JP2668768B2 - Probe device for measuring electrical characteristics - Google Patents

Probe device for measuring electrical characteristics

Info

Publication number
JP2668768B2
JP2668768B2 JP5342767A JP34276793A JP2668768B2 JP 2668768 B2 JP2668768 B2 JP 2668768B2 JP 5342767 A JP5342767 A JP 5342767A JP 34276793 A JP34276793 A JP 34276793A JP 2668768 B2 JP2668768 B2 JP 2668768B2
Authority
JP
Japan
Prior art keywords
electrode
sample
measurement
measuring
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5342767A
Other languages
Japanese (ja)
Other versions
JPH075197A (en
Inventor
秀継 工藤
和義 曽根
茂 吉沢
彰 森井
Original Assignee
ベクターセミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベクターセミコン株式会社 filed Critical ベクターセミコン株式会社
Priority to JP5342767A priority Critical patent/JP2668768B2/en
Publication of JPH075197A publication Critical patent/JPH075197A/en
Application granted granted Critical
Publication of JP2668768B2 publication Critical patent/JP2668768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体デバイス等の
製造分野におけるプロセス開発工程でウエハ基板等の試
料の微少な電流や電流容量等の電気的特性の測定を行う
プローブ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe device for measuring electrical characteristics such as minute current and current capacity of a sample such as a wafer substrate in a process development process in the field of manufacturing semiconductor devices and the like.

【0002】[0002]

【従来の技術】近年、半導体デバイス製造分野では益々
高集積化及び超微細化が要求されており、特にメモリ事
業では記憶容量の大容量化に伴い高集積化及び微細化が
余儀なくされている。ダイナミックランダムアクセスメ
モリ(DRAM)を例にあげると、これは各ビットセル
を構成するキャパシタンス及びトランジスタ等のサイズ
を縮小化する等の手段により大容量化を図っている。従
って、そのキャパシタンスより僅かなリーク電流等が生
じても、そのビット情報に大きな影響を与え真値を保持
できなくなるため、リフレッシュサイクル時間の補償に
も影響を与える。そのため半導体デバイス製造分野にお
けるプロセス開発解析工程では、ウエハ基板等の試料の
微少な電流や電流容量等の電気的特性の評価は欠かせな
いものとなっている。
2. Description of the Related Art In recent years, in the field of manufacturing semiconductor devices, higher integration and ultra-miniaturization have been demanded. In particular, in the memory business, high integration and miniaturization have been unavoidable with the increase in storage capacity. Taking a dynamic random access memory (DRAM) as an example, the capacity is increased by means such as reducing the size of a capacitance and a transistor constituting each bit cell. Therefore, even if a leak current slightly smaller than the capacitance occurs, the bit information is greatly affected and the true value cannot be held, which also affects the refresh cycle time compensation. Therefore, in the process development analysis process in the semiconductor device manufacturing field, evaluation of electrical characteristics such as a minute current and a current capacity of a sample such as a wafer substrate is indispensable.

【0003】図4は、そのような評価試験に使用される
マニュアルプローバを用いたシステムを例に採りその構
成の概略を示している。同図において、10は外界から
の影響を少なくすためのシールドボックス、そのシール
ドボックス10内の11は測定対象となるウエハ等の試
料Xを載置する試料台、13a及び13bはその試料台
11上の試料Xに接触せしめられる測定針、14a及び
14bは測定針13a及び13bを試料X上で移動させ
るマニュピレータで更に14a′及び14b′はマニュ
ピレータベース、15は試料Xに接触せしめられた測定
針13a及び13bから入力される電流等をシールドボ
ックス外において測定する計測器、16は試料台11の
上方の設けられた顕微鏡である。
FIG. 4 shows an outline of the configuration of a system using a manual prober used for such an evaluation test as an example. In the figure, 10 is a shield box for reducing the influence from the outside, 11 in the shield box 10 is a sample stand on which a sample X such as a wafer to be measured is placed, and 13a and 13b are the sample stand 11 The measurement needles 14a and 14b which are brought into contact with the sample X above are manipulators for moving the measurement needles 13a and 13b on the sample X. Further, 14a 'and 14b' are manipulator bases, and 15 is a measurement needle which is brought into contact with the sample X. A measuring instrument for measuring currents and the like input from 13a and 13b outside the shield box, and 16 is a microscope provided above the sample table 11.

【0004】この装置では、まず試料台11上に試料X
を載せて顕微鏡16で観察しながらマニュピレータ14
a及び14bを使って測定針13a及び13bを移動さ
せ、試料Xの目的の場所に接触させる。このセット後、
定電圧定電流計等の計測器15によってその試料Xにお
ける微少な電気的特性の測定を行う。
In this apparatus, first, a sample X is placed on a sample stage 11.
While manipulating the manipulator 14 while observing it with a microscope 16.
The measurement needles 13a and 13b are moved by using a and 14b, and are brought into contact with a target place of the sample X. After this set,
A minute electrical characteristic of the sample X is measured by a measuring device 15 such as a constant voltage / current ammeter.

【0005】[0005]

【発明が解決しようとする課題】以上の構成では、試料
Xや測定針13a及び13bが前記シールドボック10
によって外界と遮断されているため、本来外界の影響を
受けないはずであるが、実際に得られるデータには、試
料の加熱・冷却が可能なヒータ12等の加熱・冷却装置
が試料台11自身に設けられている場合、特にそのヒー
タ12等よりノイズNが入り、又試料台11の試料接
触面の導電部である計測用電極11aからプローブステ
ーション11fへのリークIが生じるため、その測定
用電極の電圧降下、及びある一定量のリーク電流I
存在する。このため微少である電気的測定データを正確
に測定することは困難であった。
In the above arrangement, the sample X and the measuring needles 13a and 13b are not connected to the shield box 10a.
Since it is shielded from the outside world by the outside world, it should not be affected by the outside world, but the data actually obtained indicates that the heating / cooling device such as the heater 12 capable of heating / cooling the sample is the sample table 11 itself. In particular, noise N 1 enters from the heater 12 and the like, and leak I 2 from the measurement electrode 11a, which is a conductive portion of the sample contact surface of the sample table 11, to the probe station 11f is generated. the voltage drop of the measuring electrodes, and there is a leakage current I 2 of a certain amount. Therefore, it has been difficult to accurately measure minute electrical measurement data.

【0006】本発明は従来技術の以上な問題に鑑み創案
されたもので、測定時に外界よりの電波等による影響を
低減でき、又試料台11自身より発生するノイズN
及びリーク電流I、Iの影響を最小限に低減す
ることができる微少な電気的特性の測定が可能なプロー
ブ装置を提供せんとするものである。
The present invention has been made in view of the above problems of the prior art, and can reduce the influence of radio waves from the outside at the time of measurement, and can also reduce noise N 1 , which is generated from the sample stage 11 itself.
An object of the present invention is to provide a probe device capable of measuring a minute electric characteristic capable of minimizing the effects of N 2 and leakage currents I 1 and I 2 .

【0007】[0007]

【課題を解決するための手段】本発明者等は、まず微少
な電気的特性の測定に対し、測定針13a及び13bの
計測線、試料台11の計測用電極11a等へ影響を与え
るノイズN、N及びリークI、I等の原因を究
明したところ、測定対象となる試料の周辺に電気的電位
の浮遊している各導電性物質間での静電容量結合等によ
る外界からの誘導によるノイズNの影響、試料台11
に設置される試料加熱・冷却用のヒータ12等の加熱・
冷却装置から発生するノイズNによる影響、測定針1
3a、13bの計測線1とシールド(接地)間のリーク
、及び試料台11の計測用電極11aとシールド間
でのリークI等が原因となることが判明した。そこで
この様な原因を最小限に低減できる手段につき鋭意検討
したところ、以下に説明する本発明の構成を創案するに
至った。
The inventor of the present invention first measures noises which affect the measurement lines of the measuring needles 13a and 13b, the measuring electrode 11a of the sample stand 11 and the like for the measurement of minute electrical characteristics. When the causes of 1 , N 2 and leaks I 1 , I 2, etc. were investigated, it was confirmed from the external environment due to capacitive coupling between the conductive substances with electric potential floating around the sample to be measured. induction effect of noise N 2 by the sample base 11
Heating and cooling of the sample heating and cooling heaters 12
Influence of noise N 1 generated from the cooling device, the measurement needle 1
It has been found that leak I 1 between the measurement line 1 of 3a and 13b and the shield (ground), leak I 2 between the measurement electrode 11a of the sample stage 11 and the shield, and the like are the causes. Then, as a result of earnest studies on means for reducing such a cause to the minimum, the inventors have come up with a configuration of the present invention described below.

【0008】 即ち、本発明に係る微少な電気的特性測定
用プローブ装置は、 前記試料台の構成につき、試料接触
面の計測用電極を含め絶縁体を介挿せしめた三重電極構
造とし、且つ前記計測器から計測用電極までの間を連絡
する計測線の構成についても、該計測線を中心軸電極と
して絶縁体を介挿せしめた同じく三重電極構造とし、試
料台の中間電極を計測線の中間軸電極に繋いでガード用
に前記計測器に連絡することにより、計測器側にて計測
線に影響がでないようにガード・バッファを経由して前
記中間電極が計測用電極と同電位になるように制御され
ることになり、そのためリークIそのものがなくな
る。またシールド効果も大で計測線へのノイズN、N
の影響も最小限に低減されることになる。一方試料台
の最下側電極を計測線の最外軸電極に繋いで計測器のシ
ャーシに繋ぎ計測器のシャーシと同電位になるよう(通
常は計測器側で接地)にする。このように前記試料台の
構成を三重電極構造とすると共に、同じく計測器から試
料台の計測用電極までの間を連絡する計測線についても
三重電極構造としたことで、ノー・リーク(計測用電極
と中間電極とが同電位になったことによる)及びロー・
ノイズ(中間電極と最下側電極の二重シールド効果によ
る)とすることが可能になった。従来の試料台が試料接
触面の計測用電極を含め絶縁体を介挿させた二重構造で
あり、その最下側電極を測定器のシャーシに繋ぐと、一
重シールド効果しか得られず、ノイズの影響が大とな
り、更に計測用電極と最下側電極(通常測定器側で接
地)との間に電位差が生じるため、絶縁体の固有抵抗値
に依存したリークIが生じていた。又加熱・冷却用ヒ
ータ等の加熱装置又は冷却装置が設けられた試料台で
は、温度上昇によりそのセラミックス系絶縁体材料の固
有抵抗値が低下するため、更に計測用電極と最下側電極
との間に発生するリークIが増大する。これに対し本
発明では、上述のようなガード用の中間電極を設けたこ
とにより計測用電極との間が同電位になるため、絶縁体
の固有抵抗値が低下してもノー・リークとなり、又二重
シールド効果によってロー・ノイズとなっているため、
前記計測器の能力を十分発揮でき、微少な電気的特性の
測定が可能になる。
Namely, minute electrical characteristic measurement according to the present invention
The probe device has a triple electrode structure in which an insulator including the measurement electrode on the sample contact surface is inserted in the configuration of the sample table, and a measurement line for connecting the measurement instrument to the measurement electrode is provided. Regarding the configuration, the same triple electrode structure in which an insulator is inserted with the measurement line as the central axis electrode, and the intermediate electrode of the sample stand is connected to the intermediate axis electrode of the measurement line to connect to the measuring instrument for guarding As a result, the measuring device controls the intermediate electrode so that it has the same potential as the measuring electrode via the guard buffer so that the measuring line is not affected, and therefore the leak I 2 itself disappears. . In addition, the shielding effect is large, and noises N 1 and N
2 will also be minimized. On the other hand, the lowermost electrode of the sample stage is connected to the outermost axis electrode of the measurement line and connected to the chassis of the measuring instrument so that the same potential as the chassis of the measuring instrument is established (usually grounded on the measuring instrument side). In this way, the structure of the sample stage has a triple-electrode structure, and the measurement line that connects the measuring instrument to the measurement electrode of the sample stage also has a triple-electrode structure. Electrode and the intermediate electrode are at the same potential) and low
Noise (due to the double shielding effect of the middle electrode and the lowermost electrode) has become possible. The conventional sample stage has a double structure in which an insulator including the measurement electrode on the sample contact surface is inserted, and when the lowermost electrode is connected to the chassis of the measuring instrument, only a single shield effect is obtained and noise is reduced. effect becomes large, and had further a potential difference between the measuring electrode and the lowermost electrode (the ground in the normal measuring instrument side) occurs, leakage I 2 occurs which depends on the specific resistance of the insulator. In a sample stage provided with a heating device or a cooling device such as a heating / cooling heater, the specific resistance of the ceramic-based insulating material decreases due to a rise in temperature. leak I 2 increases occurring between. On the other hand, in the present invention, since the guard intermediate electrode is provided with the same potential as that of the measurement electrode by providing the above guard intermediate electrode, no leak occurs even if the specific resistance value of the insulator decreases, In addition, because it is low noise due to the double shield effect,
The ability of the measuring device can be fully exhibited, and measurement of minute electrical characteristics becomes possible.

【0009】[0009]

【実施例】本発明の具体的実施例を以下説明する。図1
乃至図3は半導体ウエハ基板を試料Xとしてその微少な
電気的特性の測定を行う本発明の一実施例に係るマニュ
アル型のプローブ装置の構成を示している。図1におい
て、10は外界からの影響を低減するシールドボック
ス、そのシールドボックス10内の11は測定対象とな
る半導体ウエハ基板Xを載置する試料台、12はその試
料台11に内蔵された加熱用ヒータ、13a及び13b
はその試料台11上のウエハ基板Xに接触せしめられる
測定針、14a及び14bは測定針13a及び13bを
ウエハ基板X上で移動させるマニピレータで更に14
a′及び14b′はマニピレータベース、15はウエハ
基板Xに接触せしめられた測定針13a及び13bに入
力される電流等を計測する測定器(キースレイ社製シス
テム251/SMU)、16は試料台11の上方に設け
られた顕微鏡である。
EXAMPLES Specific examples of the present invention will be described below. FIG.
3 to 3 show the configuration of a manual type probe device according to an embodiment of the present invention for measuring a minute electric characteristic of a semiconductor wafer substrate as a sample X. In FIG. 1, reference numeral 10 denotes a shield box for reducing the influence from the outside world, reference numeral 11 in the shield box 10 denotes a sample table on which a semiconductor wafer substrate X to be measured is mounted, and reference numeral 12 denotes a heating built in the sample table 11. Heaters, 13a and 13b
Is a measuring needle which is brought into contact with the wafer substrate X on the sample table 11, and 14a and 14b are manipulators for moving the measuring needles 13a and 13b on the wafer substrate X.
a 'and 14b' are manipulator bases, 15 is a measuring instrument (system 251 / SMU, manufactured by Keithley Co.) for measuring the current and the like input to the measuring needles 13a and 13b brought into contact with the wafer substrate X, and 16 is a sample table 11 is a microscope provided above 11.

【0010】 上記構成中、測定針13a及び13bから
電流や電流容量等を計測する計測器15に繋げられた計
測線1は、図2に示されるように該計測線1を中心軸電
極として絶縁体を介挿せしめた三重電極構造で構成され
ており、そのうち中間軸電極は1aは計測器15のガー
ド用に繋げられると共に、最外軸電極1bはシールドボ
ックス10と計測器15のシャーシに接地せしめられて
いる。
In the above structure, the measurement line 1 connected to the measuring device 15 for measuring the current, the current capacity and the like from the measuring needles 13a and 13b is insulated by using the measurement line 1 as the central axis electrode as shown in FIG. It has a triple electrode structure with a body interposed. Among them, the middle axis electrode 1a is connected to the guard of the measuring device 15, and the outermost axis electrode 1b is grounded to the shield box 10 and the chassis of the measuring device 15. It has been confused.

【0011】 また試料台11自身、及び該試料台11の
後述する計測用電極11aと計測器15とを繋ぐ計測線
2についても、同様に絶縁体を介挿せしめた三重電極構
造で構成されている。即ち図3に示されるように、試料
接触面の導電部が、計測用電極11aとして、前記計測
器15に連絡している中心軸電極である計測線2に繋げ
られると共に、その計測用電極11aとの間に絶縁体1
1bを介挿せしめて設けられた中間電極11cが、計測
線2の中間軸電極2aに繋げられて計測器15のガード
用に繋げられ、またその下に絶縁体11dを介挿せしめ
て設けられた最下側電極11eが、計測線2の最外軸電
極2bに繋げられて計測器15のシャーシに繋げられて
おり、更にこの最外軸電極2bは前記シールドボックス
10に繋げられ接地せしめられている。
Further, the sample table 11 itself and the measurement line 2 connecting the measuring electrode 11a of the sample table 11 described later and the measuring instrument 15 are also constituted by a triple electrode structure in which an insulator is similarly inserted. There is. That is, as shown in FIG. 3, the conductive portion of the sample contact surface is connected to the measuring line 2 which is the central axis electrode communicating with the measuring instrument 15 as the measuring electrode 11a, and the measuring electrode 11a is connected to the measuring electrode 11a. Insulator 1 between
The intermediate electrode 11c provided with the first electrode 1b interposed therebetween is connected to the intermediate axis electrode 2a of the measurement line 2 and connected to the guard of the measuring instrument 15, and the lowermost electrode provided with the insulator 11d inserted thereunder. The lower electrode 11e is connected to the outermost axis electrode 2b of the measurement line 2 and is connected to the chassis of the measuring instrument 15, and the outermost axis electrode 2b is connected to the shield box 10 and grounded. .

【0012】 以上の本実施例構成は、計測器の計測経路
である測定針13a、13bからの計測線1の構成と、
試料台11そのものの構成及びその計測用電極11aと
計測器の間を繋ぐ計測線2の構成につき、これらを絶縁
体を介挿せしめた三重電極構造とした。このことで計測
線1の中心軸電極と中間軸電極1a及び試料台11の計
測用電極11aと中間電極11c間が同電位になってリ
ークI、Iが発生しなくなり、又中間軸電極1aと
最外軸電極1b、及び中間電極11cと最下側電極11
eの二重シールド効果のためノイズN、Nの影響を
最小限に低減できた。従って計測される微少な電流の測
定値(電流容量等も測定可能)はリークの影響がなく、
ノイズの影響の少ない正確な計測データとなる。下記表
1は、各測定項目の中でリーク及びノイズの影響により
測定が一番困難と思われる微少電流測定を例に採って、
従来構成と本実施例構成で測定されたウエハ基板Xの測
定可能下限値を示している。
The configuration of the present embodiment described above includes the configuration of the measurement line 1 from the measurement needles 13a and 13b,
Regarding the configuration of the sample stage 11 itself and the configuration of the measurement line 2 connecting the measurement electrode 11a and the measurement device, these were formed into a triple electrode structure in which an insulator was inserted. As a result, the potentials between the central axis electrode and the intermediate axis electrode 1a of the measurement line 1 and between the measurement electrode 11a and the intermediate electrode 11c of the sample stage 11 become the same potential, so that no leaks I 1 and I 2 occur, and the intermediate axis electrode 1a and the outermost shaft electrode 1b, and the intermediate electrode 11c and the lowermost electrode 11
Due to the double shielding effect of e, the effects of the noises N 1 and N 2 could be reduced to a minimum. Therefore, the measured value of the minute current measured (current capacity etc. can be measured) is not affected by leakage,
It becomes accurate measurement data with little influence of noise. Table 1 below is an example of a minute current measurement that seems to be the most difficult to measure due to the effects of leakage and noise among the measurement items.
The lower limit of the measurable value of the wafer substrate X measured by the conventional configuration and the configuration of the present embodiment is shown.

【0013】[0013]

【表1】 [Table 1]

【0014】この実験で使用した微少電流測定器15自
身は、10フェムトA以下まで測定可能であるが、従来
構成での測定針13a、13b及び試料台11は中間軸
電極や中間電極を設けていない絶縁体を介挿せしめた二
重電極構造であるためノー・リーク効果、二重シールド
効果の何れか一方又は双方が不完全なものとなり、上記
のような300フェムトAが測定可能下限値となった。
これに対し本実施例構成では、上記ノー・リーク効果、
二重シールド効果の双方とも十分であり、その測定器分
解能近くまで測定できることとなった。
The micro-current measuring device 15 itself used in this experiment can measure up to 10 femto A or less, but the measuring needles 13a and 13b and the sample table 11 in the conventional structure are provided with an intermediate shaft electrode or an intermediate electrode. Because of the double electrode structure with no insulator interposed, no leakage effect, one or both of the double shielding effect becomes incomplete, and 300 femto A as described above is the lower limit of measurable value became.
On the other hand, in the configuration of the present embodiment, the above-mentioned no leak effect,
Both of the double shield effects were sufficient, and it was possible to measure to near the resolution of the measuring instrument.

【0015】[0015]

【発明の効果】以上詳述した本発明の構成によれば、
料台におけるリークI、Iの発生がなく、又二重シ
ールド効果によりノイズN、Nの影響が最小限に低
減されているため、正確で再現性がある微少電流や電流
容量等の電気的特性が測定可能となる。
According to the configuration of the present invention described above in detail, according to the present invention, trial
No occurrence of leakage I 1, I 2 in the postal board, also double since the shielding effect influences of noise N 1, N 2 is reduced to a minimum, minute current and current capacity such that accurate and reproducible Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るマニュアル型のプロー
ブ装置の構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a manual probe device according to an embodiment of the present invention.

【図2】測定針から計測器に繋げられた計測線の三重電
極構造の構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a triple electrode structure of a measurement line connected from a measurement needle to a measurement device.

【図3】試料台及び該試料台の計測用電極と計測器とを
繋ぐ計測線の三重電極構造の構成を示す説明図である。
FIG. 3 is an explanatory view showing a configuration of a triple electrode structure of a sample stage and a measurement line connecting a measurement electrode of the sample stage and a measuring instrument.

【図4】従来のマニュアル型プローブ装置の一構成を示
す説明図である。
FIG. 4 is an explanatory diagram showing one configuration of a conventional manual probe device.

【符号の簡単な説明】[Brief description of reference numerals]

1、2 計測線 1a、2a 中間軸電極 1b、2b 最外軸電極 10 シールドボックス 11 試料台 11a 計測用電極 11b 中間電極 11c 最下側電極 13a、13b 測定針 15 計測器 1, 2 Measurement line 1a, 2a Intermediate axis electrode 1b, 2b Outermost axis electrode 10 Shield box 11 Sample stand 11a Measurement electrode 11b Intermediate electrode 11c Lowermost electrode 13a, 13b Measurement needle 15 Measuring instrument

フロントページの続き (72)発明者 森井 彰 神奈川県川崎市幸区北加瀬1−15−12 株式会社ベクトルセミコンダクタ内 (56)参考文献 実開 平3−95645(JP,U)Continuation of the front page (72) Inventor Akira Morii 1-15-12 Kitakase, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside Vector Semiconductor Co., Ltd. (56) References Hirai 3-95645 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定対象となる試料を載せる試料台と、
その試料台上の試料に接触せしめられる測定針とを有
し、外部で計測器と接続して前記試料の電気的特性の評
価を行う電気的特性測定用プローブ装置において、前記
試料台につき、その試料接触面の導電部を計測用電極と
して、その計測用電極を含めて絶縁体を介挿せしめた三
重電極構造とし、且つ前記計測器から計測用電極までの
間を連絡する計測線の構成につき、該計測線を中心軸電
極として絶縁体を介挿せしめた同じく三重電極構造と
し、試料台の中間電極を計測線の中間軸電極に繋いでガ
ード用に前記計測器に連絡すると共に、試料台の最下側
電極を計測線の最外軸電極に繋いで計測器のシャーシに
繋ぎ計測器のシャーシと同電位になるようにしたことを
特徴とする電気的特性測定用プローブ装置。
A sample stage on which a sample to be measured is placed;
A probe for contacting the sample on the sample stage, and having an externally connected measuring instrument to evaluate the electrical characteristics of the sample in an electrical characteristic measuring probe device, Regarding the configuration of the measurement line that connects the conductive part of the sample contact surface as the measurement electrode, has a triple electrode structure in which an insulator is inserted including the measurement electrode, and connects the measuring instrument to the measurement electrode , The same triple electrode structure in which an insulator is inserted with the measurement line as the central axis electrode, the intermediate electrode of the sample stage is connected to the intermediate axis electrode of the measurement line to communicate with the measuring instrument for guard, and the sample stage is also used. A probe device for measuring electrical characteristics, wherein the lowermost electrode is connected to the outermost axis electrode of the measurement line and connected to the chassis of the measuring instrument so as to have the same potential as the chassis of the measuring instrument.
【請求項2】 請求項1に記載された電気的特性測定用
プローブ装置の構成を備えると共に、その試料台の構成
中に、試料の加熱又は冷却が可能な加熱装置又は冷却装
置が設置されていることを特徴とする電気的特性測定用
プローブ装置。
2. A probe device for measuring electrical characteristics according to claim 1, wherein a heating device or a cooling device capable of heating or cooling the sample is provided in the configuration of the sample stage. A probe device for measuring electrical characteristics.
JP5342767A 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics Expired - Lifetime JP2668768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342767A JP2668768B2 (en) 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9396493 1993-03-30
JP5-93964 1993-03-30
JP5342767A JP2668768B2 (en) 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics

Publications (2)

Publication Number Publication Date
JPH075197A JPH075197A (en) 1995-01-10
JP2668768B2 true JP2668768B2 (en) 1997-10-27

Family

ID=26435225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342767A Expired - Lifetime JP2668768B2 (en) 1993-03-30 1993-12-16 Probe device for measuring electrical characteristics

Country Status (1)

Country Link
JP (1) JP2668768B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310831A (en) * 1988-06-09 1989-12-14 Kanzaki Kokyukoki Mfg Co Ltd Table feed device for gear machining device
US6075376A (en) 1997-12-01 2000-06-13 Schwindt; Randy J. Low-current probe card
US5729150A (en) 1995-12-01 1998-03-17 Cascade Microtech, Inc. Low-current probe card with reduced triboelectric current generating cables
US6445202B1 (en) * 1999-06-30 2002-09-03 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
US6488820B1 (en) * 1999-08-23 2002-12-03 Applied Materials, Inc. Method and apparatus for reducing migration of conductive material on a component
WO2002035603A1 (en) * 2000-10-18 2002-05-02 Ibiden Co., Ltd. Wafer prover device, and ceramic substrate used for wafer prover device
JP6455413B2 (en) * 2015-12-01 2019-01-23 三菱電機株式会社 Inspection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095645U (en) * 2003-01-31 2003-08-15 船井電機株式会社 Video cassette recorder

Also Published As

Publication number Publication date
JPH075197A (en) 1995-01-10

Similar Documents

Publication Publication Date Title
US6917195B2 (en) Wafer probe station
US7616017B2 (en) Probe station thermal chuck with shielding for capacitive current
CA1264868A (en) Semiconductor defect monitor for diagnosing processing-induced defects
US4296372A (en) Techniques for impressing a voltage with an electron beam
JP2668768B2 (en) Probe device for measuring electrical characteristics
US6771092B1 (en) Non-contact mobile charge measurement with leakage band-bending and dipole correction
JP2001116787A (en) Charge measuring apparatus
Delahaye et al. Controlling ac losses in quantum Hall effect devices
EP0980004B1 (en) Microscopic capacitance measurement system and probing system
JPH07325119A (en) Method and apparatus for measuring quantity of charge
JP2673870B2 (en) Electric circuit measuring device
US6377067B1 (en) Testing method for buried strap and deep trench leakage current
JPS63138745A (en) Structure of base plate for prober
CN106252348A (en) A kind of laying out pattern method being applicable to low capacitance density Test Constructure of
US6337218B1 (en) Method to test devices on high performance ULSI wafers
US7230443B1 (en) Non-contact mobile charge measurement with leakage band-bending and dipole correction
Greason Analysis of human body model for electrostatic discharge (ESD) with multiple charged sources
CN106199227B (en) A kind of electrified degree simulating test device of forced-oil-air cooling transformer oilpaper
US6864676B2 (en) Substrate-holding device for testing circuit arrangements on substrates
JPS5965772A (en) Measuring device for voltage of buried object to be measured
Horenstein et al. Measurement of electrostatic fields, voltages, and charges
JP2003043079A (en) Probing system and capacitance measuring method
TW574506B (en) Transmission line pulse method to measure the electrostatic discharge potential
JP2002277509A (en) Device inspection equipment
CN112666506A (en) On-chip capacitor standard sample for integrated circuit calibration

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603