JPH0577981B2 - - Google Patents

Info

Publication number
JPH0577981B2
JPH0577981B2 JP58009599A JP959983A JPH0577981B2 JP H0577981 B2 JPH0577981 B2 JP H0577981B2 JP 58009599 A JP58009599 A JP 58009599A JP 959983 A JP959983 A JP 959983A JP H0577981 B2 JPH0577981 B2 JP H0577981B2
Authority
JP
Japan
Prior art keywords
reaction
sample
reagent
reaction tube
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58009599A
Other languages
Japanese (ja)
Other versions
JPS59135367A (en
Inventor
Takashi Yamada
Hiroshi Takegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP959983A priority Critical patent/JPS59135367A/en
Priority to DE19843448121 priority patent/DE3448121C2/de
Priority to DE19843448210 priority patent/DE3448210C2/de
Priority to DE19843402304 priority patent/DE3402304C3/en
Priority to DE19843448007 priority patent/DE3448007C2/en
Publication of JPS59135367A publication Critical patent/JPS59135367A/en
Priority to US07/119,278 priority patent/US5175086A/en
Publication of JPH0577981B2 publication Critical patent/JPH0577981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00386Holding samples at elevated temperature (incubation) using fluid heat transfer medium
    • G01N2035/00396Holding samples at elevated temperature (incubation) using fluid heat transfer medium where the fluid is a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00564Handling or washing solid phase elements, e.g. beads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor

Description

【発明の詳細な説明】 本発明は免疫学的自動分析方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automated immunological analysis method.

近年、医療の進歩に伴ない極微量の生体成分の
分析が可能となり、各種疾患の早期診断等に役立
つている。例えば、α−フエトプロテイン、癌胎
児性抗原等で代表される悪性腫瘍、インシユリ
ン、サイロキシン等で代表されるホルモンの異常
分泌疾患、免疫グロブリン等で代表される免疫疾
患等の難病とされていた各種疾患の診断が早期に
できるだけでなく、それら疾患の治療後のモニ
タ、あるいは最近では薬物等の低分子のハプテン
(不完全抗原)も測定可能となり薬物の投与計画
作成にも役立つている。
In recent years, advances in medical care have made it possible to analyze minute amounts of biological components, which is useful for early diagnosis of various diseases. For example, malignant tumors represented by α-fetoprotein and carcinoembryonic antigen, diseases of abnormal secretion of hormones represented by insulin and thyroxine, etc., and immune diseases represented by immunoglobulins, etc., are considered to be incurable diseases. It is not only possible to diagnose various diseases at an early stage, but it is also useful for monitoring those diseases after treatment, and recently, it has become possible to measure low-molecular haptens (incomplete antigens) such as drugs, which is useful for formulating drug administration plans.

これらの生体成分の多くは抗原抗体反応を利用
した免疫化学的な方法で分析され、このような免
疫化学的反応を利用した分析方法として、従来
種々の方法が提案されている。例えば、抗原抗体
反応の結果生じる抗原抗体複合物の凝集塊等の有
無を、凝集法、沈降法、比濁法等によつて検出し
て所望の生体成分を分析する方法がある。しか
し、これらの分析方法は多量の抗原抗体複合物を
必要とし、感度的に劣るため、専ら定性分析ある
いは半定量分析に採用されている。また、このよ
うな分析方法の欠点を補うために、抗体または抗
原を炭素粒子や合成樹脂等の微粒子に結合させて
被検物質との抗原抗体反応を行なわせて凝集法あ
るいは比濁法により被検物質を分析する方法や、
抗体または抗原に放射性同位元素、螢光性物質、
発光性物質あるいは酵素等の検知感度の高いマー
カを標識した標識抗体または標識抗原を用いて抗
原抗体複合物を高感度で検出して被検物質を分析
する方法も提案されている。しかし、前者の微粒
子を用いる方法は後者のマーカを用いる方法に比
べ感度的に劣るため、最近では後者の検知感度の
高いマーカを用いる分析方法が主流になつてい
る。
Many of these biological components are analyzed by immunochemical methods that utilize antigen-antibody reactions, and various methods have been proposed in the past as analytical methods that utilize such immunochemical reactions. For example, there are methods of detecting the presence or absence of aggregates of antigen-antibody complexes produced as a result of antigen-antibody reactions by agglutination methods, sedimentation methods, turbidimetry, etc., and analyzing desired biological components. However, these analytical methods require a large amount of antigen-antibody complexes and are inferior in sensitivity, so they are used exclusively for qualitative or semi-quantitative analysis. In order to compensate for the shortcomings of such analysis methods, antibodies or antigens are bound to fine particles such as carbon particles or synthetic resins, and antigen-antibody reactions are performed with the test substance, followed by agglutination or turbidimetry. How to analyze test substances,
Radioactive isotopes, fluorescent substances,
A method of analyzing a test substance by detecting an antigen-antibody complex with high sensitivity using a labeled antibody or a labeled antigen labeled with a highly sensitive marker such as a luminescent substance or an enzyme has also been proposed. However, since the former method using fine particles is inferior in sensitivity to the latter method using markers, recently the latter method of analysis using markers with high detection sensitivity has become mainstream.

このようなマーカを用いる分析方法としては、
マーカとして放射性同位元素を用いる放射性免疫
分析法、螢光性物質を用いる螢光免疫分析法、酵
素を用いる酵素免疫分析法等が知られているが、
なかでも酵素免疫分析法は特殊な設備や測定技術
を必要とせず、一般に普及している比色計を用い
て容易に行なうことができるので、最近特に注目
を集めている。この酵素免疫分析法は、免疫化学
的反応の有無により標識されている酵素の活性の
変化量を直接求めて被検物質を定量するホモジニ
アス(Homogeneous)酵素免疫分析法と、不溶
性の担体、例えばプラスチツク等の合成樹脂やガ
ラスビーズを用い、抗原または抗体と反応した酵
素標識抗体または酵素標識抗原と未反応のそれと
を洗浄操作によりB・F分離し、このB・F分離
後の標識酵素の活性量を求めて被検物質を定量す
るヘテロジニアス(Heterogeneous)酵素免疫分
析法との2つの方法に分類される。しかし、前者
のホモジニアス酵素免疫分析法は、単純な操作で
行なうことができるが、薬物等の低分子のハプテ
ンしか分析できず、高分子である生体成分の分析
ができない欠点がある。これに対し、後者のヘテ
ロジニアス酵素免疫分析法はB・F分離を行なう
ための洗浄操作を必要とするが、被検物質が低分
子であつても高分子であつても適正に分析でき、
その分析対象が極めて広範囲であるところから一
般化されつつある。
Analysis methods using such markers include:
Known methods include radioimmunoassay using a radioisotope as a marker, fluorescence immunoassay using a fluorescent substance, and enzyme immunoassay using an enzyme.
Among these, enzyme immunoassay has been attracting particular attention recently because it does not require special equipment or measurement techniques and can be easily performed using a commonly used colorimeter. This enzyme immunoassay method is divided into a homogeneous enzyme immunoassay method, in which the test substance is quantified by directly determining the amount of change in the activity of a labeled enzyme based on the presence or absence of an immunochemical reaction, and a homogeneous enzyme immunoassay method, in which the test substance is quantified by directly determining the amount of change in the activity of a labeled enzyme, depending on the presence or absence of an immunochemical reaction, and the other is a homogeneous enzyme immunoassay method, in which the test substance is quantified by directly determining the amount of change in the activity of a labeled enzyme, depending on the presence or absence of an immunochemical reaction. The enzyme-labeled antibody that has reacted with the antigen or antibody, or the unreacted enzyme-labeled antigen and the unreacted one, are separated into B and F by a washing operation using synthetic resins and glass beads, and the activity amount of the labeled enzyme after this B and F separation is determined. It is classified into two methods: heterogeneous enzyme immunoassay, which determines the amount of the test substance and quantifies it. However, although the former homogeneous enzyme immunoassay method can be performed with simple operations, it has the disadvantage that it can only analyze low-molecular haptens such as drugs and cannot analyze biological components that are macromolecules. On the other hand, the latter heterogeneous enzyme immunoassay method requires a washing operation to perform B/F separation, but it can properly analyze whether the test substance is a low-molecular or high-molecular one.
It is becoming popular because its analysis targets are extremely wide-ranging.

かかるヘテロジニアス酵素免疫分析法として
は、競合法、サンドイツチ法等が知られている。
競合法は、第1図に示すように、不溶性の担体1
にサンプル中の被検物質と抗原抗体反応を起す抗
体または抗原を予め固定化し、この担体1とサン
プルおよびその被検物質2と同一物質に酵素標識
した標識試薬3との抗原抗体反応を行なわせ、そ
の後洗浄を行なつて抗原抗体反応により担体1に
競合して結合した被検物質2および標識試薬3
と、結合していないそれらとをB・F分離してか
ら、標識試薬3中の標識酵素と反応する発色試薬
を加えて反応させた後その反応液を比色測定して
標識酵素の酵素活性を求めて被検物質2を定量す
るものである。また、サンドイツチ法は、第2図
に示すように、競合法と同様にサンプル中の被検
物質と抗原抗体反応を起す抗体または抗原を予め
固定化した不溶性の担体5を用い、先ずこの担体
5とサンプルとの抗原抗体反応を行なわせてサン
プル中の被検物質6を担体5に結合させ、次に洗
浄を行なつてB・F分離した後、その担体5に被
検物質6と抗原抗体反応を起す物質を酵素で標識
した標識試薬7を作用させて抗原抗体反応を行な
わせ、その後再び洗浄を行なつてB・F分離して
から標識試薬7中の標識酵素と反応する発色試薬
を加えて反応させた後、その反応液を比色測定し
て標識酵素の酵素活性を求めて被検物質6を定量
するものである。
As such heterogeneous enzyme immunoassay methods, competitive methods, Sand-Deutsch methods, and the like are known.
In the competitive method, as shown in Figure 1, insoluble carrier 1
An antibody or an antigen that causes an antigen-antibody reaction with a test substance in a sample is immobilized in advance, and an antigen-antibody reaction is performed between the carrier 1, the sample, the test substance 2, and a labeling reagent 3 which is an enzyme-labeled substance that is the same as the test substance 2. After that, washing is performed, and the test substance 2 and labeling reagent 3 are competitively bound to the carrier 1 by an antigen-antibody reaction.
After separating the unbound and unbound substances by B and F, a coloring reagent that reacts with the labeled enzyme in labeling reagent 3 is added and reacted, and the reaction solution is measured colorimetrically to determine the enzymatic activity of the labeled enzyme. The test substance 2 is quantified by determining the following. In addition, as shown in FIG. 2, in the Sanderutsch method, like the competitive method, an insoluble carrier 5 on which an antibody or antigen that causes an antigen-antibody reaction with the test substance in the sample is immobilized in advance is used. The test substance 6 in the sample is bound to the carrier 5 by performing an antigen-antibody reaction with the sample, and after washing and separating B and F, the test substance 6 and the antigen-antibody are transferred to the carrier 5. A substance that causes a reaction is reacted with a labeling reagent 7 labeled with an enzyme to cause an antigen-antibody reaction, and then washed again to separate B and F, and then a coloring reagent that reacts with the labeling enzyme in the labeling reagent 7 is added. After addition and reaction, the reaction solution is subjected to colorimetric measurement to determine the enzyme activity of the labeled enzyme, and the amount of the test substance 6 is quantified.

上述したようにヘテロジニアス酵素免疫分析法
においては、1つの被検物質の分析中に競合法に
おいては1回、サンドイツチ法においては2回の
B・F分離が必要となり、また抗原抗体反応を行
なわせる反応容器を繰返し使用する場合には、あ
るサンプルの分析終了後次のサンプルの分析開始
に先立つて反応容器を洗浄する工程が加算される
ことになる。このように、1つの被検物質の分析
にB・F分離を含む少なく共2回の洗浄工程を必
要とする酵素免疫分析法を自動化するにあたつて
は、各洗浄工程毎に専用の洗浄装置を配置するこ
とも考えられるが、このようにすると装置が大形
かつ複雑、高価になる不具合がある。このような
不具合は、マーカを用いる上述した放射免疫分析
法、螢光免疫分析法等を自動化する場合でも同様
に生じるものである。
As mentioned above, in the heterogeneous enzyme immunoassay method, during the analysis of one test substance, B/F separation is required once in the competitive method and twice in the Sand-Deutsch method, and antigen-antibody reactions are not performed. When a reaction vessel is used repeatedly, an additional step is required to wash the reaction vessel after the analysis of one sample is completed and before the analysis of the next sample is started. In this way, when automating the enzyme immunoassay method, which requires at least two washing steps including B and F separation for the analysis of one test substance, it is necessary to carry out a dedicated washing process for each washing step. Although it is conceivable to arrange the device, this method has the problem of making the device large, complicated, and expensive. Such problems similarly occur when automating the above-mentioned radioimmunoassay, fluorescence immunoassay, etc. that use markers.

本発明者等は上述した不具合を解決し、小形
で、構成が簡単でかつ安価な分析装置によつて実
施できる免疫学的自動分析方法として、所定の抗
体または抗原を固定化した担体と、所定の抗体ま
たは抗原を所定の物質で標識した標識試薬とを用
い、反応容器内で抗原抗体反応を行なわせてサン
プル中の被検物質を免疫学的に自動的に分析する
にあたり、 前記反応容器を、該反応容器に収容したサンプ
ル中の被検物質の分析中に、エンドレス状に構成
した反応ライン中に設けた洗浄装置に循環搬送し
て、前記担体に結合した抗体または抗原と、担体
に結合していない抗体または抗原とを分離する
B・F分離を含む洗浄を少く共2回行なう自動分
析方法を提案している。また、このような自動分
析方法を実施する装置として、ターンテーブル上
に多数の反応容器を円周状に設け、各サンプルに
ついてターンテーブルが3回または4回回転する
ことによつて分析を行なうようにしたものも提案
している。このような自動分析装置においては、
ターンテーブルが一周して総ての反応容器にサン
プルを分注した後、ターンテーブルがさらに2回
または3回回転するまでは次のサンプルの分注を
行なうことができず、サンプル分注が不規則とな
り、サンプル分注器の駆動タイミング制御が面倒
となるだけでなくIDの制御、分析結果の処理な
ども面倒となる欠点がある。また、このようにサ
ンプル分注が連続して行なうことができないと、
サンプル処理能率が低下する欠点もある。
The present inventors solved the above-mentioned problems and developed an automated immunological analysis method that can be carried out using a compact, simple-configured, and inexpensive analyzer using a carrier immobilized with a predetermined antibody or antigen, In automatically immunologically analyzing a test substance in a sample by performing an antigen-antibody reaction in a reaction container using a labeled reagent in which an antibody or an antigen is labeled with a predetermined substance, the reaction container is During the analysis of the test substance in the sample contained in the reaction vessel, the antibody or antigen bound to the carrier and the antibody or antigen bound to the carrier are circulated and transported to a cleaning device installed in the endless reaction line. We have proposed an automatic analysis method in which washing, including B and F separation to separate uncontaminated antibodies or antigens, is performed at least twice. In addition, as an apparatus for carrying out such an automatic analysis method, a large number of reaction vessels are arranged circumferentially on a turntable, and each sample is analyzed by rotating the turntable three or four times. We are also proposing something that looks like this. In such an automatic analyzer,
After the turntable has made one revolution and the sample has been dispensed into all reaction vessels, the next sample cannot be dispensed until the turntable has rotated two or three more times, which may result in sample dispensing being incomplete. This has the disadvantage that not only is it difficult to control the drive timing of the sample dispenser, but also it is difficult to control the ID and process the analysis results. Also, if sample dispensing cannot be performed continuously like this,
Another disadvantage is that sample processing efficiency is reduced.

本発明の目的はこのような欠点を除去し、各サ
ンプルの分析中に反応容器を複数回循環搬送させ
て分析を完了し、しかもこの循環搬送中にも複数
の反応容器に対するサンプル分注を連続的に行う
ことができるようにした免疫学的自動分析方法を
提供しようとするものである。
The purpose of the present invention is to eliminate such drawbacks, to complete the analysis by circulating the reaction vessels multiple times during the analysis of each sample, and to continuously perform sample dispensing to multiple reaction vessels even during this circulation transfer. The purpose of the present invention is to provide an automatic immunological analysis method that can be performed automatically.

本発明の免疫学的自動分析方法は、所定の抗体
または抗原を固相化した固相化試薬に対して、分
析すべきサンプルと所定の抗体または抗原を所定
の物質で標識した標識試薬とを反応容器内で反応
させて抗原抗体反応を行わせた後、固相化試薬に
結合しなかつた物質を除去するB・F分離のため
の洗浄を行つて、サンプル中の被検物質を免疫学
的に自動的に分析するにあたり、複数の前記反応
容器をエンドレス状に構成した反応ラインに沿つ
て複数回搬送するとともに、予め決められた複数
個の反応容器毎にサンプルを分注することにより
複数回循環搬送して初めて全ての反応容器にサン
プルの分注を完了させ、前記サンプルの分注を終
えた反応容器に対する標識試薬の分注および/ま
たはB・F分離のための洗浄を、前記循環搬送中
で且つ前記サンプルの分注とは異なる周回中に行
うことを特徴とするものである。
In the automatic immunological analysis method of the present invention, a sample to be analyzed and a labeled reagent in which a predetermined antibody or antigen is labeled with a predetermined substance are added to a solid-phase reagent in which a predetermined antibody or antigen is immobilized. After performing an antigen-antibody reaction in a reaction container, the test substance in the sample is washed for B/F separation to remove substances that have not bound to the immobilized reagent. For automatic analysis, multiple reaction vessels are conveyed multiple times along an endless reaction line, and samples are dispensed into each of a predetermined number of reaction vessels. The dispensing of the sample to all the reaction vessels is completed only after the sample is transferred, and the dispensing of labeled reagent and/or washing for B/F separation to the reaction vessels from which the sample has been dispensed is carried out through the circulation. This method is characterized in that it is performed during transportation and during a different rotation from the sample dispensing.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第3図は本発明の方法を実施する酵素免疫自動
分析装置の一例の構成を示す線図であり、第2図
に示したサンドイツチ法を採用するものである。
本例では、反応容器として第4図に明瞭に示すよ
うに大口部11aおよび小口部11bを有するU
字管11を25個用い、これらを反応管デイスク1
2の同一円周上に等間隔に保持する。反応管デイ
スク12はU字管11を恒温槽10(第4図)に
浸しながら矢印で示す方向に所定のピツチ(例え
ば15秒)で間欠的に回動させる。この反応管デイ
スク12の間欠的回動によるU字管11の停止位
置を符号S1〜S25で示す。本例では停止位置S4
あるU字管11に、サンプル分注装置13により
サンプラ14の所定のサンプル吸引位置にあるサ
ンプルカツプ15からサンプルを選択的に分注す
る。なお、サンプラ14としては任意の形式のも
のを用いることができるが、本例では各々が10個
のサンプルカツプを保持する多数のラツク14a
を並べて保持し、左側の列のラツクは第3図にお
いて下方へ順次移動させてサンプル分注位置へ搬
送し、分注を終つたサンプルカツプを保持する右
側の列のラツクは上方へ移動させる。サンプル分
注位置にあるラツクは反応管デイスク12の回動
と同期して矢印Sの方向へ間欠的に移動させる。
このラツクに保持した総てのサンプルの分注が終
了したらこのラツクは右側のラツク列の下側に送
られ、左側の列の一番下側にあるラツクが次にサ
ンプル分注位置に送られる。このようにして順次
のサンプルを所定のピツチで連続的にサンプル分
注位置に送ることができる。
FIG. 3 is a diagram showing the configuration of an example of an automatic enzyme immunoanalyzer for carrying out the method of the present invention, which employs the Sanderuch method shown in FIG. 2.
In this example, the reaction vessel is a U having a large opening 11a and a small opening 11b as clearly shown in FIG.
25 tubes 11 are used, and these are connected to the reaction tube disk 1.
2 at equal intervals on the same circumference. The reaction tube disk 12 is intermittently rotated at a predetermined pitch (eg, 15 seconds) in the direction shown by the arrow while the U-shaped tube 11 is immersed in the constant temperature bath 10 (FIG. 4). The stopping positions of the U-shaped tube 11 due to the intermittent rotation of the reaction tube disk 12 are indicated by symbols S 1 to S 25 . In this example, the sample is selectively dispensed from the sample cup 15 at a predetermined sample suction position of the sampler 14 by the sample dispensing device 13 into the U-shaped tube 11 at the stop position S4 . Although any type of sampler 14 can be used, in this example, a large number of racks 14a each holding 10 sample cups are used.
The racks in the left column are sequentially moved downward in FIG. 3 and transported to the sample dispensing position, and the racks in the right column, which hold the sample cups that have been dispensed, are moved upward. The rack at the sample dispensing position is intermittently moved in the direction of arrow S in synchronization with the rotation of the reaction tube disk 12.
When all the samples held in this rack have been dispensed, this rack is sent to the bottom of the rack row on the right, and the rack at the bottom of the left row is sent next to the sample dispensing position. . In this manner, successive samples can be continuously delivered to the sample dispensing position at predetermined pitches.

反応管デイスク12の停止位置S1にあるU字管
11には第1試薬分注装置16により第1試薬1
7を選択的に分注する。この第1試薬としては緩
衝液を用いる。停止位置S3にあるU字管11には
第2試薬分注装置18によりサンプル中の被検物
質に応じた酵素標識試薬19を選択的に分注す
る。また、停止位置S2のU字管11には第3試薬
分注装置20により発色試薬21を選択的に分注
する。更に、停止位置S1にあるU字管11にはそ
の大口部11aから担体投入装置22により、そ
こに多数収容されているプラスチツク等の合成樹
脂やガラスビーズ等の不溶性の担体23を1個選
択的に投入する。なお、担体23はU字管11の
大口部11aから容易に出し入れでき、かつ小口
部11bには入いらない大きさとし、その表面に
は上述したようにサンプル中の被検物質と抗原抗
体反応を起す抗体または抗原を予じめ固定化して
おく。また、停止位置S20にあるU字管11から
は、これに収容されている反応液を比色装置24
に選択的に吸引し、停止位置S23にあるU字管1
1からは、これに収容されている担体23を担体
排出装置25により選択的に取出して排出する。
更にまた、停止位置S25にあるU字管11には洗
浄装置26により、イオン交換水、免疫分析用緩
衝液、生理食塩水などの洗浄液を選択的に注入排
出してB・F分離やU字管11の洗浄を行なう。
The first reagent 1 is supplied to the U-shaped tube 11 at the stop position S 1 of the reaction tube disk 12 by the first reagent dispensing device 16.
Selectively dispense 7. A buffer is used as this first reagent. The second reagent dispensing device 18 selectively dispenses an enzyme labeled reagent 19 corresponding to the analyte in the sample into the U-shaped tube 11 located at the stop position S3 . Further, the coloring reagent 21 is selectively dispensed into the U-shaped tube 11 at the stop position S2 by the third reagent dispensing device 20. Furthermore, one carrier 23 of synthetic resin such as plastic or insoluble carrier such as glass beads is selected from the large opening 11a of the U-shaped tube 11 located at the stop position S1 using the carrier feeding device 22 from the large opening 11a. to invest in. The carrier 23 has a size that allows it to be easily taken in and taken out from the large opening 11a of the U-shaped tube 11 and does not need to enter the small opening 11b. The antibody or antigen is immobilized in advance. In addition, the reaction liquid contained therein is transferred from the U-shaped tube 11 located at the stop position S 20 to the colorimetric device 24.
U-tube 1 in stop position S 23
1, the carrier 23 accommodated therein is selectively taken out and discharged by a carrier discharge device 25.
Furthermore, a cleaning device 26 selectively injects and discharges cleaning solutions such as ion exchange water, immunoassay buffer, and physiological saline into the U-shaped tube 11 located at the stop position S 25 to perform B/F separation and U-tube 11. The cross tube 11 is cleaned.

次に、第3図に示す酵素免疫学的自動分析装置
の動作を第4図および第5図をも参照しながら説
明する。
Next, the operation of the enzyme immunological automatic analyzer shown in FIG. 3 will be explained with reference to FIGS. 4 and 5.

本例ではサンドイツチ法により分析を行なうも
のであり、各サンプルについて見ると反応管デイ
スク12が3回転して分析が完了するものであ
る。すなわちB・F分離を2回行なうと共にU字
管を繰返し使用するための洗浄を1回行なうもの
である。このため、サンプルの分注、第1、第
2、第3の試薬の分注、担体23の投入、排出、
比色計への供給などは反応管デイスク12が3ピ
ツチ移動する間に1回動作するようになつてい
る。ただし、洗浄は上述したように分析中3回行
なうので反応管デイスク12の各移動ピツチ毎に
行なうようになつている。また、このように動作
させるためには反応管デイスク12に装填するU
字管11の本数はnを1,2,3……とするとき
3n+1または3n+2とする必要がある。本例で
はU字管11の本数は25本であり、3n+1とな
つている(n=8)。
In this example, analysis is performed by the Sand-Deutsch method, and for each sample, the reaction tube disk 12 rotates three times to complete the analysis. That is, B and F separation is performed twice and cleaning is performed once for repeated use of the U-shaped tube. Therefore, dispensing the sample, dispensing the first, second, and third reagents, loading and discharging the carrier 23,
The supply to the colorimeter etc. is operated once during the movement of the reaction tube disk 12 by three pitches. However, since cleaning is performed three times during the analysis as described above, it is performed for each moving pitch of the reaction tube disk 12. In addition, in order to operate in this way, the U loaded in the reaction tube disk 12 must be
The number of double tubes 11 is when n is 1, 2, 3...
It must be 3n+1 or 3n+2. In this example, the number of U-shaped tubes 11 is 25, which is 3n+1 (n=8).

反応管デイスク12の1回転目においては、先
ず停止位置S1にあるU字管11に第4図に示すよ
うに担体投入装置22から1個の担体23を、そ
の大口部11aから投入する。この停止位置S1
は同時に第1試薬分注装置16により緩衝液より
成る第1試薬17が所定量分注される。この反応
管11は3ピツチ送られた後、停止位置S4におい
てサンプル分注装置13によりサンプルが所定量
分注される。これにより抗原抗体反応が開始され
る。1回転目の最後にこの反応管は停止位置S25
に到達し、ここで洗浄装置26により洗浄が行な
われ、第1回目のB・F分離が行なわれる。第5
図においては当該サンプルに対して行なわれる動
作タイミングを左下がりの斜線で示してある。
In the first rotation of the reaction tube disk 12, one carrier 23 is first introduced into the U-shaped tube 11 at the stop position S1 from the carrier input device 22 through its large opening 11a, as shown in FIG. At this stop position S1 , the first reagent dispensing device 16 simultaneously dispenses a predetermined amount of the first reagent 17 made of a buffer solution. After this reaction tube 11 is fed three pitches, a predetermined amount of sample is dispensed by the sample dispensing device 13 at the stop position S4 . This initiates an antigen-antibody reaction. At the end of the first rotation, this reaction tube is at the stop position S 25
At this point, cleaning is performed by the cleaning device 26, and the first B/F separation is performed. Fifth
In the figure, the timing of the operation performed on the sample is indicated by diagonal lines going downward to the left.

次に反応管デイスク12は2回転目に入り、停
止位置S3において当該U字管11内に第2試薬分
注装置18により酵素標識試薬19を所定量分注
し、第2の反応が開始される。この2回転目の最
後の停止位置S25において洗浄装置25により第
2回目のB・F分離が行なわれる。
Next, the reaction tube disk 12 enters the second rotation, and at the stop position S3, the second reagent dispensing device 18 dispenses a predetermined amount of the enzyme labeled reagent 19 into the U-shaped tube 11, and the second reaction starts. be done. At the last stop position S25 of this second rotation, the second B/F separation is performed by the cleaning device 25.

さらに反応管デイスク12は3回転目に入り、
停止位置S2において、このU字管内に第3の試薬
分注装置20により発色試薬21が所定量分注さ
れ、第3の反応が開始される。停止位置S20に到
達するとU字管11内の検液は比色装置24のポ
ンプにより吸引され比色セルへ導びかれ、ここで
所定の波長の光による比色測定が行なわれる。次
に3ピツチ回転すると停止位置S23において担体
排出装置25によりU字管内に残つている担体2
3を除去する。3回転目の最後の停止位置S25
おいてU字管11は洗浄装置26により洗浄さ
れ、次のサンプルに対する分析に繰返し使用され
る。第5図においては、次のサンプルに対する動
作タイミングを右下がりの斜線で示してある。
Furthermore, the reaction tube disk 12 enters the third rotation,
At the stop position S2 , a predetermined amount of the coloring reagent 21 is dispensed into this U-shaped tube by the third reagent dispensing device 20, and the third reaction is started. When the stop position S20 is reached, the test liquid in the U-shaped tube 11 is sucked by the pump of the colorimetric device 24 and guided to the colorimetric cell, where a colorimetric measurement using light of a predetermined wavelength is performed. Next, when it rotates 3 pitches, at the stop position S23 , the carrier discharging device 25 removes the carrier 2 remaining in the U-shaped tube.
Remove 3. At the final stop position S 25 of the third rotation, the U-tube 11 is cleaned by the cleaning device 26 and used repeatedly for analysis of the next sample. In FIG. 5, the operation timing for the next sample is indicated by a diagonal line downward to the right.

洗浄装置26による洗浄は、U字管11の大口
部11aから洗浄液をシヤワー状に間欠的に注入
すると共に排液ポンプにより小口部11bから吸
引排出して行なうことができる。第4図に示すよ
うに洗浄装置26には洗浄液タンク26a、洗浄
液供給ポンプ26b、ノズル26c、排液ポンプ
26dなどが設けられている。また、担体投入装
置22は、同じく第4図に示すように多数の担体
23を貯蔵するホツパ22a、ホツパから担体2
3を1個づつ分離して供給するゲート装置22b
などが設けられている。一般に担体23は緩衝液
で湿潤された状態でホツパ22a内に保持されて
いる。さらに担体排出装置25はノズルをU字管
11の大口部11aに降下させ、担体23を吸引
によりノズル先端に吸着させて取出したり、アー
ムをU字管の大口部中に降下させ、担体23を把
んで取出したりすることができる。
Cleaning by the cleaning device 26 can be carried out by intermittently injecting a cleaning liquid in a shower-like manner from the large opening 11a of the U-shaped tube 11 and suctioning and discharging it from the small opening 11b using a drainage pump. As shown in FIG. 4, the cleaning device 26 is provided with a cleaning liquid tank 26a, a cleaning liquid supply pump 26b, a nozzle 26c, a drainage pump 26d, and the like. Further, as shown in FIG. 4, the carrier loading device 22 also includes a hopper 22a for storing a large number of carriers 23, and a hopper 22a for storing a large number of carriers 23.
Gate device 22b that separates and supplies 3 one by one
etc. are provided. Generally, the carrier 23 is held in the hopper 22a in a state moistened with a buffer solution. Further, the carrier discharging device 25 lowers the nozzle to the large opening 11a of the U-shaped tube 11, and removes the carrier 23 by adsorbing it to the tip of the nozzle by suction, or lowers the arm into the large opening of the U-shaped tube to remove the carrier 23. You can grab it and take it out.

上述したようにして1個のサンプルについての
分析動作は反応管デイスク12が3回転すること
により終了するが、本例ではサンプル分注、第
1、第2、第3の試薬分注、担体の投入、排出、
比色測定は反応管デイスク12が3ピツチ移動し
て1回動作すると共に反応管デイスク12には25
個(3×8+1)のU字管11が等間隔で装着さ
れているので、例えば停止位置S4においてサンプ
ル分注装置13が動作するときに位置するU字管
は反応管デイスク12の1回転毎に1個づつずれ
ることになる。このような事態は3ピツチについ
て1回動作するすべての動作について云えるの
で、サンプル分注は3ピツチに1回の割合で連続
的に行なうことができる。したがつてサンプルの
ID制御や、分析結果の処理なども一定の周期で
行なうことができるようになり、各種の制御が容
易となる。さらに反応ラインをエンドレスとし、
反応ライン中に設けた1つの洗浄装置25に、U
字管11を循環搬送してB・F分離を含む洗浄を
繰返し行なうようにしたから、装置全体の構成を
小形かつ簡単とすることができ、しかも安価にで
きる。
As described above, the analysis operation for one sample is completed when the reaction tube disk 12 rotates three times, but in this example, sample dispensing, first, second, and third reagent dispensing, and carrier dispensing are performed. input, discharge,
For colorimetric measurement, the reaction tube disk 12 moves 3 pitches and operates once, and the reaction tube disk 12 moves 25 pitches.
Since (3×8+1) U-shaped tubes 11 are installed at equal intervals, for example, when the sample dispensing device 13 is operated at the stop position S 4 , the U-shaped tubes positioned are one rotation of the reaction tube disk 12. It will be shifted by one item each time. Since this situation applies to all operations performed once for every three pitches, sample dispensing can be performed continuously once every three pitches. Therefore, the sample
ID control and processing of analysis results can now be performed at regular intervals, making various controls easier. Furthermore, the reaction line is endless,
One cleaning device 25 provided in the reaction line includes a U
Since the tubular tube 11 is circulated and carried out to repeatedly perform cleaning including B/F separation, the overall structure of the apparatus can be made small and simple, and can be made at low cost.

第6図は競合法による本発明の免疫学的分析方
法を実施する自動分析装置の一例の構成を示すも
のであり、第7図はその動作を説明するためのタ
イミングチヤートである。第6図において第3図
に示す構成要素と同じものには同一符号を付けて
示した。第1図に就き説明したように競合法によ
る免疫学的分析を行なう場合には所定の抗原また
は抗体を結合させた担体にサンプルと酵素標識試
薬とを加えて抗原抗体反応を行なわせた後B・F
分離を行ない、次に酵素発色試薬を加えた後比色
測定を行なうものであるから、反応容器の洗浄を
含めて2回の洗浄を行なうことになる。したがつ
て、第6図に示す例においてはU字管11を反応
管デイスク12上に2n+1個配列し、サンプル
分注、試薬分注、担体の投入排出、比色測定など
は反応管デイスク12が2ステツプ移動する毎に
1回動作させるようにし、洗浄は各ステツプ毎に
行なうようにすれば、サンプルの分注を連続的
に、すなわち2ステツプ毎に行なうことができ
る。
FIG. 6 shows the configuration of an example of an automatic analyzer for carrying out the immunological analysis method of the present invention using a competitive method, and FIG. 7 is a timing chart for explaining its operation. In FIG. 6, the same components as those shown in FIG. 3 are designated by the same reference numerals. As explained with reference to Fig. 1, when performing immunological analysis using a competitive method, the sample and enzyme labeling reagent are added to a carrier to which a predetermined antigen or antibody is bound, and an antigen-antibody reaction is performed.・F
Since separation is performed, then an enzyme coloring reagent is added, and colorimetric measurements are performed, washing is performed twice, including washing the reaction vessel. Therefore, in the example shown in FIG. 6, 2n+1 U-shaped tubes 11 are arranged on the reaction tube disk 12, and sample dispensing, reagent dispensing, loading/unloading of carriers, colorimetric measurements, etc. are carried out on the reaction tube disk 12. If the operation is performed once every two steps, and washing is performed after each step, the sample can be dispensed continuously, that is, every two steps.

第6図において、反応管デイスク12の円周上
の停止位置S1にあるU字管11には第1分注装置
18により酵素標識試薬より成る第1試薬19を
分注すると共に担体投入装置22により担体を1
個投入する。また、停止位置S2にあるU字管11
には第2試薬分注装置20により発色試薬である
第2試薬21を分注する。さらに停止位置S3にあ
るU字管11にはサンプル分注装置13によりサ
ンプルを分注する。本例でもサンプルは複数のサ
ンプルカツプ15を保持する複数のサンプルラツ
ク14aを有するサンプラ14から順次にサンプ
ル分注位置に供給するようにする。反応容器であ
るU字管11は第6図の右下に示すように大口部
11aと小口部11bとを有するものとする。停
止位置S22にあるU字管11からは検液を比色装
置24に吸引し、停止位置S24ではU字管11内
の担体23を担体排出装置25により排出し、停
止位置S25では洗浄装置26によりU字管を洗浄
したりB・F分離を行なう。
In FIG. 6, a first reagent 19 consisting of an enzyme-labeled reagent is dispensed by a first dispensing device 18 into the U-shaped tube 11 located at a stop position S 1 on the circumference of the reaction tube disk 12, and a carrier charging device 1 by 22
Insert. In addition, the U-shaped pipe 11 at the stop position S2
A second reagent 21, which is a coloring reagent, is dispensed by the second reagent dispensing device 20. Further, a sample is dispensed by a sample dispensing device 13 into the U-shaped tube 11 located at the stop position S3 . In this example as well, the sample is sequentially supplied to the sample dispensing position from the sampler 14 having a plurality of sample racks 14a holding a plurality of sample cups 15. The U-shaped tube 11, which is a reaction vessel, has a large opening 11a and a small opening 11b, as shown in the lower right corner of FIG. The test liquid is sucked into the colorimeter 24 from the U-shaped tube 11 at the stop position S22 , the carrier 23 in the U-shaped tube 11 is discharged by the carrier discharge device 25 at the stop position S24 , and the carrier 23 is discharged from the U-shaped tube 11 at the stop position S25. The cleaning device 26 cleans the U-shaped tube and performs B and F separation.

第6図に示す自動分析装置の動作タイミングを
第7図に示す。或るサンプルについての分析動作
について見ると、先ず、停止位置S1においてU字
管11内に担体投入装置22により1個の担体2
3を投入すると共に第1試薬分注装置18により
酵素標識試薬19を所定量分注する。反応管デイ
スク12が2ステツプ移動して当該U字管11が
停止位置S3に到達するとサンプル分注装置13に
よりサンプルが所定量分注され、抗原抗体反応が
行なわれる。このU字管11が停止位置S25に到
達するとき、すなわち1回転目の最後のステツプ
位置で洗浄装置26によりB・F分離が行なわれ
る。次に2ステツプ進んだ後、停止位置S2におい
て第2試薬分注装置20により第2試薬である発
色試薬21が所定量分注され、第2の反応が開始
される。このU字管11が停止位置S22に到達す
ると、検液は比色装置24により比色セル内に吸
引され比色測定が行なわれる。さらに2ステツプ
後、停止位置S24においてU字管11内に残つて
いる担体23を担体排出装置25により排出す
る。2回転目の最後の停止位置S25において空と
なつたU字管11を洗浄装置26により洗浄し、
次のサンプルに対する分析に備える。このように
して各サンプルについて反応管デイスク12を2
回転させることにより所定の分析を行なうことが
できる。また、本例では反応管デイスク12に25
個(2n+1)のU字管11を配列し、サンプル
分注、試薬分注、担体の投入、排出、比色測定を
2ステツプ毎に1回行なうようにしたため順次の
サンプルを2ステツプの周期で連続的に分注する
ことができる。ただし、洗浄装置26は、各ステ
ツプ毎に動作しなければならない。
FIG. 7 shows the operation timing of the automatic analyzer shown in FIG. 6. Looking at the analysis operation for a certain sample, first, one carrier 2 is loaded into the U-shaped tube 11 by the carrier loading device 22 at the stop position S1 .
At the same time, a predetermined amount of the enzyme labeled reagent 19 is dispensed by the first reagent dispensing device 18. When the reaction tube disk 12 moves two steps and the U-shaped tube 11 reaches the stop position S3 , a predetermined amount of sample is dispensed by the sample dispensing device 13, and an antigen-antibody reaction is performed. When this U-shaped tube 11 reaches the stop position S25 , that is, at the last step position of the first rotation, the cleaning device 26 performs B and F separation. Next, after proceeding two steps, the second reagent dispensing device 20 dispenses a predetermined amount of the coloring reagent 21, which is the second reagent, at the stop position S2 , and the second reaction is started. When the U-tube 11 reaches the stop position S22 , the test liquid is sucked into the colorimetric cell by the colorimetric device 24 and colorimetrically measured. After two more steps, the carrier 23 remaining in the U-shaped tube 11 is discharged by the carrier discharge device 25 at the stop position S24 . At the last stop position S25 of the second rotation, the empty U-shaped tube 11 is cleaned by the cleaning device 26,
Prepare for analysis on the next sample. In this way, two reaction tube disks 12 are prepared for each sample.
By rotating it, a predetermined analysis can be performed. In addition, in this example, 25
(2n+1) U-shaped tubes 11 are arranged, and sample dispensing, reagent dispensing, carrier loading, discharging, and colorimetric measurement are performed once every two steps, so that sequential samples are collected at a cycle of two steps. Continuous dispensing is possible. However, the cleaning device 26 must operate for each step.

第8図はサンドイツチ法による本発明の方法を
実施する自動分析装置の他の例を示すものであ
り、本例においても第3図に示す部分と同一の部
分に同じ符号を付けて示す。サンドイツチ法にお
いて反応容器を繰返し使用する場合には洗浄を3
回行なう必要があるので、本例ではU字管11を
反応管デイスク12上に25個配列する。本例と第
3図に示した装置との相違点は、本例では洗浄装
置26により停止位置S23〜S25にある3つのU字
管11に対して同時に洗浄を行なうようにした点
である。このように構成することにより、洗浄装
置26を各ステツプ毎に動作させる必要がなくな
り、他の操作機構と同様に反応管デイスク12の
3ステツプ毎に1回動作させればよい。したがつ
てこれら操作機構の駆動制御を共通とすることが
できる。また、このような構成としたため担体排
出装置25を停止位置S20に設けてある。
FIG. 8 shows another example of an automatic analyzer for carrying out the method of the present invention using the Sandersch method, and in this example as well, the same parts as shown in FIG. 3 are given the same reference numerals. If the reaction vessel is used repeatedly in the Sand-Deutsch method, it must be washed 3 times.
In this example, 25 U-shaped tubes 11 are arranged on the reaction tube disk 12 because it is necessary to repeat the reaction several times. The difference between this example and the device shown in FIG. 3 is that in this example, the cleaning device 26 simultaneously cleans the three U-shaped tubes 11 located at the stop positions S 23 to S 25 . be. With this configuration, it is no longer necessary to operate the cleaning device 26 for each step, and it is sufficient to operate it once for every three steps of the reaction tube disk 12, similar to other operating mechanisms. Therefore, the drive control of these operating mechanisms can be made common. Furthermore, because of this configuration, the carrier discharge device 25 is provided at the stop position S20 .

第9図は第8図に示す自動分析装置の動作タイ
ミングを示すものである。上述したように本例の
装置は第3図に示すものとほぼ同様であり、洗浄
が3ステツプ毎に1回行なわれる点が相違するだ
けであるので、その説明は省略する。このような
構成によつてもサンプルを3ステツプ毎に連続的
に分注することができる。
FIG. 9 shows the operation timing of the automatic analyzer shown in FIG. 8. As mentioned above, the apparatus of this example is almost the same as that shown in FIG. 3, and the only difference is that cleaning is performed once every three steps, so a description thereof will be omitted. Even with such a configuration, the sample can be continuously dispensed every three steps.

第10図は本発明による分析方法を実施する自
動分析装置のさらに他の例を示すものであり、本
例ではサンドイツチ法により酵素免疫分析を行な
うものである。上述した例では反応管デイスク1
2に1列のU字管11を配置したが、本例では反
応管デイスク31上に3列の反応管32を設け
る。各列には24個の反応管を設けてあるが、この
数は任意である。説明の便宜上最外周の反応管列
を第1の反応管列32−1、中間の反応管列を第
2の反応管列32−2、最内周の反応管列を第3
の反応管列32−3と称する。前例と同様に反応
管デイスク31は所定のピツチで間欠的に回動す
るものとする。停止位置S1には担体投入装置33
を設け担体を反応管に選択的に投入する。本例で
はこの担体投入装置33は第1、第2および第3
の反応管列に順次に供給できるようになつてい
る。すなわち、第1の反応管列32−1の順次の
反応管に1個づつ担体を投入した後次に第2の反
応管列32−2の順次の反応管に1個づつ担体を
投入し、さらに第3の反応管列32−3の順次の
反応管に1個づつ担体を投入し、再び第1の反応
管列32−1の順次の反応管に1個づつ担体を投
入し、以後同様にして担体投入動作を繰返すよう
になつている。
FIG. 10 shows still another example of an automatic analyzer for carrying out the analysis method according to the present invention, and in this example, enzyme immunoassay is performed by the Sand-Deutsch method. In the above example, reaction tube disk 1
In this example, three rows of reaction tubes 32 are provided on the reaction tube disk 31. Each row is provided with 24 reaction tubes, but this number is arbitrary. For convenience of explanation, the outermost reaction tube row is referred to as the first reaction tube row 32-1, the middle reaction tube row is referred to as the second reaction tube row 32-2, and the innermost reaction tube row is referred to as the third reaction tube row.
It is called a reaction tube row 32-3. As in the previous example, the reaction tube disk 31 is assumed to rotate intermittently at a predetermined pitch. A carrier loading device 33 is located at the stop position S1 .
is provided to selectively charge the carrier into the reaction tube. In this example, this carrier loading device 33 is used for the first, second and third carrier loading devices.
It is designed so that it can be sequentially supplied to a row of reaction tubes. That is, the carriers are introduced one by one into the successive reaction tubes of the first reaction tube row 32-1, and then the carriers are introduced one by one into the successive reaction tubes of the second reaction tube row 32-2. Furthermore, carriers are introduced one by one into successive reaction tubes in the third reaction tube row 32-3, and again one by one into successive reaction tubes in the first reaction tube row 32-1. The carrier loading operation is repeated.

停止位置S2には洗浄装置34を設け、この停止
位置にある総ての反応管32を同時に洗浄するよ
うにする。停止位置S3には第1の試薬分注装置3
5を配置し、緩衝液より成る第1の試薬36を反
応管32に分注する。この分注も担体投入装置3
3と同様に第1、第2および第3の反応管列の順
序で第1試薬を分注するものである。第4の停止
位置S4にはサンプル分注装置37を設け、サンプ
ラ38により順次に供給されるサンプルを反応管
32に分注する。このサンプル分注も順次の反応
管列毎に行なわれる。停止位置S5には第2試薬分
注装置39を設け、酵素標識試薬である第2の試
薬40を分注する。第6の停止位置S6には第3試
薬分注装置41を設け酵素発色試薬である第3の
試薬42を分注する。これら第2および第3の試
薬分注も順次の反応管列毎に行なうものである。
A cleaning device 34 is provided at the stop position S2 to simultaneously clean all reaction tubes 32 at this stop position. The first reagent dispensing device 3 is located at the stop position S3 .
5 and dispenses a first reagent 36 consisting of a buffer solution into the reaction tube 32. This dispensing is also carried out by the carrier injection device 3.
3, the first reagent is dispensed in the order of the first, second and third reaction tube rows. A sample dispensing device 37 is provided at the fourth stop position S 4 and dispenses the samples sequentially supplied by the sampler 38 into the reaction tube 32 . This sample dispensing is also performed for each successive reaction tube row. A second reagent dispensing device 39 is provided at the stop position S5 , and dispenses a second reagent 40, which is an enzyme-labeled reagent. A third reagent dispensing device 41 is provided at the sixth stop position S6 to dispense a third reagent 42, which is an enzyme coloring reagent. These second and third reagent dispensing are also performed for each successive reaction tube row.

停止位置S23には比色装置43を設け、順次の
反応管列の反応管32内の検液を比色セルへ導び
いて比色測定を行なう。また、停止位置S24には
担体排出装置44を設け、反応管内に残つた担体
を排出する。これら比色装置43および担体排出
装置44も順次の反応管列毎に動作するものであ
る。第10図においては、第1〜第3の反応管列
の反応管に対して同時に洗浄を行なう洗浄装置3
4と反応管との間は3本の実線で連結して示し、
その他の機構と反応管との間は1本の実線と2本
の破線で示し、順次の反応管列毎に動作すること
を表わした。
A colorimetric device 43 is provided at the stop position S23 , and the test liquids in the reaction tubes 32 of the successive reaction tube rows are guided to a colorimetric cell for colorimetric measurement. Further, a carrier discharging device 44 is provided at the stop position S24 to discharge the carrier remaining in the reaction tube. These colorimetric device 43 and carrier discharge device 44 are also operated for each successive reaction tube row. In FIG. 10, a cleaning device 3 that simultaneously cleans the reaction tubes of the first to third reaction tube rows is shown.
4 and the reaction tube are shown connected by three solid lines,
The other mechanisms and the reaction tubes are indicated by one solid line and two broken lines, indicating that they operate for each successive row of reaction tubes.

第11図は第10図に示す自動分析装置の動作
タイミングを示す図であり、,,はそれぞ
れ第1、第2および第3の反応管列32−1,3
2−2および32−3に対する動作を表わしてい
る。洗浄は反応管デイスク31と同期したタイミ
ングで第1〜第3の反応管列に対して同時に行な
われる。
FIG. 11 is a diagram showing the operation timing of the automatic analyzer shown in FIG.
2-2 and 32-3. Cleaning is performed simultaneously on the first to third reaction tube rows at a timing synchronized with the reaction tube disk 31.

先ず停止位置S1において第1反応管列32−1
の反応管に担体が1個投入される。この反応管は
次の停止位置S2において洗浄される。洗浄を行な
う前にはこの反応管には前のサンプルに対する検
液が残存しているが、この検液中には担体と結合
するような物質は含まれていないので担体がコン
タミネーシヨンを受けることはないが、停止位置
S2で洗浄することにより、前回の検液とサンプル
または試薬とのコンタミネーシヨンもなくなる。
次に停止位置S3において第1試薬分注装置35に
より緩衝液より成る第1試薬36を所定量この反
応管に分注する。さらに1ステツプ移動して停止
位置S4に到達すると、サンプル分注装置37によ
り所定量のサンプルがこの反応管に分注され、第
1の反応が開始される。本例ではこのような担体
の投入、洗浄、第1試薬の分注、サンプルの分注
は第1の反応管列の順次の反応管に対して順次
に、すなわち1ステツプ毎に行なわれる。
First, at the stop position S1 , the first reaction tube row 32-1
One carrier is put into the reaction tube. The reaction tube is cleaned in the next stop position S2 . Before washing, the test solution for the previous sample remains in this reaction tube, but since this test solution does not contain any substances that would bind to the carrier, the carrier may be contaminated. There is no need to stop at the stop position.
Washing with S2 also eliminates contamination between the previous test solution and the sample or reagent.
Next, at the stop position S3 , the first reagent dispensing device 35 dispenses a predetermined amount of the first reagent 36 made of a buffer solution into the reaction tube. When it moves one more step and reaches the stop position S4 , a predetermined amount of sample is dispensed into this reaction tube by the sample dispensing device 37, and the first reaction is started. In this example, such loading of the carrier, washing, dispensing of the first reagent, and dispensing of the sample are performed sequentially to successive reaction tubes in the first reaction tube array, that is, in each step.

第1のサンプルを分注した第1反応管列の第1
の反応管が再び停止位置S2に到達すると洗浄装置
34により第1回目のB・F分離が行なわれる。
この反応管がこの停止位置S24に到達する過程に
おいて停止位置S5,S6,S23,S24,S1を通過する
が、第11図から明らかなようにこれらは第2お
よび第3の反応管列の反応管に対して動作してい
るので何んら支障はない。次にこの反応管が停止
位置S5に達すると第2試薬分注装置39により第
2試薬40が所定量分注され、第2の反応が開始
される。この反応管はさらに停止位置S2に送られ
ると再び洗浄され、第2回目のB・F分離が行な
われる。その後停止位置S6において第3試薬分注
装置41により第3試薬42が所定量分注され、
第3の反応が開始される。この反応管はさらに停
止位置S23に送られると、比色装置43により比
色測定が行なわれる。次に停止位置S24で反応管
内に残つている担体が担体排出装置44により反
応管から排出される。ここまで当該反応管は三回
転したことになり、次に1ステツプ移動して停止
位置S1に入ると再び担体が投入され、上述した動
作を繰返す。
The first tube of the first reaction tube row into which the first sample was dispensed
When the reaction tube reaches the stop position S2 again, the cleaning device 34 performs the first B/F separation.
In the process of reaching this stop position S24 , this reaction tube passes through stop positions S5 , S6 , S23 , S24 , S1 , but as is clear from FIG. Since the operation is performed on the reaction tubes in the reaction tube row, there is no problem. Next, when this reaction tube reaches the stop position S5 , a predetermined amount of the second reagent 40 is dispensed by the second reagent dispensing device 39, and the second reaction is started. This reaction tube is further sent to the stop position S2 , where it is washed again and a second B/F separation is performed. Thereafter, a predetermined amount of the third reagent 42 is dispensed by the third reagent dispensing device 41 at the stop position S6 ,
A third reaction is initiated. When this reaction tube is further sent to a stop position S23 , a colorimetric measurement is performed by a colorimetric device 43. Next, at the stop position S24 , the carrier remaining in the reaction tube is discharged from the reaction tube by the carrier discharge device 44. Up to this point, the reaction tube has rotated three times, and when it moves one step and enters the stop position S1 , the carrier is introduced again and the above-mentioned operation is repeated.

一方、担体投入装置33について見ると、最初
の1回転目では第1反応管列32−1の順次の反
応管に1個づつ担体を投入し、24個の反応管のす
べてに担体を投入し終つたら第2反応管列32−
2に移り、その24個の反応管に順次1個づつ担体
を投入し、次に第3反応管列32−3に移り、そ
の24個の反応管に順次1個づつ担体を投入する。
次に再び第1反応管列32−1に移り、上述した
動作を繰返すことになる。サンプル分注装置3
7、第1試薬分注装置35、第2試薬分注装置3
9、第3試薬分注装置41、比色測定装置43、
担体排出装置44の動作も同様であるが、第11
図に示すように対象とする反応管列が相違してい
る。例えば第11図の第1回転目においては担体
投入は第1反応管列32−1に対して行なわれ、
第1試薬分注は第3ステツプから第1反応管列に
対して行なわれ、第2試薬分注は第4ステツプま
では第2反応管列32−2に対して行なわれ、第
5ステツプから第3反応管列32−3に移り、第
3試薬の分注は第5ステツプまでは第1反応管列
に対して行なわれ、第6ステツプ以降は第2反応
管列32−2に対して行なわれることになる。こ
のように本例においてはサンプル分注を反応管デ
イスク31の各ステツプ毎に連続的に行なうこと
ができるので前述した実施例と比較した場合サン
プル処理能率が向上することになる。また、担体
の投入、排出、サンプルの分注、試薬の分注、比
色測定については順次の反応管列毎に行なうので
これらの駆動制御は非常に容易になる。
On the other hand, regarding the carrier charging device 33, during the first rotation, carriers are charged one by one into the successive reaction tubes of the first reaction tube row 32-1, and carriers are charged into all 24 reaction tubes. When finished, the second reaction tube row 32-
2, one carrier is sequentially charged into each of the 24 reaction tubes, and then the process moves to the third reaction tube row 32-3, and one carrier is sequentially introduced into each of the 24 reaction tubes.
Next, the process moves to the first reaction tube row 32-1 again, and the above-described operation is repeated. Sample dispensing device 3
7, first reagent dispensing device 35, second reagent dispensing device 3
9, third reagent dispensing device 41, colorimetric measurement device 43,
The operation of the carrier discharging device 44 is also similar, but the 11th
As shown in the figure, the target reaction tube rows are different. For example, in the first rotation in FIG. 11, the carrier is introduced into the first reaction tube row 32-1,
The first reagent dispensing is performed to the first reaction tube array from the third step, the second reagent dispensing is performed to the second reaction tube array 32-2 up to the fourth step, and from the fifth step Moving to the third reaction tube row 32-3, the third reagent is dispensed to the first reaction tube row up to the fifth step, and from the sixth step onward to the second reaction tube row 32-2. It will be done. In this manner, in this embodiment, sample dispensing can be performed continuously for each step of the reaction tube disk 31, so that the sample processing efficiency is improved when compared with the previously described embodiment. In addition, since the loading and unloading of carriers, sample dispensing, reagent dispensing, and colorimetric measurements are performed for each reaction tube row in sequence, these driving controls become extremely easy.

本発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形が可能である。上述した実
施例では酵素標識試薬を用いる酵素免疫分析を行
なつているが、マーカとして放射性同位元素を用
いる放射免疫分析、マーカとして螢光物質を用い
る螢光免疫分析などにも同様に適用することがで
きる。また、反応管は必らずしも円板状の反応管
デイスク上に保持する必要はなく、例えばスネー
クチエーンやゴンドラ方式の搬送装置を用いるこ
とができる。さらに上述した例では最終的に得ら
れる検液を比色セルに導びいて比色測定を行なつ
たが、透明な反応管を用い、検液が反応管内に存
在する状態で比色測定を行なうダイレクト測光方
式を採用することもできる。この場合、反応管内
に残存する担体が測光の妨げとなるような場合に
は測光前に担体を取除くこともできる。また、こ
のようなダイレクト測光方式を採る場合には、測
光後担体を検液と共に排出できるので担体排出装
置が簡単となる。さらに上述した実施例において
は洗浄装置を1個設けたが複数個設けることもで
きる。例えば第3図に示す実施例において、洗浄
装置26と直径的にほぼ対向する位置に第2の洗
浄装置を設けることもできる。このようにしても
洗浄装置を3個設けるものに比べれば装置は簡単
かつ小形になる効果は得られる。さらに上述した
実施例では反応管は繰返し使用するようにした
が、このことも必らずしも必要ではなく、分析に
使用した反応管を使い捨てとすることもできる。
また、上述した実施例ではすべてのサンプルにつ
いて同一の測定項目の分析を行なうようにした
が、同時に多項目の分析を行なうようにすること
もできる。さらに、各種分注位置、担体の投入、
排出位置、比色測定位置なども上述した実施例に
限定されるものではなく、種々の変更が可能であ
る。また、上述した例では撹拌については何んら
述べていないが、適当な撹拌機構を適当な停止位
置に設けることができる。例えばU字状の反応管
を用いる場合にはその小口部からエアを送給する
ことにより撹拌することができる。
The present invention is not limited to the embodiments described above, but can be modified in many ways. In the above-mentioned embodiment, enzyme immunoassay using an enzyme-labeled reagent is performed, but the present invention can be similarly applied to radioimmunoassay using a radioactive isotope as a marker, fluorescent immunoassay using a fluorescent substance as a marker, etc. I can do it. Further, the reaction tubes do not necessarily have to be held on a disk-shaped reaction tube disk, and for example, a snake chain or gondola type conveying device can be used. Furthermore, in the above example, the finally obtained test solution was introduced into the colorimetric cell for colorimetric measurement, but a transparent reaction tube was used and the colorimetric measurement was performed with the test solution present in the reaction tube. It is also possible to adopt a direct photometry method. In this case, if the carrier remaining in the reaction tube interferes with photometry, the carrier can be removed before photometry. Further, when such a direct photometry method is adopted, the carrier can be discharged together with the test liquid after photometry, so the carrier discharge device becomes simple. Further, although one cleaning device is provided in the above-described embodiment, a plurality of cleaning devices may be provided. For example, in the embodiment shown in FIG. 3, a second cleaning device may be provided at a position substantially diametrically opposite the cleaning device 26. Even in this case, compared to the case where three cleaning devices are provided, the device can be made simpler and more compact. Further, in the above-described embodiments, the reaction tubes are used repeatedly, but this is not always necessary, and the reaction tubes used for analysis may be disposable.
Further, in the above-described embodiment, all samples are analyzed for the same measurement item, but it is also possible to perform analysis for multiple items at the same time. Furthermore, various dispensing positions, carrier injection,
The discharge position, colorimetric measurement position, etc. are not limited to the above-mentioned embodiments, and various changes are possible. Furthermore, although no mention is made of stirring in the above example, a suitable stirring mechanism can be provided at a suitable stopping position. For example, when a U-shaped reaction tube is used, stirring can be achieved by supplying air from the small opening of the tube.

以上説明したように本発明の免疫学的自動分析
方法においては、各サンプルの分析中に、エンド
レス状の反応ラインに沿つて各反応容器を複数回
循環搬送させるとともに、反応ライン上の複数の
反応容器に対するサンプルの分注は連続的に行え
るようにしたため、自動分析装置全体の構成を簡
単かつ小型とすることができ、しかもサンプル処
理能率が向上する。さらに、サンプル分注を含め
た総ての分析に関する機構の動作を共通のタイミ
ングで制御できるので、装置全体の制御も容易と
なる。
As explained above, in the automated immunological analysis method of the present invention, each reaction container is circulated multiple times along an endless reaction line during analysis of each sample, and multiple reactions on the reaction line are carried out. Since samples can be continuously dispensed into containers, the overall configuration of the automatic analyzer can be made simple and compact, and the sample processing efficiency is improved. Furthermore, since the operations of all mechanisms related to analysis including sample dispensing can be controlled at a common timing, control of the entire apparatus becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は競合法による酵素免疫分析の過程を示
す線図、第2図はサンドイツチ法による酵素免疫
分析の過程を示す線図、第3図は本発明による分
析方法を実施する自動分析装置の一例の構成を示
す線図、第4図は同じくその順次の動作を示す
図、第5図は同じくその各部の動作を示すタイミ
ングチヤート図、第6図は本発明の分析方法を実
施する自動分析装置の他の例の構成を示す線図、
第7図は同じくその動作を説明するためのタイミ
ングチヤート図、第8図は本発明の分析方法を実
施する自動分析装置のさらに他の例の構成を示す
線図、第9図は同じくその動作を説明するための
タイミングチヤート図、第10図は本発明の分析
方法を実施する自動分析装置のさらに他の例の構
成を示す図、第11図は同じくその動作を説明す
るためのタイミングチヤート図である。 11…U字管、12…反応管デイスク、13…
サンプル分注装置、14…サンプラ、15…サン
プルカツプ、16,18,20…試薬分注装置、
22…担体投入装置、23…担体、24…比色装
置、25…担体排出装置、26…洗浄装置、31
…反応管デイスク、32…反応管、32−1,3
2−2,32−3…反応管列、33…担体投入装
置、34…洗浄装置、35,39,41…試薬分
注装置、37…サンプル分注装置、38…サンプ
ラ、43…比色装置、44…担体排出装置。
Fig. 1 is a diagram showing the process of enzyme immunoassay using the competitive method, Fig. 2 is a diagram showing the process of enzyme immunoassay using the Sand-Deutsch method, and Fig. 3 is a diagram showing the process of enzyme immunoassay using the Sand-Deutsch method. A diagram showing the configuration of an example, FIG. 4 is a diagram showing its sequential operation, FIG. 5 is a timing chart showing the operation of each part, and FIG. 6 is an automatic analysis that implements the analysis method of the present invention. A diagram showing the configuration of another example of the device,
FIG. 7 is a timing chart for explaining its operation, FIG. 8 is a line diagram showing the configuration of still another example of an automatic analyzer that implements the analysis method of the present invention, and FIG. 9 is a diagram for explaining its operation. FIG. 10 is a diagram showing the configuration of still another example of an automatic analyzer that implements the analysis method of the present invention, and FIG. 11 is a timing chart diagram for explaining its operation. It is. 11...U-shaped tube, 12...reaction tube disk, 13...
sample dispensing device, 14... sampler, 15... sample cup, 16, 18, 20... reagent dispensing device,
22... Carrier input device, 23... Carrier, 24... Colorimetric device, 25... Carrier discharge device, 26... Washing device, 31
...Reaction tube disk, 32...Reaction tube, 32-1,3
2-2, 32-3... Reaction tube array, 33... Carrier loading device, 34... Washing device, 35, 39, 41... Reagent dispensing device, 37... Sample dispensing device, 38... Sampler, 43... Colorimetric device , 44...Carrier discharge device.

Claims (1)

【特許請求の範囲】 1 所定の抗体または抗原を固相化した固相化試
薬に対して、分析すべきサンプルと所定の抗体ま
たは抗原を所定の物質で標識した標識試薬とを反
応容器内で反応させて抗原抗体反応を行わせた
後、固相化試薬に結合しなかつた物質を除去する
B・F分離のための洗浄を行つて、サンプル中の
被検物質を免疫学的に自動的に分析するにあた
り、 複数の前記反応容器をエンドレス状に構成した
反応ラインに沿つて複数回搬送するとともに、予
め決められた複数個の反応容器毎にサンプルを分
注することにより複数回循環搬送して初めて全て
の反応容器にサンプルの分注を完了させ、前記サ
ンプルの分注を終えた反応容器に対する標識試薬
の分注および/またはB・F分離のための洗浄
を、前記循環搬送中で且つ前記サンプルの分注と
は異なる周回中に行うことを特徴とする免疫学的
自動分析方法。
[Scope of Claims] 1. A sample to be analyzed and a labeling reagent in which a predetermined antibody or antigen is labeled with a predetermined substance are placed in a reaction container with respect to an immobilized reagent in which a predetermined antibody or antigen is immobilized. After performing an antigen-antibody reaction, washing is performed for B/F separation to remove substances that have not bound to the immobilized reagent, and the test substance in the sample is automatically immunologically analyzed. In order to carry out the analysis, the plurality of reaction containers are transported multiple times along an endless reaction line, and the sample is circulated and transported multiple times by dispensing the sample into each of a plurality of predetermined reaction containers. The dispensing of the sample into all the reaction vessels is completed only after the dispensing of the sample is completed, and the dispensing of the labeling reagent and/or the washing for B/F separation to the reaction vessels in which the sample has been dispensed are carried out during the circulating transportation and An automatic immunological analysis method, characterized in that the method is carried out during a rotation different from the dispensing of the sample.
JP959983A 1983-01-24 1983-01-24 Immunological automatic analytical method Granted JPS59135367A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP959983A JPS59135367A (en) 1983-01-24 1983-01-24 Immunological automatic analytical method
DE19843448121 DE3448121C2 (en) 1983-01-24 1984-01-24
DE19843448210 DE3448210C2 (en) 1983-01-24 1984-01-24
DE19843402304 DE3402304C3 (en) 1983-01-24 1984-01-24 Procedure for automatic immunological analysis
DE19843448007 DE3448007C2 (en) 1983-01-24 1984-01-24 Reaction vessel for immunological analysis
US07/119,278 US5175086A (en) 1983-01-24 1987-11-09 Method for effecting heterogeneous immunological analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP959983A JPS59135367A (en) 1983-01-24 1983-01-24 Immunological automatic analytical method

Publications (2)

Publication Number Publication Date
JPS59135367A JPS59135367A (en) 1984-08-03
JPH0577981B2 true JPH0577981B2 (en) 1993-10-27

Family

ID=11724775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP959983A Granted JPS59135367A (en) 1983-01-24 1983-01-24 Immunological automatic analytical method

Country Status (1)

Country Link
JP (1) JPS59135367A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664069B2 (en) * 1984-11-14 1994-08-22 オリンパス光学工業株式会社 Immunological automatic analysis method
JPH0656383B2 (en) * 1985-02-22 1994-07-27 オリンパス光学工業株式会社 Enzyme immunological automatic analyzer
JPS62133355A (en) * 1985-12-06 1987-06-16 Nitsuteku:Kk Eia automatic analyzer
JP2883347B2 (en) * 1989-03-15 1999-04-19 日本電子株式会社 Automatic immunoassay device cartridge washing device
JPH02245665A (en) * 1989-03-18 1990-10-01 Jeol Ltd Automatic biochemical analyzer
JP3733432B2 (en) * 1996-07-26 2006-01-11 東ソー株式会社 Reactor for immunoanalyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147067A (en) * 1980-04-16 1981-11-14 Olympus Optical Co Ltd Automatic measuring instrument for enzyme immunity
JPS5774662A (en) * 1980-10-28 1982-05-10 Fujirebio Inc Automatic measuring apparatus for enzyme immunity
JPS5984159A (en) * 1982-11-06 1984-05-15 Kyoto Daiichi Kagaku:Kk Method and device for automatic immune measurement of enzyme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147067A (en) * 1980-04-16 1981-11-14 Olympus Optical Co Ltd Automatic measuring instrument for enzyme immunity
JPS5774662A (en) * 1980-10-28 1982-05-10 Fujirebio Inc Automatic measuring apparatus for enzyme immunity
JPS5984159A (en) * 1982-11-06 1984-05-15 Kyoto Daiichi Kagaku:Kk Method and device for automatic immune measurement of enzyme

Also Published As

Publication number Publication date
JPS59135367A (en) 1984-08-03

Similar Documents

Publication Publication Date Title
CN109142768B (en) Automatic analyzer and sample analyzing method
US5175086A (en) Method for effecting heterogeneous immunological analysis
US4837159A (en) Method and apparatus for effecting immunological analysis
EP0089346B1 (en) Automated immunoassay system
JP3372544B2 (en) Automatic chemical analysis method and apparatus
US5178834A (en) Automatic immunoassay analyzer
JP3673926B2 (en) Method and apparatus for preprocessing samples in an automated chemical analyzer
US20050220670A1 (en) Multipath access system for use in an automated immunoassay analyzer
JP4374246B2 (en) Improve the throughput of automated laboratory analyzers by sorting analysis according to type
JP2884604B2 (en) Automatic immunoassay device and method of using the same
CN111033263A (en) Automatic analysis device and working method thereof
US6103193A (en) Automatic immunoassay method and apparatus
JPS59147267A (en) Immunological automatic analytical method and reaction vessel used therein
JPH0577981B2 (en)
JPH0688828A (en) Automatic immune analyzing instrument
JPH0656383B2 (en) Enzyme immunological automatic analyzer
JPS61117455A (en) Automatic immunological analysis method
JP3733432B2 (en) Reactor for immunoanalyzer
JPH0619358B2 (en) Immunological automatic analysis method
JPH0756490B2 (en) Immunological automatic analysis method
JPS61258171A (en) Method and instrument for automatic immunological analysis
JP3001994B2 (en) Automatic analyzer
JPH061274B2 (en) Immunological automatic analysis method
JPH0471182B2 (en)
JPH01287465A (en) Apparatus and method of analysis in which liquid can be stirred