JPH0789058B2 - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPH0789058B2
JPH0789058B2 JP61136763A JP13676386A JPH0789058B2 JP H0789058 B2 JPH0789058 B2 JP H0789058B2 JP 61136763 A JP61136763 A JP 61136763A JP 13676386 A JP13676386 A JP 13676386A JP H0789058 B2 JPH0789058 B2 JP H0789058B2
Authority
JP
Japan
Prior art keywords
light
optical
image
distance
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61136763A
Other languages
Japanese (ja)
Other versions
JPS62291511A (en
Inventor
誠宏 反町
茂 山田
康朗 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61136763A priority Critical patent/JPH0789058B2/en
Priority to FR868617220A priority patent/FR2591329B1/en
Priority to DE19863642051 priority patent/DE3642051A1/en
Publication of JPS62291511A publication Critical patent/JPS62291511A/en
Priority to US07/289,456 priority patent/US4867570A/en
Publication of JPH0789058B2 publication Critical patent/JPH0789058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明は距離測定装置に関し、特にアクテイブ方式によ
り対象物の任意の位置までの距離が測定出来、対象物の
3次元形状の測定等にも適用可能な距離測定装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to a distance measuring device, and in particular, can measure a distance to an arbitrary position of an object by an active method, and can also be applied to measurement of a three-dimensional shape of the object. The present invention relates to a distance measuring device.

〈従来技術〉 従来より、画像センサなどを用いて距離情報や3次元形
状に関する情報を取得する方法として、光切断法(スリ
ツト法)、ステレオ法などが知られている。
<Prior Art> Conventionally, as a method of acquiring distance information and information about a three-dimensional shape using an image sensor or the like, a light cutting method (slit method), a stereo method, and the like are known.

光切断法は、対象物表面にスリツト光を投射し、対象物
面上の投射線を投射方向と別の方向から観測し、対象物
の断面形状、距離などの情報を得るものである。この方
法では、撮像側は固定され、スリツト投射方向を少しず
つ換えながら複数枚の画像スリツト1本ごとに撮像して
3次元情報を取得する。
The light-section method is to obtain slit light on the surface of an object, observe a projection line on the surface of the object from a direction different from the projection direction, and obtain information such as the cross-sectional shape and distance of the object. In this method, the imaging side is fixed, and the three-dimensional information is acquired by changing the slit projection direction little by little and capturing an image for each of a plurality of image slits.

また、出願人が提案した特願昭59-44920号などにおける
ステレオ法は、像倍率の等しい光学系と組み合わされた
2次元の撮像素子を所定基線長だけ離して配置し、異な
る方向からみた2次元画像を得、2枚の画情報のずれか
ら対象物の各位置の高さ(撮像系までの距離)を算出す
るものである。
The stereo method in Japanese Patent Application No. 59-44920 proposed by the applicant is such that two-dimensional image pickup elements combined with an optical system having the same image magnification are arranged apart from each other by a predetermined base line length and viewed from different directions. A three-dimensional image is obtained, and the height of each position of the object (distance to the image pickup system) is calculated from the deviation of the image information of the two images.

ところが、光切断法では、撮像時のスリツト投射方向の
制御が面倒で、撮像に時間がかかる問題がある。また、
複数枚のスリツト画像から3次元情報を得るため、処理
する情報量が多く、最終的な情報取得までに多大な時間
を要する欠点があった。
However, the optical cutting method has a problem that the control of the slit projection direction at the time of image capturing is troublesome and the image capturing takes time. Also,
Since three-dimensional information is obtained from a plurality of slit images, the amount of information to be processed is large, and it takes a long time to obtain the final information.

また、ステレオ法ではスリツト走査などの制御は必要な
いが、一般的に従来方式はパツシブ方式であるため、対
象物表面が滑らかで、一様な輝度を有している場合には
2つの撮像素子で得られる像のコントラストが低下し、
2枚の画像を比較による距離測定が不可能になる問題が
ある。このような測定が不可能になってしまうケースは
像倍率が大きくなる近距離において出現頻度が多く、し
たがって、対象物の形状、色、サイズ、距離などが限定
されてしまうという欠点を有していた。
Further, the stereo method does not require control such as slit scanning, but since the conventional method is generally the passive method, two image pickup elements are used when the object surface is smooth and has uniform brightness. The contrast of the image obtained with
There is a problem that distance measurement cannot be performed by comparing two images. The case where such measurement becomes impossible has a drawback that the appearance frequency is high at a short distance where the image magnification becomes large, and thus the shape, color, size, distance, etc. of the object are limited. It was

〈発明の概要〉 本発明の目的は、上記従来の問題点に鑑み、対象物の種
類によらず常に精度良い測定を比較的短時間で行ない得
る距離測定装置を提供することにある。
<Summary of the Invention> An object of the present invention is to provide a distance measuring device capable of always performing accurate measurement in a relatively short time regardless of the type of the object in view of the above-mentioned conventional problems.

上記目的を達成する為に、本発明に係る距離測定装置
は、光軸を平行に、かつ基線距離隔てて配置された複数
の光学系と、前記光学系の一つを通して複数のパターン
光束を対象物に照射する光源手段と、対象物上の前記パ
ターン光束による像を前記と異なる光学系を通して受像
する二次元画像センサとを設け、この二次元画像センサ
により検出された前記対象物上のパターン光束による光
像の位置から、対象物の所定の位置までの距離を測定す
る装置であって、前記光源手段から出射するパターン光
束による光像の移動方向と前記二次元画像センサの走査
線方向とが一致すると共に、該走査線方向に前記パター
ン光束による光像が複数配列される様に構成したことを
特徴としている。
In order to achieve the above object, a distance measuring device according to the present invention targets a plurality of optical fluxes arranged parallel to an optical axis and spaced from each other by a baseline distance, and a plurality of patterned light fluxes through one of the optical systems. A light source means for irradiating an object and a two-dimensional image sensor for receiving an image of the pattern light beam on the object through an optical system different from the above are provided, and the pattern light beam on the object detected by the two-dimensional image sensor. Is a device for measuring the distance from the position of the optical image to a predetermined position of the object, wherein the moving direction of the optical image by the pattern light flux emitted from the light source means and the scanning line direction of the two-dimensional image sensor are It is characterized in that a plurality of light images formed by the pattern light fluxes are aligned in the scanning line direction while matching.

尚、本発明の更なる特徴は以下に示す実施例に載されて
いる。
Further features of the present invention will be described in the following embodiments.

〈実施例〉 第1図は本発明に係る距離測定装置の一実施例を示す光
学系概略図である。図中、1及び2は基線距離隔てて配
されたレンズで、互いの光軸は平行であり且つ又夫々の
レンズ1,2の物体側主平面は同一平面上に存している。
又、本実施例に於てはレンズ1,2は互いに焦点距離が等
しいものを使用している。3は発光ダイオード,レーザ
ダイオード等の複数の小型発光源31,32・・・・3nを基
板上に配置した光源装置、4はCCD等から成る画像セン
サ、5は測距の対象物、6はパターン投射用のマスク
で、遮光性部材に複数の透光部61,62,・・・・6nから
なる開口パターンが設けてあり、レンズ1の焦点近傍に
配置されている。
<Example> FIG. 1 is a schematic view of an optical system showing an example of a distance measuring apparatus according to the present invention. In the figure, 1 and 2 are lenses arranged at a distance of a base line, their optical axes are parallel to each other, and the object-side main planes of the lenses 1 and 2 are on the same plane.
In this embodiment, the lenses 1 and 2 have the same focal length. 3 is a light source device in which a plurality of small light emitting sources 3 1 , 3 2, ... 3 n such as light emitting diodes and laser diodes are arranged on a substrate, 4 is an image sensor including a CCD, and 5 is an object for distance measurement , 6 are masks for pattern projection, which are provided in the light-shielding member with an opening pattern consisting of a plurality of light-transmitting parts 6 1 , 6 2 , ..., 6 n, and are arranged near the focal point of the lens 1. .

第1図において、P1,P2は被写体の異なる位置をそれぞ
れ示しており、レンズ1,2の被写界深度はこれらの2つ
の位置を充分カバーできる深さを有するものとする。
In FIG. 1, P 1 and P 2 respectively indicate different positions of the subject, and the depth of field of the lenses 1 and 2 is assumed to have a depth sufficient to cover these two positions.

第2図はマスク6の開口パターンの一例を示したもの
で、前述したように、マスク6には細い長方形のスリツ
ト状の透光部6nが複数個配列されている。図において、
透光部6nはその横方向の中心を細線AXで示すように、水
平方向に疎、垂直方向に比較的密な配列パターンとなっ
ており、結果として斜め方向に延びるスリツト列を形成
している。透光部6nの密度、配列は必要な測定精度、使
用する画像センサの縦横の解像力に応じて定めればよい
ので、上記のような構成に限定されるものではなく、種
々のパターンを使用可能である。マスク6の透光部6n
水平方向の密度を第2図のように比較的低くしたのは、
後述のように対象物5の距離により画像センサ4上での
光像の位置が水平方向に移動するため、検出を行なえる
距離範囲を大きくとるためである。
FIG. 2 shows an example of the opening pattern of the mask 6. As described above, a plurality of thin rectangular slit-shaped light transmitting portions 6 n are arranged on the mask 6. In the figure,
The light-transmitting portion 6 n has an arrangement pattern in which the horizontal center thereof is sparse in the horizontal direction and relatively dense in the vertical direction, as shown by the thin line AX, and as a result, slit rows extending in the diagonal direction are formed. There is. The density and arrangement of the light-transmitting portions 6 n may be determined according to the required measurement accuracy and the vertical and horizontal resolution of the image sensor used, and thus the present invention is not limited to the above-described configuration, and various patterns are used. It is possible. The light-transmitting portion 6 n of the mask 6 has a relatively low horizontal density as shown in FIG.
This is because the position of the optical image on the image sensor 4 moves in the horizontal direction depending on the distance of the object 5 as will be described later, so that the distance range in which detection can be performed is widened.

第1図、第2図の構成において、光源装置3で照明さ
れ、透光部61を通過した光束はレンズ1を通って、対象
物5の位置に応じてそれぞれ対象物5上の符号P1,P2
示す位置に光像を結ぶ。そしてP1,P2上の光像F1,F2
それぞれレンズ2を通って画像センサ4上の位置D1,D2
に光像を結ぶ。
Figure 1, in the configuration of FIG. 2, is illuminated by the light source device 3, the light flux having passed through the transparent portion 61 passes through the lens 1, reference symbol P on each object 5 in accordance with the position of the object 5 Form an optical image at the positions shown in 1 and P 2 . Then P 1, P 2 on the optical image F 1, F 2 position on the image sensor 4, respectively through the lens 2 is D 1, D 2
Connect the light image to.

ステレオ法の原理から分るように、光像Dnの位置は反射
点の距離、すなわち対象物5の位置P1,P2の距離によ
り、レンズ1,2の配置方向に平行な直線上(基線方向)
を移動することになる。したがって、対象物5表面の測
定装置からの距離分布を光像Dnの水平方向の密度の分布
として検出することが可能となる。すなわち、画像セン
サ4の出力波形をコンピユータシステムなどを用いた画
像処理装置により観測することにより対象物5の表面の
光像位置(光束投射点)までの距離を3角測量の原理に
より容易に求めることができる。
As can be seen from the principle of the stereo method, the position of the optical image D n depends on the distance of the reflection point, that is, the distance between the positions P 1 and P 2 of the object 5 on a straight line parallel to the arrangement direction of the lenses 1 and 2 ( Baseline direction)
Will be moved. Therefore, the distance distribution of the surface of the object 5 from the measuring device can be detected as the distribution of the horizontal density of the optical image D n . That is, by observing the output waveform of the image sensor 4 with an image processing device using a computer system or the like, the distance to the light image position (beam projection point) on the surface of the object 5 is easily obtained by the principle of triangulation. be able to.

さて、本実施例に於ては測距可能な距離範囲を拡げる為
に、レンズ1,2の被写界深度を大きくするだけでなく、
対象物5に照射するパターン光束に工夫を施している。
即ち、第1図に於て、マスク6の透光部61,62・・・・
6nは点光源と見なすことが出来、通常の照明法によりマ
スク6の開口パターンを照明する際、夫々の透光部61
62・・・・6nから出射した光は拡散し、レンズ1の瞳全
体を通過してレンズ1を介して対象物5に指向される。
この様な方法で対象物5にパターン光束を照射すると、
たとえレンズ1に被写界深度の大きいものを使用したと
しても得られる測距範囲には限界があり、画像センサ4
上には開口パターンの光像のぼけた像が結像されること
になって、光像位置の検出を困難にする。
Now, in this embodiment, in order to expand the distance range in which distance measurement is possible, not only the depth of field of the lenses 1 and 2 is increased,
The pattern light flux with which the object 5 is irradiated is devised.
That is, in FIG. 1 , the translucent portions 6 1 , 6 2 ...
6 n can be regarded as a point light source, and when illuminating the opening pattern of the mask 6 by a normal illumination method, each of the translucent parts 6 1 ,
The light emitted from 6 2 ... 6 n is diffused, passes through the entire pupil of the lens 1 and is directed to the object 5 via the lens 1.
When the object 5 is irradiated with the pattern light flux by such a method,
Even if a lens with a large depth of field is used for the lens 1, there is a limit to the range that can be obtained, and the image sensor 4
A blurred image of the optical image of the aperture pattern is formed on the top, which makes it difficult to detect the optical image position.

しかしながら、本実施例では光源装置3をマスク6から
離れた位置に配し、光源装置3上に存する小型発光源
31,32・・・・3nから出射する光が、夫々対応する単一
の透光部61,62・・・・6nを通過し瞳に入射する様に構
成しており、この様に構成することにより、マスク6を
介して得られる複数のパターン光束の夫々はレンズ1の
瞳径と比較して小さな光束径を有し、従って、図示する
様に極めて細い光ビームが対象物5に指向される為に、
対象物5が合焦点位置から大きく離れた位置にあっても
画像センサ4上の光像のぼけを小さく抑えることが出来
た。又、本実施例に於ては各小型発光源31,32・・・・
3nと対応する夫々の透光部61,62・・・・6nとを結ぶ線
がレンズ1の中心付近を通過する様に構成し、各透光部
61,62・・・・6nへ入射する対応する小型発光源以外か
らの光はレンズ1の瞳に入射しない様になっている。
尚、必要に応じてマスク6の厚さを厚くしたり、各透光
部61,62・・・・6nの間に遮光枠を設けたりして、各小
型発光源と透光部が確実に1:1に対応する様に構成して
も良い。
However, in the present embodiment, the light source device 3 is arranged at a position away from the mask 6, and the small light source existing on the light source device 3 is arranged.
The light emitted from 3 1 , 3 2 ... 3 n passes through the corresponding single light-transmitting part 6 1 , 6 2 ... 6 n and enters the pupil. With such a configuration, each of the plurality of pattern light fluxes obtained through the mask 6 has a light flux diameter smaller than the pupil diameter of the lens 1, and therefore an extremely thin light beam is generated as shown in the figure. In order to be directed to the object 5,
Even if the object 5 is located far away from the in-focus position, the blur of the optical image on the image sensor 4 can be suppressed to a small level. Further, in this embodiment, each small light emitting source 3 1 , 3 2 ...
Each of the translucent parts is configured so that the line connecting 3 n and the corresponding translucent part 6 1 , 6 2 ... 6 n passes near the center of the lens 1.
Light from sources other than the corresponding small-sized light sources that enter 6 1 , 6 2, ..., 6 n does not enter the pupil of the lens 1.
Incidentally, or by increasing the thickness of the mask 6 If necessary, or providing a light shielding frame between each transparent portion 6 1, 6 2 · · · · 6 n, each small light emitting source and the light transmitting portion May be configured so as to surely correspond to 1: 1.

又、本実施例では対象物5が近距離に存在していても、
測定範囲内に対象物5が位置する場合は、対象物5上に
光源像が合焦状態で結像されることがない様に各要素を
配置しており、測定範囲内であれば常に精度良い距離測
定が可能である。
Further, in the present embodiment, even if the object 5 is present at a short distance,
When the object 5 is located within the measurement range, each element is arranged so that the light source image is not focused on the object 5 and the accuracy is always maintained within the measurement range. Good distance measurement is possible.

第3図は画像センサ4としてTVカメラ用の2次元CDDセ
ンサを用いた場合の1本の走査線(第2図の細線AXに対
応)の出力波形Oを示したものである。ここでは図の左
右方向を画像センサ4の水平方向の距離に対応させてあ
る。上記から明らかなように、この走査線と同一直線上
にあるマスク板6の透光部6nに対応して出力値が極大値
Mを示す。1つの透光部6nに対応して出現する出力波形
の極大値の左右位置はその位置が限定されており、他の
透光部による極大値出現範囲と分離されているので、透
光部6nとその窓を通過した光束の画像センサ4への入射
位置は容易に対応づけることができる。したがって、従
来のステレオ法におけるように近距離におけるコントラ
スト低下による測定不能などの不都合を生じることな
く、確実に対象物6の任意の位置までの距離や3次元情
報を取得することができる。また、従来のステレオ方式
と異なり、光源を用いて照明を行なうアクテイブ方式を
採用しているので、近距離の対象物の測定では光源の光
量が小さくて済む利点がある。また、画像センサ出力の
極大値の大きさから、対象物の光像位置の傾斜角を推定
することも可能である。
FIG. 3 shows an output waveform O of one scanning line (corresponding to the thin line AX in FIG. 2) when a two-dimensional CDD sensor for a TV camera is used as the image sensor 4. Here, the horizontal direction of the figure corresponds to the horizontal distance of the image sensor 4. As is clear from the above, the output value shows the maximum value M corresponding to the light transmitting portion 6 n of the mask plate 6 which is on the same straight line as this scanning line. The left and right positions of the maximum value of the output waveform appearing corresponding to one light-transmitting part 6 n are limited in position, and are separated from the maximum value appearance range by other light-transmitting parts. 6 n and the incident position of the light flux passing through the window on the image sensor 4 can be easily associated with each other. Therefore, unlike the conventional stereo method, the distance to the arbitrary position of the target object 6 and the three-dimensional information can be reliably acquired without causing the inconvenience such as the inability to measure due to the contrast reduction at a short distance. Further, unlike the conventional stereo system, the active system in which the light source is used to illuminate is employed, so that there is an advantage that the light amount of the light source can be small when measuring an object at a short distance. It is also possible to estimate the tilt angle of the optical image position of the object from the maximum value of the image sensor output.

以上のようにして、対象物5表面の測定系からの距離を
2次元の画像センサ4を介して測定することができる。
以上の構成によれば、光切断法のように機械的な走査を
行なう必要なく、対象物5全面の3次元情報を1回の画
像読み取りで抽出することができる。
As described above, the distance of the surface of the object 5 from the measurement system can be measured via the two-dimensional image sensor 4.
According to the above configuration, it is possible to extract the three-dimensional information of the entire surface of the object 5 by one-time image reading without the need for performing mechanical scanning as in the light cutting method.

また、後の画像処理も光像の左右方向の分布のみに関し
て行なえばよいので、簡単かつ高速な処理が可能であ
る。さらに、本実施例によれば、画像センサ4上の構造
の画像をそのまま2値化するなどしてCRTデイスプレイ
や、ハードコピー装置に出力して視覚的な3次元表現を
行なうことができる。
Further, since the subsequent image processing may be performed only on the distribution of the light image in the left-right direction, simple and high-speed processing is possible. Furthermore, according to the present embodiment, the image of the structure on the image sensor 4 can be binarized as it is, and can be output to a CRT display or a hard copy device for visual three-dimensional expression.

本実施例による距離測定方式もしくは3次元情報処理方
式は、いわば多数の触針を物体に押し付けて触針の基準
面からの突出量の変化により物体形状を知覚する方法を
光学的に非接触で行なうものであり、高速かつ正確な処
理が可能なため、実時間処理が必要とされるロボツトな
どの視覚センサとして用いることが可能である。特に比
較的近距離に配置された対象物の形状、姿勢などを知覚
し、対象物の把握、回避などの動作を行なわせる場合に
有効である。
The distance measuring method or the three-dimensional information processing method according to the present embodiment is a method in which a large number of stylus are pressed against an object and the object shape is perceived by a change in the amount of protrusion of the stylus from the reference surface, without contact. Since it is performed, high-speed and accurate processing can be performed, so that it can be used as a visual sensor for a robot or the like that requires real-time processing. In particular, this is effective in the case of perceiving the shape, posture, and the like of an object placed at a relatively short distance and performing an action such as grasping or avoiding the object.

以上では対象物5に対する光束投射パターンを光源およ
びマスク6により形成したが、マスク6の平面位置に指
向性のある点光源を複数配置することによっても同様の
効果を得ることが可能である。
Although the light beam projection pattern for the object 5 is formed by the light source and the mask 6 in the above, the same effect can be obtained by disposing a plurality of point light sources having directivity at the plane position of the mask 6.

第4図は本発明に係る距離測定装置の他の実施例を示す
光学系概略図である。図中、第1図の実施例と同部材に
は同符号を符してあり、7は微小凸レンズからなるレン
ズアレイ、8はフイールドレンズを示す。
FIG. 4 is a schematic view of an optical system showing another embodiment of the distance measuring device according to the present invention. In the figure, the same members as those in the embodiment of FIG. 1 are designated by the same reference numerals, 7 is a lens array composed of minute convex lenses, and 8 is a field lens.

本実施例の距離測定装置は第1図の装置と基本的な構成
が等しく、又、測距の原理も全く同じである。本実施例
と第1図に示した実施例との違いはパターン光束を得る
為の光源手段の構成にあり、第4図に示す如く、光源装
置3とマスク6との間に光源装置3上の小型発光源31
32・・・・3nと1:1に対応する様に微小凸レンズを配し
たレンズアレイ7を設置し、更に、マスク6を透過した
光束が確実にレンズ1の瞳に入射する様にマスク6の後
段にフイールドレンズ8を設置している。即ち、小型発
光源31,32・・・・3nから出射した光はレンズアレイ7
の対応する微小凸レンズの作用で集光され対応するマス
ク6の透光部61,62・・・・6nに効率良く指向される。
従って、マスク6を介して得られるパターン光束の光量
を増加させることが出来、画像センサ4上に投影される
マスク6の開口パターン像を明るくして測定感度を向上
させる。本実施例に於てもマスク6の透光部61,62・・
・6nを通過する光束の広がり角は小さく、対象物5には
細い光ビームとしてパターン光束が照射される。従っ
て、対象物5の位置P1,P2が大きく異なっていても画像
センサ4上の開口パターンの光像のぼけは小さく、常に
精度の良い測定が可能である。
The distance measuring device of this embodiment has the same basic configuration as that of the device shown in FIG. 1, and the principle of distance measurement is exactly the same. The difference between this embodiment and the embodiment shown in FIG. 1 lies in the construction of the light source means for obtaining the pattern light flux. As shown in FIG. Small light source 3 1 ,
A lens array 7 having micro-convex lenses is arranged so as to correspond to 3 2 ... 3 n and 1: 1. Further, the mask is arranged so that the light flux transmitted through the mask 6 surely enters the pupil of the lens 1. The field lens 8 is installed in the latter part of 6. That is, a small emission sources 3 1, 3 2 ... 3 The light emitted from the n lens array 7
The light is condensed by the action of the corresponding micro-convex lens, and is efficiently directed to the corresponding light-transmitting portions 6 1 , 6 2, ... 6 n of the mask 6.
Therefore, the light quantity of the pattern light flux obtained through the mask 6 can be increased, and the aperture pattern image of the mask 6 projected on the image sensor 4 is brightened to improve the measurement sensitivity. Also in this embodiment, the transparent portions 6 1 , 6 2 ... of the mask 6
The divergence angle of the light flux passing through 6 n is small, and the object 5 is irradiated with the pattern light flux as a thin light beam. Therefore, even if the positions P 1 and P 2 of the object 5 are largely different, the blur of the optical image of the aperture pattern on the image sensor 4 is small, and accurate measurement is always possible.

又、フイールドレンス8はマスク6の透光部61,62・・
・・6n、レンズアレイ7、光源装置3の小型発光源31
32・・・・3nの位置の整合方法によっては第1図の如く
省略することも出来る。
In addition, the field lens 8 is a transparent portion 6 1 , 6 2 ... of the mask 6.
..6 n , lens array 7, small light source 3 1 of light source device 3,
It can be omitted as shown in FIG. 1 depending on the method of aligning the positions of 3 2 ... 3 n .

また、以上の説明では、簡略化のために、装置の主要部
のみを図示し、信号処理系や遮閉のための筺体等の図示
を省略したが、これらの部材は必要に応じて当業者にお
いて従来どおり適当なものを設ければよい。また光学系
は単レンズのみを図示したが、複数エレメントから成る
光学系、ミラーなどを含む光学系を用いることもでき
る。更に、上記の各実施例では、2つの同一焦点距離の
光学系を用いる構成を示したが、必要に応じて異なる焦
点距離の光学系を3系統以上を用いることも考えられ
る。ただし、諸収差のそろった同一焦点距離の同一の光
学系を用いるのが最も簡単である。
Further, in the above description, for simplification, only the main part of the device is illustrated, and the illustration of the signal processing system and the enclosure for blocking is omitted, but these members may be used by those skilled in the art as needed. In the above, a suitable one may be provided as usual. Although only a single lens is shown in the optical system, an optical system including a plurality of elements or an optical system including a mirror may be used. Furthermore, in each of the above-described embodiments, a configuration using two optical systems having the same focal length has been shown, but it is also possible to use three or more optical systems having different focal lengths if necessary. However, it is the simplest to use the same optical system having the same focal length with various aberrations.

又、上記各実施例では光源として、1枚の基板上に構成
配置したLED等の小型発光源のアレイとして示したが、
通常の個別部品を並べて使用することや凸レンズ状のガ
ラスで封止した個別部品を並べて第4図のレンズアレイ
7を省くことも可能である。又、小型発光源アレイの基
板を凸レンズアレイ状の透明体で封止することも考えら
れる。
In each of the above embodiments, the light source is shown as an array of small light emitting sources such as LEDs arranged and arranged on one substrate.
It is also possible to use ordinary individual parts side by side or to arrange the individual parts sealed with glass in the shape of a convex lens to omit the lens array 7 shown in FIG. It is also conceivable to seal the substrate of the small light source array with a transparent body in the form of a convex lens array.

又、以上説明した実施例に於ては、2次元に配列された
複数の透光部を有する開口パターンの光像をCCD等の2
次元画像センサで検出して測定を行なう方法を示した
が、例えば、複数の透光部を1次元に所定間隔毎に配し
た開口パターンを対象的に投射し、該開口パターンの光
像を長手方向にセンサ列を有する画像センサで受像して
特定の方向に沿った対象物の形状を検知しても良い。
Further, in the above-described embodiment, an optical image of an aperture pattern having a plurality of light-transmitting portions arranged two-dimensionally is displayed on a CCD or the like.
Although the method of detecting with a three-dimensional image sensor and performing measurement has been described, for example, an aperture pattern in which a plurality of light-transmitting portions are one-dimensionally arranged at predetermined intervals is symmetrically projected, and an optical image of the aperture pattern is elongated. An image sensor having a sensor array in a direction may receive an image to detect the shape of the object along a specific direction.

又、対象物からのパターン光束を受ける第2の光学系を
2つ以上とし、測距の視野を広げることも可能であり、
更に第2の光学系を所定の駆動装置を用いて平行移動さ
せることによっても測距の視野を広げることが可能であ
る。又、逆に複数のパターン光束を対象物に照射する第
1の光学系と光源手段とを所定の駆動装置を用いて平行
移動させても同様の機能を得ることが出来る。
It is also possible to widen the field of view for distance measurement by using two or more second optical systems that receive the pattern light flux from the object.
Further, the visual field for distance measurement can be widened by moving the second optical system in parallel using a predetermined driving device. On the contrary, the same function can be obtained even if the first optical system for irradiating the object with a plurality of pattern light beams and the light source means are moved in parallel by using a predetermined driving device.

本発明よれば、対象物に照射されるパターン光束は出来
る限り広がり角が小さい細い光ビームであることが好ま
しいが、その限界は主として画像センサの感度に依存す
る為、使用可能なセンサの感度や光源出力、要求される
測定精度、仕様に併せて決定される。
According to the present invention, it is preferable that the pattern light beam with which the object is irradiated is a thin light beam having a divergence angle as small as possible. However, since the limit mainly depends on the sensitivity of the image sensor, the sensitivity of the usable sensor or It is determined according to the light source output, required measurement accuracy, and specifications.

又、光学系の倍率や基線長の長さ、即ち第1図の第1の
光学系と第2の光学系との間の距離、マスクの透光部の
ピツチ等は測定すべき測距範囲を考慮して決定すれば良
い。
Further, the magnification of the optical system and the length of the base line, that is, the distance between the first optical system and the second optical system in FIG. 1, the pitch of the transparent portion of the mask, etc. It should be decided in consideration of.

〈発明の効果〉 以上、本発明に係る距離測定装置は、アクテイブ方式を
採用することで対象物の種類は位置によらず短時間且つ
高精度の測距を達成し、又、特に光像の移動方向と前記
二次元画像センサの走査線方向とが一致すると共に、該
走査線方向に前記パターン光束による光像が複数配列さ
れるように構成したことにより、短時間且つ高精度で対
象物からの3次元情報を取得することが出来、ロボツト
等の視覚センサとしての好適な装置である。
<Effects of the Invention> As described above, the distance measuring apparatus according to the present invention achieves distance measurement with high accuracy in a short time regardless of the position of the type of the object by adopting the active method, and particularly in the case of the optical image. Since the moving direction and the scanning line direction of the two-dimensional image sensor are coincident with each other and a plurality of optical images by the pattern light flux are arranged in the scanning line direction, the object is accurately and in a short time. It is a suitable device as a visual sensor for a robot or the like that can acquire the three-dimensional information of.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る距離測定装置の一実施例を示す光
学系概略図。 第2図はマスクの開口パターンの一例を示す図。 第3図は画像センサとしてCCDを用いた際の1本の走査
線の出力波形を示す図。 第4図は本発明に係る距離測定装置の他の実施例を示す
光学系概略図。 1,2……レンズ 3……光源装置 31,32……3n……小型発光源 4……画像センサ 5……対象物 6……マスク 61,62……6n……透光部 7……レンズアレイ 8……フイールドレンズ
FIG. 1 is a schematic view of an optical system showing an embodiment of a distance measuring device according to the present invention. FIG. 2 is a diagram showing an example of an opening pattern of a mask. FIG. 3 is a diagram showing an output waveform of one scanning line when a CCD is used as an image sensor. FIG. 4 is a schematic view of an optical system showing another embodiment of the distance measuring device according to the present invention. 1,2 ...... lens 3 ...... light source device 3 1, 3 2 ...... 3 n ...... small emission sources 4 ...... image sensor 5 ...... object 6 ...... mask 6 1, 6 2 ...... 6 n ...... Light-transmitting part 7 ... Lens array 8 ... Field lens

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光軸を平行に、かつ基線距離隔てて配置さ
れた複数の光学系と、前記光学系の一つを通して複数の
パターン光束を対象物に照射する光源手段と、対象物上
の前記パターン光束による像を前記と異なる光学系を通
して受像する二次元画像センサとを設け、この二次元画
像センサにより検出された前記対象物上のパターン光束
による光像の位置から、対象物の所定の位置までの距離
を測定する装置であって、前記光源手段から出射するパ
ターン光束による光像の移動方向と前記二次元画像セン
サの走査線方向とが一致すると共に、該走査線方向に前
記パターン光束による光像が複数配列されるように構成
したことを特徴とする距離測定装置。
1. A plurality of optical systems arranged in parallel with an optical axis and spaced from each other by a base line, a light source means for irradiating a plurality of pattern light fluxes to the object through one of the optical systems, and on the object. A two-dimensional image sensor that receives an image of the pattern light flux through an optical system different from the above is provided, and from the position of the optical image of the pattern light flux on the object detected by the two-dimensional image sensor, a predetermined object is determined. A device for measuring a distance to a position, wherein a moving direction of an optical image by a pattern light beam emitted from the light source means and a scanning line direction of the two-dimensional image sensor are coincident with each other, and the pattern light beam is in the scanning line direction. 1. A distance measuring device, characterized in that a plurality of optical images are arranged.
【請求項2】前記光源手段が、複数の透光部を有するマ
スクと、前記複数の透光部に一対一に対応してマスクを
照明する複数の発光部からなることを特徴とする特許請
求の範囲第(1)項記載の距離測定装置。
2. The light source means comprises a mask having a plurality of light transmitting portions and a plurality of light emitting portions for illuminating the mask in a one-to-one correspondence with the plurality of light transmitting portions. The range-measuring device according to item (1).
JP61136763A 1985-12-10 1986-06-11 Distance measuring device Expired - Fee Related JPH0789058B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61136763A JPH0789058B2 (en) 1986-06-11 1986-06-11 Distance measuring device
FR868617220A FR2591329B1 (en) 1985-12-10 1986-12-09 APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
DE19863642051 DE3642051A1 (en) 1985-12-10 1986-12-09 METHOD FOR THREE-DIMENSIONAL INFORMATION PROCESSING AND DEVICE FOR RECEIVING THREE-DIMENSIONAL INFORMATION ABOUT AN OBJECT
US07/289,456 US4867570A (en) 1985-12-10 1988-12-22 Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136763A JPH0789058B2 (en) 1986-06-11 1986-06-11 Distance measuring device

Publications (2)

Publication Number Publication Date
JPS62291511A JPS62291511A (en) 1987-12-18
JPH0789058B2 true JPH0789058B2 (en) 1995-09-27

Family

ID=15182935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136763A Expired - Fee Related JPH0789058B2 (en) 1985-12-10 1986-06-11 Distance measuring device

Country Status (1)

Country Link
JP (1) JPH0789058B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643453B2 (en) * 1989-06-16 1997-08-20 キヤノン株式会社 Projection system for automatic focus detection
US20190086198A1 (en) * 2015-09-23 2019-03-21 East Carolina University Methods, systems and computer program products for determining object distances and target dimensions using light emitters
JP6757391B2 (en) * 2018-11-19 2020-09-16 Dmg森精機株式会社 Measuring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521282B2 (en) * 1972-10-05 1980-06-09
JPS5350856A (en) * 1976-10-20 1978-05-09 Hitachi Ltd Distance measuring device
JPS589013A (en) * 1981-07-10 1983-01-19 Nippon Kogaku Kk <Nikon> Distance measuring device
JPS59183325A (en) * 1983-04-01 1984-10-18 Canon Inc Photoelectric convertor
JPS6043973A (en) * 1983-08-20 1985-03-08 Matsushita Electric Ind Co Ltd Automatic focusing device of video camera
JPS60218016A (en) * 1984-04-13 1985-10-31 Kajima Corp Method and instrument for measuring shape of digged surface

Also Published As

Publication number Publication date
JPS62291511A (en) 1987-12-18

Similar Documents

Publication Publication Date Title
US4867570A (en) Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US5090811A (en) Optical radius gauge
JPH0762614B2 (en) Optical sensor
JP2002139304A (en) Distance measuring device and distance measuring method
CN102538679A (en) Image correlation displacement sensor
JPH045508A (en) Method and device for detecting shape of body
JP2001504592A (en) Distance measuring method and distance measuring device
US4494868A (en) Rangefinder device with focused elongated light source
US4207002A (en) Apparatus for detecting an output image of an optical correlation
JPH0789058B2 (en) Distance measuring device
JPH0135492B2 (en)
JPH0643893B2 (en) Distance measuring device
JP2677351B2 (en) 3D object external inspection system
US5815272A (en) Filter for laser gaging system
JP2504944B2 (en) Three-dimensional information processing method
JPH0789057B2 (en) Distance measuring device
JPH05340723A (en) Clearance size measuring method
JPS6291833A (en) Measuring instrument for two-dimensional light distribution of light source
JPH04110706A (en) Device for taking three-dimensional form data
JPH0833915B2 (en) Three-dimensional information processing method
JPH01242033A (en) Measuring endoscopic apparatus
JP3112219B2 (en) Movement detection method and detector
JP2678457B2 (en) Focus position detection method
JPS62291510A (en) Distance measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees