子7から発振された超音波10は、鋳型1の内部を伝播し、鋳型1とモールドパウダー層5との境界面17で反射波11と透過波12になる。鋳型1の音響インピーダンスをZ1 、溶融したモールドパウダー層5の音響インピーダンスをZ2 とすると、境界面17における反射率r12及び透過率t12は、それぞれ下記の(1)式及び(2)式で表される。 As shown in FIG. 4, the ultrasonic wave 10 oscillated from the ultrasonic probe 7 propagates inside the mold 1, and the reflected wave 11 and the transmitted wave 12 are transmitted at the interface 17 between the mold 1 and the mold powder layer 5. become. When the acoustic impedance of the mold 1 is Z 1 and the acoustic impedance of the melted mold powder layer 5 is Z 2 , the reflectance r 12 and the transmittance t 12 at the boundary surface 17 are expressed by the following equations (1) and (2), respectively. It is expressed by a formula.

Figure 2005262283
Figure 2005262283

境界面17を透過した透過波12は、溶融したモールドパウダー層5を伝播し、モールドパウダー層5と凝固シェル3との境界面18で反射波13と透過波14になる。モールドパウダー層5の厚みよりも波長が短い高周波数の超音波を使用した場合には、反射波13は、多重反射として超音波探触子7に検出されることがある。凝固シェル3の音響インピーダンスをZ3 とすると、境界面18における反射率r23及び透過率t23は、それぞれ下記の(3)式及び(4)式で表される。(3)式及び(4)式におけるZ2 は、溶融したモールドパウダー層5の音響インピーダンスである。 The transmitted wave 12 transmitted through the boundary surface 17 propagates through the melted mold powder layer 5, and becomes a reflected wave 13 and a transmitted wave 14 at the boundary surface 18 between the mold powder layer 5 and the solidified shell 3. When a high frequency ultrasonic wave having a wavelength shorter than the thickness of the mold powder layer 5 is used, the reflected wave 13 may be detected by the ultrasonic probe 7 as multiple reflections. Assuming that the acoustic impedance of the solidified shell 3 is Z 3 , the reflectance r 23 and the transmittance t 23 at the interface 18 are expressed by the following equations (3) and (4), respectively. Z 2 in the equations (3) and (4) is the acoustic impedance of the molten mold powder layer 5.

Figure 2005262283
Figure 2005262283

境界面18を透過した透過波14は、凝固シェル3を伝播し、凝固シェル3と溶鋼2との境界面19で反射波15と透過波16になり、反射波15が超音波探触子7で検出される。溶鋼2の音響インピーダンスをZ4 とすると、境界面19における反射率r34及び透過率t34は、それぞれ下記の(5)式及び(6)式で表される。(5)式及び(6)式におけるZ3 は、凝固シェル3の音響インピーダンスである。 The transmitted wave 14 transmitted through the boundary surface 18 propagates through the solidified shell 3, becomes a reflected wave 15 and a transmitted wave 16 at the boundary surface 19 between the solidified shell 3 and the molten steel 2, and the reflected wave 15 is converted into the ultrasonic probe 7. Is detected. When the acoustic impedance of the molten steel 2 is Z 4 , the reflectance r 34 and the transmittance t 34 at the boundary surface 19 are expressed by the following formulas (5) and (6), respectively. Z 3 in the equations (5) and (6) is the acoustic impedance of the solidified shell 3.

Figure 2005262283
Figure 2005262283

反射波11を検出した後、反射波13(或いは多重反射波)及び反射波15が検出されるので、それらの伝播時間と各々の層での音速とから、モールドパウダー層5及び凝固シェル3の厚みがほぼリアルタイムで検出される。例えば、凝固シェル3における伝播時間をΔt、凝固シェル3における音速をVs 、凝固シェル3の厚みをDs とすれば、凝固シェル3の厚みは下記の(7)式によって求めることができる。この場合に、例えば鋳型1と凝固シェル3とが直接接している場合のように、モールドパウダー層5が無いような状況では、反射波13のみが検出される。   Since the reflected wave 13 (or multiple reflected wave) and the reflected wave 15 are detected after detecting the reflected wave 11, the mold powder layer 5 and the solidified shell 3 are detected from their propagation time and the sound velocity in each layer. Thickness is detected in near real time. For example, if the propagation time in the solidified shell 3 is Δt, the speed of sound in the solidified shell 3 is Vs, and the thickness of the solidified shell 3 is Ds, the thickness of the solidified shell 3 can be obtained by the following equation (7). In this case, only the reflected wave 13 is detected in a situation where the mold powder layer 5 is not present, for example, when the mold 1 and the solidified shell 3 are in direct contact.

Figure 2005262283
Figure 2005262283

各層の音響インピーダンスの代表的な数値(Z1=4x107kg/m2・s、Z2=7.42x106kg/m2・s、Z3=3.56x107kg/m2・s、Z4=2.84x107kg/m2・s)を用いて計算すると、反射率r23は正の符号であるが、反射率r34は負の符号であり、位相が反転していることが分かる。つまり各層の厚みが小さく、多重反射が明確に除去できない場合も、反射波の位相を調べることで反射波13と反射波15とを区別することが可能となる。 Typical numerical values of acoustic impedance of each layer (Z 1 = 4x10 7 kg / m 2 · s, Z 2 = 7.42 x 10 6 kg / m 2 · s, Z 3 = 3.56 x 10 7 kg / m 2 · s, Z 4 = 2.84 × 10 7 kg / m 2 · s), the reflectivity r 23 has a positive sign, but the reflectivity r 34 has a negative sign, and the phase is inverted. That is, even when the thickness of each layer is small and multiple reflection cannot be clearly removed, the reflected wave 13 and the reflected wave 15 can be distinguished by examining the phase of the reflected wave.

また、厚みの薄いモールドパウダー層5を測定することも考慮して、モールドパウダー層5の厚みよりも十分に小さい波長の高周波を用い、得られる信号に対して、周波数解析などの信号処理を加え、モールドパウダー層5の厚みと凝固シェル3の厚みを求めることもできる。尚、本発明においては、伝播時間を計測し、計測した伝播時間と各層の音速とから各層の厚みを求めるので、各層の音速をオフラインで予め調査し把握しておく必要がある。従って、使用するモールドパウダー4の種類を変える場合には、その音速を事前に調べておく必要がある。   In consideration of measuring the thin mold powder layer 5, a high frequency wave having a wavelength sufficiently smaller than the thickness of the mold powder layer 5 is used, and signal processing such as frequency analysis is added to the obtained signal. The thickness of the mold powder layer 5 and the thickness of the solidified shell 3 can also be obtained. In the present invention, since the propagation time is measured and the thickness of each layer is obtained from the measured propagation time and the sound speed of each layer, it is necessary to investigate and grasp the sound speed of each layer in advance offline. Therefore, when changing the type of mold powder 4 to be used, it is necessary to check the sound speed in advance.

このように、本発明によれば、連続鋳造において、鋳型1内の凝固シェル3の厚みと、鋳型1と凝固シェル3との間に流入するモールドパウダー4の流入厚みとが、リアルタイムで且つ精度良く計測可能となり、連続鋳造時の鋳型内における凝固・冷却状態をリアルタイムで把握することが可能となり、ブレークアウトや鋳片の縦割れなどの操業異常及び品質異常を未然に防止することが可能となる。   Thus, according to the present invention, in continuous casting, the thickness of the solidified shell 3 in the mold 1 and the inflow thickness of the mold powder 4 flowing between the mold 1 and the solidified shell 3 are real-time and accurate. It is possible to measure well, it is possible to grasp in real time the solidification and cooling state in the mold during continuous casting, and it is possible to prevent operational abnormalities and quality abnormalities such as breakout and vertical cracking of the slab. Become.

また、計測されたモールドパウダー層5の厚み及び凝固シェル3の厚みを操業条件にフィードバックすることで、常に最適な条件で連続鋳造することができる。例えば、超音波送受信処理装置9で得たモールドパウダー層5の厚み及び凝固シェル3の厚みのデータを鋳造制御装置(図示せず)に入力し、得られたデータと予め設定した閾値とを対比して所定のアクションを決定し、決定したアクションを、鋳片引き抜き速度制御装置、二次冷却制御装置、鋳型振動制御装置、鋳型冷却水制御装置などに入力して鋳造条件を変更することで、最適な鋳造条件を維持することが可能となる。表1に具体的なアクションの例を示す。例えば、モールドパウダー層5の厚みの閾値を0.1mmとし、モールドパウダー層5の厚みが0.1mm以下になったなら、表1に示すアクションを採るなどすればよい。   In addition, by continuously feeding the measured thickness of the mold powder layer 5 and the thickness of the solidified shell 3 to the operating conditions, continuous casting can always be performed under optimum conditions. For example, the data of the thickness of the mold powder layer 5 and the thickness of the solidified shell 3 obtained by the ultrasonic transmission / reception processing device 9 are input to a casting control device (not shown), and the obtained data is compared with a preset threshold value. By determining the predetermined action and inputting the determined action into the slab drawing speed control device, the secondary cooling control device, the mold vibration control device, the mold cooling water control device, etc., and changing the casting conditions, It is possible to maintain optimum casting conditions. Table 1 shows examples of specific actions. For example, when the threshold value of the thickness of the mold powder layer 5 is 0.1 mm and the thickness of the mold powder layer 5 is 0.1 mm or less, the action shown in Table 1 may be taken.

Figure 2005262283
Figure 2005262283

尚、上記の説明では1つの超音波探触子7が送信及び受信を行う方法であったが、目標物以外からの多重反射を防ぐ目的で、送信専用の超音波探触子と受信専用の超音波探触子とを設け、これらを上下もしくは左右に離して設置する2音波探触子法を用いてもよい。また、送信波形を或るパターンで送信し、受信波形とパターン波形との相関をとることにより、ノイズの影響を受けにくくしてもよい。更に、フォーカシングをダイナミックに行い、フォーカス深さを変えながら各境界面を計測する方法も適用可能である。更にまた、溶鋼の連続鋳造以外の他の金属の連続鋳造にも適用することができる。   In the above description, the method is such that one ultrasonic probe 7 performs transmission and reception. However, for the purpose of preventing multiple reflections from other than the target, the transmission-only ultrasonic probe and the reception-dedicated probe are used. A two-sonic probe method may be used in which an ultrasonic probe is provided and these are set apart vertically or horizontally. Further, the transmission waveform may be transmitted in a certain pattern, and the correlation between the reception waveform and the pattern waveform may be taken to make it less susceptible to noise. Further, a method of dynamically performing focusing and measuring each boundary surface while changing the focus depth is also applicable. Furthermore, the present invention can also be applied to continuous casting of other metals other than continuous casting of molten steel.

図1に示す連続鋳造用鋳型を用い、低炭素アルミキルド鋼を1.5m/分の引き抜き速度で連続鋳造する際に本発明を実施した。鋳型に、直径が6mm、帯域が5MHzの超音波探触子7を、鋳型の内面までの距離が15mmの位置に埋設した。設置位置の鋳型高さ方向位置は、溶鋼湯面6の近傍(溶鋼湯面の直下20mmを目標)となるようにし、本実施例では、鋳型の上面から100mmの位置とした。そして、超音波送受信処理装置9によって、図5に示すようなサイン波(ガウシアン分布)に調整された超音波を、超音波探触子7から送信した。   The present invention was implemented when continuously casting low carbon aluminum killed steel at a drawing speed of 1.5 m / min using the continuous casting mold shown in FIG. An ultrasonic probe 7 having a diameter of 6 mm and a band of 5 MHz was embedded in the mold at a position where the distance to the inner surface of the mold was 15 mm. The position in the mold height direction at the installation position is set to be in the vicinity of the molten steel surface 6 (target is 20 mm directly below the molten steel surface), and in this embodiment, the position is 100 mm from the upper surface of the mold. Then, ultrasonic waves adjusted to a sine wave (Gaussian distribution) as shown in FIG. 5 were transmitted from the ultrasonic probe 7 by the ultrasonic transmission / reception processing device 9.

反射波として観測された波形を図6に示す。図6に示すように、超音波の送信時を0秒として、鋳型とモールドパウダー層との境界面17からの反射波20が先ず観測された。超音波探触子から境界面17までの距離が15mmであるので、伝播時間は6.7マイクロ秒(μs)であった(鋳型銅板における音速:4500m/秒)。次に観測されたのは、モールドパウダー層と凝固シェルとの境界面18からの反射波21であり、反射波20よりも360ナノ秒(ns)遅れていることから、モールドパウダー層の厚みが約0.5mm(モールドパウダー層における音速:2750m/秒)であることが分かった。   A waveform observed as a reflected wave is shown in FIG. As shown in FIG. 6, the reflected wave 20 from the boundary surface 17 between the mold and the mold powder layer was first observed with the transmission time of the ultrasonic wave set to 0 second. Since the distance from the ultrasonic probe to the boundary surface 17 was 15 mm, the propagation time was 6.7 microseconds (μs) (sound speed on the mold copper plate: 4500 m / second). Next, what was observed was a reflected wave 21 from the boundary surface 18 between the mold powder layer and the solidified shell, which was 360 nanoseconds (ns) behind the reflected wave 20, so that the thickness of the mold powder layer was It was found to be about 0.5 mm (sound velocity in the mold powder layer: 2750 m / sec).

反射波22,23,24は反射波21の多重反射波であり、凝固シェルと溶鋼との境界面19からの反射波25が、反射波24の直前に確認できた。この遅れは反射波21よりも840ナノ秒遅れており、凝固シェルの厚みが2mm(凝固シェルにおける音速:4750m/秒)であることが分かった。尚、使用している音速は各層の平均値である。   The reflected waves 22, 23, and 24 are multiple reflected waves of the reflected wave 21, and the reflected wave 25 from the boundary surface 19 between the solidified shell and the molten steel was confirmed immediately before the reflected wave 24. This delay was 840 nanoseconds behind the reflected wave 21, and the thickness of the solidified shell was found to be 2 mm (sound velocity in the solidified shell: 4750 m / second). The sound speed used is the average value of each layer.

モールドパウダー層5と凝固シェル3との厚みの関係によっては、反射波25が、反射波21の多重反射に隠れてしまい、凝固シェルの不感帯が生じてしまうが、多重反射により反射波23,24の振幅は大幅に減衰していることと、反射波25は反射波21と位相が反転していることとを利用して、反射波22,23,24と反射波25とを容易に判別することができた。更に、多重反射波は繰り返して生じるため、反射波20に基づく計算から、多重反射波の減衰量や観測位置が予測できるので、その計算値を参考にして除去するなどの信号処理により、反射波25を観測することも可能である。   Depending on the thickness relationship between the mold powder layer 5 and the solidified shell 3, the reflected wave 25 is hidden by the multiple reflection of the reflected wave 21 and a dead zone of the solidified shell is generated. However, the reflected waves 23 and 24 are caused by the multiple reflection. The reflected waves 25, 23, and 24 are easily discriminated from the reflected waves 25 using the fact that the amplitude of the reflected wave 25 is greatly attenuated and the reflected wave 25 is inverted in phase from the reflected wave 21. I was able to. Further, since multiple reflected waves are generated repeatedly, the attenuation amount and observation position of the multiple reflected waves can be predicted from the calculation based on the reflected wave 20, so that the reflected wave is obtained by signal processing such as removal with reference to the calculated values. It is also possible to observe 25.

各層での減衰が大きい場合には、周波数を下げることを余儀なくされた。例えば帯域2.5MHzの超音波探触子を使用した場合、図6に示すような反射波の波形が得られず、図7に示すような判別困難な波形になることもあった。本発明の方法では、この様な場合にも周波数解析により厚みの測定が可能である。   When the attenuation in each layer was large, it was forced to lower the frequency. For example, when an ultrasonic probe having a bandwidth of 2.5 MHz is used, the waveform of the reflected wave as shown in FIG. 6 cannot be obtained, and the waveform as shown in FIG. In the method of the present invention, even in such a case, the thickness can be measured by frequency analysis.

図7の反射波26〜反射波30はモールドパウダー層内の多重反射であるが、それぞれの位置の確定ができず、このままでは反射時間による厚み計算が困難である。しかし、この信号を周波数解析することにより、図8に示すような周波数分布が得られ、約2.8MHzにピークが有ることが分かった。従って、音速とピーク周波数とから、モールドパウダー層の厚みは0.5mmと計算された。また、2.8MHzの波を選択的に除去すると、反射波31が強調され、図9に示すように、反射波32としてその位置を特定できるようになり、凝固シェルの厚みも求めることができた。   The reflected wave 26 to reflected wave 30 in FIG. 7 are multiple reflections in the mold powder layer. However, the respective positions cannot be determined, and it is difficult to calculate the thickness based on the reflection time. However, by analyzing the frequency of this signal, a frequency distribution as shown in FIG. 8 was obtained, and it was found that there was a peak at about 2.8 MHz. Therefore, the thickness of the mold powder layer was calculated to be 0.5 mm from the sound speed and the peak frequency. Further, when the 2.8 MHz wave is selectively removed, the reflected wave 31 is emphasized, and the position can be specified as the reflected wave 32 as shown in FIG. 9, and the thickness of the solidified shell can be obtained. It was.

本発明の実施の形態例を示す図であって、本発明を実施した連続鋳造用鋳型部の概略断面図である。It is a figure which shows the example of embodiment of this invention, Comprising: It is a schematic sectional drawing of the casting_mold | template part for continuous casting which implemented this invention. 本発明の実施の形態例を示す図であって、鋳型の上面から超音波探触子を埋め込んだ例を示す図である。It is a figure which shows the example of embodiment of this invention, Comprising: It is a figure which shows the example which embedded the ultrasonic probe from the upper surface of the casting_mold | template. 本発明の実施の形態例を示す図であって、鋳型の横方向に多チャンネルの超音波探触子を配置した例を示す図である。It is a figure which shows the example of embodiment of this invention, Comprising: It is a figure which shows the example which has arrange | positioned the multichannel ultrasonic probe in the horizontal direction of a casting_mold | template. 本発明の実施の形態例を示す図であって、超音波探触子から発振された超音波の伝播の様子を示す概略図である。It is a figure which shows the example of embodiment of this invention, Comprising: It is the schematic which shows the mode of the propagation of the ultrasonic wave oscillated from the ultrasonic probe. 実施例1において送信波として使用したサイン波を示す図である。It is a figure which shows the sine wave used as a transmission wave in Example 1. FIG. 実施例1において反射波として観測された波形を示す図である。It is a figure which shows the waveform observed as a reflected wave in Example 1. FIG. 実施例1において反射波として観測された波形の他の例を示す図である。6 is a diagram illustrating another example of a waveform observed as a reflected wave in Example 1. FIG. 図7の信号を周波数解析して得た周波数分布を示す図である。It is a figure which shows the frequency distribution obtained by frequency-analyzing the signal of FIG. 図7の信号から2.8MHzの波を選択的に除去したときに得られる波形の例を示す図である。It is a figure which shows the example of the waveform obtained when the wave of 2.8 MHz is selectively removed from the signal of FIG.

符号の説明Explanation of symbols

1 鋳型
2 溶鋼
3 凝固シェル
4 モールドパウダー
5 モールドパウダー層
6 溶鋼湯面
7 超音波探触子
8 設置孔
9 超音波送受信処理装置
10 超音波
11 反射波
12 透過波
13 反射波
14 透過波
15 反射波
16 透過波
17 境界面
18 境界面
19 境界面
DESCRIPTION OF SYMBOLS 1 Mold 2 Molten steel 3 Solidified shell 4 Mold powder 5 Mold powder layer 6 Molten steel surface 7 Ultrasonic probe 8 Installation hole 9 Ultrasonic transmission / reception processing apparatus 10 Ultrasonic 11 Reflected wave 12 Transmitted wave 13 Reflected wave 14 Transmitted wave 15 Reflected Wave 16 Transmitted wave 17 Boundary surface 18 Boundary surface 19 Boundary surface

Claims (3)

連続鋳造用鋳型に超音波発信器を設置し、当該超音波発信器から発信された超音波の、鋳型とモールドパウダー層との境界からの反射波、モールドパウダー層と凝固シェルとの境界からの反射波及び凝固シェルと溶鋼との境界からの反射波のそれぞれの伝播時間を計測し、計測した伝播時間に基づいてモールドパウダーの流入厚み及び凝固シェルの厚みを求めることを特徴とする、連続鋳造における鋳型内の凝固状態検知方法。   An ultrasonic transmitter is installed in a continuous casting mold, and the ultrasonic wave transmitted from the ultrasonic transmitter is reflected from the boundary between the mold and the mold powder layer, from the boundary between the mold powder layer and the solidified shell. Continuous casting characterized by measuring the propagation time of each reflected wave and the reflected wave from the boundary between the solidified shell and molten steel, and determining the inflow thickness of the mold powder and the thickness of the solidified shell based on the measured propagation time Method for detecting solidification state in mold in モールドパウダー層と凝固シェルとの境界からの反射波と、凝固シェルと溶鋼との境界からの反射波とでは、反射波の位相が異なることを利用してそれぞれの反射波を特定することを特徴とする、請求項1に記載の連続鋳造における鋳型内の凝固状態検知方法。   The reflected wave from the boundary between the mold powder layer and the solidified shell and the reflected wave from the boundary between the solidified shell and the molten steel are identified by utilizing the difference in the phase of the reflected wave. The solidification state detection method in the casting_mold | template in the continuous casting of Claim 1. モールドパウダーの流入厚みよりも十分に小さい波長の超音波を用い、モールドパウダー層内で発生する多重反射波の信号を周波数解析することによってモールドパウダーの流入厚みを求め、且つ、計測信号から多重反射波の成分を除去することによって凝固シェルと溶鋼との境界からの反射波を特定することを特徴とする、請求項1または請求項2に記載の連続鋳造における鋳型内の凝固状態検知方法。   Using ultrasonic waves with a wavelength sufficiently smaller than the inflow thickness of the mold powder, the inflow thickness of the mold powder is obtained by frequency analysis of the multiple reflected wave signal generated in the mold powder layer, and the multiple reflection from the measurement signal The method for detecting a solidification state in a mold in continuous casting according to claim 1 or 2, wherein a reflected wave from a boundary between the solidified shell and the molten steel is specified by removing a wave component.
JP2004079690A 2004-03-19 2004-03-19 Method for detecting solidifying condition in mold during continuous casting Pending JP2005262283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079690A JP2005262283A (en) 2004-03-19 2004-03-19 Method for detecting solidifying condition in mold during continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079690A JP2005262283A (en) 2004-03-19 2004-03-19 Method for detecting solidifying condition in mold during continuous casting

Publications (1)

Publication Number Publication Date
JP2005262283A true JP2005262283A (en) 2005-09-29

Family

ID=35087361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079690A Pending JP2005262283A (en) 2004-03-19 2004-03-19 Method for detecting solidifying condition in mold during continuous casting

Country Status (1)

Country Link
JP (1) JP2005262283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237290A (en) * 2006-03-13 2007-09-20 Nippon Steel Corp Method for setting cooling facility
WO2019103234A1 (en) * 2017-11-22 2019-05-31 주식회사 포스코 Flow measurement device and flow measurement method
CN110280745A (en) * 2019-07-30 2019-09-27 中南大学 A kind of multi-source ultrasound supervision method controlling 1 meter level of diameter, 2219 aluminum alloy round ingot component segregation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237290A (en) * 2006-03-13 2007-09-20 Nippon Steel Corp Method for setting cooling facility
JP4658833B2 (en) * 2006-03-13 2011-03-23 新日本製鐵株式会社 How to install cooling equipment
WO2019103234A1 (en) * 2017-11-22 2019-05-31 주식회사 포스코 Flow measurement device and flow measurement method
CN110280745A (en) * 2019-07-30 2019-09-27 中南大学 A kind of multi-source ultrasound supervision method controlling 1 meter level of diameter, 2219 aluminum alloy round ingot component segregation

Similar Documents

Publication Publication Date Title
WO2010106633A1 (en) Temperature measuring method and device for continuous-casting mold copper plate
JP5812113B2 (en) Method for estimating solidification completion state of slab in continuous casting, and continuous casting method
JP2015522428A (en) Slab quality prediction apparatus and method
WO2000051762A1 (en) Method and device for predication and control of molten steel flow pattern in continuous casting
JP5092631B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP2005262283A (en) Method for detecting solidifying condition in mold during continuous casting
JP3230513B2 (en) Method of estimating molten steel flow velocity in continuous casting mold, quality control method in continuous casting of steel, and continuous casting method of steel
JP2009125770A (en) Method for producing continuously cast slab and continuous caster
JP5104247B2 (en) Manufacturing method of continuous cast slab
WO2013002220A1 (en) Method for measuring melt layer thickness of mold powder for continuous casting
KR101981459B1 (en) Flow measuring Apparatus and Method
JP5029954B2 (en) Method and apparatus for measuring temperature of continuous casting mold copper plate
JP3757830B2 (en) Manufacturing method of continuous cast slab
JP4745929B2 (en) Method for suppressing solidification delay in continuous casting.
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JP5804384B2 (en) Method and apparatus for measuring temperature of continuous casting mold copper plate
JP5226548B2 (en) Continuous casting method of medium carbon steel with changing casting speed and level
JP2005205462A (en) Method for preventing longitudinal crack on continuously cast piece
JP4296946B2 (en) Method and device for detecting solidification completion position of continuous cast slab
JP2008221287A (en) Method for controlling fluidization of molten steel in die, and method for judging surface quality of continuously cast slab
JPH04284956A (en) Method for continuously casting steel
KR20090071221A (en) Apparatus and method for predicting clogging of submerged nozzle
KR101937805B1 (en) Apparatus for detecting solidification of steel and method for the same
KR20050065203A (en) Apparatus for inspecting the flow of molten steel in the mold of continuous casting
JP2010172930A5 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921