JPH0643893B2 - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPH0643893B2
JPH0643893B2 JP61136764A JP13676486A JPH0643893B2 JP H0643893 B2 JPH0643893 B2 JP H0643893B2 JP 61136764 A JP61136764 A JP 61136764A JP 13676486 A JP13676486 A JP 13676486A JP H0643893 B2 JPH0643893 B2 JP H0643893B2
Authority
JP
Japan
Prior art keywords
light
light source
mask
image
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61136764A
Other languages
Japanese (ja)
Other versions
JPS62291512A (en
Inventor
誠宏 反町
茂 山田
康朗 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61136764A priority Critical patent/JPH0643893B2/en
Priority to FR868617220A priority patent/FR2591329B1/en
Priority to DE19863642051 priority patent/DE3642051A1/en
Publication of JPS62291512A publication Critical patent/JPS62291512A/en
Priority to US07/289,456 priority patent/US4867570A/en
Publication of JPH0643893B2 publication Critical patent/JPH0643893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は距離測定装置に関し、特にアクテイブ方式によ
り対象物の任意の位置までの距離が測定出来、対象物の
3次元形状の測定等にも適用可能な距離測定装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to a distance measuring device, and in particular, can measure a distance to an arbitrary position of an object by an active method and is also applicable to measurement of a three-dimensional shape of the object. The present invention relates to a distance measuring device.

〔従来技術〕[Prior art]

従来よりも、画像センサなどを用いて距離情報や3次元
形状に関する情報を取得する方法として、光切断法(ス
リツト法)、ステレオ法などが知られている。
Conventionally, as a method of acquiring distance information and information about a three-dimensional shape using an image sensor or the like, a light cutting method (slit method), a stereo method, and the like are known.

光切断法は、対象物表面にスリツト光を投射し、対象物
面上の投射線を投射方向と別の方向から観測し、対象物
の断面形状、距離などの情報を得るものである。この方
法では、撮像側は固定され、スリツト投射方向を少しず
つ換えながら複数枚の画像をスリツト1本ごとに撮像し
て3次元情報を取得する。
The light-section method is to obtain slit light on the surface of an object, observe a projection line on the surface of the object from a direction different from the projection direction, and obtain information such as the cross-sectional shape and distance of the object. In this method, the imaging side is fixed, and the three-dimensional information is acquired by imaging a plurality of images for each slit while changing the slit projection direction little by little.

また、出願人が提案した特願昭59−44920号などにおけ
るステレオ法は、像倍率の等しい光学系と組み合わされ
た2次元の撮像素子を所定基線長だけ離して配置し、異
なる方向からみた2次元画像を得、2枚の画情報のずれ
から対象物の各位置の高さ(撮像系までの距離)を算出
するものである。
In addition, the stereo method in Japanese Patent Application No. 59-44920 proposed by the applicant is such that two-dimensional image pickup elements combined with an optical system having the same image magnification are arranged apart from each other by a predetermined base line length and viewed from different directions. A three-dimensional image is obtained, and the height of each position of the object (distance to the image pickup system) is calculated from the deviation of the image information of the two images.

ところが、光切断法では、撮像時のスリツト投射方向の
制御が面倒で、撮像に時間がかかる問題がある。また、
複数枚のスリツト画像から3次元情報を得るため、処理
する情報量が多く、最終的な情報取得までに多大な時間
を要する欠点があった。
However, the optical cutting method has a problem that the control of the slit projection direction at the time of image capturing is troublesome and the image capturing takes time. Also,
Since three-dimensional information is obtained from a plurality of slit images, the amount of information to be processed is large, and it takes a long time to obtain the final information.

また、ステレオ法ではスリツト走査などの制御が必要な
いが、一般に従来方式はパツシブ方式であるため、対象
物表面が滑らかで、一様な輝度を有している場合には2
つの撮像素子で得られる像のコントラストが低下し、2
枚の画像の比較による距離測定が不可能になる問題があ
る。このような測定が不可能になってしまうケースは像
倍率が大きくなる近距離において出現頻度が多く、した
がって対象物の形状、色、サイズ、距離などが限定され
てしまうという欠点を有していた。
In addition, the stereo method does not require control such as slit scanning, but since the conventional method is generally the passive method, it is 2 when the object surface is smooth and has uniform brightness.
The contrast of the image obtained by one image sensor decreases,
There is a problem that distance measurement cannot be performed by comparing two images. In the case where such measurement becomes impossible, the appearance frequency is high at a short distance where the image magnification becomes large, and thus the shape, color, size, distance, etc. of the object are limited. .

〔発明の概要〕[Outline of Invention]

本発明の目的は、上記従来例の問題点に鑑み、対象物の
種類によらず常に精度良い測定ができ、且つ比較的短時
間で対象物の任意の位置までの距離や対象物の3次元情
報を得ることが可能で、更に且つ測距範囲が広い距離測
定装置を提供することにある。
In view of the problems of the above-mentioned conventional example, an object of the present invention is to perform accurate measurement regardless of the type of the object, and to measure the distance to an arbitrary position of the object or the three-dimensional shape of the object in a relatively short time. An object of the present invention is to provide a distance measuring device capable of obtaining information and having a wide distance measuring range.

上記目的を達成する為に、本願の第1発明に係る距離測
定装置は、光軸を平行に、かつ基線距離隔てて配置され
た複数の光学系と、前記の光学系の1つを通して複数の
パターン光束を対象物に照射する光源手段と、対象物上
の前記パターン光束による像を前記と異なる光学系を通
して受像する画像センサとを設け、この画像センサによ
り検出された前記対象物上のパターン光束による光像の
位置から対象物の所定の位置までの距離を測定する装置
であって、前記光源手段が光源と該光源からの光を受け
てパターン光束を形成するマスクと前記光源からの光を
マスクに指向する楕円反射鏡とを有し、前記光源が前記
楕円反射鏡から前記マスクに指向される光束の光路外に
配されており、前記楕円反射鏡の略一方の焦点位置に前
記光学系の入射瞳が、他方の焦点位置に前記光源が、夫
々配されていることを特徴とする。
In order to achieve the above object, a distance measuring device according to a first invention of the present application includes a plurality of optical systems arranged in parallel with an optical axis and separated by a baseline distance, and a plurality of optical systems through one of the optical systems. A light source means for irradiating the object with the pattern light flux and an image sensor for receiving an image of the pattern light flux on the object through an optical system different from the above are provided, and the pattern light flux on the object detected by the image sensor. Is a device for measuring the distance from the position of the optical image to a predetermined position of the object, wherein the light source means forms a pattern light flux by receiving light from the light source and the light source, and the light from the light source. An elliptical reflecting mirror directed to the mask, the light source is arranged outside the optical path of a light beam directed from the elliptical reflecting mirror to the mask, and the optical system is provided at a focal position of one of the elliptical reflecting mirrors. Entrance pupil The light source in the other focal position, characterized in that are respectively distribution.

尚、本発明の更なる特徴は以下に示す実施例に記載され
ている。
Further features of the present invention will be described in the following embodiments.

〔実施例〕〔Example〕

第1図は本発明に係る距離測定装置の一実施例を示す光
学系概略図である。図中、1及び2は基線距離隔てて配
されたレンズで、互いの光軸は平行であり且つ、又夫々
のレンズ1,2の物体側主平面は同一平面上に存してい
る。又、本実施例に於てはレンズ1,2は互いに焦点距離
が等しいものを使用している。3は光源で比較的発光部
3′が小さなものが好ましい。4はCCD等から成る画
像センサ、5は測距の対象物、6はパターン投射用のマ
スクで遮光性部材に複数の透光部61,62,…65から成る開
口パターンが設けてあり、レンズ1の焦点近傍に配置さ
れている。又、7は楕円反射鏡で光源3からの光の一部
を反射する。第2図はマスク6の開口パターンの一例を
示したもので前述したよに、マスク6には細い長方形の
スリツト状の透光部61,62,63,…は複数個配列されてい
る。図において透光部61,62,…はその横方向の中心を細
線AXで示すように、水平方向に疎、垂直方向に比較的
密な配列パターンとなっており、結果として斜め方向に
延びるスリツト列を形成している。透光部61,62,…の密
度、配列は必要な測定精度、使用する画像センサの縦横
の解像力に応じて定めればよいので、上記のような構成
に限定されるものではなく、種々のパターンを使用可能
である。マスク6の透光部61,62…の水平方向の密度を
第2図のように比較的低くしたのは、後述のように対象
物5の距離により画像センサ4上での光像の位置が水平
方向に移動するため、検出を行える距離範囲を大きくと
るためである。
FIG. 1 is a schematic view of an optical system showing an embodiment of the distance measuring device according to the present invention. In the figure, reference numerals 1 and 2 denote lenses arranged at a distance of a base line, optical axes thereof are parallel to each other, and the object-side main planes of the lenses 1 and 2 are on the same plane. In this embodiment, the lenses 1 and 2 have the same focal length. 3 is a light source, and it is preferable that the light emitting portion 3'is relatively small. Image sensor comprising a CCD or the like 4, 5 objects ranging, 6 a plurality of light-transmitting portions 61 in the light-shielding member the mask for pattern projection, 6 2, ... 6 5 from the opening pattern is provided comprising Yes, it is arranged near the focal point of the lens 1. Further, 7 is an elliptical reflecting mirror which reflects a part of the light from the light source 3. FIG. 2 shows an example of the opening pattern of the mask 6, and as described above, a plurality of thin rectangular slit-shaped light transmitting portions 6 1 , 6 2 , 6 3 , ... Are arranged on the mask 6. There is. In the figure, the translucent portions 6 1 , 6 2 , ... Have an arrangement pattern that is sparse in the horizontal direction and relatively dense in the vertical direction, as indicated by the thin line AX in the horizontal direction, and as a result, in the diagonal direction. It forms a row of slits that extend. The density and arrangement of the light-transmitting parts 6 1 , 6 2 , ... May be determined according to the required measurement accuracy and the vertical and horizontal resolution of the image sensor used, and thus the structure is not limited to the above. Various patterns can be used. The density in the horizontal direction of the translucent portions 6 1 , 6 2 ... Of the mask 6 is made relatively low as shown in FIG. 2 because the optical image on the image sensor 4 depends on the distance of the object 5 as described later. This is because the position moves in the horizontal direction, so that the distance range in which detection can be performed is wide.

第1図、第2図の構成において、光源3で照明され、透
光部61,65を通過した光束はレンズ1を通って対象物5
の位置に応じてそれぞれ対象物5上の符号P1,P2に示す
位置に光像を結ぶ。そしてP1,P2上の光像はそれぞれレ
ンズ2を通って画像センサ4上の位置D1、D2に光像を結
ぶ。
In the configuration shown in FIGS. 1 and 2, the light flux illuminated by the light source 3 and passing through the light transmitting portions 6 1 and 6 5 passes through the lens 1 and the object 5
The optical images are formed at the positions indicated by the symbols P 1 and P 2 on the target object 5 in accordance with the position of. Then, the light images on P 1 and P 2 pass through the lens 2 to form light images on the positions D 1 and D 2 on the image sensor 4, respectively.

ステレオ法の原理から分るように光像Dn(n=1,2…)
の位置は反射点の距離、すなわち対象物5の位置P1,P2
の距離により、レンズ1、2の配置方向に平行な直線上
(基線方向)を移動することになる。したがって、対象
物5表面の測定装置からの距離分布を光像Dn(n=1,2
…)の水平方向の密度の分布として検出することが可能
となる。すなわち、画像センサ4の出力波形をコンピユ
ータシステムなどを用いた画像処理装置により観測する
ことにより対象物5の表面の光像位置(光束投射点)ま
での距離を3角測量の原理により容易に求めることがで
きる。
As can be seen from the principle of the stereo method, the optical image Dn (n = 1,2 ...)
Is the distance of the reflection point, that is, the positions P 1 and P 2 of the object 5.
Depending on the distance, the lens moves on a straight line (baseline direction) parallel to the arrangement direction of the lenses 1 and 2. Therefore, the distance distribution of the surface of the object 5 from the measuring device can be calculated by using the optical image Dn
It is possible to detect as the horizontal density distribution of (...). That is, by observing the output waveform of the image sensor 4 with an image processing device using a computer system or the like, the distance to the light image position (beam projection point) on the surface of the object 5 can be easily obtained by the principle of triangulation. be able to.

さて、本実施例に於ては測距可能な距離範囲を拡げる為
に、レンズ1,2の被写界深度を大きくするだけでなく、
対象物5に照射するパターン光束に工夫を施している。
即ち、第1図に於て、マスク6の透光部61,62,63,64,65
は点光源と見なすことが出来、通常の照明法によりマス
ク6の開口パターンを照明する際、夫々の透光部61,62
…65から出射した光は拡散し、レンズ1の瞳全体を通過
してレンズ1を介して対象物5に指向される。この様な
方法で対象物5にパターン光束を照射すると、たとえレ
ンズ1に被写界深度の大きいものを使用したとしても得
られる測距範囲には限界があり、画像センサ4上には開
口パターンの光像のぼけた像が結像されることになっ
て、光像位置の検出を困難にする。
Now, in this embodiment, in order to expand the distance range in which distance measurement is possible, not only the depth of field of the lenses 1 and 2 is increased,
The pattern light flux with which the object 5 is irradiated is devised.
That is, in FIG. 1 , the translucent portions 6 1 , 6 2 , 6, 3 , 6, 4 , 6 5 of the mask 6 are shown.
Can be regarded as a point light source, and when illuminating the opening pattern of the mask 6 by a normal illumination method, the respective translucent portions 61, 62 are
The light emitted from 65 is diffused, passes through the entire pupil of the lens 1, and is directed to the object 5 via the lens 1. When the object 5 is irradiated with the pattern light flux by such a method, there is a limit to the distance measurement range that can be obtained even if the lens 1 has a large depth of field, and the aperture pattern is formed on the image sensor 4. A blurred image of the optical image is formed, which makes it difficult to detect the optical image position.

しかしながら、本実施例では光源3をマスク6から離れ
た位置で、且つ光源3からの光をマスク6に指向する為
の楕円反射鏡7で反射される光束の光路外に光源3を配
することによりマスク6の透光部61,62,…65に所定の方
向から来た光束のみが入射する様に構成している。更
に、本実施例では光源3(微小発光部3′)を楕円反射
鏡7の第1焦点に配し、且つ楕円反射鏡7の第2焦点が
レンズ1の入射瞳の中心と略一致する様にすることで、
マスク6で得られた複数のパターン光束の全てがレンズ
1を介して対象物5に照射される。
However, in the present embodiment, the light source 3 is arranged at a position away from the mask 6 and outside the optical path of the light flux reflected by the elliptical reflecting mirror 7 for directing the light from the light source 3 to the mask 6. Thus, only the light flux coming from a predetermined direction is made incident on the light transmitting portions 6 1 , 6 2 , ... 6 5 of the mask 6. Further, in this embodiment, the light source 3 (microscopic light emitting portion 3 ') is arranged at the first focal point of the elliptical reflecting mirror 7, and the second focal point of the elliptic reflecting mirror 7 is substantially aligned with the center of the entrance pupil of the lens 1. By
All of the plurality of pattern light fluxes obtained by the mask 6 are applied to the object 5 via the lens 1.

又、従来の映写機等で使用される楕円反射鏡を用いた照
明方法では光源からの直射光と反射光がどちらもマスク
を照明することによってマスク面に当る光量を増加させ
るという方法が採られている。この場合、反射光と直射
光のマスクに入射する方向に差を生じる。従って、対象
物5がP2のように合焦点位置からずれた位置にある場合
には反射光と直射光とが物体を照射する位置に差を生
じ、2点を照射することになり、画像センサ4で受像す
る光像位置にも差を生じることになり、光像位置を検出
して物体距離を測定するためには支障となる。又反射光
が光源を封止している硝子管を透過してマスク6を照明
する場合も生じ、対象物5にマスクの開口パターンを照
明する光束の広がり(NA)が大きくなって、合焦点位置か
ら離れた位置にある物体上に照射するマスク6の開口パ
ターンのぼけ量が大きくなるのは前述の通りである。
Further, in the conventional illumination method using an elliptical reflecting mirror used in a projector or the like, a method of increasing the amount of light hitting the mask surface by illuminating the mask with both direct light and reflected light from a light source is adopted. There is. In this case, there is a difference between the reflected light and the direct light incident on the mask. Therefore, when the object 5 is at a position deviated from the in-focus position as shown by P 2 , there is a difference in the position where the reflected light and the direct light irradiate the object, and two points are irradiated. A difference also occurs in the light image position received by the sensor 4, which is an obstacle to detecting the light image position and measuring the object distance. Also, when the reflected light passes through the glass tube that seals the light source and illuminates the mask 6, the spread (NA) of the light flux that illuminates the opening pattern of the mask on the object 5 becomes large, and the focused point is increased. As described above, the blur amount of the opening pattern of the mask 6 that irradiates the object at the position away from the position becomes large.

一方、本発明に基く第1図に示す配置では、光源3から
発し直接マスク6を照明する光はレンズ1に入射しな
い。従って、マスク6の開口パターンを物体に照射する
光束は光源3から出て楕円反射鏡7で反射され、照射レ
ンズ1の入射瞳の中心付近に集まる光だけとなり、マス
ク6の透光部61,62…の一点を透過する光束の広がりは
この点から見た光源3の微小発光部3′が反射鏡に写っ
た際のその大きさの見込み角となり、図示する如く透光
部53の一点を透過する光は実線で示したように広がり角
の小さい光束となる。この結束合焦点位置から離れた位
置P2上のぼけの大きさはd′となり小さくすることがで
きる。又前記した楕円反射鏡の性質からマスク6の縁に
ある透光窓55を透過する光もレンズ1の入射瞳の中心に
向うのでレンズ1によるけられを生じることがなくレン
ズの口径を小さくすることが可能になる。さに、楕円反
射鏡7で反射されレンズ1に入射する光束の光路から光
源3の保持部材や硝子封止体を外すことが可能となりマ
スク6の透光窓を透過光量のむらを少なくすることがで
きる。
On the other hand, in the arrangement shown in FIG. 1 according to the present invention, the light emitted from the light source 3 and directly illuminating the mask 6 does not enter the lens 1. Therefore, the light flux that irradiates the object with the opening pattern of the mask 6 is emitted from the light source 3 and is reflected by the elliptical reflecting mirror 7 to be only the light collected near the center of the entrance pupil of the irradiation lens 1, and the transparent portion 6 1 of the mask 6 , 6 2 ... spread of the light beam transmitted through a point becomes its size visual angle of when a weak light emission portion of the light source 3 3 'viewed from this point was reflected in the reflecting mirror, the light transmitting unit 3 as shown The light passing through one point becomes a light flux with a small divergence angle as shown by the solid line. The size of the blur on the position P 2 away from the uniting focus position is d ′, which can be reduced. The small diameter of the ellipse reflector from nature to the edge of the mask 6 transparent window 5 5 lenses without causing the eclipse by the lens 1 so light is also directed toward the center of the entrance pupil of the lens 1 passes through the It becomes possible to do. In addition, it is possible to remove the holding member of the light source 3 and the glass sealing body from the optical path of the light beam reflected by the elliptical reflecting mirror 7 and incident on the lens 1, and it is possible to reduce unevenness in the amount of light transmitted through the light transmitting window of the mask 6. it can.

第3図は画像センサ4としてTVカメラ用の2次元CC
Dセンサを用いた場合の1本の走査線(第2図の細線A
Xに対応)の出力波形Oを示したものである。ここでは
図の左右方向を画像センサ4の水平方向の距離に対応さ
せてある。上記から明らかなように、この走査線と同一
直線上にあるマスク板6の透光部6n(n=1,2,…)に対
応して出力値が極大値Mを示す。1つの透光部6n(n=
1,2,…)に対応して出現する出力波形の極大値の左右位
置はその位置が限定されており、他の透光部による極大
値出現範囲と分離されているので、透光部6n(n=1,2,
…)とそこを通過した光束の画像センサ4への入射位置
は容易に対応づけることができる。したがって、従来の
ステレオ法におけるように近距離におけるコントラスト
低下による測定不能などの不都合を生じることなく、確
実に対象物5の任意に位置までの距離や3次元情報を取
得することができる。また、従来のステレオ方式と異な
り、光源を用いて照明を行うアクテイブ方式を採用して
いるので、近距離の対象物の測定では光源の光量が小さ
くて済む利点がある。また、画像センサ出力の極大値の
大きさから、対象物の光源位置の傾斜角を推定すること
も可能である。
FIG. 3 shows a two-dimensional CC for a TV camera as the image sensor 4.
One scanning line when using the D sensor (fine line A in FIG. 2)
3 shows an output waveform O (corresponding to X). Here, the horizontal direction of the figure corresponds to the horizontal distance of the image sensor 4. As is apparent from the above, the output value shows the maximum value M corresponding to the light transmitting portion 6n (n = 1, 2, ...) Of the mask plate 6 which is on the same straight line as this scanning line. One translucent part 6n (n =
1,2, ...) The left and right positions of the maximum value of the output waveform appearing corresponding to (1), (2) ... are limited, and are separated from the maximum value appearance range by other light transmitting parts. (N = 1,2,
...) and the incident position of the light flux passing therethrough on the image sensor 4 can be easily associated with each other. Therefore, unlike the conventional stereo method, it is possible to reliably acquire the distance to the arbitrary position of the object 5 and the three-dimensional information without causing the inconvenience such as the inability to measure due to the contrast reduction at a short distance. Further, unlike the conventional stereo system, since the active system in which the light source is used for illumination is adopted, there is an advantage that the light amount of the light source can be small when measuring an object at a short distance. It is also possible to estimate the inclination angle of the light source position of the object from the maximum value of the image sensor output.

以上のようにして、対象物5表面の測定系からの距離を
2次元の画像センサ4を介して測定することができる。
以上の構成によれば、光切断法のように機械的な走査を
行う必要なく、対象物5全面の3次元情報を1回の画像
読み取りで抽出することができる。
As described above, the distance of the surface of the object 5 from the measurement system can be measured via the two-dimensional image sensor 4.
According to the above configuration, it is possible to extract the three-dimensional information of the entire surface of the object 5 with one image reading without the need for performing mechanical scanning as in the light cutting method.

また、後の画像処理も光像の左右方向の分布のみに関し
て行えばよいので、簡単かつ光束な処理が可能である。
さらに、本実施例によれば、画像センサ4上の構造の画
像をそのまま2値化するなどしてCRTデイスプレイ
や、ハードコピー装置に出力して視覚的な3次元表現を
行うことができる。
Further, since the subsequent image processing may be performed only on the distribution of the light image in the left-right direction, simple and luminous flux processing is possible.
Furthermore, according to the present embodiment, the image of the structure on the image sensor 4 can be binarized as it is, and can be output to a CRT display or a hard copy device for visual three-dimensional expression.

本実施例による距離測定方式もしくは3時元情報処理方
式は、いわば多数の触針を物体に押し付けて触針の基準
面からの突出量の変化により物体形状を知覚する方法を
光学的に非接触で行うものであり、高速かつ正確な処理
が可能なため、実時間処理が必要とされるロボツトなど
の視覚センサとして用いることが可能である。特に比較
的近距離に配置された対象物の形状、姿勢などを知覚
し、対象物の把握、回避などの動作を行なわせる場合に
有効である。
The distance measuring method or the 3 o'clock information processing method according to the present embodiment is a method in which a large number of stylus are pressed against an object and the object shape is perceived by a change in the amount of protrusion of the stylus from the reference plane. Since it can be performed at high speed and accurately, it can be used as a visual sensor such as a robot that requires real-time processing. In particular, this is effective in the case of perceiving the shape, posture, and the like of an object placed at a relatively short distance and performing an action such as grasping or avoiding the object.

また、以上の説明では、簡略化のために装置の主要部の
みを図示し、信号処理系や遮閉のための筐体等の図示を
省略したが、これらの部材は必要に応じて当業者におい
て従来どおり適当なものを設ければよい。また光学系は
単レンズのみを図示したが、複数エレメントから成る光
学系、ミラーなどを含む光学系を用いることもできる。
Further, in the above description, for simplification, only the main part of the device is illustrated, and the illustration of the signal processing system, the case for blocking, etc. is omitted, but these members may be used by those skilled in the art as necessary. In the above, a suitable one may be provided as usual. Although only a single lens is shown in the optical system, an optical system including a plurality of elements or an optical system including a mirror may be used.

更に、上記の各実施例では、2つの同一焦点距離の光学
系を用いる構成を示したが、必要に応じて異なる焦点距
離の光学系を3系統以上を用いることも考えられる。た
だし、諸収差のそろった同一焦点距離の同一の光学系を
用いるのが最も簡単である。
Furthermore, in each of the above-described embodiments, a configuration using two optical systems having the same focal length has been shown, but it is also possible to use three or more optical systems having different focal lengths if necessary. However, it is the simplest to use the same optical system having the same focal length with various aberrations.

又、以上説明した実施例に於いては、2次元に配列され
た複数の透光部を有する開口パターンの光像をCCD等
の2次元画像センサで検出して測定を行う方法を示した
が、例えば複数の透光部を一次元に所定間隔毎に配した
開口パターンを対象物に投射し、該開口パターンの光像
を長手方向にセンサ列を有する画像センサで受像して特
定の方向に沿った対象物の形状を検知しても良い。
Further, in the embodiment described above, the method of detecting and measuring the optical image of the aperture pattern having the plurality of light-transmitting portions arranged two-dimensionally by the two-dimensional image sensor such as CCD has been described. , For example, projecting an aperture pattern in which a plurality of light-transmitting portions are arranged one-dimensionally at predetermined intervals on an object, and an optical image of the aperture pattern is received by an image sensor having a sensor array in the longitudinal direction and is directed in a specific direction You may detect the shape of the target object along.

又、対象物からパターン光束を受ける第2の光学系を2
つ以上とし、測距の視野を広げることも可能であり、更
に第2の光学系を所定の駆動装置を用いて平行移動させ
ることによても測距の視野を広げることが可能である。
又、逆に複数のパターン光束を対象物に照射する第1の
光学系と光源手段とを所定の駆動装置を用いて平行移動
させても同様の機能を得ることが出来る。
In addition, the second optical system that receives the pattern light flux from the object is
It is also possible to widen the field of view for distance measurement, and it is also possible to widen the field of view for distance measurement by translating the second optical system in parallel using a predetermined driving device.
On the contrary, the same function can be obtained even if the first optical system for irradiating the object with a plurality of pattern light beams and the light source means are moved in parallel by using a predetermined driving device.

本発明によれば、対象物に照射されるパターン光束は出
来る限り広がり角が小さい細い光ビームであることが好
ましいが、その限界は主として画像センサの感度に依存
する為、使用可能なセンサの感度や光源出力、要求され
る測定精度、仕様に併せて決定される。
According to the present invention, it is preferable that the pattern light flux with which the object is irradiated is a thin light beam with a spread angle as small as possible. However, since the limit mainly depends on the sensitivity of the image sensor, the sensitivity of the usable sensor And light source output, required measurement accuracy, and specifications.

又、光学系の倍率や基線長の長さ、即ち第1図の第1の
光学系と第2の光学系との間の距離、マスクの透光部の
ピッチ等は測定すべき測距範囲を考慮して決定すれば良
い。
Further, the magnification of the optical system and the length of the base line, that is, the distance between the first optical system and the second optical system in FIG. 1, the pitch of the transparent portion of the mask, etc., are the distance measuring ranges to be measured. It should be decided in consideration of.

又、本発明で言う画像センサはフオトダイオードやCC
D等に代表される全ての光電変化素子を含んでおり、1
次元アレイ、2次元アレイ等配列状態にも限定はない。
The image sensor referred to in the present invention is a photodiode or CC.
All photoelectric conversion elements represented by D etc. are included.
There is no limitation on the arrangement state such as a two-dimensional array or a two-dimensional array.

又、第1図に示す様に本発明で用いる楕円ミラーは楕円
ミラーの一部で構成しても良いし、又楕円ミラー全体を
そのまま配して構成しても良く、少なくとも楕円ミラー
の第2焦点近傍に第1の光学系、望ましくはその入射瞳
が位置するようにすることにより、収差の影響が少ない
細い光ビームを得ることができる。即ち、マスクから出
射する光束の殆どが第1の光学系中でその光軸近傍を通
過する様に構成するのが良い。
Further, as shown in FIG. 1, the elliptical mirror used in the present invention may be formed by a part of the elliptic mirror, or may be formed by arranging the entire elliptic mirror as it is, and at least the second elliptic mirror may be formed. By arranging the first optical system, preferably the entrance pupil thereof, in the vicinity of the focal point, it is possible to obtain a thin light beam that is less affected by aberration. That is, it is preferable that most of the light flux emitted from the mask passes in the vicinity of the optical axis of the first optical system.

〔発明の効果〕〔The invention's effect〕

以上、本発明に係る距離測定装置はアクテイブ方式を採
用することで対象物の種類や位置によらず短時間且つ高
精度の測距を達成し、又、マスクや微小発光源やミラー
等を用い対象物に照射せしめるパターン光束径を細い光
ビームとすることにより、広い測定範囲を備えたもので
ある。
As described above, the distance measuring device according to the present invention achieves short and highly accurate distance measurement by adopting the active method regardless of the type and position of the object, and uses a mask, a minute light emitting source, a mirror, or the like. A wide measuring range is provided by making the pattern light beam diameter for irradiating the object a narrow light beam.

更に、本発明によれば短時間且つ高精度で対象物からの
3次元情報を取得することが出来、ロボツト等の視覚セ
ンサとして好適な装置である。
Further, according to the present invention, it is possible to acquire three-dimensional information from a target object in a short time and with high accuracy, and it is a device suitable as a visual sensor such as a robot.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る距離測定装置の一実施例を示す光
学系概略図。 第2図はマスクの開口パターンの一例を示す図。 第3図は画像センサとしてCDDを用いた際の1本の走
査線の出力波形を示す図。 1,2……レンズ、 3……光源装置、 31,32…,3n……小型発光源、 4……画像センサ、 5……対象物、 6……マスク、 61,62,…,6n……透光部、 7……楕円反射鏡。
FIG. 1 is a schematic view of an optical system showing an embodiment of a distance measuring device according to the present invention. FIG. 2 is a diagram showing an example of an opening pattern of a mask. FIG. 3 is a diagram showing an output waveform of one scanning line when a CDD is used as an image sensor. 1,2 ...... lens, 3 ...... light source device, 3 1, 3 2 ..., 3n ...... small emission sources, 4 ...... image sensor, 5 ...... object 6 ...... mask, 6 1, 6 2, …, 6n …… Transparent part, 7 …… Elliptic mirror.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光軸を平行に、かつ基線距離隔てて配置さ
れた複数の光学系と、前記の光学系の1つを通して複数
のパターン光束を対象物に照射する光源手段と、対象物
上の前記パターン光束による像を前記と異なる光学系を
通して受像する画像センサとを設け、この画像センサに
より検出された前記対象物上のパターン光束による光像
の位置から対象物の所定の位置までの距離を測定する装
置であって、前記光源手段が光源と該光源からの光を受
けてパターン光束を形成するマスクと前記光源からの光
をマスクに指向する楕円反射鏡とを有し、前記光源が前
記楕円反射鏡から前記マスクに指向される光束の光路外
に配されており、前記楕円反射鏡の略一方の焦点位置に
前記光学系の入射瞳が、他方の焦点位置に前記光源が、
夫々配されていることを特徴とする距離測定装置。
1. A plurality of optical systems arranged parallel to an optical axis and spaced from each other by a base line, a light source means for irradiating a plurality of pattern light fluxes to the object through one of the optical systems, and on the object. An image sensor for receiving an image of the patterned light flux through an optical system different from the above, and the distance from the position of the optical image of the patterned light flux on the object detected by the image sensor to a predetermined position of the object. Wherein the light source means has a light source, a mask that receives light from the light source to form a pattern light flux, and an elliptical reflecting mirror that directs the light from the light source to the mask. It is arranged outside the optical path of the light flux directed from the elliptical reflecting mirror to the mask, the entrance pupil of the optical system is located at substantially one focal position of the elliptic reflecting mirror, and the light source is located at the other focal position.
A distance measuring device characterized by being arranged respectively.
JP61136764A 1985-12-10 1986-06-11 Distance measuring device Expired - Fee Related JPH0643893B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61136764A JPH0643893B2 (en) 1986-06-11 1986-06-11 Distance measuring device
FR868617220A FR2591329B1 (en) 1985-12-10 1986-12-09 APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
DE19863642051 DE3642051A1 (en) 1985-12-10 1986-12-09 METHOD FOR THREE-DIMENSIONAL INFORMATION PROCESSING AND DEVICE FOR RECEIVING THREE-DIMENSIONAL INFORMATION ABOUT AN OBJECT
US07/289,456 US4867570A (en) 1985-12-10 1988-12-22 Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136764A JPH0643893B2 (en) 1986-06-11 1986-06-11 Distance measuring device

Publications (2)

Publication Number Publication Date
JPS62291512A JPS62291512A (en) 1987-12-18
JPH0643893B2 true JPH0643893B2 (en) 1994-06-08

Family

ID=15182960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136764A Expired - Fee Related JPH0643893B2 (en) 1985-12-10 1986-06-11 Distance measuring device

Country Status (1)

Country Link
JP (1) JPH0643893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885998B1 (en) * 2008-04-14 2009-03-03 에이티아이 주식회사 Apparatus for obtaining image of 3-dimensional object

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
GB2395262A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Optical proximity sensor with array of spot lights and a mask
JP5423946B2 (en) * 2008-09-01 2014-02-19 株式会社ニコン Composite optical system and optical apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885998B1 (en) * 2008-04-14 2009-03-03 에이티아이 주식회사 Apparatus for obtaining image of 3-dimensional object

Also Published As

Publication number Publication date
JPS62291512A (en) 1987-12-18

Similar Documents

Publication Publication Date Title
US4867570A (en) Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object
US5568261A (en) Three-dimensional image measuring device
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP2002139304A (en) Distance measuring device and distance measuring method
JP2510786B2 (en) Object shape detection method and apparatus
JP2001504592A (en) Distance measuring method and distance measuring device
US4494868A (en) Rangefinder device with focused elongated light source
JPH0643893B2 (en) Distance measuring device
CN108885260B (en) Time-of-flight detector with single axis scanning
US5815272A (en) Filter for laser gaging system
JPH0789058B2 (en) Distance measuring device
JP2504944B2 (en) Three-dimensional information processing method
JPH0789057B2 (en) Distance measuring device
JP3194790B2 (en) Gaze direction detection device
JPH04283608A (en) Optical apparatus for measuring surface shape
JP3184641B2 (en) Edge detecting device for tapered hole and its depth measuring device
JPS58213203A (en) Position detecting device of moving body
JPS62291510A (en) Distance measuring apparatus
JPH04110706A (en) Device for taking three-dimensional form data
JPS6113566B2 (en)
JPH0833915B2 (en) Three-dimensional information processing method
JP2000002521A (en) Three dimensional input device
JP2675051B2 (en) Optical non-contact position measuring device
JP2830915B2 (en) Particle size distribution measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees