JPH04248426A - Apparatus for measuring strain distribution of optical fiber - Google Patents

Apparatus for measuring strain distribution of optical fiber

Info

Publication number
JPH04248426A
JPH04248426A JP3013465A JP1346591A JPH04248426A JP H04248426 A JPH04248426 A JP H04248426A JP 3013465 A JP3013465 A JP 3013465A JP 1346591 A JP1346591 A JP 1346591A JP H04248426 A JPH04248426 A JP H04248426A
Authority
JP
Japan
Prior art keywords
optical fiber
strain
distribution
light
brillouin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3013465A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
川神 裕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3013465A priority Critical patent/JPH04248426A/en
Publication of JPH04248426A publication Critical patent/JPH04248426A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enhance measuring accuracy to a large extent by measuring the stress strain of the optical fiber in an optical fiber type strain distribution measuring apparatus separately from thermal strain. CONSTITUTION:This measuring apparatus is equipped with a measuring light source 2 allowing pulse light to be incident on the optical fiber 20 arranged to a structure to be measured from the incident end thereof, an optical system respectively separating and detecting the Brillouin scattering light and Raman scattering light in the back scattering light of the pulse light emitted from the incident end of the optical fiber, a light frequency modulator 4 sweeping specific frequency with respect to the Brillouin scattering light to extract the Brillouin scattering light, a strain distribution operating circuit 9 calculating the distribution of the strain quantity of the optical fiber from the Brillouin frequency shift quantity of the extracted Brillouin scattering light, a temp. distribution operating circuit 10 calculating the temp. distribution of the optical fiber from the intensity of the Brillouin scattering light or that of the Raman scattering light, an operation means 11 calculating the distribution of the thermal strain quantity of the optical fiber from the calculated temp. data and a strain and temp. display and output device 11 subtracting the distribution of thermal strain quantity obtained by the operation means from the strain distribution obtained by the strain distribution operating circuit.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光ファイバの長さ方向
の歪分布を連続的に且つ高精度に計測することができる
光ファイバ歪分布計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber strain distribution measuring device capable of continuously and highly accurately measuring the strain distribution in the longitudinal direction of an optical fiber.

【0002】0002

【従来の技術】従来、光ファイバを用いて、長さ方向に
連続的な歪分布を計測する方法として、光ファイバに入
射したパルス光による光ファイバのブリルアン散乱光を
利用する方法が提案されている。
[Prior Art] Conventionally, as a method of measuring continuous strain distribution in the length direction using an optical fiber, a method has been proposed that utilizes the Brillouin scattered light of the optical fiber caused by pulsed light incident on the optical fiber. There is.

【0003】このブリルアン散乱光は、入射光が光ファ
イバ中に生じた音波と相互作用し、媒質固有の周波数だ
けずれて後方散乱される現象であり、この周波数シフト
はブリルアン周波数シフトと呼ばれ、そのシフト量νB
 は次式で表すことができる。
[0003] This Brillouin scattered light is a phenomenon in which the incident light interacts with a sound wave generated in the optical fiber and is backscattered with a frequency that is unique to the medium. This frequency shift is called a Brillouin frequency shift. The amount of shift νB
can be expressed by the following equation.

【0004】0004

【数1】νB =2nVA /λ ここで  n :光ファイバの屈折率 VA:音速 λ :入射光の波長 また、光ファイバ中の音速VA は、[Equation 1] νB = 2nVA / λ Here, n: refractive index of optical fiber VA: Speed of sound λ: Wavelength of incident light In addition, the sound velocity VA in the optical fiber is

【0005】[0005]

【数2】[Math 2]

【0006】ここで  E:光ファイバのヤング率ρ:
光ファイバの密度 κ:光ファイバのポアソン比 と表すことができる。
[0006] Here, E: Young's modulus ρ of the optical fiber:
Density κ of optical fiber: can be expressed as Poisson's ratio of optical fiber.

【0007】上記数1,数2式より、光ファイバに生じ
た歪により、音速VAが変化し、これによりブリルアン
周波数シフト量νB も変化する。
From Equations 1 and 2 above, the sound velocity VA changes due to the strain generated in the optical fiber, and as a result, the Brillouin frequency shift amount νB also changes.

【0008】従って、後方散乱光に含まれるブリルアン
散乱光を周波数掃引を行いながら、光周波数同調器で検
出することにより、通常のOTDR手法を用いて、光フ
ァイバ各地点のブリルアン周波数シフト量νB の分布
を計測することができ、このブリルアン周波数シフト量
より、光ファイバに加わる歪分布を連続的に求めること
ができる。
Therefore, by detecting the Brillouin scattered light included in the backscattered light with an optical frequency tuner while performing a frequency sweep, the amount of Brillouin frequency shift νB at each point of the optical fiber can be determined using the normal OTDR method. The distribution can be measured, and the strain distribution applied to the optical fiber can be continuously determined from this Brillouin frequency shift amount.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、光ファ
イバの歪としては、外力による光ファイバの応力歪の他
に、光ファイバの主として被覆材と素線との熱膨脹率差
による熱歪とがあり、例えば光ファイバを他の構造物に
配設して、光ファイバの歪分布を計測することにより、
この構造物の歪分布を求めようとする場合には、上記光
ファイバの熱歪が加算されて計測されるため、上記構造
物の如き測定対象の正確な歪分布計測が行えないという
問題があった。
[Problems to be Solved by the Invention] However, in addition to the stress strain of the optical fiber due to external force, there is also thermal strain caused mainly by the difference in coefficient of thermal expansion between the coating material and the strand of the optical fiber. For example, by installing an optical fiber in another structure and measuring the strain distribution of the optical fiber,
When trying to determine the strain distribution of this structure, the thermal strain of the optical fiber is added and measured, so there is a problem that accurate strain distribution measurement of the object to be measured such as the structure cannot be performed. Ta.

【0010】本発明は、前記した従来技術の問題点を解
消すべく創案されたものであり、光ファイバの応力歪と
熱歪とを分離して計測することができる光ファイバ形歪
分布計測装置を提供することを目的とする。
The present invention was devised to solve the problems of the prior art described above, and provides an optical fiber type strain distribution measuring device that can separately measure stress strain and thermal strain of an optical fiber. The purpose is to provide

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
、本発明の光ファイバ歪分布計測装置は、測定対象構造
物に配設される光ファイバと、光ファイバにその入射端
よりパルス光を入射するための測定用光源と、光ファイ
バの入射端から出射される上記パルス光の後方散乱光の
うち、ブリルアン散乱光及びラマン散乱光をそれぞれ分
離検出する光学系と、ブリルアン散乱光に対して特定周
波数を掃引してブリルアン散乱光を抽出する光周波数同
調器と、この抽出されたブリルアン散乱光のブリルアン
周波数シフト量から光ファイバの歪量の分布を求める歪
分布演算回路と、ブリルアン散乱光強度又はラマン散乱
光強度から光ファイバの温度の分布を求める温度分布演
算回路と、この温度情報から光ファイバの熱歪量の分布
を求める演算手段と、該演算手段で得られた熱歪量の分
布を上記歪分布演算回路で得られた歪分布から減算する
手段とを備えた構成のものである。
[Means for Solving the Problems] In order to achieve the above object, the optical fiber strain distribution measuring device of the present invention includes an optical fiber disposed in a structure to be measured, and a pulsed light input to the optical fiber from its input end. A measurement light source for input, an optical system for separately detecting Brillouin scattered light and Raman scattered light among the backscattered light of the pulsed light emitted from the input end of the optical fiber, and a light source for measuring the Brillouin scattered light. An optical frequency tuner that sweeps a specific frequency to extract Brillouin scattered light, a strain distribution calculation circuit that calculates the distribution of strain in an optical fiber from the Brillouin frequency shift amount of the extracted Brillouin scattered light, and an optical frequency tuner that extracts Brillouin scattered light intensity. or a temperature distribution calculation circuit that calculates the temperature distribution of the optical fiber from the Raman scattered light intensity, a calculation means that calculates the distribution of the amount of thermal strain of the optical fiber from this temperature information, and a distribution of the amount of thermal strain obtained by the calculation means. and means for subtracting from the strain distribution obtained by the strain distribution calculation circuit.

【0012】0012

【作用】光ファイバの歪はブリルアン周波数シフト量ν
B に対応しており、このシフト量はブリルアン後方散
乱光の2成分であるストークス光とアンチストークス光
のうちの一方を検出することで、光ファイバの歪分布(
図3(b))が計測できる。但し、この計測結果には光
ファイバの応力歪の他に熱歪が含まれている。
[Effect] The optical fiber strain is the amount of Brillouin frequency shift ν
This shift amount corresponds to the optical fiber strain distribution (
Figure 3(b)) can be measured. However, this measurement result includes thermal strain in addition to the stress strain of the optical fiber.

【0013】一方、光ファイバの熱歪量については、光
ファイバ20の構成すなわち被覆材と素線の材質・寸法
によりほぼ一義的に決定され、この熱歪量は、予め、温
度との関係量として求めておくことができる。そこで、
ブリルアン散乱光強度又はラマン散乱光強度から、まず
光ファイバの温度分布(図3(c) )を温度分布演算
回路により求めると、その温度情報から光ファイバの熱
歪量の分布(図3(d) )が演算により求められる。
On the other hand, the amount of thermal strain of the optical fiber is almost uniquely determined by the configuration of the optical fiber 20, that is, the materials and dimensions of the coating material and the strands, and the amount of thermal strain is determined in advance by the amount related to temperature. It can be found as Therefore,
First, the temperature distribution of the optical fiber (Fig. 3(c)) is determined from the Brillouin scattered light intensity or the Raman scattered light intensity using a temperature distribution calculation circuit, and then the thermal strain distribution of the optical fiber (Fig. 3(d)) is calculated from the temperature information. ) ) is obtained by calculation.

【0014】最終的に、この光ファイバの各地点での熱
歪量の分布(図3(d) )を前記光ファイバの歪量(
図3(b) )より減算すると、熱歪量を含まない光フ
ァイバの純然たる応力歪、即ち、光ファイバが配設され
た構造物の歪分布(図3(e) )が計測される。
Finally, the distribution of the amount of thermal strain at each point of the optical fiber (FIG. 3(d)) is determined by the amount of strain of the optical fiber (
By subtracting from FIG. 3(b)), the pure stress strain of the optical fiber that does not include the amount of thermal strain, that is, the strain distribution of the structure in which the optical fiber is installed (FIG. 3(e)) is measured.

【0015】このように、光ファイバ各点の歪分布と温
度分布とを同時に求め、光ファイバの応力歪と熱歪とを
分離して計測すると、熱歪の影響分を除去して測定精度
を大幅に向上させることができる。
In this way, if the strain distribution and temperature distribution at each point of the optical fiber are determined simultaneously and the stress strain and thermal strain of the optical fiber are measured separately, the influence of thermal strain can be removed and the measurement accuracy can be improved. can be significantly improved.

【0016】[0016]

【実施例】以下、本発明の一実施例を添付図面に従って
詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0017】図1において、光ファイバ20は歪を測定
しようとする構造物に配設される。光ファイバ20の入
射端側には、光分岐器3が設けられると共に、光分岐器
3の一方のポートには測定用光源2が、他方のポートに
は後方散乱光の検出系が設けられている。測定用光源2
には光源駆動回路1が接続され、信号処理回路8から一
定周期ごとのトリガ信号により、測定用光源2を駆動す
る。測定用光源2からは、周波数ω0 の単一波長のパ
ルス光が発射されて、光分岐器3を通って光ファイバ2
0に入射する。光ファイバ20ではx地点において周波
数ω0 のレイリー散乱光の外に、周波数ω0 ±ωB
 のブリルアン散乱光が発生する。
In FIG. 1, an optical fiber 20 is installed in a structure whose strain is to be measured. An optical splitter 3 is provided on the input end side of the optical fiber 20, and one port of the optical splitter 3 is provided with a measurement light source 2, and the other port is provided with a detection system for backscattered light. There is. Measurement light source 2
A light source drive circuit 1 is connected to the light source drive circuit 1, and the measurement light source 2 is driven by a trigger signal from a signal processing circuit 8 at regular intervals. A single wavelength pulsed light having a frequency ω0 is emitted from the measurement light source 2, passes through the optical splitter 3, and is connected to the optical fiber 2.
0. In the optical fiber 20, in addition to the Rayleigh scattered light with the frequency ω0 at the x point, the frequency ω0 ±ωB
Brillouin scattered light is generated.

【0018】光ファイバ20で生じたレイリー散乱光及
びブリルアン散乱光の一部は、後方散乱光として、光分
岐器3より光周波数同調器4に入射する。この光周波数
同調器4は、例えばファブリペロー干渉計などで構成さ
れる。この光周波数同調器4には、周波数掃引回路5及
びその制御回路6が接続されており、信号処理回路8か
らの制御信号により、一定周波数ステップの変化で、光
周波数同調器4の同調周波数が掃引され、同調周波数が
ω0 −ωB ,ω0 −ωB’,…又はω0 +ωB
 ,ω0 +ωB’,…の如く変化する。光周波数同調
器4を出射した光は、光検出器7に入射し、電気信号に
変換されて信号処理回路8に入力される。信号処理回路
8では、光源駆動回路1へのトリガ信号送出時間と、光
検出器7からの電気信号入力時間との遅延時間とにより
、電気信号に変換された後方散乱光の光ファイバ20で
の発生位置を特定する(図3(a) 参照)。即ち、測
定用光源4からパルス光が出射されてから後方散乱光を
光検出器7が検出するまでの時間より、光ファイバの歪
あるいは温度の測定位置を求める。この各位置での光フ
ァイバの歪量が分かれば、光ファイバの歪分布の測定が
できることになる。
A portion of the Rayleigh scattered light and Brillouin scattered light generated in the optical fiber 20 enters the optical frequency tuner 4 from the optical splitter 3 as backscattered light. This optical frequency tuner 4 is composed of, for example, a Fabry-Perot interferometer. A frequency sweep circuit 5 and its control circuit 6 are connected to the optical frequency tuner 4, and the tuning frequency of the optical frequency tuner 4 is changed by a constant frequency step change according to a control signal from the signal processing circuit 8. swept, and the tuning frequency is ω0 - ωB , ω0 - ωB', ... or ω0 + ωB
, ω0 + ωB', ... The light emitted from the optical frequency tuner 4 enters the photodetector 7, is converted into an electrical signal, and is input to the signal processing circuit 8. In the signal processing circuit 8, the backscattered light converted into an electrical signal is transmitted to the optical fiber 20 based on the delay time between the trigger signal sending time to the light source driving circuit 1 and the electrical signal input time from the photodetector 7. Identify the location of the occurrence (see Figure 3(a)). That is, the measurement position of the strain or temperature of the optical fiber is determined from the time from when the pulsed light is emitted from the measurement light source 4 until the photodetector 7 detects the backscattered light. If the amount of strain in the optical fiber at each position is known, the strain distribution of the optical fiber can be measured.

【0019】まず、光ファイバの無歪状態でのブリルア
ン周波数シフト量νBは約 13GHzであることが知
られている。次に、上記ブリルアン後方散乱光検出系に
おいて、光ファイバ20中のある地点xの部分に歪が加
わると、この歪量に対応した周波数だけシフトした周波
数ω0 ±ωB のブリルアン散乱光、即ちストークス
光(周波数:ω0 −ωB )及びアンチストークス光
(周波数:ω0 +ωB)が発生し、後方散乱光として
上記光周波数同調器4に入射する。今、この光周波数同
調器4の同調周波数がω0 −ωB であれば、上記x
地点での発生したブリルアン散乱光のうち、ストークス
光(周波数:ω0 −ωB)のみの同調信号光が、光周
波数同調器4より選択的に出射されて、光検出器7に入
射する。このとき光検出器7が受光する光強度は、x地
点でのブリルアン周波数シフト量(ω0 −ωB )に
対応しているため、光検出器7の出力を歪分布演算回路
9で評価することにより、このx地点での光ファイバ2
0の歪量(応力歪と熱歪の和)を求めることができる。 他の地点のブリルアン周波数シフト量νB が(ω0 
−ωB )である場合にも、同様にその地点の歪量(応
力歪と熱歪の和)を求めることができる。
First, it is known that the Brillouin frequency shift amount νB of an optical fiber in an undistorted state is approximately 13 GHz. Next, in the Brillouin backscattered light detection system, when a strain is applied to a certain point x in the optical fiber 20, Brillouin scattered light with a frequency ω0 ±ωB shifted by a frequency corresponding to the amount of distortion, that is, Stokes light, is generated. (frequency: ω0 −ωB) and anti-Stokes light (frequency: ω0 +ωB) are generated and enter the optical frequency tuner 4 as backscattered light. Now, if the tuning frequency of this optical frequency tuner 4 is ω0 −ωB, then the above x
Of the Brillouin scattered light generated at the point, a tuning signal light consisting only of Stokes light (frequency: ω0 - ωB) is selectively emitted from the optical frequency tuner 4 and enters the photodetector 7. At this time, the light intensity received by the photodetector 7 corresponds to the Brillouin frequency shift amount (ω0 - ωB) at the point x, so the output of the photodetector 7 is evaluated by the distortion distribution calculation circuit 9. , optical fiber 2 at this point x
The amount of strain (the sum of stress strain and thermal strain) of 0 can be found. The amount of Brillouin frequency shift νB at other points is (ω0
-ωB), the amount of strain (sum of stress strain and thermal strain) at that point can be found in the same way.

【0020】ここで、光周波数同調器4の同調周波数を
一定周波数ステップごとに変えて、即ち(ω0 −ωB
 ),(ω0 −ωB’),…として、上記操作を繰り
返すことにより、結局、光ファイバ20の全長に渡る各
地点でのブリルアン周波数シフト量を、歪分布演算回路
9で計測することができ、これにより、各地点での光フ
ァイバの歪分布(図3(b) )を求めることができる
Here, the tuning frequency of the optical frequency tuner 4 is changed every fixed frequency step, that is, (ω0 −ωB
), (ω0 −ωB'), ... By repeating the above operation, the amount of Brillouin frequency shift at each point over the entire length of the optical fiber 20 can be measured by the strain distribution calculation circuit 9, Thereby, the strain distribution of the optical fiber at each point (FIG. 3(b)) can be determined.

【0021】なお、上記はストークス光成分について述
べたが、アンチストークス光成分(周波数:ω0 +ω
B )に基づいても同様に光ファイバの歪分布(図3(
b) )を求めることができる。
[0021] The above description was about the Stokes light component, but the anti-Stokes light component (frequency: ω0 + ω
Similarly, the strain distribution of the optical fiber (Fig. 3 (
b) ) can be found.

【0022】次に、ブリルアン散乱光の2成分であるス
トークス光とアンチストークス光との強度比が、次の数
3式で示される温度の関数として表されることが知られ
ている。
Next, it is known that the intensity ratio of Stokes light and anti-Stokes light, which are two components of Brillouin scattered light, can be expressed as a function of temperature as shown by the following equation (3).

【0023】[0023]

【数3】[Math 3]

【0024】従って、上記周波数操作の一対(ω0 ±
ωB )に対応した光検出器7のストークス光並びにア
ンチストークス光強度出力を、信号処理回路8より温度
分布演算回路10に入力し、上記(3)式に従って演算
処理すれば、その地点での光ファイバの温度を求めるこ
とができ、上記光周波数同調器4の周波数掃引操作によ
り光ファイバ全長の温度分布(図3(C) )を求める
ことができる。
Therefore, the pair of frequency operations (ω0 ±
If the Stokes light and anti-Stokes light intensity outputs of the photodetector 7 corresponding to The temperature of the fiber can be determined, and the temperature distribution over the entire length of the optical fiber (FIG. 3(C)) can be determined by frequency sweeping operation of the optical frequency tuner 4.

【0025】一方、光ファイバの熱歪量は、光ファイバ
の構成すなわち被覆材と素線の材質・寸法によりほぼ一
義的に決定され、この熱歪量は、予め、温度との関係量
として求めておくことができる。従って、上記計測され
た光ファイバの温度分布(図3(C) )より、熱歪分
布(図3(d) )を演算して求めることができる。そ
こで、歪・温度表示・出力器11は、温度分布演算回路
10の出力を受け、これを予め求めてある温度と熱歪量
との関係式に乗せて、熱歪分布(図3(d) )を算出
する。
On the other hand, the amount of thermal strain of an optical fiber is almost uniquely determined by the configuration of the optical fiber, that is, the materials and dimensions of the coating material and the strands, and this amount of thermal strain is determined in advance as an amount related to temperature. You can keep it. Therefore, the thermal strain distribution (FIG. 3(d)) can be calculated and determined from the measured temperature distribution of the optical fiber (FIG. 3(C)). Therefore, the strain/temperature display/output device 11 receives the output of the temperature distribution calculation circuit 10, and adds it to the predetermined relational expression between temperature and thermal strain amount to obtain the thermal strain distribution (Fig. 3(d). ) is calculated.

【0026】次いで、歪・温度表示・出力器11は、こ
の光ファイバの各地点での熱歪量(図3(d) )を前
記光ファイバの歪量(図3(b) )より減算する。か
くして、最終的に、熱歪量を含まない光ファイバの純然
たる応力歪、即ち、光ファイバが配設された構造物の歪
分布(図3(e) )が計測される。
Next, the strain/temperature display/output device 11 subtracts the amount of thermal strain at each point on the optical fiber (FIG. 3(d)) from the amount of strain on the optical fiber (FIG. 3(b)). . In this way, the pure stress strain of the optical fiber, which does not include the amount of thermal strain, ie, the strain distribution of the structure in which the optical fiber is installed (FIG. 3(e)), is measured.

【0027】上記実施例では、光ファイバの温度分布の
計測にブリルアン後方散乱光を利用する方式について述
べたが、同じく、光ファイバに入射された光によって発
生するラマン後方散乱光を用いても、同様に光ファイバ
の温度分布が計測できる。
In the above embodiment, a method using Brillouin backscattered light to measure the temperature distribution of an optical fiber was described, but similarly, Raman backscattered light generated by light incident on the optical fiber can also be used. Similarly, the temperature distribution of an optical fiber can be measured.

【0028】図2はこのラマン後方散乱光を利用する方
式の一実施例を示す。
FIG. 2 shows an example of a method using this Raman backscattered light.

【0029】この実施例では、ラマン後方散乱光はブリ
ルアン後方散乱光に比べて微弱であることを考慮し、別
個に設けた光源12よりパルス光を出射し、光ファイバ
20中に入射している。このパルス光によって光ファイ
バ20中に発生したラマン後方散乱光は、再び入射端に
戻ってきた後、光周波数同調器4に前置した光分波器1
3で、レーリ後方散乱光及びブリルアン後方散乱光と分
離される。分離されたラマン後方散乱光は、更に次の光
分波器14でラマン散乱光の2成分であるストークス光
とアンチストークス光に分離され、それぞれ光検出器1
5,16で電気信号に変換される。この光ファイバ各地
点からの両信号は信号処理回路17により平均化処理さ
れた後、温度分布演算回路10に入る。温度分布演算回
路10は、この両信号に基づき、光ファイバ各地点から
のストークス光とアンチストークス光の光強度比を求め
、前述した数3式と同様の関係に従って、最終的に光フ
ァイバ全長の温度分布を得る。この光ファイバの温度分
布情報を用いて光ファイバの熱歪を応力歪とは別個に算
出し、別途に歪分布演算回路9で求めた歪分布から熱歪
の影響分を除去して真の歪を測定する手順は、前述の図
1の場合と同じである。
In this embodiment, considering that the Raman backscattered light is weaker than the Brillouin backscattered light, pulsed light is emitted from a separately provided light source 12 and is input into the optical fiber 20. . The Raman backscattered light generated in the optical fiber 20 by this pulsed light returns to the input end again, and then returns to the optical demultiplexer 1 installed in front of the optical frequency tuner 4.
3, the light is separated from the Rayleigh backscattered light and the Brillouin backscattered light. The separated Raman backscattered light is further separated into two components of the Raman scattered light, Stokes light and anti-Stokes light, by the next optical demultiplexer 14, and each is sent to the photodetector 1.
5 and 16, it is converted into an electrical signal. Both signals from each point of the optical fiber are averaged by the signal processing circuit 17 and then input to the temperature distribution calculation circuit 10. Based on these two signals, the temperature distribution calculation circuit 10 calculates the light intensity ratio of the Stokes light and the anti-Stokes light from each point of the optical fiber, and finally calculates the total length of the optical fiber according to the same relationship as the equation 3 described above. Obtain temperature distribution. The thermal strain of the optical fiber is calculated separately from the stress strain using this temperature distribution information of the optical fiber, and the influence of thermal strain is removed from the strain distribution separately determined by the strain distribution calculation circuit 9 to obtain the true strain. The procedure for measuring is the same as in the case of FIG. 1 described above.

【0030】なお、通常、ラマン後方散乱光は、ブリル
アン後方散乱光に比べて微弱であるために、このラマン
後方散乱光を充分に検出するための別個の光源12を用
いる場合について上述したが、ブリルアン後方散乱光検
出に用いる単一周波数光源出力が、ラマン後方散乱光検
出に充分であるほど大きければ、光源はこの単一周波数
光源のみでよく、上記別個の光源は不要であることは勿
論である。
Note that since Raman backscattered light is normally weaker than Brillouin backscattered light, the case where a separate light source 12 is used to sufficiently detect this Raman backscattered light has been described above. If the single frequency light source output used for Brillouin backscattered light detection is large enough to be used for Raman backscattered light detection, then this single frequency light source is sufficient as the light source, and the above-mentioned separate light source is of course unnecessary. be.

【0031】[0031]

【発明の効果】以上述べたように、本発明は、ブリルア
ン周波数シフト量νBより測定される光ファイバの歪分
布には誤差として光ファイバの熱歪が含まれるとの認識
に立ち、ブリルアン散乱光強度又はラマン散乱光強度か
ら光ファイバの温度分布を測定して、その温度情報から
光ファイバの熱歪量の分布を求め、これをブリルアン周
波数シフト量νB より測定される光ファイバの歪分布
から熱歪分を減算するため、応力歪と熱歪とを分離した
高精度な歪分布計測が可能になるばかりでなく、一本の
光ファイバの歪及び温度分布の両方の計測が可能になり
、経済性に優れる。
As described above, the present invention recognizes that the strain distribution of an optical fiber measured from the Brillouin frequency shift amount νB includes the thermal strain of the optical fiber as an error, The temperature distribution of the optical fiber is measured from the intensity or the Raman scattered light intensity, and the distribution of the amount of thermal strain of the optical fiber is determined from the temperature information. Since the strain component is subtracted, it is not only possible to measure strain distribution with high precision by separating stress strain and thermal strain, but also to measure both strain and temperature distribution of a single optical fiber, which is economical. Excellent in sex.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光ファイバ歪分布計測装置の一実施例
を示す模式図である。
FIG. 1 is a schematic diagram showing an embodiment of an optical fiber strain distribution measuring device of the present invention.

【図2】本発明の光ファイバ歪分布計測装置の変形実施
例を示す模式図である。
FIG. 2 is a schematic diagram showing a modified embodiment of the optical fiber strain distribution measuring device of the present invention.

【図3】図1の実施例に対する説明図であり、(a)は
各ブリルアン周波数シフトで掃引した場合のブリルアン
後方散乱光強度分布図、(b)は(a)のうちストーク
ス光成分より求めた歪分布図、(c)は(a)のうちス
トークス光及びアンチストークス光より求めた温度分布
図、(d)は(c)より求めた熱歪分布図、(e)は(
b),(d)より求めた応力歪分布図である。
FIG. 3 is an explanatory diagram for the example in FIG. 1, where (a) is a Brillouin backscattered light intensity distribution diagram when swept at each Brillouin frequency shift, and (b) is a diagram obtained from the Stokes light component in (a). (c) is the temperature distribution diagram obtained from Stokes light and anti-Stokes light in (a), (d) is the thermal strain distribution diagram obtained from (c), and (e) is the temperature distribution diagram obtained from (c).
It is a stress strain distribution diagram obtained from b) and (d).

【符号の説明】[Explanation of symbols]

1  光源駆動回路 2  測定用光源 3  光分岐器 4  光周波数同調器 5  周波数掃引回路 6  制御回路 7  光検出器 8  信号処理回路 9  歪分布演算回路 10  温度分布演算回路 11  歪・温度表示・出力器 12  測定用光源 13,14  光分波器 15,16  光検出器 17  信号処理回路 1 Light source drive circuit 2. Light source for measurement 3 Optical splitter 4 Optical frequency tuner 5 Frequency sweep circuit 6 Control circuit 7 Photodetector 8 Signal processing circuit 9 Distortion distribution calculation circuit 10 Temperature distribution calculation circuit 11 Distortion/temperature display/output device 12 Measurement light source 13,14 Optical demultiplexer 15, 16 Photodetector 17 Signal processing circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  測定対象構造物に配設される光ファイ
バと、光ファイバにその入射端よりパルス光を入射する
ための測定用光源と、光ファイバの入射端から出射され
る上記パルス光の後方散乱光のうち、ブリルアン散乱光
及びラマン散乱光をそれぞれ分離検出する光学系と、ブ
リルアン散乱光に対して特定周波数を掃引してブリルア
ン散乱光を抽出する光周波数同調器と、この抽出された
ブリルアン散乱光のブリルアン周波数シフト量から光フ
ァイバの歪量の分布を求める歪分布演算回路と、ブリル
アン散乱光強度又はラマン散乱光強度から光ファイバの
温度の分布を求める温度分布演算回路と、この温度情報
から光ファイバの熱歪量の分布を求める演算手段と、該
演算手段で得られた熱歪量の分布を上記歪分布演算回路
で得られた歪分布から減算する手段とを備えたことを特
徴とする光ファイバ歪分布計測装置。
1. An optical fiber disposed in a structure to be measured, a measurement light source for inputting pulsed light into the optical fiber from its input end, and a measuring light source for inputting pulsed light to the optical fiber from its input end. An optical system that separates and detects Brillouin scattered light and Raman scattered light among the backscattered light, an optical frequency tuner that sweeps a specific frequency with respect to the Brillouin scattered light and extracts the Brillouin scattered light, and this extracted A strain distribution calculation circuit that calculates the distribution of strain in an optical fiber from the Brillouin frequency shift amount of the Brillouin scattered light, a temperature distribution calculation circuit that calculates the temperature distribution of the optical fiber from the Brillouin scattered light intensity or the Raman scattered light intensity, and this temperature The present invention further comprises a calculation means for calculating the distribution of the amount of thermal strain of the optical fiber from the information, and a means for subtracting the distribution of the amount of thermal strain obtained by the calculation means from the strain distribution obtained by the strain distribution calculation circuit. Characteristic optical fiber strain distribution measuring device.
JP3013465A 1991-02-04 1991-02-04 Apparatus for measuring strain distribution of optical fiber Pending JPH04248426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3013465A JPH04248426A (en) 1991-02-04 1991-02-04 Apparatus for measuring strain distribution of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013465A JPH04248426A (en) 1991-02-04 1991-02-04 Apparatus for measuring strain distribution of optical fiber

Publications (1)

Publication Number Publication Date
JPH04248426A true JPH04248426A (en) 1992-09-03

Family

ID=11833894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013465A Pending JPH04248426A (en) 1991-02-04 1991-02-04 Apparatus for measuring strain distribution of optical fiber

Country Status (1)

Country Link
JP (1) JPH04248426A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240294A (en) * 2006-03-08 2007-09-20 Yokogawa Electric Corp Apparatus for measuring optical fiber distortion
WO2009005256A2 (en) 2007-06-29 2009-01-08 Uto International Corporation Distributed optical fiber sensor system
KR101351168B1 (en) * 2009-01-07 2014-01-14 아이시키리 인터페이스 테크놀로지스 게엠베하 Detector surface
CN112082494A (en) * 2020-08-25 2020-12-15 中国电子科技集团公司第四十一研究所 BOTDR (Brillouin optical time domain reflectometer) for composite test of optical fiber strain and temperature distribution and working method thereof
WO2023135715A1 (en) * 2022-01-13 2023-07-20 日本電気株式会社 Displacement estimation device, displacement estimation method, and computer-readable recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240294A (en) * 2006-03-08 2007-09-20 Yokogawa Electric Corp Apparatus for measuring optical fiber distortion
WO2009005256A2 (en) 2007-06-29 2009-01-08 Uto International Corporation Distributed optical fiber sensor system
WO2009005256A3 (en) * 2007-06-29 2009-02-26 Uto Internat Corp Distributed optical fiber sensor system
KR101351168B1 (en) * 2009-01-07 2014-01-14 아이시키리 인터페이스 테크놀로지스 게엠베하 Detector surface
CN112082494A (en) * 2020-08-25 2020-12-15 中国电子科技集团公司第四十一研究所 BOTDR (Brillouin optical time domain reflectometer) for composite test of optical fiber strain and temperature distribution and working method thereof
WO2023135715A1 (en) * 2022-01-13 2023-07-20 日本電気株式会社 Displacement estimation device, displacement estimation method, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
US7369249B2 (en) Apparatus for measuring differential mode delay of multimode optical fiber
US7284903B2 (en) Distributed optical fibre measurements
US6323950B1 (en) Chromatic dispersion measurement for optical components
US7874725B2 (en) Optical fiber temperature distribution measuring apparatus, method for measuring optical fiber temperature distribution, and optical fiber temperature distribution measuring system
CN111896137B (en) Centimeter-level spatial resolution distributed optical fiber Raman sensing device and method
CN111896136B (en) Dual-parameter distributed optical fiber sensing device and method with centimeter-level spatial resolution
US4830513A (en) Distributed temperature sensor with optical-fiber sensing element
JP3492346B2 (en) Method and apparatus for measuring strain and temperature distribution
WO1999042803A1 (en) Branch line monitoring system and branch line monitoring method
JPH04248426A (en) Apparatus for measuring strain distribution of optical fiber
JP2769185B2 (en) Backscattered light measurement device
JPH0354292B2 (en)
JP2584478B2 (en) Method for processing received signal of optical fiber backscattered light
JP3063063B2 (en) Optical fiber temperature distribution measurement system
JP3223942B2 (en) Optical fiber inspection equipment
JPH02201129A (en) Optical fiber system distribution type temperature sensor
JPH04332835A (en) Corrective processing method of distributed temperature data
JP3377067B2 (en) Brillouin frequency shift distribution measuring method and apparatus
JP4201995B2 (en) Optical fiber strain measurement method and apparatus
JP3106443B2 (en) Temperature distribution measuring method and device therefor
JP2516613B2 (en) Optical fiber temperature measurement method
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
JPH07122603B2 (en) Optical fiber strain measuring method and strain measuring apparatus
JPH07243920A (en) Optical fiber temperature distribution measuring system
JP3856303B2 (en) Optical fiber characteristic evaluation method and apparatus