JPH06304153A - Image pickup device using mri device - Google Patents

Image pickup device using mri device

Info

Publication number
JPH06304153A
JPH06304153A JP5095927A JP9592793A JPH06304153A JP H06304153 A JPH06304153 A JP H06304153A JP 5095927 A JP5095927 A JP 5095927A JP 9592793 A JP9592793 A JP 9592793A JP H06304153 A JPH06304153 A JP H06304153A
Authority
JP
Japan
Prior art keywords
image pickup
moving
image
mri
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5095927A
Other languages
Japanese (ja)
Other versions
JP3212751B2 (en
Inventor
Eiji Yoshitome
英二 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP09592793A priority Critical patent/JP3212751B2/en
Publication of JPH06304153A publication Critical patent/JPH06304153A/en
Application granted granted Critical
Publication of JP3212751B2 publication Critical patent/JP3212751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To pick up an image by the MRI device while successively shifting an examinee. CONSTITUTION:A section 11 which executes the movement and the image pickup at the same time controls a belt conveyor 20 at the speed Gv smaller than or equal to the (Mw-Gw)/Mt, (where, the length in the movement direction of the image pickup range of an MRI device 10 is taken as Mw, the length in the movement direction at the image pickup range as Gw, and the time required to collect one image of data as Mt), and the movement by the belt conveyor 20 and the image pickup by the MRI device 10 are executed at the same time. Thus, the efficiency of picking up the image can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、MRI装置を用いた
撮像装置に関し、さらに詳しくは、被検体を連続的に移
動させつつMRI装置で撮像することが出来る撮像装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup apparatus using an MRI apparatus, and more particularly to an image pickup apparatus capable of picking up an image with an MRI apparatus while continuously moving a subject.

【0002】[0002]

【従来の技術】MRI装置とそのMRI装置のボア内を
通過させるべく被検体を移動させる移動装置とからなる
撮像装置は、例えば特開昭63−272335号公報に
開示されている。この従来の撮像装置は、撮像面が移動
方向に平行な場合に、まず、被検体Gの移動を停止して
撮像し、移動方向の長さTの第1の画像を得る。次に、
距離Tだけ移動してから再び停止して撮像し、移動方向
の長さTの第2の画像を得る。これをn回繰り返し、得
られた第1から第nまでのn枚の画像を継ぎ合せて、長
さnTの画像を得るものである。図11に上記従来の撮
像装置の構成概念図を示す。Gは被検体(患者)、60
は被検体Gを移動させるクレードル、50はMRI装
置、50aはボアである。51は、撮像時にクレードル
60を停止させる移動停止制御部であり、MRI装置5
0の一部である。
2. Description of the Related Art An image pickup apparatus including an MRI apparatus and a moving apparatus for moving a subject so as to pass through the bore of the MRI apparatus is disclosed, for example, in Japanese Patent Laid-Open No. 63-272335. When the imaging surface is parallel to the movement direction, this conventional imaging device first stops the movement of the subject G and takes an image to obtain a first image having a length T in the movement direction. next,
After moving by the distance T, the image is stopped and captured again to obtain a second image having a length T in the moving direction. This is repeated n times, and the obtained n images from the 1st to the n-th are stitched together to obtain an image of length nT. FIG. 11 shows a conceptual diagram of the configuration of the conventional image pickup apparatus. G is the subject (patient), 60
Is a cradle for moving the subject G, 50 is an MRI apparatus, and 50a is a bore. Reference numeral 51 denotes a movement stop control unit that stops the cradle 60 at the time of imaging, and the MRI apparatus 5
It is a part of 0.

【0003】[0003]

【発明が解決しようとする課題】上記従来の撮像装置で
は、MRI装置と移動装置とは同時には作動しない。す
なわち、MRI装置により撮像する時は移動装置は停止
し、移動装置により移動する時はMRI装置は停止して
いる。従って、撮像効率がよくないという問題点があ
る。そこで、この発明の目的は、被検体を連続的に移動
させつつMRI装置で撮像することが出来る撮像装置を
提供することにある。
In the above conventional image pickup apparatus, the MRI apparatus and the moving apparatus do not operate at the same time. That is, the mobile device is stopped when the MRI device takes an image, and the MRI device is stopped when the mobile device moves. Therefore, there is a problem that the imaging efficiency is not good. Therefore, an object of the present invention is to provide an image pickup apparatus capable of picking up an image with an MRI apparatus while continuously moving a subject.

【0004】[0004]

【課題を解決するための手段】この発明のMRI装置を
用いた撮像装置は、MRI装置とそのMRI装置のボア
内を通過させるべく被検体とMRI装置とを相対移動さ
せる移動装置とからなる撮像装置において、前記MRI
装置の撮像可能領域の移動方向の長さをMwとし、撮像
対象範囲の移動方向の長さをGwとしたとき、両者の差
(Mw−Gw)を1画像分のデータを収集する時間Mt
で除算した商(Mw−Gw)/Mtより小さいか等しい
速度Gvで移動するように前記移動装置を制御し且つ前
記MRI装置による撮像を前記移動と同時に実行させる
移動・撮像同時実行手段を備えたことを構成上の特徴と
するものである。上記構成の撮像装置において、撮像面
が相対移動方向に直交するとき、ビュー毎の励起領域の
位置を相対移動量に追従させて移動する励起領域追従移
動手段を備えるのが好ましい。また、上記構成の撮像装
置において、撮像面が相対移動方向に平行なとき、ビュ
ー毎のデータに相対移動量に対応した位相補正を施す位
相補正手段を備えるのが好ましい。
An image pickup apparatus using an MRI apparatus of the present invention is an image pickup apparatus which comprises an MRI apparatus and a moving apparatus which relatively moves an object and the MRI apparatus so as to pass through a bore of the MRI apparatus. In the apparatus, the MRI
When the length in the moving direction of the imageable area of the device is Mw and the length in the moving direction of the imaging target range is Gw, the difference between them (Mw-Gw) is the time Mt for collecting data for one image.
A moving / imaging simultaneous executing means for controlling the moving device so as to move at a speed Gv smaller than or equal to the quotient (Mw-Gw) / Mt divided by and moving the imaging by the MRI device simultaneously with the moving. This is a structural feature. In the image pickup apparatus having the above-mentioned configuration, it is preferable to include an excitation region tracking movement unit that moves the position of the excitation region for each view so as to follow the relative movement amount when the image pickup surface is orthogonal to the relative movement direction. In addition, it is preferable that the image pickup apparatus having the above-described configuration includes a phase correction unit that performs a phase correction corresponding to the relative movement amount on the data for each view when the image pickup surface is parallel to the relative movement direction.

【0005】[0005]

【作用】この発明のMRI装置を用いた撮像装置では、
移動・撮像同時実行手段が、MRI装置の撮像可能領域
の移動方向の長さをMwとし、撮像対象範囲の移動方向
の長さをGwとしたとき、両者の差(Mw−Gw)を1
画像分のデータを収集する時間Mtで除算した商(Mw
−Gw)/Mtより小さいか等しい速度Gvで移動する
ように移動装置を制御する。また、移動装置による移動
とMRI装置による撮像とを同時実行させる。上記条件
の速度Gvであれば、被検体が撮像可能領域にある間に
1画像分のデータを収集できる。また、MRI装置で例
えばMt=数100ms以内の超高速撮像を行えば、速
度Gvが実用的な速度でも被検体の移動は小さいので、
モーションアーチファクトと呼ばれる虚像やぼけが少な
く、画質はそれほど劣化しない。従って、特別の補正を
することなく、被検体を連続的に移動しながら撮像でき
ることとなり、撮像効率を向上することが出来る。
In the image pickup apparatus using the MRI apparatus of the present invention,
When the moving / imaging simultaneous executing means sets the moving direction length of the imageable area of the MRI apparatus to Mw and the moving direction length of the imaging target range to Gw, the difference (Mw-Gw) between them is 1.
The quotient (Mw) divided by the time Mt for collecting data for the image
Control the moving device to move at a velocity Gv that is less than or equal to −Gw) / Mt. Further, the movement by the moving device and the imaging by the MRI apparatus are simultaneously executed. With the speed Gv of the above condition, data for one image can be collected while the subject is in the imageable region. Further, if the MRI apparatus performs ultra-high-speed imaging within, for example, Mt = several 100 ms, the movement of the subject is small even if the speed Gv is a practical speed.
There are few virtual images and blurs called motion artifacts, and the image quality does not deteriorate so much. Therefore, the subject can be imaged while moving continuously without any special correction, and the imaging efficiency can be improved.

【0006】また、励起領域追従移動手段を備え、撮像
面が相対移動方向に直交するとき、その励起領域追従移
動手段により、ビュー毎の励起領域の位置を相対移動量
に追従させて移動すれば、被検体が静止しているのと等
価となって、モーションアーチファクトを生じない。従
って、被検体を連続的に移動しながら高画質で撮像でき
ることとなる。
Further, when the excitation area tracking movement means is provided and the imaging surface is orthogonal to the relative movement direction, the excitation area tracking movement means moves the position of the excitation area for each view so as to follow the relative movement amount. , It is equivalent to the subject being stationary and does not cause motion artifacts. Therefore, the subject can be imaged with high image quality while continuously moving.

【0007】また、位相補正手段を備え、撮像面が相対
移動方向に平行なとき、その位相補正手段により、ビュ
ー毎のデータに相対移動量に対応した位相補正を施せ
ば、被検体が静止しているのと等価となって、モーショ
ンアーチファクトを生じない。従って、被検体を連続的
に移動しながら高画質で撮像できることとなる。
When the image pickup surface is parallel to the relative movement direction and the phase correction means performs a phase correction corresponding to the relative movement amount on the data for each view, the subject is stationary. Is equivalent to the above, and does not cause motion artifacts. Therefore, the subject can be imaged with high image quality while continuously moving.

【0008】[0008]

【実施例】以下、図に示す実施例に基づいてこの発明を
さらに詳細に説明する。なお、これによりこの発明が限
定されるものではない。図1は、この発明の一実施例の
MRI装置を用いた撮像装置1の構成概念図である。G
は被検体(患者に限らない)、20はベルトコンベアの
ように被検体Gを連続的に移動させる移動装置、10は
MRI装置、10aはボアである。MRI装置10は、
移動・撮像同時実行部11と、補正要否判定部12と、
アキシャル時ビュー連動スライス移動部13と、サジタ
ル/コロナル時SAT印加部14と、サジタル/コロナ
ル時位相補正部15と、オブリーク/3次元時統合制御
部16とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail based on the embodiments shown in the drawings. The present invention is not limited to this. FIG. 1 is a structural conceptual diagram of an image pickup apparatus 1 using an MRI apparatus according to an embodiment of the present invention. G
Is a subject (not limited to a patient), 20 is a moving device that continuously moves the subject G like a belt conveyor, 10 is an MRI device, and 10a is a bore. The MRI apparatus 10
A movement / imaging simultaneous execution unit 11, a correction necessity determination unit 12,
An axial view interlocking slice moving section 13, a sagittal / coronal SAT applying section 14, a sagittal / coronal phase correcting section 15, and an oblique / 3-dimensional time integrated control section 16 are provided.

【0009】図2に示すように、移動・撮像同時実行部
11は、ベルトコンベア20を制御し、移動速度Gvで
被検体Gを移動させる。同時に、繰り返し時間TRで撮
像をスタートする(11A)。MRI装置10の撮像可
能領域の移動方向の長さをMwとし、撮像対象範囲の移
動方向の長さをGwとし、1画像分のデータを収集する
時間をMtとするとき、 Gv≦(Mw−Gw)/Mt である。これにより、被検体Gが撮像可能領域Mwにあ
る間に1画像分のデータを収集できる。図3に、最大条
件Gv=(Mw−Gw)/Mtの場合の概念図を示す。
なお、一般的には、1画像分のデータがMビューからな
るとき、 TR=Mt/M である。
As shown in FIG. 2, the movement / imaging simultaneous execution unit 11 controls the belt conveyor 20 to move the subject G at the movement speed Gv. At the same time, the imaging is started at the repetition time TR (11A). When the length in the moving direction of the imageable area of the MRI apparatus 10 is Mw, the length in the moving direction of the imaging target range is Gw, and the time for collecting data for one image is Mt, Gv ≦ (Mw− Gw) / Mt. Thereby, data of one image can be collected while the subject G is in the imageable region Mw. FIG. 3 shows a conceptual diagram when the maximum condition Gv = (Mw-Gw) / Mt.
Note that, in general, when the data for one image consists of M views, TR = Mt / M.

【0010】図4に示すように、補正要否判定部12
は、まず、1画像分のデータを収集する間の移動距離G
v・Mtが十分小さいか判定する(12A)。モーショ
ンアーチファクトを無視できる程度に十分小さいなら
ば、補正不要と判定し、アキシャル時ビュー連動スライ
ス移動部13とサジタル/コロナル時SAT印加部14
とサジタル/コロナル時位相補正部15とオブリーク/
3次元時統合制御部16とを起動しないで、システムに
制御を返す(EXIT1)。EXIT1で制御が返され
ると、システムは、収集したデータから画像を再構成す
る。十分小さくなければ、撮像面が相対移動方向に直交
するアキシャル像の撮像か判定する(12B)。アキシ
ャルなら、アキシャル時ビュー連動スライス移動部13
を起動する(12C)。アキシャルでなければ、撮像面
が相対移動方向に平行なサジタル像またはコロナル像の
撮像か判定する(12D)。サジタルまたはコロナルな
ら、サジタル/コロナル時SAT印加部14とサジタル
/コロナル時位相補正部15とを起動する(12E)。
サジタルでもコロナルでもなければ、撮像面が相対移動
方向に対し傾斜しているオブリークか3次元撮像か判定
する(12F)。オブリークまたは3次元なら、オブリ
ーク/3次元時統合制御部16を起動する(12G)。
オブリークでも3次元でもなければ、アキシャル時ビュ
ー連動スライス移動部13とサジタル/コロナル時SA
T印加部14とサジタル/コロナル時位相補正部15と
オブリーク/3次元時統合制御部16とを起動せずに、
システムに制御を返す(EXIT2)。EXIT2で制
御が返されると、システムは、エラー処理を行う。
As shown in FIG. 4, the correction necessity determination unit 12
Is the moving distance G during the acquisition of data for one image.
It is determined whether v · Mt is sufficiently small (12A). If the motion artifact is small enough to be ignored, it is determined that no correction is necessary, and the axial view interlocking slice moving unit 13 and the sagittal / coronal SAT applying unit 14 are determined.
And sagittal / coronal phase corrector 15 and oblique /
The control is returned to the system without starting the three-dimensional time integrated control unit 16 (EXIT1). When control is returned at EXIT1, the system reconstructs the image from the collected data. If it is not sufficiently small, it is determined whether the image pickup surface is an axial image which is orthogonal to the relative movement direction (12B). If it is axial, view-related slice moving unit 13 at the time of axial
Is activated (12C). If it is not axial, it is determined whether the image pickup surface is a sagittal image or a coronal image parallel to the relative movement direction (12D). If it is sagittal or coronal, the sagittal / coronal SAT applying section 14 and the sagittal / coronal phase correcting section 15 are activated (12E).
If it is neither sagittal nor coronal, it is determined whether the imaging surface is oblique with respect to the relative movement direction or three-dimensional imaging (12F). If it is oblique or three-dimensional, the oblique / 3-dimensional time integrated control unit 16 is activated (12G).
If it is neither oblique nor three-dimensional, the view interlocking slice moving unit 13 at the time of axial and the SA at sagittal / coronal
Without activating the T application section 14, the sagittal / coronal phase correction section 15, and the oblique / 3D integration control section 16,
Return control to the system (EXIT2). When control is returned with EXIT2, the system performs error handling.

【0011】図5に示すように、アキシャル時ビュー連
動スライス移動部13は、RF励起/反転の位置を、ビ
ュー毎の被検体Gの移動に追従させて移動し、各ビュー
のデータを収集する(13A)。このアキシャル時ビュ
ー連動スライス移動部13が、励起領域追従移動手段に
相当する。図6に示すように、被検体Gがビュー間にG
v・TRだけ移動するから、RF励起領域MsもGv・
TRだけ移動すれば、被検体Gが静止しているのと等価
となる。従って、モーションアーチファクトを生じず、
被検体Gを連続的に移動しながら高画質で撮像できるこ
ととなる。なお、RF励起領域Msの移動は、具体的に
は、例えばRF周波数をビュー毎に変えることで実現で
きる。
As shown in FIG. 5, the axial inter-view slice moving unit 13 moves the RF excitation / reversal position so as to follow the movement of the subject G for each view, and collects the data of each view. (13A). The axial view interlocking slice moving unit 13 corresponds to the excitation region tracking moving unit. As shown in FIG. 6, the subject G is G between the views.
Since only v · TR moves, the RF excitation region Ms is also Gv ·
Moving by TR is equivalent to the subject G being stationary. Therefore, no motion artifacts occur,
The subject G can be imaged with high image quality while continuously moving. Note that the movement of the RF excitation region Ms can be specifically realized by changing the RF frequency for each view, for example.

【0012】図7に示すように、サジタル/コロナル時
SAT印加部14は、必要に応じて空間的飽和パルス
(spatial SAT pulse)を通常のパルスシーケンスの
前に付加し、ビュー毎の被検体Gの位置に合わせてMR
信号の発生領域を制限する。そして、各ビューのデータ
を収集する(14A)。図8に示すように、RF励起領
域Ms中を被検体Gが移動している。このため、周波数
軸方向または位相軸方向のうちの移動方向に合った軸に
ついては、被検体Gの同じ部位からのMR信号でもビュ
ー毎に位相がずれている。そこで、サジタル/コロナル
時位相補正部15は、各ビューのデータD’(f,p)
に対し、 exp{−j2πfΔx/Fw} f:周波数軸方向のデータ番号で、“(−N/2)+
1”から“N/2”までの整数である。 Δx:勾配中心からの位置ずれ量 Fw:周波数軸方向の撮像可能領域 または、 exp{−j2πpΔy/Pw} p:位相軸方向のデータ番号で、“(−M/2)+1”
から“M/2”までの整数である。 Δy:勾配中心からの位置ずれ量 Pw:位相軸方向の撮像可能領域 を乗算し、そのビューのデータD(f,p)とする(15
A)。
As shown in FIG. 7, the sagittal / coronal SAT applying unit 14 adds a spatial saturation pulse (spatial SAT pulse) before the normal pulse sequence as necessary, and the subject G for each view is added. MR according to the position of
Limit the signal generation area. Then, the data of each view is collected (14A). As shown in FIG. 8, the subject G is moving in the RF excitation region Ms. Therefore, with respect to the axis that matches the moving direction of the frequency axis direction or the phase axis direction, even the MR signal from the same portion of the subject G has a phase shift for each view. Therefore, the sagittal / coronal phase correction unit 15 uses the data D ′ (f, p) of each view.
On the other hand, exp {-j2πfΔx / Fw} f: data number in the frequency axis direction, “(−N / 2) +
It is an integer from 1 ”to“ N / 2. ”Δx: Amount of displacement from the center of the gradient Fw: Imageable area in the frequency axis direction or exp {-j2πpΔy / Pw} p: Data number in the phase axis direction , "(-M / 2) +1"
To “M / 2”. Δy: amount of displacement from the center of the gradient Pw: imageable area in the phase axis direction is multiplied to obtain data D (f, p) of that view (15
A).

【0013】次に、上記位相補正の原理を説明する。図
9に示すように、周波数軸方向に移動する場合を想定す
ると、実空間の信号源g(x,y)からのMR信号D
(f,p)は、(数1)式のように表せる。
Next, the principle of the above phase correction will be described. As shown in FIG. 9, assuming the case of moving in the frequency axis direction, the MR signal D from the signal source g (x, y) in the real space is calculated.
(F, p) can be expressed as in (Equation 1).

【0014】[0014]

【数1】 [Equation 1]

【0015】勾配中心のx座標をx’とし、勾配中心か
らの位置ずれをΔxとすれば、x=Δx+x’だから、
(数2)式のようになる。
Assuming that the x coordinate of the gradient center is x'and the displacement from the gradient center is Δx, x = Δx + x '
It becomes like the formula (2).

【0016】[0016]

【数2】 [Equation 2]

【0017】従って、勾配中心からの位置ずれΔxの位
置で測定したエコーデータD’(f,p)に、fΔxに
比例した前記位相補正を行なえばよい。位相軸方向に移
動する場合も同様であり、勾配中心からの位置ずれΔy
の位置で測定したエコーデータD’(f,p)に、pΔ
yに比例した前記位相補正を行なえばよい。なお、位相
エンコードの順が大きさの順になっていなくても、各々
の位置での位置ずれΔx,Δyに応じて補正するので、
支障ない。また、被検体Gが一定距離位置ずれしている
だけなら線形の位相補正でよく、再構成後のシフトでよ
いが、本方式では被検体の位置が位相エンコード毎にず
れていくので2乗の位相補正になり、再構成後の補正は
できない。
Therefore, the phase correction proportional to fΔx may be performed on the echo data D '(f, p) measured at the position of the positional deviation Δx from the center of the gradient. The same applies when moving in the phase axis direction, and the positional deviation Δy from the gradient center
To the echo data D '(f, p) measured at the position
The phase correction may be performed in proportion to y. Even if the order of phase encoding is not in the order of magnitude, correction is performed according to the positional deviations Δx and Δy at each position.
No problem. Further, if the subject G is displaced by a constant distance, linear phase correction may be performed and shift after reconstruction may be performed. However, in the present method, the position of the subject shifts for each phase encoding, so the square of It becomes a phase correction and cannot be corrected after reconstruction.

【0018】図10に示すように、オブリーク/3次元
時統合制御部16は、アキシャル時ビュー連動スライス
移動部13とサジタル/コロナル時SAT印加部14の
各分担を決めて、それぞれを起動し、データD’(f,
p)を収集する(16A)。すなわち、RF励起・反転
はアキシャル時と同様に行い、空間飽和パルスはサジタ
ル/コロナル時と同様に行い、データD’(f,p)を収
集する。次に、オブリーク/3次元時統合制御部16
は、オブリーク時には、被検体Gの移動を周波数軸方向
と位相軸方向の各成分に分けて、各々についてサジタル
/コロナル時位相補正部15により位相補正し、データ
D(f,p)を得る。また、3次元の場合には、被検体G
の移動を1つの周波数軸方向と2つの位相軸方向の各成
分に分けて、サジタル/コロナル時位相補正部15によ
り位相補正し、データD(f,p)を得る。この後、シス
テムに制御を渡す。システムは、オブリーク時には、2
次元フーリエ変換して画像を再構成する。また、3次元
時には、3次元フーリエ変換して画像を再構成する。
As shown in FIG. 10, the oblique / 3-dimensional time integrated control unit 16 decides the sharing of each of the axial view interlocking slice moving unit 13 and the sagittal / coronal SAT applying unit 14, and activates them. Data D '(f,
p) is collected (16A). That is, RF excitation / inversion is performed in the same manner as in the axial time, the spatial saturation pulse is performed in the same manner as in the sagittal / coronal time, and the data D ′ (f, p) is collected. Next, the oblique / 3-dimensional integrated control unit 16
At the time of oblique, the movement of the subject G is divided into components in the frequency axis direction and the phase axis direction, and the sagittal / coronal phase correction unit 15 performs phase correction for each component to obtain data D (f, p). In the case of three dimensions, the subject G
Is divided into each component in one frequency axis direction and two phase axis directions, and the phase is corrected by the sagittal / coronal phase correction unit 15 to obtain data D (f, p). After this, control is passed to the system. The system is 2 at the time of oblique
Reconstruct the image by performing a dimensional Fourier transform. In the case of 3D, an image is reconstructed by performing 3D Fourier transform.

【0019】以上の説明から理解されるように、上記実
施例の撮像装置1によれば、被検体Gを連続的に移動さ
せつつ、MRI装置10で、アキシャル像でも,サジタ
ル像でも,コロナル像でも,オブリーク像でも,3次元
像でも撮像できる。また、アキシャル像のみを撮像する
専用機とすれば、ボア10aが非常に短くてもよくな
る。
As can be understood from the above description, according to the image pickup apparatus 1 of the above-mentioned embodiment, the MRI apparatus 10 continuously moves the subject G while the axial image, the sagittal image, and the coronal image are obtained. However, it is possible to take an oblique image or a three-dimensional image. Further, if it is a dedicated machine for capturing only an axial image, the bore 10a may be very short.

【0020】なお、スパイラルスキャンやフィルタード
バックプロジェクション法のようなフーリエ変換を用い
ない撮像方法に対しては、撮像面はRF周波数をビュー
毎に変え、勾配磁場を使った読出しは、読出し方向(k
空間上の原点からエコーデータ点に引いた直線の方向)
に応じた上記位相補正を各データ点に行うことで対応で
きる。また、移動速度Gvが速い場合やエコー時間TE
が長い場合には、移動方向の成分をもつ軸に対して“G
radient Moment Nulling”などの動き補正を行うのが
好ましい。また、超高速撮像法の場合でも、RF励起を
何回かに分けて行うマルチショットの場合には、各ショ
ット毎にこの発明にかかる補正を行うのが好ましい。
For an imaging method that does not use Fourier transform such as spiral scan or filtered back projection method, the imaging surface changes the RF frequency for each view, and the reading using the gradient magnetic field is performed in the reading direction (k).
(Direction of a straight line drawn from the origin in space to the echo data point)
This can be dealt with by performing the above-mentioned phase correction corresponding to each data point. In addition, when the moving speed Gv is fast or the echo time TE
Is long, "G
It is preferable to perform motion compensation such as "radient moment nulling." In addition, even in the case of ultra-high-speed imaging, in the case of multi-shot in which RF excitation is divided into several times, the compensation according to the present invention is performed for each shot. Is preferably performed.

【0021】[0021]

【発明の効果】この発明のMRI装置を用いた撮像装置
によれば、被検体を連続的に移動させつつMRI装置で
撮像できるようになる。従って、撮像効率を向上するこ
とが出来る。
According to the image pickup apparatus using the MRI apparatus of the present invention, it becomes possible to pick up an image with the MRI apparatus while continuously moving the subject. Therefore, the imaging efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のMRI装置を用いた撮像装置の一実
施例の構成図である。
FIG. 1 is a configuration diagram of an embodiment of an image pickup apparatus using an MRI apparatus of the present invention.

【図2】移動・撮像同時実行部の動作のフロー図であ
る。
FIG. 2 is a flowchart of an operation of a moving / imaging simultaneous execution unit.

【図3】撮像可能領域とデータ収集時間と移動速度の関
係の説明図である。
FIG. 3 is an explanatory diagram of a relationship among an imageable area, a data collection time, and a moving speed.

【図4】補正要否判定部の動作のフロー図である。FIG. 4 is a flowchart of the operation of a correction necessity determination unit.

【図5】アキシャル時ビュー連動スライス移動部の動作
のフロー図である。
FIG. 5 is a flowchart showing the operation of the axial-view-related slice moving unit.

【図6】アキシャル時のスライスの移動の説明図であ
る。
FIG. 6 is an explanatory diagram of slice movement during axial movement.

【図7】サジタル/コロナル時SA印加部とサジタル/
コロナル時位相補正部の動作のフロー図である。
[Fig. 7] Sagittal / SA application section and sagittal at coronal /
It is a flowchart of operation | movement of the phase correction part at the time of coronal.

【図8】サジタル/コロナル時の被検体の移動の説明図
である。
FIG. 8 is an explanatory diagram of movement of a subject during sagittal / coronal movement.

【図9】サジタル/コロナル時の位相補正の原理説明図
である。
FIG. 9 is an explanatory view of the principle of phase correction at the time of sagittal / coronal.

【図10】オブリーク/3次元時統合制御部の動作のフ
ロー図である。
FIG. 10 is a flowchart of the operation of the oblique / 3-dimensional time integrated control unit.

【図11】従来のMRI装置を用いた撮像装置の一例の
構成図である。
FIG. 11 is a configuration diagram of an example of an image pickup apparatus using a conventional MRI apparatus.

【符号の説明】 1 MRI装置を用いた撮像装置 10 MRI装置 10a ボア 11 移動・撮像同時実行部 12 補正要否判定部 13 アキシャル時ビュー連動スライス移動部 14 サジタル/コロナル時SA印加部 15 サジタル/コロナル時位相補正部 16 オブリーク/3次元時統合制御部 20 ベルトコンベア G 被検体 Mw 撮像可能領域 Gw 撮像対象範囲 Mt 1画像分のデータを収集する時間 Gv 移動速度 TR 繰り返し時間 Ms スライス[Description of Reference Signs] 1 Imaging device using MRI device 10 MRI device 10a Bore 11 Moving / imaging simultaneous execution unit 12 Correction necessity determination unit 13 Axial view interlocking slice moving unit 14 Sagittal / coronal SA applying unit 15 Sagittal / Coronal phase correction unit 16 Oblique / 3-dimensional integrated control unit 20 Belt conveyor G Subject Mw Imageable area Gw Imaging target range Mt Time to collect data for one image Gv Moving speed TR Repeat time Ms Slice

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MRI装置とそのMRI装置のボア内を
通過させるべく被検体とMRI装置とを相対移動させる
移動装置とからなる撮像装置において、前記MRI装置
の撮像可能領域の移動方向の長さをMwとし、撮像対象
範囲の移動方向の長さをGwとしたとき、両者の差(M
w−Gw)を1画像分のデータを収集する時間Mtで除
算した商(Mw−Gw)/Mtより小さいか等しい速度
Gvで移動するように前記移動装置を制御し且つ前記M
RI装置による撮像を前記移動と同時に実行させる移動
・撮像同時実行手段を備えたことを特徴とするMRI装
置を用いた撮像装置。
1. An image pickup apparatus comprising an MRI apparatus and a moving apparatus which relatively moves an object and the MRI apparatus so as to pass through a bore of the MRI apparatus, wherein a length in a moving direction of an imageable region of the MRI apparatus. Is Mw and the length of the imaging target range in the moving direction is Gw, the difference (M
w-Gw) is divided by the time Mt for collecting data for one image, and the moving device is controlled so as to move at a velocity Gv that is less than or equal to (Mw-Gw) / Mt and M
An image pickup apparatus using an MRI apparatus, which is provided with a movement / imaging simultaneous execution means for executing image pickup by the RI apparatus simultaneously with the movement.
【請求項2】 請求項1に記載の撮像装置において、撮
像面が相対移動方向に直交するとき、ビュー毎の励起領
域の位置を相対移動量に追従させて移動する励起領域追
従移動手段を備えたことを特徴とするMRI装置を用い
た撮像装置。
2. The imaging device according to claim 1, further comprising an excitation region tracking movement unit that moves the position of the excitation region for each view in accordance with the relative movement amount when the imaging surface is orthogonal to the relative movement direction. An imaging device using an MRI device characterized by the above.
【請求項3】 請求項1に記載の撮像装置において、撮
像面が相対移動方向に平行なとき、ビュー毎のデータに
相対移動量に対応した位相補正を施す位相補正手段を備
えたことを特徴とするMRI装置を用いた撮像装置。
3. The image pickup device according to claim 1, further comprising phase correction means for performing a phase correction corresponding to the relative movement amount on the data for each view when the image pickup surface is parallel to the relative movement direction. An imaging device using the MRI device.
JP09592793A 1993-04-22 1993-04-22 Imaging device using MRI device Expired - Fee Related JP3212751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09592793A JP3212751B2 (en) 1993-04-22 1993-04-22 Imaging device using MRI device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09592793A JP3212751B2 (en) 1993-04-22 1993-04-22 Imaging device using MRI device

Publications (2)

Publication Number Publication Date
JPH06304153A true JPH06304153A (en) 1994-11-01
JP3212751B2 JP3212751B2 (en) 2001-09-25

Family

ID=14150912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09592793A Expired - Fee Related JP3212751B2 (en) 1993-04-22 1993-04-22 Imaging device using MRI device

Country Status (1)

Country Link
JP (1) JP3212751B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095646A (en) * 2000-09-25 2002-04-02 Toshiba Corp Magnetic resonance imaging device
US6445181B1 (en) 2000-11-09 2002-09-03 The Board Of Trustees Of The Leland Stanford Junior University MRI method apparatus for imaging a field of view which is larger than a magnetic field
US6707300B2 (en) 2002-05-17 2004-03-16 Ge Medical Systems Global Technology Co., Llc Gradient non-linearity compensation in moving table MRI
US6794869B2 (en) 2001-03-30 2004-09-21 General Electric Company Moving table MRI with frequency-encoding in the z-direction
US6801034B2 (en) 2001-03-30 2004-10-05 General Electric Company Method and apparatus of acquiring large FOV images without slab-boundary artifacts
JP2005028139A (en) * 2003-07-08 2005-02-03 Ge Medical Systems Global Technology Co Llc Method and apparatus of slice selection magnetized preparation for moving bed mri
US6897655B2 (en) 2001-03-30 2005-05-24 General Electric Company Moving table MRI with frequency-encoding in the z-direction
US6963768B2 (en) 2002-05-16 2005-11-08 General Electric Company Whole body MRI scanning with moving table and interactive control
US6975113B1 (en) 2003-11-25 2005-12-13 General Electric Company Method and system for moving table MRI with partial fourier imaging
JP2006191957A (en) * 2005-01-11 2006-07-27 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2006223869A (en) * 2005-02-18 2006-08-31 Mayo Foundation For Medical Education & Research Removal method of artifact in magnetic resonance image acquired by contiguous table transfer
JP2007068796A (en) * 2005-09-08 2007-03-22 Ge Medical Systems Global Technology Co Llc Rf pulse applying method and mri apparatus
JP2009018149A (en) * 2007-06-12 2009-01-29 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2010094558A (en) * 2010-02-03 2010-04-30 Toshiba Corp Magnetic resonance imaging apparatus
JP5215657B2 (en) * 2005-02-16 2013-06-19 株式会社日立メディコ Magnetic resonance imaging apparatus and apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095646A (en) * 2000-09-25 2002-04-02 Toshiba Corp Magnetic resonance imaging device
JP4515616B2 (en) * 2000-09-25 2010-08-04 株式会社東芝 Magnetic resonance imaging system
US6445181B1 (en) 2000-11-09 2002-09-03 The Board Of Trustees Of The Leland Stanford Junior University MRI method apparatus for imaging a field of view which is larger than a magnetic field
US6794869B2 (en) 2001-03-30 2004-09-21 General Electric Company Moving table MRI with frequency-encoding in the z-direction
US6801034B2 (en) 2001-03-30 2004-10-05 General Electric Company Method and apparatus of acquiring large FOV images without slab-boundary artifacts
US6891374B2 (en) 2001-03-30 2005-05-10 General Electric Company Moving table MRI with frequency-encoding in the z-direction
US6897655B2 (en) 2001-03-30 2005-05-24 General Electric Company Moving table MRI with frequency-encoding in the z-direction
US7738944B2 (en) 2002-05-16 2010-06-15 General Electric Company Whole body MRI scanning with moving table and interactive control
US6963768B2 (en) 2002-05-16 2005-11-08 General Electric Company Whole body MRI scanning with moving table and interactive control
US6707300B2 (en) 2002-05-17 2004-03-16 Ge Medical Systems Global Technology Co., Llc Gradient non-linearity compensation in moving table MRI
US6967479B2 (en) 2002-05-17 2005-11-22 Ge Medical Systems Global Technology Co., Llc Gradient non-linearity compensation in moving table MRI
JP2005028139A (en) * 2003-07-08 2005-02-03 Ge Medical Systems Global Technology Co Llc Method and apparatus of slice selection magnetized preparation for moving bed mri
US6975113B1 (en) 2003-11-25 2005-12-13 General Electric Company Method and system for moving table MRI with partial fourier imaging
JP2006191957A (en) * 2005-01-11 2006-07-27 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP4685456B2 (en) * 2005-01-11 2011-05-18 株式会社日立メディコ Magnetic resonance imaging system
JP5215657B2 (en) * 2005-02-16 2013-06-19 株式会社日立メディコ Magnetic resonance imaging apparatus and apparatus
JP2006223869A (en) * 2005-02-18 2006-08-31 Mayo Foundation For Medical Education & Research Removal method of artifact in magnetic resonance image acquired by contiguous table transfer
JP2007068796A (en) * 2005-09-08 2007-03-22 Ge Medical Systems Global Technology Co Llc Rf pulse applying method and mri apparatus
JP2009018149A (en) * 2007-06-12 2009-01-29 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2010094558A (en) * 2010-02-03 2010-04-30 Toshiba Corp Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP3212751B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP4515616B2 (en) Magnetic resonance imaging system
JP4166068B2 (en) Table-moving MRI with frequency encoding in the z direction
JPH06304153A (en) Image pickup device using mri device
JP3815585B2 (en) Magnetic resonance imaging system
US9301706B2 (en) Magnetic resonance imaging system for non-contrast MRA and magnetic resonance signal acquisition method employed by the same
EP1024371A2 (en) Magnetic resonance imaging apparatus
JP5177367B2 (en) Magnetic resonance imaging apparatus and navigator data analysis method
US6307369B1 (en) Autocorrection of 3D MR images for motion artifacts
WO2005106522A1 (en) Continuous moving-table mri involving contrast manipulation and/or update of scanning parameters
US7809423B2 (en) Robust coronary MR angiography MR without respiratory navigation
JP3212753B2 (en) Imaging device using MRI device
JP3556176B2 (en) Automatic correction of MR projection image
US6310479B1 (en) Magnetic resonance projection imaging of dynamic subjects
JP4072879B2 (en) Nuclear magnetic resonance imaging system
US6721589B1 (en) Rapid three-dimensional magnetic resonance tagging for studying material deformation and strain
JP2006223869A (en) Removal method of artifact in magnetic resonance image acquired by contiguous table transfer
JP5127447B2 (en) Nuclear magnetic resonance imaging apparatus and method
JP4519827B2 (en) Magnetic resonance imaging device
JP3557286B2 (en) MR image generation method and MRI apparatus
JP2008067781A (en) Magnetic resonance imaging apparatus
JP2004329269A (en) Magnetic resonance imaging apparatus
JP5060569B2 (en) Magnetic resonance imaging system
JP2006122301A (en) Mri apparatus
JP4439097B2 (en) Magnetic resonance imaging system
JPH0759747A (en) Blood vessel photographing method by mri and mr angiograph

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees