JPH04318432A - Distribution temperature measuring method by optical fiber sensor - Google Patents

Distribution temperature measuring method by optical fiber sensor

Info

Publication number
JPH04318432A
JPH04318432A JP3085202A JP8520291A JPH04318432A JP H04318432 A JPH04318432 A JP H04318432A JP 3085202 A JP3085202 A JP 3085202A JP 8520291 A JP8520291 A JP 8520291A JP H04318432 A JPH04318432 A JP H04318432A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
light
sensor
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3085202A
Other languages
Japanese (ja)
Inventor
Satoshi Terakubo
寺久保 敏
Yoshikazu Murata
村田 吉和
Masayoshi Yamaguchi
正義 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3085202A priority Critical patent/JPH04318432A/en
Publication of JPH04318432A publication Critical patent/JPH04318432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a temperature data of high measuring accuracy by a method whereby two or more measuring signals are obtained for the same point by means of an optical fiber sensor, converted to electric signals thereby to obtain the temperature data while the influences upon the two or more measuring signals because of the difference of the transmission loss, peripheral temperature and temperature change of a light source are corrected with the utilization of symmetry of the temperature data. CONSTITUTION:An optical fiber of two cores is bent thereby to form an optical fiber sensor 1. Two measuring signals for one point of the sensor are measured by a distribution temperature measuring part 10, converted into electric signals at photodiodes 16, 16', and sent out of an interface 19. In a processor part 20, a correcting/processing part 25 corrects the measuring signal thereby to obtain a signal from which influences of various kinds of factors are removed, and a temperature data computing part 26 obtains the temperature data based on the signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、測温部に光ファイバ
センサを用いて分布温度を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring distributed temperature using an optical fiber sensor in a temperature measuring section.

【0002】0002

【従来の技術】例えば海洋において、海表面から海底に
至る温度変化のように距離と共に徐々に変化する温度(
以下分布温度という)を測定する場合、従来の熱電対を
用いる方法では膨大な数の熱電対を必要とし、距離が長
くなると不利である。そこで、分布温度を光ファイバセ
ンサを用いて測定する方法が最近盛んに行なわれつつあ
る。この測定方法の概略は、次のような方法である。 例えばレーザダイオードを駆動して基準波長の光パルス
信号を送り出して光ファイバセンサの入射端に入射し、
光ファイバの長さ方向の各部分で光散乱して入射端に戻
ってくる後方散乱光を光方向性結合器により取り出し、
その中から異なる2つの波長フィルタを介してラマン散
乱光のストークス光と反ストークス光を取り出して受光
素子でそれぞれ電気信号に変換し、受光信号の時間が表
わす光ファイバの長さ方向位置ごとの分布温度を上記信
号の受光パワーから所定の演算式に基づいて算出して測
定するというものである。この場合、使用されている光
ファイバセンサは単一の光ファイバである。
[Prior Art] For example, in the ocean, the temperature (
When measuring the distribution temperature (hereinafter referred to as distributed temperature), the conventional method using thermocouples requires a huge number of thermocouples, which is disadvantageous if the distance is long. Therefore, a method of measuring distributed temperature using an optical fiber sensor has recently become popular. The outline of this measurement method is as follows. For example, a laser diode is driven to send out an optical pulse signal of a reference wavelength, which enters the input end of an optical fiber sensor.
The backscattered light that is scattered at each part in the length direction of the optical fiber and returns to the input end is extracted by an optical directional coupler.
The Stokes light and anti-Stokes light of the Raman scattered light are extracted from the light through two different wavelength filters and converted into electrical signals by a light receiving element, and the time distribution of the received light signals is distributed for each position in the length direction of the optical fiber. The temperature is calculated and measured from the received light power of the signal based on a predetermined arithmetic expression. In this case, the optical fiber sensor used is a single optical fiber.

【0003】0003

【発明が解決しようとする課題】ところで、上述した光
ファイバセンサを用いた分布温度の測定方法は、低コス
トで広範囲の分布計測ができる点で従来の熱電対方式の
ものに比べて優れている。しかしながら、現在のところ
一般的には光ファイバセンサによる測定方法は、従来の
熱電対方式のものに比べて測定精度が劣っている。おお
よそのところ測定距離は数Km、距離分解能は数m、測
定精度は±1℃である。
[Problems to be Solved by the Invention] By the way, the above-mentioned method of measuring distributed temperature using an optical fiber sensor is superior to the conventional thermocouple method in that it can measure distribution over a wide range at low cost. . However, at present, measurement methods using optical fiber sensors generally have lower measurement accuracy than conventional thermocouple methods. The measurement distance is approximately several kilometers, the distance resolution is several meters, and the measurement accuracy is ±1°C.

【0004】上記従来の光ファイバセンサによる測定方
法では、光ファイバは単一光ファイバであるため任意の
長さ位置における測定データはただ一種類であり、信頼
性に欠ける。このため、測定精度を得るべく受光信号を
電気信号に変換したものを同一点に対して所定のサンプ
リング時間内に何度も繰り返して加算平均してS/N比
を上げる。この信号をさらに長い時間内で平均化処理を
して所定の演算式により温度分布を求めている。
[0004] In the conventional measurement method using an optical fiber sensor, since the optical fiber is a single optical fiber, there is only one type of measurement data at a given length position, which lacks reliability. For this reason, in order to obtain measurement accuracy, the received light signal is converted into an electrical signal, which is then repeatedly added and averaged at the same point within a predetermined sampling time to increase the S/N ratio. This signal is averaged over a longer period of time to determine the temperature distribution using a predetermined calculation formula.

【0005】しかし、このデータ処理方法では単に加算
平均しているだけであるため、ある程度以上加算処理し
てもそれ以上は測定精度が得られず限界がある。上記の
問題に加えてさらに、光ファイバセンサの測温データは
、光ファイバの持つ伝送損失の波長依存性、即ちストー
クス光と反ストークス光の波長の差(80mm程度)に
よる伝送損失の違いがある。このため、仮りに均一な温
度分布域を測定しても大きく傾いた温度分布を示すこと
がある。この伝搬損失差は、さらに周囲温度にも依存し
て変化する。また、レーザ光源の温度変化によっても同
様な分布を示す場合がある。
However, since this data processing method simply performs addition and averaging, there is a limit as measurement accuracy cannot be obtained beyond a certain amount of addition processing. In addition to the above problems, the temperature measurement data of the optical fiber sensor has a difference in transmission loss due to the wavelength dependence of the optical fiber's transmission loss, that is, the difference in wavelength between Stokes light and anti-Stokes light (about 80 mm). . For this reason, even if a uniform temperature distribution area is measured, a greatly tilted temperature distribution may be observed. This propagation loss difference also changes depending on the ambient temperature. Further, a similar distribution may be exhibited depending on the temperature change of the laser light source.

【0006】このため、従来は光ファイバセンサの両端
に近い温度を別々の基準測定手段で測定しておき、この
基準データを用いて上記測定データを後の解析時に修正
する必要があった。従って、補正のための基準測温手段
として少なくとも2つ以上の複数組の温度計を必要とし
、異なる2点以上の点で測定するため手間がかかる等の
不利があった。また、例えば測温データの一部が極端な
値を示していた場合などにそれがセンサの異常によるも
のが真の温度かの区別が困難であり、後の測温データの
解析時に判断し難くいという問題もあった。
[0006] Conventionally, therefore, it has been necessary to measure the temperatures near both ends of the optical fiber sensor using separate reference measurement means, and use this reference data to correct the measured data during subsequent analysis. Therefore, at least two or more sets of thermometers are required as a reference temperature measurement means for correction, and measurement at two or more different points requires time and effort. In addition, for example, if part of the temperature measurement data shows an extreme value, it is difficult to distinguish whether it is due to a sensor abnormality or the true temperature, and it is difficult to judge when analyzing the temperature measurement data later. There was also the problem of

【0007】この発明は、以上のような従来の光ファイ
バセンサを用いた分布温度の測定方法に伴なう種々の問
題点に鑑みてなされたものであり、同一点に対して2以
上の光信号が得られる光ファイバセンサを用いて測定し
た光信号から測温データを得る際に種々の要因により測
定時に生ずる測温データの誤差を、その要因による影響
を補正する処理を同時に加えて最小限に抑え、より測定
精度の高い測温データを与えることができる分布温度の
測定方法を提供することを課題とする。
The present invention was made in view of the various problems associated with the conventional method of measuring distributed temperature using an optical fiber sensor as described above. Errors in temperature measurement data that occur during measurement due to various factors when obtaining temperature measurement data from optical signals measured using optical fiber sensors that obtain signals are minimized by simultaneously adding processing to correct the effects of those factors. It is an object of the present invention to provide a method for measuring distributed temperature that can provide temperature measurement data with higher measurement accuracy.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
この発明は、その長さ端で折返した少なくとも2芯の光
ファイバから成る光ファイバ分布温度センサを用いてセ
ンサの任意の位置の温度を表わす少なくとも2箇所の光
信号を得、これらを電気信号に変換して分布温度を測定
し、その際測定データの対称性を利用してセンサの同一
点に対して他の基準測温手段で測定した基準温度データ
に基づいて測定データに補正を加えるようにした光ファ
イバセンサによる分布温度測定方法としたのである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention uses an optical fiber distribution temperature sensor consisting of at least two optical fibers folded at the length end to measure the temperature at any position of the sensor. Obtain optical signals from at least two locations representing the temperature distribution, convert these into electrical signals to measure the distributed temperature, and use the symmetry of the measurement data to measure the same point on the sensor with another reference temperature measurement means. This is a distributed temperature measurement method using an optical fiber sensor that corrects the measured data based on the reference temperature data obtained.

【0009】上記測定方法においては、光源から基準波
長の光パルス信号を送り出して前記光ファイバセンサの
入射端に入射し、前記少なくとも2箇所の光信号のそれ
ぞれを得るために光ファイバの長さ方向の各部分で光散
乱して入射端に戻ってくるそれぞれの後方散乱光を光方
向性結合器により取り出し、そのストークス光と反スト
ークス光を受光素子でそれぞれ受光して電気信号に変換
し、受光信号の時間が表わす光ファイバの長さ方向位置
ごとの分布温度を上記信号の受光パワーから所定の演算
式に基づいて算出して分布温度を測定するようにすれば
よい。
In the above measurement method, a light pulse signal of a reference wavelength is sent out from a light source and is incident on the input end of the optical fiber sensor, and the optical pulse signal is transmitted in the longitudinal direction of the optical fiber in order to obtain the optical signals at each of the at least two locations. The backscattered light that is scattered in each part and returns to the input end is extracted by an optical directional coupler, and the Stokes light and anti-Stokes light are respectively received by a light receiving element and converted into electrical signals. The distributed temperature may be measured by calculating the distributed temperature for each position in the length direction of the optical fiber, which is represented by the time of the signal, from the received light power of the signal based on a predetermined arithmetic expression.

【0010】0010

【作用】この発明による上記分布温度測定方法の測定原
理は、次のように行なわれる。図7に示すように、光フ
ァイバセンサの入射端に光源から基準波長λoの光パル
ス信号を入射すると、光の通過する各部分ではガラス媒
質により弾性散乱であるレイリー散乱と非弾性散乱であ
るラマン散乱光が発生する。ラマン散乱は光ファイバの
ガラスの分子振動と通過光パルスとの非弾性衝突による
もので、基準波長の入射光に対してその分子振動数に対
応する波長分だけシフトして長波長側にストークス光(
+Δλ)が、短波長側に反ストークス光(−Δλ)が発
生する。
[Operation] The measurement principle of the above-mentioned distributed temperature measuring method according to the present invention is carried out as follows. As shown in Figure 7, when an optical pulse signal with a reference wavelength λo is input from a light source to the input end of an optical fiber sensor, each part through which the light passes is caused by the glass medium causing Rayleigh scattering, which is elastic scattering, and Raman scattering, which is inelastic scattering. Scattered light is generated. Raman scattering is caused by inelastic collisions between the molecular vibrations of the glass in the optical fiber and the passing optical pulses, and the Stokes light is shifted by the wavelength corresponding to the molecular vibration frequency with respect to the incident light of the standard wavelength to the longer wavelength side. (
+Δλ), and anti-Stokes light (−Δλ) is generated on the short wavelength side.

【0011】上記散乱光のうち光ファイバの入射端に戻
ってくる光を後方散乱光と呼ぶが、特にラマン散乱光の
強度は温度の影響を受けて変化するため、これを利用し
て温度測定を行なう。
Of the scattered light, the light that returns to the input end of the optical fiber is called backscattered light, and since the intensity of Raman scattered light in particular changes due to the influence of temperature, this can be used to measure temperature. Do this.

【0012】光ファイバ中の光の速度は分っているので
パスル入射から光検出までの時間は検出された散乱光が
発生した場所と入射端との距離Rを表わす。光ファイバ
の構成材料と入射光の波長が決まれば、ラマン散乱のス
トークス光(λS =λO +Δλ)と反ストークス光
(λa =λO −Δλ)との受光パワーの比を取り、
次式によって温度を求めることができる。 R=(c/2n)・Δt              
                (1)Ia/Is 
=(λS /λa )4 exp(−(hcν)/kT
)(2)ただし、c:真空中の光速度、 n:光ファイバの屈折率、 Δt:パルス入射から光検出までの時間、Ia:反スト
ークス光強度、 Is:ストークス光強度、 λa:反ストークス光波長、 λs:ストークス光波長、 h:プランク定数、 k:ボルツマン定数、 ν:ラマンシフト量、 上述した後方散乱光は検出器内の光方向性結合器により
分離されて取り出され、ラマン散乱のストークス光と反
ストークス光とは異なる波長のフィルタを介して別個に
取り出されるが、その光信号さ極微弱であるため、雑音
除去のための充分な加算平均を行ないS/N比を上げて
測定する。
Since the speed of light in the optical fiber is known, the time from pulse incidence to light detection represents the distance R between the location where the detected scattered light is generated and the incident end. Once the constituent material of the optical fiber and the wavelength of the incident light are determined, the ratio of the received light power of the Raman scattered Stokes light (λS = λO + Δλ) and the anti-Stokes light (λa = λO − Δλ) is calculated.
The temperature can be determined using the following equation. R=(c/2n)・Δt
(1) Ia/Is
=(λS/λa)4 exp(-(hcν)/kT
) (2) where, c: speed of light in vacuum, n: refractive index of optical fiber, Δt: time from pulse input to light detection, Ia: anti-Stokes light intensity, Is: Stokes light intensity, λa: anti-Stokes Light wavelength, λs: Stokes light wavelength, h: Planck's constant, k: Boltzmann's constant, ν: Raman shift amount, The above-mentioned backscattered light is separated and extracted by a light directional coupler in the detector, and the Raman scattering Stokes light and anti-Stokes light are extracted separately through filters with different wavelengths, but since their optical signals are extremely weak, sufficient averaging is performed to remove noise and the S/N ratio is increased during measurement. do.

【0013】上記(1)、(2)式から演算によって距
離Rに対する温度を求めると、図8のように光ファイバ
の長手方向の温度分布が得られる。このようにして得ら
れる分布温度のデータは、この発明による測定方法では
、光ファイバセンサ内で光ファイバを折返しているため
、同一地点の温度を光ファイバの2ヶ所で測定して得ら
れるから、折返端を中心にして左右対称なデータとなる
。従って、まずその対称性を利用して折返端の位置が正
確に求められる。
When the temperature with respect to the distance R is calculated from the above equations (1) and (2), the temperature distribution in the longitudinal direction of the optical fiber is obtained as shown in FIG. In the measurement method according to the present invention, the distributed temperature data obtained in this way can be obtained by measuring the temperature at the same point at two locations on the optical fiber, since the optical fiber is folded back within the optical fiber sensor. The data is symmetrical around the folded end. Therefore, first, the position of the folded end can be accurately determined by utilizing the symmetry.

【0014】光ファイバセンサの長さ位置を正確に求め
た後、それぞれの位置に対応する分布温度データを算出
する際に、別途測定された基準温度データに基づいて予
め補正が加えられる。その場合、データの対称性を利用
して左右のデータが折返端で対称となるように補正を加
える。上記補正は、光ファイバの持つ伝送損失の波長依
存性に基づいて伝送損失の差や、測定時における周囲温
度による影響、あるいは光源の温度変化による影響に対
して、適当な補正係数を(2)式に掛ける、あるいは補
正定数を加えることによって行なわれる。
After accurately determining the length position of the optical fiber sensor, when calculating distributed temperature data corresponding to each position, correction is applied in advance based on separately measured reference temperature data. In that case, correction is made using the symmetry of the data so that the left and right data are symmetrical at the folding end. The above correction is based on the wavelength dependence of the transmission loss of the optical fiber, and applies an appropriate correction coefficient (2) to account for the difference in transmission loss, the influence of ambient temperature during measurement, or the influence of temperature change of the light source. This is done by multiplying the equation or adding a correction constant.

【0015】[0015]

【実施例】以下この発明の実施例について図面を参照し
て説明する。図1にこの実施例で用いられる光ファイバ
センサ1の概略構成を示す。このセンサ1は、光ファイ
バ1aをステンレス管2内に封入したもの2本と亜鉛メ
ッキ鉄線3の5本を寄り合せた光ファイバケーブルから
成る。光ファイバ1aは2乗の屈折率分布を持つ50μ
mのコアと125μmのクラッドから成るマルチモード
GI(Graded−Index)ファイバで、その外
側はナイロン被覆され外径は0.6mmである。ステン
レス管は外径1.7mm(内径1.4mm)で、光ファ
イバ1aとステンレス管2との隙間は防水混和物が満た
されている。亜鉛メッキ鉄線3は外径1.6mmで撚り
合せた光ファイバケーブルの全体外径は5mmのものを
使用している。そして光ファイバ1aは図示のようにセ
ンサの折返端4で折返され、2芯の光ファイバ1aでセ
ンサ1を構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an optical fiber sensor 1 used in this embodiment. This sensor 1 consists of an optical fiber cable in which two optical fibers 1a sealed in a stainless steel tube 2 and five galvanized iron wires 3 are tied together. The optical fiber 1a is 50μ with a square refractive index distribution.
It is a multimode GI (Graded-Index) fiber consisting of a core of m and a cladding of 125 μm, the outside of which is coated with nylon, and the outer diameter is 0.6 mm. The stainless steel tube has an outer diameter of 1.7 mm (inner diameter 1.4 mm), and the gap between the optical fiber 1a and the stainless steel tube 2 is filled with a waterproof mixture. The galvanized iron wire 3 has an outer diameter of 1.6 mm, and the twisted optical fiber cable has an overall outer diameter of 5 mm. The optical fiber 1a is folded back at the folding end 4 of the sensor as shown, and the sensor 1 is constituted by the two-core optical fiber 1a.

【0016】上記光ファイバセンサ1は図2に示すよう
に分布温度測定部10に対してコネクタ11を介して接
続されている。この分布温度測定部10は、制御回路1
2からの制御によりLD駆動部13を駆動して半導体レ
ーザ光源13aからのレーザパルス信号のうち波長λo
の光信号をフィルタ13bを介して光ファイバセンサ1
の光ファイバ1aに送り込む。光ファイバ中の各部分で
生じた後方散乱光は光方向性結合器14で分離して取り
出され、もう1つの光方向性結合器14’と2つのフィ
ルタ15(λa)、15’(λs)を介して2つのフォ
トダイオード16、16’で受光され、受光回路17で
電気信号に変換される。
The optical fiber sensor 1 is connected to a distributed temperature measuring section 10 via a connector 11, as shown in FIG. This distributed temperature measuring section 10 includes a control circuit 1
2 drives the LD drive unit 13 to generate the wavelength λo of the laser pulse signal from the semiconductor laser light source 13a.
The optical signal is passed through the filter 13b to the optical fiber sensor 1.
into the optical fiber 1a. The backscattered light generated in each part of the optical fiber is separated and taken out by an optical directional coupler 14, and another optical directional coupler 14' and two filters 15 (λa) and 15' (λs). The light is received by the two photodiodes 16 and 16' via the light receiving circuit 17, and converted into an electrical signal by the light receiving circuit 17.

【0017】この測定信号は加算メモリ18へ送られ記
憶される。この場合、後方散乱光は極微弱であるため、
上記受光回路17で所定のサンプリング時間内でA/D
変換した後これを繰り返して高速度で加算平均し、その
結果を上記加算メモリ18に記憶すると共にインタフェ
ース19を介して送り出す。上記測定信号は次の演算処
理部20(制御用パーソナルコンピュータ)で温度デー
タに変換される。この演算処理部20は、上記測定信号
をインタフェース21を介してマイクロコンピュータ2
2へ送り込んで演算処理するように構成されている。
This measurement signal is sent to addition memory 18 and stored therein. In this case, the backscattered light is extremely weak, so
A/D within a predetermined sampling time in the light receiving circuit 17.
After conversion, this process is repeated to perform addition and averaging at high speed, and the result is stored in the addition memory 18 and sent out via the interface 19. The measurement signal is converted into temperature data by the next arithmetic processing section 20 (controlling personal computer). This arithmetic processing unit 20 sends the measurement signal to the microcomputer 2 via an interface 21.
It is configured to send the data to 2 and perform arithmetic processing.

【0018】マイクロコンピュータ22では、中央演算
処理部(以下CPUという)23の指令により平均化処
理部24でデータの平均化処理を行なう。この場合の平
均化処理は、分布温度測定部10でのサンプリング時間
より長い、例えば1分間隔でセンサの同一点に対して得
られる測定データを平均化して行なわれる。次に、上記
測定データに対して補正処理部25で補正を加える。こ
の補正処理部25では、例えば光ファイバセンサの入射
端及び折返端付近の位置の温度を他の基準温度計(熱電
対など)で測定した値をキーボード30から直接又は補
正指数の形で間接的にCPU23へ送り、その基準温度
値又は補正指数により次の温度データ演算部26におい
て前述した所定の演算式から温度データを算出する際に
予め補正係数を与えるようにする。補正係数が与えられ
ると温度データ演算部26において所要の温度データが
得られる。温度データは表示器27に表示され、プリン
タ28で印字されると共にファイル29に記憶される。
In the microcomputer 22, an averaging processing section 24 performs data averaging processing according to instructions from a central processing section (hereinafter referred to as CPU) 23. The averaging process in this case is performed by averaging measurement data obtained at the same point on the sensor at intervals of, for example, one minute, which are longer than the sampling time in the distributed temperature measuring section 10. Next, the correction processing section 25 applies correction to the measurement data. In this correction processing unit 25, for example, the temperature at a position near the incident end and the folded end of the optical fiber sensor is measured using another reference thermometer (thermocouple, etc.), and the value is input directly from the keyboard 30 or indirectly in the form of a correction index. The reference temperature value or correction index is used to provide a correction coefficient in advance when the next temperature data calculation section 26 calculates temperature data from the above-mentioned predetermined calculation formula. When the correction coefficient is given, the temperature data calculation section 26 obtains the required temperature data. The temperature data is displayed on a display 27, printed by a printer 28, and stored in a file 29.

【0019】上記補正方法について図3、4を用いてさ
らに詳しく説明する。まず、一般的に光ファイバの折返
しのないセンサを用いて温度測定をし、その際上記のよ
うな補正を加えないままで信号を温度データに変換する
と、この温度データには種々の要因に基づく誤差が含ま
れる。この誤差を含む温度データを補正する場合、補正
手順には図3の(a)ドリフト、(b)傾き、(c)倍
率の3つの要素が含まれる。但し、図3のグラフは実験
室における恒温槽で測定した場合のデータであり、図中
実線は光ファイバセンサによる測定温度、点線は真の温
度である。中央部付近を特に冷却して矩形状のグラフと
なるようにしている。このグラフから分るように、測定
温度データを正しい真の温度に一致させるには、少なく
とも3点の真の温度情報が必要であり、しかも実際の測
定データは図示のような矩形状のグラフではなく、ラン
ダムで複雑な温度分布のグラフとなるため、精度を上げ
るためには多数点の実側値を必要とする。
The above correction method will be explained in more detail using FIGS. 3 and 4. First, when temperature is generally measured using a sensor without optical fiber folding, and the signal is converted into temperature data without the above correction, this temperature data has a Contains errors. When correcting temperature data including this error, the correction procedure includes three elements: (a) drift, (b) slope, and (c) magnification in FIG. 3. However, the graph in FIG. 3 is data measured in a thermostatic chamber in a laboratory, and the solid line in the figure is the temperature measured by the optical fiber sensor, and the dotted line is the true temperature. The central area is particularly cooled to create a rectangular graph. As you can see from this graph, in order to match the measured temperature data with the correct true temperature, true temperature information from at least three points is required. Since the temperature distribution graph is random and complicated, actual values from multiple points are required to improve accuracy.

【0020】しかし、この実施例では前述の光ファイバ
を折返した2芯の光ファイバから成るセンサを用いてい
るから、得られるデータの対称性を利用すると共に真の
温度測定情報としてセンサ入射端及び折返点付近で測定
した最小限の真の温度データを用いて次のようにして補
正する。例として図4にこの実施例の光ファイバセンサ
1を用いて海水の温度分布の測定データ(実線)及び真
の温度分布(点線)を仮定したグラフの概略を示す。距
離は海水の深さを表わす。センサ入射端位置での真の温
度点をP1 、P2 、センサによる測定点をP1 ’
、P2 ’とする。真の温度点P1 、P2 の温度が
T℃であれば、(a)に示すようにP1 ’、P2 ’
の温度が先にTになるように調整する。この調整は、図
3で説明した温度ドリフト調整、傾きの調整について行
なう。従って、ドリフト調整は一定の値を加減算し、傾
き調整は距離に応じて変化する値を加減算することによ
って行なわれる。
However, since this embodiment uses a sensor consisting of a two-core optical fiber obtained by folding the aforementioned optical fiber, the symmetry of the obtained data is utilized, and the true temperature measurement information is obtained from the sensor input end and Correction is made as follows using the minimum true temperature data measured near the turning point. As an example, FIG. 4 schematically shows a graph assuming measured data of seawater temperature distribution (solid line) and the true temperature distribution (dotted line) using the optical fiber sensor 1 of this embodiment. The distance represents the depth of seawater. The true temperature points at the sensor input end position are P1 and P2, and the measurement point by the sensor is P1'
, P2'. If the temperatures of true temperature points P1 and P2 are T°C, P1' and P2' as shown in (a)
Adjust the temperature so that it reaches T first. This adjustment is performed for the temperature drift adjustment and slope adjustment described in FIG. Therefore, drift adjustment is performed by adding or subtracting a constant value, and tilt adjustment is performed by adding or subtracting a value that changes depending on the distance.

【0021】次に(b)に示すように、(a)の調整を
してもなお折返端付近を中心にデータに差がある場合、
折返端を中心として一定の倍率を係数として与えてデー
タ調整する。このとき、倍率を決めるため折返端付近の
真の温度点P3 のデータを他の手段で測定して与える
。 こうして図形処理的な上記補正処理を加えることによっ
て図5のような温度データが得られる。なお、かかる補
正を加えてデータの補正を行なった場合、図6に示すよ
うなデータ異常、例えば(a)光ファイバの接続点の融
着ロス等によるもの、あるいは(b)温度異常によるも
のかの判別も直ちに判断できる((b)では左右対称に
温度異常点が現われている)。
Next, as shown in (b), even after making the adjustment in (a), there is still a difference in the data around the turning edge.
Data is adjusted by giving a constant magnification as a coefficient around the folded end. At this time, in order to determine the magnification, data on the true temperature point P3 near the folded end is measured and provided by another means. In this way, temperature data as shown in FIG. 5 can be obtained by adding the above-mentioned graphical correction processing. Furthermore, when data is corrected by adding such a correction, data abnormalities as shown in Fig. 6 may occur, for example, due to (a) fusion loss at the connection point of the optical fiber, or (b) temperature abnormality. can be immediately determined (in (b), temperature abnormal points appear symmetrically).

【0022】[0022]

【効果】以上詳細に説明したように、この発明の分布温
度測定方法は光ファイバセンサにより同一点に対して2
以上の測定信号を測定しかつデータの対称性を利用して
その測定時の測定誤差に影響を与える要因それぞれを考
慮した補正を測定信号に加えて出来るだけ誤差が生じる
のを取り除いて測定するようにしたから、測定された温
度データは信頼性が高く、測定精度の極めて高い測定が
できるという効果がある。
[Effects] As explained in detail above, the distributed temperature measurement method of the present invention uses two optical fiber sensors at the same point.
Measure the above measurement signals and use the symmetry of the data to add corrections to the measurement signals that take into account the factors that affect the measurement errors during measurement to remove as much error as possible during measurement. As a result, the measured temperature data is highly reliable and measurements can be made with extremely high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例の光ファイバセンサの概略構成図[Figure 1] Schematic configuration diagram of an optical fiber sensor according to an example

【図2
】実施例の分布温度測定装置の全体概略ブロック図
[Figure 2
] Overall schematic block diagram of the distributed temperature measuring device of the embodiment

【図3】補正手順に含まれる補正の3要素の説明図[Figure 3] Explanatory diagram of three elements of correction included in the correction procedure

【図
4】実際の補正手順の説明図
[Figure 4] Explanatory diagram of the actual correction procedure

【図5】測定された温度データの一例[Figure 5] An example of measured temperature data

【図6】温度異常等の説明図[Figure 6] Explanatory diagram of temperature abnormalities, etc.

【図7】測定原理を説明する図[Figure 7] Diagram explaining the measurement principle

【図8】測定原理を説明する図[Figure 8] Diagram explaining the measurement principle

【符号の説明】[Explanation of symbols]

1  光ファイバセンサ 10  分布温度測定部 20  演算処理部 25  補正処理部 26  温度データ演算部 1 Optical fiber sensor 10 Distributed temperature measurement section 20 Arithmetic processing unit 25 Correction processing section 26 Temperature data calculation section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  その長さ端で折返した少なくとも2芯
の光ファイバから成る光ファイバ分布温度センサを用い
てセンサの任意の位置の温度を表わす少なくとも2箇所
の光信号を得、これらを電気信号に変換して分布温度を
測定し、その際測定データの対称性を利用してセンサの
同一点に対して他の基準測温手段で測定した基準温度デ
ータに基づいて測定データに補正を加えるようにしたこ
とを特徴とする光ファイバセンサによる分布温度測定方
法。
Claim 1: An optical fiber distribution temperature sensor consisting of at least two optical fibers folded back at its length end is used to obtain optical signals at at least two locations representing the temperature at arbitrary positions of the sensor, and these are converted into electrical signals. At that time, the symmetry of the measured data is used to correct the measured data based on the reference temperature data measured by another reference temperature measurement method at the same point on the sensor. A method for measuring distributed temperature using an optical fiber sensor, characterized in that:
【請求項2】  光源から基準波長の光パルス信号を送
り出して前記光ファイバセンサの入射端に入射し、前記
少なくとも2箇所の光信号のそれぞれを得るために光フ
ァイバの長さ方向の各部分で光散乱して入射端に戻って
くるそれぞれの後方散乱光を光方向性結合器により取り
出し、そのストークス光と反ストークス光を受光素子で
それぞれ受光して電気信号に変換し、受光信号の時間が
表わす光ファイバの長さ方向位置ごとの分布温度を上記
信号の受光パワーから所定の演算式に基づいて算出して
分布温度を測定することを特徴とする請求項1に記載の
光ファイバセンサによる分布温度測定方法。
2. A light pulse signal having a reference wavelength is transmitted from a light source and is incident on the input end of the optical fiber sensor, and at each portion in the length direction of the optical fiber in order to obtain each of the light signals at the at least two locations. Each backscattered light that is scattered and returns to the input end is extracted by an optical directional coupler, and the Stokes light and anti-Stokes light are received by a light receiving element and converted into electrical signals, and the time of the received light signal is Distribution by the optical fiber sensor according to claim 1, characterized in that the distribution temperature is measured by calculating the distribution temperature at each position in the length direction of the optical fiber represented by the received light power of the signal based on a predetermined calculation formula. Temperature measurement method.
JP3085202A 1991-04-17 1991-04-17 Distribution temperature measuring method by optical fiber sensor Pending JPH04318432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085202A JPH04318432A (en) 1991-04-17 1991-04-17 Distribution temperature measuring method by optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085202A JPH04318432A (en) 1991-04-17 1991-04-17 Distribution temperature measuring method by optical fiber sensor

Publications (1)

Publication Number Publication Date
JPH04318432A true JPH04318432A (en) 1992-11-10

Family

ID=13852031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085202A Pending JPH04318432A (en) 1991-04-17 1991-04-17 Distribution temperature measuring method by optical fiber sensor

Country Status (1)

Country Link
JP (1) JPH04318432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052952A (en) * 2010-09-02 2012-03-15 Yokogawa Electric Corp Optical fiber temperature distribution measuring device
WO2012078287A1 (en) * 2010-12-08 2012-06-14 Baker Hughes Incorporated System and method for distributed environmental parameter measurement
JP2013092388A (en) * 2011-10-24 2013-05-16 Yokogawa Electric Corp Fiber temperature distribution measurement device
WO2018211634A1 (en) * 2017-05-17 2018-11-22 富士通株式会社 Temperature measurement device, temperature measurement method, and temperature measurement program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052952A (en) * 2010-09-02 2012-03-15 Yokogawa Electric Corp Optical fiber temperature distribution measuring device
WO2012078287A1 (en) * 2010-12-08 2012-06-14 Baker Hughes Incorporated System and method for distributed environmental parameter measurement
US8740455B2 (en) 2010-12-08 2014-06-03 Baker Hughes Incorporated System and method for distributed environmental parameter measurement
JP2013092388A (en) * 2011-10-24 2013-05-16 Yokogawa Electric Corp Fiber temperature distribution measurement device
US9046425B2 (en) 2011-10-24 2015-06-02 Yokogawa Electric Corporation Opticalfiber temperature distribution measurement apparatus
WO2018211634A1 (en) * 2017-05-17 2018-11-22 富士通株式会社 Temperature measurement device, temperature measurement method, and temperature measurement program

Similar Documents

Publication Publication Date Title
US5945666A (en) Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
EP2167928B1 (en) Dual source auto-correction in distributed temperature systems
EP2587238B1 (en) Optical fibre temperature distribution measurement apparatus
JPH0769223B2 (en) Temperature measurement method and distributed optical fiber temperature sensor
JP3440721B2 (en) Multi-point strain and temperature sensor
JPH0364812B2 (en)
JPH07324982A (en) Consumption-type optical fiber thermometer
CN111896136A (en) Dual-parameter distributed optical fiber sensing device and method with centimeter-level spatial resolution
JP2008249515A (en) Temperature distribution measuring system and temperature distribution measuring method
CN210981350U (en) Distributed optical fiber humidity and temperature simultaneous detection device
CN105092085A (en) Single-mode core-dislocated fiber temperature measurement method based on dual-coupling structure having correction function
JPH04332835A (en) Corrective processing method of distributed temperature data
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
CN110887527A (en) Distributed optical fiber humidity and temperature simultaneous detection device and detection method
CN112964387B (en) Demodulation method for temperature along optical fiber in Raman optical time domain reflectometer
JP3063063B2 (en) Optical fiber temperature distribution measurement system
CN104568228B (en) Calibration method when attenuation coefficients of DTS are different
Liu et al. Design of distributed fiber optical temperature measurement system based on Raman scattering
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
JPH04248426A (en) Apparatus for measuring strain distribution of optical fiber
JP2645173B2 (en) Temperature distribution measurement type optical fiber sensor
JPH07243920A (en) Optical fiber temperature distribution measuring system
JP3106443B2 (en) Temperature distribution measuring method and device therefor
JPH02201233A (en) Distribution type optical fiber temperature sensor and its method of temperature measurement