JPH075197A - Probe for measuring electric characteristics - Google Patents

Probe for measuring electric characteristics

Info

Publication number
JPH075197A
JPH075197A JP34276793A JP34276793A JPH075197A JP H075197 A JPH075197 A JP H075197A JP 34276793 A JP34276793 A JP 34276793A JP 34276793 A JP34276793 A JP 34276793A JP H075197 A JPH075197 A JP H075197A
Authority
JP
Japan
Prior art keywords
electrode
measuring
sample
measuring instrument
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34276793A
Other languages
Japanese (ja)
Other versions
JP2668768B2 (en
Inventor
Hidetsugu Kudo
秀継 工藤
Kazuyoshi Sone
和義 曽根
Shigeru Yoshizawa
茂 吉沢
Akira Morii
彰 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEKUTORU SEMICONDUCTOR KK
Original Assignee
BEKUTORU SEMICONDUCTOR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEKUTORU SEMICONDUCTOR KK filed Critical BEKUTORU SEMICONDUCTOR KK
Priority to JP5342767A priority Critical patent/JP2668768B2/en
Publication of JPH075197A publication Critical patent/JPH075197A/en
Application granted granted Critical
Publication of JP2668768B2 publication Critical patent/JP2668768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide a probe allowing micromeasurement of electric characteristics in which the influence of external radio wave can be suppressed at the time of measurement and the influence of noise and leakage current of the sample table itself can be minimized. CONSTITUTION:A measuring wire 1 connecting probes 13a, 13b with an instrument 15 for measuring current, current capacity, etc., has a triple pole structure where a dielectric is applied around the central axial electrode, i.e., the measuring wire 1. The central axial electrode 1a is connected to guard the instrument 15 and the outermost axial electrode 1b is grounded to the chassis of the instrument 15 along with a shield box 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体デバイス等の
製造分野におけるプロセス開発工程でウエハ基板等の試
料の微少な電流や電流容量等の電気的特性の測定を行う
プローブ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe device for measuring electrical characteristics such as minute current and current capacity of a sample such as a wafer substrate in a process development process in the field of manufacturing semiconductor devices and the like.

【0002】[0002]

【従来の技術】近年、半導体デバイス製造分野では益々
高集積化及び超微細化が要求されており、特にメモリ事
業では記憶容量の大容量化に伴い高集積化及び微細化が
余儀なくされている。ダイナミックランダムアクセスメ
モリ(DRAM)を例にあげると、これは各ビットセル
を構成するキャパシタンス及びトランジスタ等のサイズ
を縮小化する等の手段により大容量化を図っている。従
って、そのキャパシタンスより僅かなリーク電流等が生
じても、そのビット情報に大きな影響を与え真値を保持
できなくなるため、リフレッシュサイクル時間の補償に
も影響を与える。そのため半導体デバイス製造分野にお
けるプロセス開発解析工程では、ウエハ基板等の試料の
微少な電流や電流容量等の電気的特性の評価は欠かせな
いものとなっている。
2. Description of the Related Art In recent years, there has been an increasing demand for higher integration and ultra-miniaturization in the semiconductor device manufacturing field, and particularly in the memory business, high integration and miniaturization have been inevitably accompanied by an increase in storage capacity. Taking a dynamic random access memory (DRAM) as an example, this is intended to increase the capacity by means such as reducing the size of the capacitances and transistors that form each bit cell. Therefore, even if a small leak current or the like is generated from the capacitance, the bit information is greatly affected and the true value cannot be held, which also affects the refresh cycle time compensation. Therefore, in the process development analysis process in the semiconductor device manufacturing field, evaluation of electrical characteristics such as a minute current and a current capacity of a sample such as a wafer substrate is indispensable.

【0003】図4は、そのような評価試験に使用される
マニュアルプローバを用いたシステムを例に採りその構
成の概略を示している。同図において、10は外界から
の影響を少なくすためのシールドボックス、そのシール
ドボックス10内の11は測定対象となるウエハ等の試
料Xを載置する試料台、13a及び13bはその試料台
11上の試料Xに接触せしめられる測定針、14a及び
14bは測定針13a及び13bを試料X上で移動させ
るマニュピレータで更に14a′及び14b′はマニュ
ピレータベース、15は試料Xに接触せしめられた測定
針13a及び13bから入力される電流等をシールドボ
ックス外において測定する計測器、16は試料台11の
上方の設けられた顕微鏡である。
FIG. 4 shows an outline of the configuration of a system using a manual prober used for such an evaluation test as an example. In the figure, 10 is a shield box for reducing the influence from the outside, 11 in the shield box 10 is a sample stand on which a sample X such as a wafer to be measured is placed, and 13a and 13b are the sample stand 11 The measuring needles which are brought into contact with the sample X above, 14a and 14b are manipulators for moving the measuring needles 13a and 13b above the sample X, and 14a 'and 14b' are manipulator bases, and 15 is a measuring needle brought into contact with the sample X. A measuring instrument for measuring currents and the like input from 13a and 13b outside the shield box, and 16 is a microscope provided above the sample table 11.

【0004】この装置では、まず試料台11上に試料X
を載せて顕微鏡16で観察しながらマニュピレータ14
a及び14bを使って測定針13a及び13bを移動さ
せ、試料Xの目的の場所に接触させる。このセット後、
定電圧定電流計等の計測器15によってその試料Xにお
ける微少な電気的特性の測定を行う。
In this apparatus, the sample X is first placed on the sample table 11.
Manipulator 14 while placing and observing with microscope 16
The measuring needles 13a and 13b are moved using a and 14b, and brought into contact with the target location of the sample X. After this set,
The measuring device 15 such as a constant voltage / constant current meter measures minute electrical characteristics of the sample X.

【0005】[0005]

【発明が解決しようとする課題】以上の構成では、試料
Xや測定針13a及び13bが前記シールドボック10
によって外界と遮断されているため、本来外界の影響を
受けないはずであるが、実際に得られるデータには、試
料の加熱・冷却が可能なヒータ12等の加熱・冷却装置
が試料台11自身に設けられている場合、特にそのヒー
タ12等よりノイズN1が入り、又試料台11の試料接
触面の導電部である計測用電極11aからプローブステ
ーション11fへのリークI2が生じるため、その測定
用電極の電圧降下、及びある一定量のリーク電流I2
存在する。このため微少である電気的測定データを正確
に測定することは困難であった。
With the above configuration, the sample X and the measuring needles 13a and 13b are the shield box 10 and
Since it is shielded from the outside world by the outside world, it should not be affected by the outside world, but the data actually obtained indicates that the heating / cooling device such as the heater 12 capable of heating / cooling the sample is the sample table 11 itself. In particular, noise N 1 enters from the heater 12 and the like, and a leak I 2 from the measurement electrode 11a, which is a conductive portion of the sample contact surface of the sample table 11, to the probe station 11f occurs. There is a voltage drop across the measuring electrode and a certain amount of leakage current I 2 . Therefore, it is difficult to accurately measure the minute electric measurement data.

【0006】本発明は従来技術の以上な問題に鑑み創案
されたもので、測定時に外界よりの電波等による影響を
低減でき、又試料台11自身より発生するノイズN1
2及びリーク電流I1、I2の影響を最小限に低減する
ことができる微少な電気的特性の測定が可能なプローブ
装置を提供せんとするものである。
The present invention was devised in view of the above problems of the prior art. It is possible to reduce the influence of radio waves from the external environment during measurement, and the noise N 1 generated from the sample table 11 itself.
An object of the present invention is to provide a probe device capable of measuring a minute electric characteristic capable of minimizing the effects of N 2 and leakage currents I 1 and I 2 .

【0007】[0007]

【課題を解決するための手段】本発明者等は、まず微少
な電気的特性の測定に対し、測定針13a及び13bの
計測線、試料台11の計測用電極11a等へ影響を与え
るノイズN1、N2及びリークI1、I2等の原因を究明し
たところ、測定対象となる試料の周辺に電気的電位の浮
遊している各導電性物質間での静電容量結合等による外
界からの誘導によるノイズN2の影響、試料台11に設
置される試料加熱・冷却用のヒータ12等の加熱・冷却
装置から発生するノイズN1による影響、測定針13
a、13bの計測線1とシールド(接地)間のリークI
1、及び試料台11の計測用電極11aとシールド間で
のリークI2等が原因となることが判明した。そこでこ
の様な原因を最小限に低減できる手段につき鋭意検討し
たところ、以下に説明する本発明の構成を創案するに至
った。
DISCLOSURE OF THE INVENTION The inventors of the present invention first of all measure noises N that affect the measurement lines of the measurement needles 13a and 13b, the measurement electrode 11a of the sample table 11 and the like when measuring minute electric characteristics. When the causes of 1 , N 2 and leaks I 1 , I 2, etc. were investigated, it was confirmed from the outside world due to capacitive coupling between the conductive substances with electric potential floating around the sample to be measured. Influence of noise N 2 due to induction of noise, influence of noise N 1 generated from a heating / cooling device such as a heater 12 for heating / cooling a sample installed on the sample table 11, a measuring needle 13
Leak I between measurement line 1 of a and 13b and shield (ground)
1 and the leak I 2 between the measurement electrode 11a of the sample table 11 and the shield has been found to be the cause. Then, as a result of earnest studies on means for reducing such a cause to the minimum, the inventors have come up with a configuration of the present invention described below.

【0008】即ち、本発明に係る微少な電気的特性測定
用プローブ装置は、前記計測器から測定針先端側までの
間を連絡する計測線の構成につき、該計測線を中心軸電
極として絶縁体を介挿せしめた三重電極構造とし、中間
軸電極をガード用に前記計測器に繋ぐことにより、計測
器側にて計測線に影響がでないようにガード・バッファ
を経由して前記中間軸電極が計測線と同電位になるよう
制御されることになり、そのためリークI1そのものが
なくなる。またシールド効果も大で計測線へのノイズN
1、N2の影響も最少限に低減されることになる。一方最
外軸電極を計測器のシャーシに繋ぎ計測器本体と同電位
になるよう(通常は計測器側で接地)ようにする。この
ように、前記計測器から測定針先端側までの間を連絡す
る計測線を三重電極構造としたことによって、ノー・リ
ーク(計測線と中間軸電極とが同電位になったことによ
る)及びロー・ノイズ(中間軸電極と最外軸電極の二重
シールド効果による)とすることが可能となった。従来
の測定針側の計測線が絶縁体を介挿させた二重電極構造
であり、その最外軸電極を前記計測器のガード用に繋ぐ
と一重シールド効果しか得られず、ノイズN1、N2によ
る影響が大となる。又最外軸電極を前記計測器のシャー
シに繋いだ場合、同じく一重シールド効果しか得られ
ず、そのためノイズN1、N2による影響が大で、しかも
計測線と最外軸電極(通常計測器側で接地)との間に電
位差が生じるため、絶縁体の固有抵抗値に依存したリー
クI1が生じる。これに対し本発明は、上述のような二
重シールド効果によりロー・ノイズとなり、又中間軸電
極を設けたことで計測線との間が同電位になってノー・
リークとなるため、前記計測器の能力を十分発揮でき、
微少な電気的特性の測定が可能となる。
That is, in the microscopic electric characteristic measuring probe device according to the present invention, regarding the constitution of the measuring line connecting the measuring instrument to the tip side of the measuring needle, the measuring line is used as a central axis electrode for an insulator. With a triple electrode structure in which the intermediate shaft electrode is connected to the measuring device for guarding, the intermediate shaft electrode is connected via the guard buffer so that the measuring line is not affected on the measuring device side. It is controlled so that it has the same potential as the measurement line, so that the leak I 1 itself disappears. In addition, the shielding effect is large and the noise N on the measurement line
The effects of 1 and N 2 are also reduced to a minimum. On the other hand, connect the outermost shaft electrode to the chassis of the measuring instrument so that it has the same potential as the measuring instrument itself (usually grounded on the measuring instrument side). As described above, the measurement line connecting the measuring instrument to the tip side of the measuring needle has a triple electrode structure, so that no leak (due to the measurement line and the intermediate shaft electrode having the same potential) and Low noise (due to the double shield effect of the intermediate shaft electrode and outermost shaft electrode) is now possible. The conventional measuring line has a double electrode structure in which the measuring wire on the side of the measuring needle is inserted with an insulator, and when the outermost shaft electrode is connected for the guard of the measuring instrument, only a single shield effect is obtained, and the noise N 1 , The influence of N 2 is great. When the outermost shaft electrode is connected to the chassis of the measuring instrument, only a single shield effect can be obtained, so that the noises N 1 and N 2 have a large influence, and the measuring line and the outermost shaft electrode (normal measuring instrument Since there is a potential difference with the ground (on the side), a leak I 1 depending on the specific resistance value of the insulator occurs. On the other hand, the present invention provides low noise due to the double shield effect as described above, and the provision of the intermediate shaft electrode results in the same potential between the measurement line and
Since it becomes a leak, the capacity of the measuring instrument can be fully exerted,
It becomes possible to measure minute electrical characteristics.

【0009】また第2発明の構成は、前記試料台の構成
につき、試料接触面の計測用電極を含め絶縁体を介挿せ
しめた三重電極構造とし、且つ前記計測器から計測用電
極までの間を連絡する計測線の構成についても、該計測
線を中心軸電極として絶縁体を介挿せしめた同じく三重
電極構造とし、試料台の中間電極を計測線の中間軸電極
に繋いでガード用に前記計測器に連絡することにより、
計測器側にて計測線に影響がでないようにガード・バッ
ファを経由して前記中間電極が計測用電極と同電位にな
るように制御されることになり、そのためリークI2
のものがなくなる。またシールド効果も大で計測線への
ノイズN1、N2の影響も最小限に低減されることにな
る。一方試料台の最下側電極を計測線の最外軸電極に繋
いで計測器のシャーシに繋ぎ計測器のシャーシと同電位
になるよう(通常は計測器側で接地)にする。このよう
に前記試料台の構成を三重電極構造とすると共に、同じ
く計測器から試料台の計測用電極までの間を連絡する計
測線についても三重電極構造としたことで、ノー・リー
ク(計測用電極と中間電極とが同電位になったことによ
る)及びロー・ノイズ(中間電極と最下側電極の二重シ
ールド効果による)とすることが可能になった。従来の
試料台が試料接触面の計測用電極を含め絶縁体を介挿さ
せた二重構造であり、その最下側電極を測定器のシャー
シに繋ぐと、一重シールド効果しか得られず、ノイズの
影響が大となり、更に計測用電極と最下側電極(通常測
定器側で接地)との間に電位差が生じるため、絶縁体の
固有抵抗値に依存したリークI2が生じていた。又加熱
・冷却用ヒータ等の加熱装置又は冷却装置が設けられた
試料台では、温度上昇によりそのセラミックス系絶縁体
材料の固有抵抗値が低下するため、更に計測用電極と最
下側電極との間に発生するリークI2が増大する。これ
に対し本発明では、上述のようなガード用の中間電極を
設けたことにより計測用電極との間が同電位になるた
め、絶縁体の固有抵抗値が低下してもノー・リークとな
り、又二重シールド効果によってロー・ノイズとなって
いるため、前記計測器の能力を十分発揮でき、微少な電
気的特性の測定が可能になる。
According to a second aspect of the present invention, the structure of the sample table has a triple electrode structure in which an insulator including a measurement electrode on the sample contact surface is inserted, and a portion between the measuring instrument and the measuring electrode is provided. Regarding the configuration of the measurement line that connects the same, the measurement line has the same triple electrode structure in which an insulator is inserted as the central axis electrode, and the intermediate electrode of the sample stage is connected to the intermediate axis electrode of the measurement line to provide the above-mentioned for guarding. By contacting the measuring instrument,
On the measuring instrument side, the intermediate electrode is controlled so as to have the same potential as the measuring electrode via the guard buffer so that the measuring line is not affected, so that the leak I 2 itself is eliminated. Further, the shield effect is large, and the influence of noises N 1 and N 2 on the measurement line is reduced to the minimum. On the other hand, connect the lowermost electrode of the sample table to the outermost shaft electrode of the measurement line and connect it to the chassis of the measuring instrument so that it has the same potential as the chassis of the measuring instrument (usually grounded on the measuring instrument side). In this way, the structure of the sample stage has a triple-electrode structure, and the measurement line that connects the measuring instrument to the measurement electrode of the sample stage also has a triple-electrode structure. It becomes possible to have low electric noise and low noise (due to the double shield effect of the intermediate electrode and the lowermost electrode). The conventional sample stage has a double structure in which an insulator including the measurement electrode on the sample contact surface is inserted, and when the lowermost electrode is connected to the chassis of the measuring instrument, only a single shield effect is obtained and noise is reduced. Has a large effect, and a potential difference occurs between the measurement electrode and the lowermost electrode (usually grounded on the measuring instrument side), resulting in leakage I 2 depending on the specific resistance value of the insulator. Further, in a sample table provided with a heating device or a cooling device such as a heating / cooling heater, the specific resistance value of the ceramic insulator material decreases due to the temperature rise, and therefore the measurement electrode and the bottom electrode are further separated. The leak I 2 generated during the period increases. On the other hand, in the present invention, since the same potential is provided between the measurement electrode and the guard intermediate electrode as described above, no leak occurs even if the specific resistance value of the insulator decreases. Further, since the double shield effect causes low noise, the capability of the measuring instrument can be fully exerted, and minute electric characteristics can be measured.

【0010】[0010]

【実施例】本発明の具体的実施例を以下説明する。図1
乃至図3は半導体ウエハ基板を試料Xとしてその微少な
電気的特性の測定を行う本発明の一実施例に係るマニュ
アル型のプローブ装置の構成を示している。図1におい
て、10は外界からの影響を低減するシールドボック
ス、そのシールドボックス10内の11は測定対象とな
る半導体ウエハ基板Xを載置する試料台、12はその試
料台11に内蔵された加熱用ヒータ、13a及び13b
はその試料台11上のウエハ基板Xに接触せしめられる
測定針、14a及び14bは測定針13a及び13bを
ウエハ基板X上で移動させるマニピレータで更に14
a′及び14b′はマニピレータベース、15はウエハ
基板Xに接触せしめられた測定針13a及び13bに入
力される電流等を計測する測定器(キースレイ社製シス
テム251/SMU)、16は試料台11の上方に設け
られた顕微鏡である。
EXAMPLES Specific examples of the present invention will be described below. Figure 1
3 to 3 show the configuration of a manual type probe device according to an embodiment of the present invention for measuring a minute electric characteristic of a semiconductor wafer substrate as a sample X. In FIG. 1, 10 is a shield box for reducing the influence from the outside, 11 in the shield box 10 is a sample stand on which a semiconductor wafer substrate X to be measured is mounted, and 12 is heating built in the sample stand 11. Heaters, 13a and 13b
Is a measuring needle that is brought into contact with the wafer substrate X on the sample table 11, and 14a and 14b are manipulators that move the measuring needles 13a and 13b on the wafer substrate X.
Reference numerals a'and 14b 'are manipulator bases, 15 is a measuring instrument (system 251 / SMU manufactured by Keithley Co., Ltd.) for measuring currents input to the measuring needles 13a and 13b brought into contact with the wafer substrate X, and 16 is a sample table. 11 is a microscope provided above 11.

【0011】上記構成中、測定針13a及び13bから
電流や電流容量等を計測する計測器15に繋げられた計
測線1は、図2に示されるように該計測線1を中心軸電
極として絶縁体を介挿せしめた三重電極構造で構成され
ており、そのうち中間軸電極は1aは計測器15のガー
ド用に繋げられると共に、最外軸電極1bはシールドボ
ックス10と計測器15のシャーシに接地せしめられて
いる。
In the above structure, the measuring line 1 connected to the measuring device 15 for measuring the current, the current capacity, etc. from the measuring needles 13a and 13b is insulated by using the measuring line 1 as the central axis electrode as shown in FIG. It is composed of a triple electrode structure in which the body is inserted. Among them, the intermediate shaft electrode 1a is connected to the guard of the measuring instrument 15, and the outermost shaft electrode 1b is grounded to the shield box 10 and the chassis of the measuring instrument 15. It has been confused.

【0012】また試料台11自身、及び該試料台11の
後述する計測用電極11aと計測器15とを繋ぐ計測線
2についても、同様に絶縁体を介挿せしめた三重電極構
造で構成されている。即ち図3に示されるように、試料
接触面の導電部が、計測用電極11aとして、前記計測
器15に連絡している中心軸電極である計測線2に繋げ
られると共に、その計測用電極11aとの間に絶縁体1
1bを介挿せしめて設けられた中間電極11cが、計測
線2の中間軸電極2aに繋げられて計測器15のガード
用に繋げられ、またその下に絶縁体11dを介挿せしめ
て設けられた最下側電極11eが、計測線2の最外軸電
極2bに繋げられて計測器15のシャーシに繋げられて
おり、更にこの最外軸電極2bは前記シールドボックス
10に繋げられ接地せしめられている。
Further, the sample table 11 itself and the measurement line 2 connecting the measuring electrode 11a of the sample table 11 which will be described later and the measuring instrument 15 are also constituted by a triple electrode structure in which an insulator is inserted. There is. That is, as shown in FIG. 3, the conductive portion of the sample contact surface is connected to the measuring line 2 which is the central axis electrode communicating with the measuring instrument 15 as the measuring electrode 11a, and the measuring electrode 11a is connected to the measuring electrode 11a. Insulator 1 between
The intermediate electrode 11c provided by inserting 1b is connected to the intermediate shaft electrode 2a of the measurement line 2 and is also connected for guard of the measuring instrument 15, and the insulating electrode 11d is provided under the intermediate electrode 11c. The lower electrode 11e is connected to the outermost shaft electrode 2b of the measurement line 2 and is connected to the chassis of the measuring instrument 15, and the outermost shaft electrode 2b is connected to the shield box 10 and grounded. .

【0013】以上の本実施例構成は、計測器の計測経路
である測定針13a、13bからの計測線1の構成と、
試料台11そのものの構成及びその計測用電極11aと
計測器の間を繋ぐ計測線2の構成につき、これらを絶縁
体を介挿せしめた三重電極構造とした。このことで計測
線1の中心軸電極と中間軸電極1a及び試料台11の計
測用電極11aと中間電極11c間が同電位になってリ
ークI1、I2が発生しなくなり、又中間軸電極1aと最
外軸電極1b、及び中間電極11cと最下側電極11e
の二重シールド効果のためノイズN1、N2の影響を最小
限に低減できた。従って計測される微少な電流の測定値
(電流容量等も測定可能)はリークの影響がなく、ノイ
ズの影響の少ない正確な計測データとなる。下記表1
は、各測定項目の中でリーク及びノイズの影響により測
定が一番困難と思われる微少電流測定を例に採って、従
来構成と本実施例構成で測定されたウエハ基板Xの測定
可能下限値を示している。
The above-described configuration of this embodiment has the configuration of the measuring line 1 from the measuring needles 13a and 13b, which is the measuring path of the measuring instrument,
Regarding the configuration of the sample table 11 itself and the configuration of the measurement line 2 that connects the measurement electrode 11a and the measuring instrument, these have a triple electrode structure in which an insulator is inserted. As a result, the central axis electrode of the measurement line 1 and the intermediate axis electrode 1a and the measurement electrode 11a of the sample stage 11 and the intermediate electrode 11c have the same potential, and leaks I 1 and I 2 do not occur, and the intermediate axis electrode 1a and the outermost shaft electrode 1b, and the intermediate electrode 11c and the lowermost electrode 11e.
The effect of noise N 1 and N 2 can be reduced to a minimum due to the double shield effect. Therefore, the measured value of the minute current measured (current capacity and the like can be measured) has no influence of leakage and becomes accurate measurement data with little influence of noise. Table 1 below
Is the minimum measurable lower limit value of the wafer substrate X measured by the conventional configuration and the configuration of the present embodiment, taking as an example the minute current measurement that is considered to be the most difficult to measure due to the influence of leakage and noise among the measurement items. Is shown.

【0014】[0014]

【表1】 [Table 1]

【0015】この実験で使用した微少電流測定器15自
身は、10フェムトA以下まで測定可能であるが、従来
構成での測定針13a、13b及び試料台11は中間軸
電極や中間電極を設けていない絶縁体を介挿せしめた二
重電極構造であるためノー・リーク効果、二重シールド
効果の何れか一方又は双方が不完全なものとなり、上記
のような300フェムトAが測定可能下限値となった。
これに対し本実施例構成では、上記ノー・リーク効果、
二重シールド効果の双方とも十分であり、その測定器分
解能近くまで測定できることとなった。
The micro-current measuring device 15 itself used in this experiment can measure up to 10 femto A or less, but the measuring needles 13a and 13b and the sample table 11 in the conventional structure are provided with an intermediate shaft electrode or an intermediate electrode. Since it has a double electrode structure with a non-insulating material inserted, either or both of the no-leak effect and the double-shield effect will be incomplete, and the above 300 femto A will be the measurable lower limit value. became.
On the other hand, in the configuration of this embodiment, the above-mentioned no-leak effect,
Both of the double shield effects are sufficient, and it was possible to measure near the resolution of the measuring instrument.

【0016】[0016]

【発明の効果】以上詳述した本発明の構成によれば、測
定針や試料台におけるリークI1、I2の発生がなく、又
二重シールド効果によりノイズN1、N2の影響が最小限
に低減されているため、正確で再現性がある微少電流や
電流容量等の電気的特性が測定可能となる。
According to the structure of the present invention described in detail above, the leaks I 1 and I 2 do not occur at the measuring needle and the sample table, and the double shield effect minimizes the influence of the noises N 1 and N 2. Since it is reduced to the limit, accurate and reproducible electrical characteristics such as minute current and current capacity can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るマニュアル型のプロー
ブ装置の構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a manual type probe device according to an embodiment of the present invention.

【図2】測定針から計測器に繋げられた計測線の三重電
極構造の構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a triple electrode structure of a measurement line connected from a measuring needle to a measuring instrument.

【図3】試料台及び該試料台の計測用電極と計測器とを
繋ぐ計測線の三重電極構造の構成を示す説明図である。
FIG. 3 is an explanatory view showing a configuration of a triple electrode structure of a sample stage and a measurement line connecting a measurement electrode of the sample stage and a measuring instrument.

【図4】従来のマニュアル型プローブ装置の一構成を示
す説明図である。
FIG. 4 is an explanatory diagram showing a configuration of a conventional manual probe device.

【符号の簡単な説明】[Simple explanation of symbols]

1、2 計測線 1a、2a 中間軸電極 1b、2b 最外軸電極 10 シールドボックス 11 試料台 11a 計測用電極 11b 中間電極 11c 最下側電極 13a、13b 測定針 15 計測器 1, 2 Measuring line 1a, 2a Intermediate shaft electrode 1b, 2b Outermost shaft electrode 10 Shield box 11 Sample stage 11a Measuring electrode 11b Intermediate electrode 11c Bottom electrode 13a, 13b Measuring needle 15 Measuring instrument

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森井 彰 神奈川県川崎市幸区北加瀬1−15−12 株 式会社ベクトルセミコンダクタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Morii 1-15-12 Kitakase, Saiwai-ku, Kawasaki-shi, Kanagawa Stock Company Vector Semiconductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定対象となる試料を載せる試料台と、
その試料台上の試料に接触せしめられる測定針とを有
し、外部で計測器と接続して前記試料の電気的特性の評
価を行う電気的特性測定用プローブ装置において、前記
計測器から試料直前の測定針先端側までの間を連絡する
計測線の構成につき、該計測線を中心軸電極として絶縁
体を介挿せしめた三重電極構造とし、中間軸電極をガー
ド用に前記計測器に繋ぐと共に、最外軸電極を計測器の
シャーシに繋いで計測器のシャーシと同電位になるよう
にしたことを特徴とする電気的特性測定用プローブ装
置。
1. A sample table on which a sample to be measured is placed,
In a probe device for measuring electrical characteristics, which has a measuring needle that can be brought into contact with a sample on the sample table, and which is externally connected to a measuring instrument to evaluate electrical characteristics of the sample, from the measuring instrument to immediately before the sample. Regarding the configuration of the measurement line that connects between the tip side of the measurement needle and the triple electrode structure in which an insulator is inserted with the measurement line as the central axis electrode, the intermediate axis electrode is connected to the measuring instrument for guard. A probe device for measuring electrical characteristics, characterized in that the outermost shaft electrode is connected to the chassis of the measuring instrument so as to have the same potential as the chassis of the measuring instrument.
【請求項2】 測定対象となる試料を載せる試料台と、
その試料台上の試料に接触せしめられる測定針とを有
し、外部で計測器と接続して前記試料の電気的特性の評
価を行う電気的特性測定用プローブ装置において、前記
試料台につき、その試料接触面の導電部を計測用電極と
して、その計測用電極を含めて絶縁体を介挿せしめた三
重電極構造とし、且つ前記計測器から計測用電極までの
間を連絡する計測線の構成につき、該計測線を中心軸電
極として絶縁体を介挿せしめた同じく三重電極構造と
し、試料台の中間電極を計測線の中間軸電極に繋いでガ
ード用に前記計測器に連絡すると共に、試料台の最下側
電極を計測線の最外軸電極に繋いで計測器のシャーシに
繋ぎ計測器のシャーシと同電位になるようにしたことを
特徴とする電気的特性測定用プローブ装置。
2. A sample table on which a sample to be measured is placed,
In the probe device for electrical characteristic measurement, which has a measuring needle that is brought into contact with the sample on the sample table, and which is externally connected to a measuring instrument to evaluate the electrical characteristics of the sample, in the sample table, Regarding the configuration of the measurement line that connects the conductive part of the sample contact surface as the measurement electrode, has a triple electrode structure in which an insulator is inserted including the measurement electrode, and connects the measuring instrument to the measurement electrode , The same triple electrode structure in which an insulator is inserted with the measurement line as the central axis electrode, the intermediate electrode of the sample stage is connected to the intermediate axis electrode of the measurement line to communicate with the measuring instrument for guard, and the sample stage is also used. A probe device for measuring electrical characteristics, characterized in that the lowermost electrode of is connected to the outermost shaft electrode of the measurement line and is connected to the chassis of the measuring instrument so that it has the same potential as the chassis of the measuring instrument.
【請求項3】 請求項第2項記載に記載された電気的特
性測定用プローブ装置の構成を備えると共に、その試料
台の構成中に、試料の加熱又は冷却が可能な加熱装置又
は冷却装置が設置されていることを特徴とする電気的特
性測定用プローブ装置。
3. A heating device or a cooling device capable of heating or cooling a sample is provided in the structure of the sample stage, which comprises the structure of the probe device for measuring electrical characteristics described in claim 2. A probe device for measuring electrical characteristics, which is installed.
JP5342767A 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics Expired - Lifetime JP2668768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342767A JP2668768B2 (en) 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9396493 1993-03-30
JP5-93964 1993-03-30
JP5342767A JP2668768B2 (en) 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics

Publications (2)

Publication Number Publication Date
JPH075197A true JPH075197A (en) 1995-01-10
JP2668768B2 JP2668768B2 (en) 1997-10-27

Family

ID=26435225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342767A Expired - Lifetime JP2668768B2 (en) 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics

Country Status (1)

Country Link
JP (1) JP2668768B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971488A (en) * 1988-06-09 1990-11-20 Kanzaki Kokyukoki Mfg. Co., Ltd. Table sliding apparatus for gear finishing machines
JP2001068515A (en) * 1999-06-30 2001-03-16 Cascade Microtech Inc Probe station thermal chuck for shielding capacitance current
WO2002035603A1 (en) * 2000-10-18 2002-05-02 Ibiden Co., Ltd. Wafer prover device, and ceramic substrate used for wafer prover device
US6781396B2 (en) 1995-12-01 2004-08-24 Cascade Microtech, Inc. Low-current probe card
US6995579B2 (en) 1995-12-01 2006-02-07 Cascade Microtech, Inc. Low-current probe card
KR100800627B1 (en) * 1999-08-23 2008-02-05 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for reducing migration of conductive material on a component
JP2017102002A (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Check device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095645U (en) * 2003-01-31 2003-08-15 船井電機株式会社 Video cassette recorder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095645U (en) * 2003-01-31 2003-08-15 船井電機株式会社 Video cassette recorder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971488A (en) * 1988-06-09 1990-11-20 Kanzaki Kokyukoki Mfg. Co., Ltd. Table sliding apparatus for gear finishing machines
US6781396B2 (en) 1995-12-01 2004-08-24 Cascade Microtech, Inc. Low-current probe card
US6995579B2 (en) 1995-12-01 2006-02-07 Cascade Microtech, Inc. Low-current probe card
JP2001068515A (en) * 1999-06-30 2001-03-16 Cascade Microtech Inc Probe station thermal chuck for shielding capacitance current
KR100800627B1 (en) * 1999-08-23 2008-02-05 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for reducing migration of conductive material on a component
WO2002035603A1 (en) * 2000-10-18 2002-05-02 Ibiden Co., Ltd. Wafer prover device, and ceramic substrate used for wafer prover device
JP2017102002A (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Check device

Also Published As

Publication number Publication date
JP2668768B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US6917195B2 (en) Wafer probe station
US7616017B2 (en) Probe station thermal chuck with shielding for capacitive current
US5404110A (en) System using induced current for contactless testing of wiring networks
JPH08236591A (en) Method and equipment for nontouch corona oxide semiconductorq-v movement electric charge measurement
Sobolewski Current and voltage measurements in the Gaseous Electronics Conference rf Reference Cell
JP2668768B2 (en) Probe device for measuring electrical characteristics
Delahaye et al. Controlling ac losses in quantum Hall effect devices
US6348809B1 (en) Microscopic capacitance measurement system and probing system
Misakian et al. Miniature ELF electric field probe
US20050110508A1 (en) Apparatus and test method for isolation and electrical shielding prober chuck stage
JP2673870B2 (en) Electric circuit measuring device
JPS58220438A (en) Measuring placing stand for semiconductor wafer
JPS63138745A (en) Structure of base plate for prober
JP3506243B2 (en) Probing system and capacity measurement method
Tarstrup et al. The impedance characteristic of a spherical probe in an isotropic plasma
JPH01165968A (en) Wafer probing apparatus
Vila et al. RIEMF in MgO and Al2O3 insulated MI cable ITER magnetic diagnostic coils
Chen et al. Analysis of the Influence of Electrostatic Probe on Surface Charge Measurements
US6864676B2 (en) Substrate-holding device for testing circuit arrangements on substrates
JPS5965772A (en) Measuring device for voltage of buried object to be measured
Horenstein et al. Measurement of electrostatic fields, voltages, and charges
TW574506B (en) Transmission line pulse method to measure the electrostatic discharge potential
Wolfgang et al. Progress in electron-beam testing
Jeanneret et al. Contactless measurements of the internal capacitance of a Corbino ring in the quantum Hall regime
JP2002277509A (en) Device inspection equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603