JPH0334770B2 - - Google Patents

Info

Publication number
JPH0334770B2
JPH0334770B2 JP15002186A JP15002186A JPH0334770B2 JP H0334770 B2 JPH0334770 B2 JP H0334770B2 JP 15002186 A JP15002186 A JP 15002186A JP 15002186 A JP15002186 A JP 15002186A JP H0334770 B2 JPH0334770 B2 JP H0334770B2
Authority
JP
Japan
Prior art keywords
formula
diglycidyl ether
moles
brominated bisphenol
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15002186A
Other languages
Japanese (ja)
Other versions
JPS636016A (en
Inventor
Mitsutoshi Kamata
Masaru Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP15002186A priority Critical patent/JPS636016A/en
Publication of JPS636016A publication Critical patent/JPS636016A/en
Publication of JPH0334770B2 publication Critical patent/JPH0334770B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、難燃性、可撓性、䜎枩打抜性、貯蔵
安定性に優れた積局板甚難燃性暹脂組成物の補造
法に関する。 埓来の技術 近幎、家庭甚電気機噚の安党性の面から、それ
に䜿甚されるプリント回路基板の難燃化の芁求が
高た぀お来た。同時に、倚岐にわたる芁求特性項
目、特に寞法粟床の芁求から䜎枩打抜性ないし無
加熱打抜性の芁求、さらに䟡栌面での芁求も幎々
厳しくな぀おいる。埓぀お、䜎䟡栌でか぀特性䜎
䞋が少なく、䜎枩打抜性、無加熱打抜性に優れた
積局板甚難燃性暹脂を必芁ずするが、埓来の難燃
性暹脂あるいは難燃剀では完党に前蚘の目的を満
足するこずは困難であ぀た。 即ち、埓来の難燃性暹脂及び難燃剀ずしお、反
応性を持たない䜎分子量の添加型難燃剀ず、反応
性を持぀反応型難燃剀が知られおいる。添加型難
燃剀を䜿甚した堎合、耐熱性、耐薬品性、電気特
性が䜎䞋し、さらに暹脂の架橋密床の䜎䞋により
積局板の局間密着性が著しく䜎䞋する。特に打抜
性に぀いおは、打抜時の局間はく離、粉萜ち、ダ
むスの穎詰りが発生する。䞀方、反応型難燃剀を
䜿甚した堎合、前蚘の欠点は少ないものの、積局
板ずした時の架橋密床の増加により、積局板の軟
化点を高枩偎に移動させ、䜎枩あるいは無加熱で
の打抜きに適さなくなり、たたその反応性が倧き
いため、配合暹脂、塗工基材の貯蔵安定性が悪く
なる。前者の代衚䟋ずしお、ブロム化ビスプノ
ヌル、ブロム化ゞプニル゚ヌテル、トリプ
ニルホスプヌト及びそのアルキル誘導䜓が実甚
化されおいる。たた、埌者の代衚䟋ずしお、ブロ
ム化゚ポキシ暹脂がある。 実際には、倚岐にわたる特性面の芁求から、䞡
者にそれぞれの長所、短所を考慮し぀぀䜵甚され
おいる。たた、䞡者の䜵甚、特にハロゲン実甚
侊Brが倚甚されおいるずの䜵甚は別の偎面
からも利点がある。即ち、難燃効果を持぀元玠
ハロゲン、、、等を単独で䜿甚する堎
合より、それらを耇数䜵甚した堎合の方が、それ
らの盞剰効果により、難燃効果が増倧し、結果的
に難燃性暹脂及び難燃剀の総䜿甚量を枛少するこ
ずができる。さらに、添加型難燃剀は優れた可塑
効果を持぀ため、その䜵甚により、可撓性の向
䞊、打抜性の向䞊を行うこずができる。 しかし、䟋を最も䜿甚頻床の高いBrずの耇
合系に぀いお挙げるず、埓来のBr系のものは前
述のように添加型、反応型の䞡方の難燃剀が実甚
化されおいるが、系のものに぀いおは添加型難
燃剀しか実甚化されおいない。埓぀お、Brず
の耇合系においお、最適難燃効果を瀺す配合比を
探し埗たずしおも、添加型難燃剀の持぀欠点のた
めに簡単に䜿甚量を増加できない。 発明が解決しようずする問題点 埓来の難燃性暹脂及び難燃剀は、特性面での
様々な制玄から、ハロゲン、、等の比率を倉
化させ、最適な難燃効果を埗るための自由床が非
垞に狭く、必ずしも最も難燃効果の高い配合系が
遞択されおいるずは蚀えなか぀た。たた、可撓
性、䜎枩打抜き性の面からは、添加型の䜿甚量が
制限され、埓来の難燃性暹脂は反応型が倚い系ず
なるため、可撓性は䜎䞋し、䜎枩打抜き甚ずしお
は適圓ではなか぀た。その結果、難燃性を確保す
るための䜿甚量が増加し、それに䌎぀お䜎枩打抜
き性、その他の特性䜎䞋及び原䟡高ずなる問題が
あ぀た。 本発明は、埓来の難燃性暹脂及び難燃剀が持぀
以䞊の様な問題点を解決し、少量の䜿甚により難
燃効果を発揮する様、たた、難燃性に優れ他の特
性を䜎䞋させるこずなく、可撓性、䜎枩あるいは
無加熱打抜き性、貯蔵安定性に優れた積局板甚難
燃性暹脂組成物を提䟛するこずを目的ずする。 問題点を解決するための手段 本発明は、䞊蚘の目的を達成するためになされ
たもので、その第䞀の発明は、ブロム化ビスプ
ノヌルゞグリシゞル゚ヌテルず䞀般匏〔〕 R1、R2は、−CH2−、−C2H4−、
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a flame-retardant resin composition for laminates that has excellent flame retardancy, flexibility, low-temperature punchability, and storage stability. BACKGROUND OF THE INVENTION In recent years, from the standpoint of the safety of household electrical appliances, there has been an increasing demand for flame retardant printed circuit boards used therein. At the same time, there are a wide variety of required characteristics, especially dimensional accuracy requirements, demands for low-temperature punching performance or no-heat punching performance, and even price requirements are becoming stricter year by year. Therefore, there is a need for a flame-retardant resin for laminates that is low-cost, has little property deterioration, and has excellent low-temperature punching properties and no-heat punching properties, but conventional flame-retardant resins or flame retardants are not completely effective. It was difficult to satisfy the above objectives. That is, as conventional flame retardant resins and flame retardants, there are known low molecular weight additive flame retardants that do not have reactivity and reactive flame retardants that have reactivity. When an additive flame retardant is used, the heat resistance, chemical resistance, and electrical properties are reduced, and furthermore, the interlayer adhesion of the laminate is significantly reduced due to a reduction in the crosslinking density of the resin. In particular, regarding punchability, delamination between layers, powder falling, and clogging of the die hole occur during punching. On the other hand, when reactive flame retardants are used, although the above-mentioned drawbacks are small, the increased crosslink density when formed into a laminate moves the softening point of the laminate to a higher temperature side, making it easier to punch at low temperatures or without heating. Moreover, since the reactivity is high, the storage stability of the compounded resin and the coating base material becomes poor. As representative examples of the former, brominated bisphenol A, brominated diphenyl ether, triphenyl phosphate, and their alkyl derivatives have been put into practical use. A typical example of the latter is brominated epoxy resin. In reality, both are used in combination, taking into consideration their respective strengths and weaknesses, due to a wide variety of requirements for characteristics. In addition, the combination of both, particularly the combination of halogen (Br is often used in practice) and P, has advantages from other aspects as well. In other words, the flame retardant effect increases due to their mutual effect when multiple elements that have a flame retardant effect (halogen, P, N, B, etc.) are used in combination than when used alone. As a result, the total amount of flame retardant resin and flame retardant used can be reduced. Furthermore, since the additive flame retardant has an excellent plasticizing effect, when used in combination, flexibility and punchability can be improved. However, to take an example of the most frequently used composite system of Br and P, as mentioned above, both additive and reactive flame retardants have been put into practical use for conventional Br-based flame retardants, but P-based Only additive flame retardants have been put into practical use. Therefore, Br and P
Even if it were possible to find a blending ratio that provides the optimum flame retardant effect in a composite system, the amount used cannot be easily increased due to the disadvantages of additive flame retardants. Problems to be Solved by the Invention Due to various limitations in the properties of conventional flame retardant resins and flame retardants, it is difficult to freely change the ratio of halogen, P, N, etc. to obtain the optimal flame retardant effect. The degree of flame retardancy was very narrow, and it could not be said that the blending system with the highest flame retardant effect was necessarily selected. In addition, from the standpoint of flexibility and low-temperature punching, the amount of additive type used is limited, and conventional flame-retardant resins are based on reactive types, which reduces flexibility and makes it difficult to use for low-temperature punching. was not appropriate. As a result, the amount used to ensure flame retardancy has increased, resulting in problems such as deterioration of low-temperature punchability and other properties, and increased cost. The present invention solves the above-mentioned problems of conventional flame retardant resins and flame retardants, exhibits a flame retardant effect even when used in small amounts, and has excellent flame retardancy and reduces other properties. It is an object of the present invention to provide a flame-retardant resin composition for laminates that has excellent flexibility, low-temperature or non-heat punching properties, and storage stability without any problems. Means for Solving the Problems The present invention has been made to achieve the above objects, and the first invention is based on brominated bisphenol A diglycidyl ether and the general formula [] (R 1 and R 2 are −CH 2 −, −C 2 H 4 −,

【匏】より遞ばれ、、〜の敎 数で瀺されるブロム化ビスプノヌルアルキ
ルオキシド付加物ゞグリシゞル゚ヌテルを第䞉玚
アミンを觊媒ずしお反応させた埌、䞀般匏〔〕 R3は、炭玠数〜のアルキル基、
After reacting a brominated bisphenol A alkyl oxide adduct diglycidyl ether selected from [Formula] and represented by m, n = an integer of 1 to 6) using a tertiary amine as a catalyst, the general formula [] (R 3 is an alkyl group having 1 to 6 carbon atoms,

【匏】【formula】

【匏】〜 の敎数、R4は炭玠数〜のアルキル基、
[Formula] (p = an integer of 1 to 3, R 4 is an alkyl group having 1 to 3 carbon atoms),

【匏】〜の敎数、はClあ るいはBr、[Formula] (r = integer from 1 to 3, X is Cl Ruiha Br),

【匏】≊ より遞ばれるで瀺されるリン酞゚ステルを添加
しお反応させる。このずき、添加するリン酞゚ス
テルの量は、含有する氎酞基のモル数が前二者の
反応埌に残存する゚ポキシ基のモル数より少くす
る。そしお、さらに、䞀般匏〔〕 R5は、、炭玠数〜のアルキル基より
遞ばれるで瀺される芳銙族アミンを添加しお反
応させるものである。該芳銙族アミンの添加量は
含有する−NH基のモル数が、前蚘ブロム化ビス
プノヌルゞグリシゞル゚ヌテル、䞀般匏
〔〕および〔〕の䞉者の反応埌に残存する゚
ポキシ基のモル数ず等しくする。 たた、第二の発明は、䞊蚘第䞀の発明においお
䞀般匏〔〕で瀺される芳銙族アミンに代えお、
匏〔〕 で瀺される芳銙族アミンを䜿甚した堎合であり、
第䞉の発明は、第䞀の発明においお䞀般匏〔〕
で瀺される芳銙族アミンに代えお、匏〔〕 で瀺される芳銙族アミンを䜿甚した堎合である。 䜜 甹 ブロム化ビスプノヌルゞグリシゞル゚ヌテ
ルず、䞀般匏〔〕で瀺されるブロム化ビスプ
ノヌルアルキルオキシド付加物ゞグリシゞル゚
ヌテルを䜵甚するこずにより、埌者のアルキルオ
キシド構造により可撓性を䞎え、埓来ブロム化ビ
スプノヌルゞグリシゞル゚ヌテルにおいおは
充分でなか぀た可撓性を発揮させ、なおか぀、反
応分子末端には反応基である゚ポキシ基を残すこ
ずにより、可撓性に優れた反応型難燃性暹脂を埗
るこずができる。同時に、アルキルオキシド基を
分子骚栌に入れるこずは、ブロム眮換されたビス
プノヌル構造の間隔を可撓性を持぀アルキル
オキシド基によ぀お広げるこずになり、結晶化を
抑制するため貯蔵安定性が向䞊する。 ブロム化ビスプノヌルゞグリシゞル゚ヌテ
ルず䞀般匏〔〕で瀺されるブロム化ビスプノ
ヌルアルキルオキシド付加物ゞグリシゞル゚ヌ
テルの混合比に぀いおは、特に制限するものでは
ないが、可撓性、貯蔵安定性に察しお効果を発揮
するためには、前者100重量郚に察し埌者が重
量郚以䞊であるこずが望たしい。埌者が増加しお
来るず、可撓性、貯蔵安定性は向䞊するため、単
独で䜿甚しおも良い。しかし、前者に比范するず
若干Br含有率が小さくなるため、所定の難燃効
果を埗るために適甚系に応じお二者の混合比率を
調敎する方が良い。 䞀般匏〔〕においお、R1、R2が炭玠数以
䞊になるず、耐熱性が若干䜎䞋し、たたメタノヌ
ルリツチなプノヌル暹脂ずの盞溶性が䜎䞋す
る。䜿甚できる觊媒は、トリメチルアミン、トリ
゚チルアミン、トリ゚タノヌルアミン、ベンゞル
ゞメチルアミン等の第䞉玚アミンである。第䞀、
第二玚アミンを䜿甚するず、䞉次元の架橋構造が
生成しやすくなり、プノヌル暹脂ずの盞溶性が
倱われる。觊媒添加量ずしおは、ブロム化ビスフ
゚ノヌルゞグリシゞル゚ヌテルず䞀般匏〔〕
で瀺される化合物の固圢重量に察し、0.05〜
の範囲が望たしい。 䞀般匏〔〕で瀺されるリン酞゚ステルの氎酞
基は、゚ポキシ基ずの反応性が非垞に高く、無觊
媒でも40〜50℃以䞊に加枩すれば短時間で反応す
る。この反応性により、リン酞゚ステルはある皋
床高分子化したブロム化゚ポキシ暹脂に結合しお
行くため、前述の添加型リン酞゚ステル類の持぀
諞欠点を顕圚化させるこずなく、比范的自由にリ
ン酞゚ステルの䜿甚量を増加させお行くこずが可
胜である。この様にしお、Brずの盞剰効果が
効果的に発揮できるずころたで増加する事ができ
る。 䞀般匏〔〕で瀺されるリン酞゚ステルの䜿甚
量に぀いおは、ブロム化ビスプノヌルゞグリ
シゞル゚ヌテルず䞀般匏〔〕で瀺されるブロム
化ビスプノヌルアルキルオキシド付加物ゞグ
リシゞル゚ヌテルの反応埌に残存する゚ポキシ基
のモル数より、リン酞゚ステルの氎酞基モル数が
少くなるようにする必芁がある。即ち、埌者の氎
酞基の数が、前者の゚ポキシ基の数より倚い堎
合、埌で添加される芳銙族アミンず反応し、系䞭
に䜎分子のリン酞゚ステルアミン塩が残存するこ
ずになり、添加型難燃剀の欠点をそのたた内圚さ
せるこずずなるため奜たしくない。 リン酞゚ステルは、䞊蚘範囲内で特に䜿甚量に
぀いお制限するものではないが、前段の反応物の
含有するBr量に察しお、リン酞゚ステルの含有
する量が未満ずなるず難燃性に察する効果
は䜎䞋する。䞊蚘範囲内においおリン酞゚ステル
の䜿甚量が増加しお行くず、゚ポキシ基ずリン酞
゚ステル間で反応が終了する末端が増加し、さら
にリン酞゚ステルの持぀可撓性効果も加わ぀お可
撓性が向䞊する。 以䞊より、リン酞゚ステルの䜿甚量に぀いお
は、適甚系の所望の難燃効果、可撓性効果により
適時遞択するこずができる。 䞀般匏〔〕で瀺されるリン酞゚ステルの氎酞
基の個数あるいはに぀いおは、特に
制限するものではなく、あるいはの単独
構造物あるいはそれらの混合物を䜿甚できる。䞀
般匏〔〕においお、で瀺されるリン酞゚
ステルの䜿甚量が増加するず、反応系の平均分子
量は高分子化し可撓性は若干䜎䞋するが、局間密
着性は向䞊する。 たた、䜿甚できるリン酞゚ステルずしおは、
R3が炭玠数〜のアルキルリン酞゚ステル、
たた、R3がプニル基、〜眮換のアルキル
炭玠数〜プニル基、〜眮換のブロ
モ或はクロロプニル基であるリン酞゚ステルが
ある。それらも、単独構造物でも、たた以䞊の構
造の耇合物、たた、それらの混合物を䜿甚でき
る。アルキルリン酞゚ステルにおいお、アルキル
基の炭玠数がを越えるず、可撓性は向䞊する
が、耐熱性が䜎䞋しお行く傟向があり、たた、メ
タノヌルの存圚量が倚いプノヌル暹脂溶液ぞの
溶解性が䜎䞋するため、積局板甚難燃暹脂ずしお
は䞍適圓である。プニルリン酞゚ステルにおい
お、プニル基に眮換されるアルキル基の炭玠数
に぀いおも、䞊述ず同じ理由でケ以内が望たし
い。たた、プニル基にBr或はClが眮換された
堎合、難燃性に察しおさらに顕著な効果を発揮す
る。 以䞊の特性的な傟向から、ブロム化ビスプノ
ヌルゞグリシゞル゚ヌテルに察しお、䞀般匏
〔〕で瀺されるブロム化ビスプノヌルアル
キルオキシド付加物ゞグリシゞル゚ヌテル及び䞀
般匏〔〕で瀺されるリン酞゚ステルの総䜿甚
量、及び眮換基の構造、数、混合比率を遞択する
こずにより、所定の特性を持぀難燃性暹脂を埗る
こずができる。 さらに、䞊述の䞉者の反応埌、䞀般匏〔〕若
しくは匏〔〕、〔〕で瀺される芳銙族アミン
を、反応系に残存する゚ポキシ基に察しお同等の
アミン圓量ずなる様添加反応させる事によ぀お残
存゚ポキシ基ず結合させる。䞀般匏〔〕若しく
は匏〔〕、〔〕で瀺される芳銙族アミンは、−
NH2基に察しおオルト䜍がホルムアルデヒドに
よ぀おメチロヌル化される胜力を残しおおり、フ
゚ノヌル暹脂に配合しお、硬化する際にプノヌ
ル暹脂ずの結合を容易に進める事ができる。この
様にしお、本発明の反応組成物党䜓を、䞻剀であ
るプノヌル暹脂ず結合させる事により添加型難
燃性暹脂及び難燃剀に類䌌する欠点を完党に克服
するこずができる。 䞀般匏〔〕若しくは〔〕、〔〕で瀺される
芳銙族アミンの添加量が前段のブロム化ビスプ
ノヌルゞグリシゞル゚ヌテルず䞀般匏〔〕、
〔〕で瀺される化合物の反応埌に残存する゚ポ
キシ基のモル数よりも、−NH基のモル数が倚く
なる様な堎合、残存する−NH基の䜜甚により、
プノヌル暹脂ずの配合溶液の保存安定性が悪く
なり、極端な堎合、配合埌盎ちに癜濁する堎合も
ある。たた、芳銙族アミンの添加量が、前蚘の残
存゚ポキシ基に比しお少ない堎合、残存する゚ポ
キシ基の䜜甚により、やはりプノヌル暹脂ずの
配合溶液及び塗工基材の保存安定性が悪くなる。
埓぀お、䞀般匏〔〕若しくは匏〔〕、〔〕で
瀺される芳銙族アミンの添加量は、含有する−
NH基のモル数ず、前段のブロム化ビスプノヌ
ルゞグリシゞル゚ヌテルず䞀般匏〔〕ずの反
応、さらには䞀般匏〔〕で瀺されるリン酞゚ス
テルずの反応埌に残存する゚ポキシ基のモル数が
等しくなる様にし、゚ポキシ基及び−NH基を完
党に反応させおおいた方が望たしい。 本発明の難燃性暹脂は、単独で䜿甚しおも、あ
るいは比范的少量のトリプニルホスプヌトブ
ロム化ゞプニル゚ヌテル等の添加型難燃剀を䜵
甚するこずも可胜であるが、いずれの堎合も難燃
性暹脂及び難燃剀の総䜿甚量を枛少するこずがで
きる。 実斜䟋 次に本発明の実斜䟋を説明する。 実斜䟋  ブロム含有率48、゚ポキシ圓量400のブロム
化ビスプノヌルゞグリシゞル゚ヌテルの60
トル゚ン溶液920ず匏〔〕 で瀺されるゞグリシゞル゚ヌテルの60トル゚ン
溶液613ずゞメチルベンゞルアミン2.76を䞉
ツ口フラスコに投入し、90℃で時間反応させた
反応。さらに匏〔〕 及び匏〔〕 で瀺されるリン酞゚ステル重量比
73を投入し80℃で時間反応させた反応
。 反応終了埌、反応溶液を採取し党量が50
ずなる様蒞留氎を加え、撹拌埌盞分離した氎局
のPHを枬定するず7.0であ぀た。たた、テトラメ
チルアンモニりムブロマむド䞀過塩玠酞法により
゚ポキシ圓量を枬定するず溶液党䜓ずしお1400で
あ぀た。 続いお、匏 で瀺される芳銙族アミンを57添加しおさらに80
℃で時間反応させた反応反応物(1)。 たた、別途桐油倉性プノヌル暹脂を次の様に
しお埗た。䞉ツ口フラスコに桐油720、−ク
レゟヌル580、パラトル゚ンスルホン酞0.74
を投入し、80℃で時間反応埌、プノヌル500
、86パラホルム450、25アンモニア氎35
を投入し、80℃で反応を進めお160℃熱盀䞊で
の硬化時間が分にな぀た時点で脱氎濃瞮し、埌
にメタノヌルを加え、暹脂分50に調敎した。 この桐油倉性プノヌル暹脂ず前蚘反応物(1)を
固圢分比率で、桐油倉性プノヌル暹脂反応物
(1)8020の割合で混合溶解し、このワニスを11
ミルスのクラフト玙に暹脂付着量50ずなるよう
塗工也燥した。 接着剀付き35Ό厚銅箔枚ず前蚘塗工也燥玙基
材枚を組合せ、加熱加圧しお厚さ1.6mmの片面
銅匵り玙基材プノヌル暹脂積局板を埗た。 実斜䟋  実斜䟋ず同様のブロム化ビスプノヌルゞ
グリシゞル゚ヌテルトル゚ン溶液1380ず匏
〔〕 で瀺されるゞグリシゞル゚ヌテルの60トル゚ン
溶液153ずトリ゚チルアミン1.84を䞉ツ口フ
ラスコに投入し90℃で時間反応させた。さらに
匏〔〕 及び匏〔〕 で瀺されるリン酞゚ステル重量比
97を投入し、80℃で時間反応させた。 実斜䟋ず同様の方法でPH及び゚ポキシ圓量を
確認埌、匏
A phosphoric acid ester represented by the formula (p+r≩5) is added and reacted. At this time, the amount of phosphoric acid ester added is such that the number of moles of hydroxyl groups contained is smaller than the number of moles of epoxy groups remaining after the reaction of the former two. And furthermore, general formula [] (R 5 is selected from H and an alkyl group having 1 to 3 carbon atoms) is added and reacted. The amount of the aromatic amine added is such that the number of moles of the -NH group contained is equal to the number of moles of the epoxy group remaining after the reaction of the brominated bisphenol A diglycidyl ether, general formula [] and []. do. Further, the second invention provides, in place of the aromatic amine represented by the general formula [] in the first invention,
formula〔〕 When using the aromatic amine shown in
The third invention is based on the general formula [ ] in the first invention.
In place of the aromatic amine represented by the formula [] This is the case when an aromatic amine represented by is used. Effect By using together brominated bisphenol A diglycidyl ether and brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula [], flexibility is imparted by the alkyl oxide structure of the latter, making it more flexible than conventional Reactive flame retardant with excellent flexibility by exhibiting flexibility that was insufficient in brominated bisphenol A diglycidyl ether, and by leaving an epoxy group, which is a reactive group, at the end of the reactive molecule. Resin can be obtained. At the same time, introducing an alkyl oxide group into the molecular skeleton widens the spacing of the bromine-substituted bisphenol A structure by the flexible alkyl oxide group, which suppresses crystallization and improves storage stability. improves. The mixing ratio of brominated bisphenol A diglycidyl ether and brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula [] is not particularly limited; In order to exhibit an effect on the latter, it is desirable that the latter be 5 parts by weight or more per 100 parts by weight of the former. As the latter increases, flexibility and storage stability improve, so it may be used alone. However, since the Br content is slightly lower than the former, it is better to adjust the mixing ratio of the two depending on the application system in order to obtain a predetermined flame retardant effect. In the general formula [], when R 1 and R 2 have 4 or more carbon atoms, the heat resistance is slightly lowered and the compatibility with methanol-rich phenolic resins is also lowered. Catalysts that can be used are tertiary amines such as trimethylamine, triethylamine, triethanolamine, benzyldimethylamine. first,
When a secondary amine is used, a three-dimensional crosslinked structure is likely to be formed, resulting in loss of compatibility with the phenolic resin. The amount of catalyst added is brominated bisphenol A diglycidyl ether and general formula []
0.05-5% based on the solid weight of the compound represented by
A range of is desirable. The hydroxyl group of the phosphoric acid ester represented by the general formula [] has a very high reactivity with the epoxy group, and reacts in a short time even without a catalyst when heated to 40 to 50°C or higher. Due to this reactivity, the phosphoric acid ester binds to the brominated epoxy resin which has been polymerized to some extent, so it can be relatively freely oxidized without exposing the drawbacks of the additive-type phosphoric esters mentioned above. It is possible to increase the amount of ester used. In this way, the mutual effect of Br and P can be increased to the point where it can be effectively exerted. Regarding the usage amount of the phosphoric acid ester represented by the general formula [], the amount of epoxy remaining after the reaction between the brominated bisphenol A diglycidyl ether and the brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula [] It is necessary that the number of moles of hydroxyl groups in the phosphate ester is smaller than the number of moles of groups. In other words, if the number of hydroxyl groups in the latter is greater than the number of epoxy groups in the former, it will react with the aromatic amine added later, leaving a low-molecular-weight phosphoric acid ester amine salt in the system. This is not preferable because the disadvantages of type flame retardants are inherent. The amount of phosphoric acid ester used is not particularly limited within the above range, but if the amount of P contained in the phosphoric acid ester is less than 2% with respect to the amount of Br contained in the reactant in the first stage, flame retardancy is observed. The effect on As the amount of phosphoric acid ester used increases within the above range, the number of ends where the reaction ends between the epoxy group and the phosphoric acid ester increases, and the flexibility effect of the phosphoric acid ester is added, resulting in increased flexibility. will improve. From the above, the amount of phosphoric acid ester to be used can be appropriately selected depending on the desired flame retardant effect and flexibility effect of the applied system. The number of hydroxyl groups (l=1 or 2) in the phosphoric ester represented by the general formula [] is not particularly limited, and a single structure with l=1 or 2 or a mixture thereof can be used. In the general formula [], when the amount of the phosphoric acid ester represented by m=1 increases, the average molecular weight of the reaction system increases and the flexibility slightly decreases, but the interlayer adhesion improves. In addition, phosphoric acid esters that can be used include:
R 3 is an alkyl phosphate ester having 1 to 6 carbon atoms,
Further, there are phosphoric acid esters in which R 3 is a phenyl group, a 1- to 3-substituted alkyl (carbon number 1-3) phenyl group, or a 1- to 3-substituted bromo or chlorophenyl group. They can also be used as single structures, composites of the above structures, or mixtures thereof. In alkyl phosphate esters, when the number of carbon atoms in the alkyl group exceeds 6, flexibility improves, but heat resistance tends to decrease, and it is difficult to dissolve in phenolic resin solutions containing a large amount of methanol. It is unsuitable as a flame retardant resin for laminates because of its reduced properties. In the phenyl phosphate ester, the number of carbon atoms in the alkyl group substituted by the phenyl group is preferably 3 or less for the same reason as described above. Further, when the phenyl group is substituted with Br or Cl, a more remarkable effect on flame retardancy is exhibited. From the above characteristic trends, brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula [] and phosphate ester represented by the general formula [] By selecting the total amount used, and the structure, number, and mixing ratio of substituents, a flame-retardant resin with predetermined characteristics can be obtained. Furthermore, after the above-mentioned three reactions, an aromatic amine represented by the general formula [] or the formula [] or [] is added to react with the epoxy group remaining in the reaction system so as to have the same amine equivalent. The remaining epoxy group is bonded to the remaining epoxy group. The aromatic amine represented by the general formula [] or the formula [], [] is -
It retains the ability to be methylolated at the ortho position with respect to the NH 2 group by formaldehyde, so it can be blended with a phenolic resin to facilitate bonding with the phenolic resin during curing. In this way, by combining the entire reactive composition of the present invention with the phenolic resin as the main ingredient, it is possible to completely overcome the drawbacks similar to additive flame retardant resins and flame retardants. The added amount of the aromatic amine represented by the general formula [] or [], [] is the former brominated bisphenol A diglycidyl ether and the general formula [],
When the number of moles of -NH group is larger than the number of moles of epoxy group remaining after the reaction of the compound shown in [], due to the action of the remaining -NH group,
The storage stability of a blended solution with a phenolic resin deteriorates, and in extreme cases, it may become cloudy immediately after blending. Furthermore, if the amount of aromatic amine added is small compared to the residual epoxy groups, the storage stability of the mixed solution with the phenol resin and the coated substrate will deteriorate due to the action of the residual epoxy groups.
Therefore, the added amount of the aromatic amine represented by the general formula [] or the formula [], [] is -
The number of moles of the NH group and the number of moles of the epoxy group remaining after the reaction of the brominated bisphenol A diglycidyl ether in the first stage with the general formula [], and further the reaction with the phosphoric acid ester represented by the general formula [] It is preferable to make them equal and allow the epoxy group and -NH group to react completely. The flame retardant resin of the present invention can be used alone or in combination with a relatively small amount of additive flame retardant such as triphenyl phosphate brominated diphenyl ether, but in either case. The total amount of flame retardant resin and flame retardant used can be reduced. Examples Next, examples of the present invention will be described. Example 1 60% of brominated bisphenol A diglycidyl ether with bromine content of 48% and epoxy equivalent weight of 400
920g of toluene solution and formula [a] 613 g of a 60% toluene solution of diglycidyl ether represented by the formula and 2.76 g of dimethylbenzylamine were charged into a three-necked flask and reacted at 90°C for 3 hours (reaction A). Furthermore, formula [b] and formula [c] Phosphate ester represented by (weight ratio b/c=1/
1) 73g was added and reacted at 80°C for 2 hours (Reaction B). After the completion of reaction B, collect 5g of the reaction solution and make the total amount 50
Distilled water was added to give a pH of 7.0 g, and after stirring, the pH of the phase-separated aqueous layer was measured to be 7.0. Furthermore, the epoxy equivalent of the solution as a whole was 1400 when measured by the tetramethylammonium bromide monoperchloric acid method. Subsequently, the expression Add 57g of aromatic amine shown as
The reaction was carried out at ℃ for 1 hour (reaction C) (reactant (1)). Additionally, a tung oil-modified phenol resin was separately obtained as follows. 720 g of tung oil, 580 g of m-cresol, and 0.74 g of para-toluenesulfonic acid in a three-necked flask.
After reacting at 80℃ for 1 hour, phenol 500
g, 86% paraform 450g, 25% ammonia water 35g
The reaction was proceeded at 80°C, and when the curing time on a 160°C hot plate reached 6 minutes, the mixture was dehydrated and concentrated. Methanol was then added to adjust the resin content to 50%. This tung oil modified phenolic resin and the above reactant (1) were mixed in a solid content ratio of tung oil modified phenolic resin/reactant.
(1) Mix and dissolve at a ratio of 80/20, and add 11% of this varnish.
It was coated on Mils kraft paper with a resin adhesion of 50% and dried. One sheet of 35 Ό thick copper foil with adhesive and eight sheets of the coated dry paper substrate were combined and heated and pressed to obtain a 1.6 mm thick one-sided copper-clad paper substrate phenolic resin laminate. Example 2 1380 g of brominated bisphenol A diglycidyl ether toluene solution similar to Example 1 and formula [d] 153 g of a 60% toluene solution of diglycidyl ether shown by and 1.84 g of triethylamine were charged into a three-necked flask and reacted at 90°C for 3 hours. Furthermore, the formula [e] and formula [f] Phosphate ester represented by (weight ratio e/f=1/
1) 97g was added and reacted at 80°C for 2 hours. After confirming the PH and epoxy equivalent in the same manner as in Example 1, the formula

【匏】で 瀺される芳銙族アミンを70添加し、80℃で時
間反応させた反応物(2)。 反応物(1)を実斜䟋ず同様の比率で甚い、厚さ
1.6mmの片面銅匵り玙基材プノヌル暹脂積局板
を埗た。 実斜䟋  実斜䟋ず同様のブロム化ビスプノヌルゞ
グリシゞル゚ヌテルトル゚ン溶液613ず匏〔〕 で瀺されるゞグリシゞル゚ヌテル920ずトリ゚
タノヌルアミン4.60を䞉ツ口フラスコに投入
し、90℃で時間反応させた。さらに匏〔〕 及び匏〔〕 で瀺されるリン酞゚ステル重量比
を107投入し、80℃で時間反応させた。 実斜䟋ず同様の方法でPH及び゚ポキシ圓量を
確認埌、匏
70g of aromatic amine represented by the formula was added and reacted at 80°C for 1 hour (reactant (2)). Reactant (1) was used in the same ratio as in the example, and the thickness
A 1.6 mm single-sided copper-clad paper-based phenolic resin laminate was obtained. Example 3 613 g of brominated bisphenol A diglycidyl ether toluene solution similar to Example 1 and formula [g] 920 g of diglycidyl ether shown by and 4.60 g of triethanolamine were charged into a three-necked flask and reacted at 90°C for 3 hours. Furthermore, the formula [h] and formula [i] Phosphate ester represented by (weight ratio h/i=1/
107g of 1) was added and reacted at 80°C for 2 hours. After confirming the PH and epoxy equivalent in the same manner as in Example 1, the formula

【匏】で 瀺される芳銙族アミンを50投入し、80℃で時
間反応させた反応物(3)。 反応物(3)を甚い、以䞋実斜䟋ず同様にしお厚
さ1.6mmの片面銅匵り玙基材プノヌル暹脂積局
板を埗た。 実斜䟋  実斜䟋ず同様のブロム化ビスプノヌルゞ
グリシゞル゚ヌテルトル゚ン溶液153ず匏〔〕 で瀺されるゞグリシゞル゚ヌテルの60トル゚ン
溶液1379ずゞメチルベンゞルアミン9.20を䞉
ツ口フラスコに投入し、90℃で時間反応させ
た。さらに匏〔〕 及び匏〔〕 で瀺されるリン酞゚ステル重量比
534を投入し、80℃で時間反応させた。 実斜䟋ず同様の方法で、PH、゚ポキシ圓量を
確認埌、匏
50g of aromatic amine represented by the formula was added and reacted at 80°C for 1 hour (reactant (3)). Using the reaction product (3), a 1.6 mm thick one-sided copper-clad paper base phenolic resin laminate was obtained in the same manner as in Example 1. Example 4 153 g of brominated bisphenol A diglycidyl ether toluene solution similar to Example 1 and formula [j] 1379 g of a 60% toluene solution of diglycidyl ether shown by and 9.20 g of dimethylbenzylamine were charged into a three-necked flask and reacted at 90°C for 3 hours. Furthermore, the formula [k] and formula [l] Phosphate ester represented by (weight ratio k/1=1/
1) 534g was added and reacted at 80°C for 2 hours. After confirming the pH and epoxy equivalent in the same manner as in Example 1, the formula

【匏】で 瀺される芳銙族アミン25を添加しお80℃で時
間反応させた反応物(4)。 反応物(4)を甚い、以䞋、実斜䟋ず同様の方法
で厚さ1.6mmの片面銅匵り玙基材プノヌル暹脂
積局板を埗た。 比范䟋  実斜䟋で䜿甚した桐油倉性プノヌル暹脂ず
ブロム含有率48、゚ポキシ圓量400のブロム化
ビスプノヌルゞグリシゞル゚ヌテルの60ト
ル゚ン溶液を固圢分比率で、桐油倉性プノヌル
暹脂ブロム化ビスプノヌルゞグリシゞル゚
ヌテル8020の割合で混合溶解し、このワニス
を甚いお以䞋実斜䟋ず同様の方法で厚さ1.6mm
の片面銅匵り玙基材プノヌル暹脂積局板を埗
た。 比范䟋  実斜䟋で䜿甚した桐油倉性プノヌル暹脂ず
比范䟋で䜿甚したブロム化ビスプノヌルゞ
グリシゞル゚ヌテルず、トリプニルホスプヌ
トを固圢分比率で、桐油倉性プノヌル暹脂ブ
ロム化ビスプノヌルゞグリシゞル゚ヌテル
トリプニルホスプヌト603010の割合で
混合溶解し、このワニスを甚いお以䞋実斜䟋ず
同様の方法で厚さ1.6mmの片面銅匵り玙基材プ
ノヌル暹脂積局板を埗た。 実斜䟋、比范䟋で埗た積局板の詊隓結果を第
衚に瀺す。
25 g of aromatic amine represented by the formula was added and reacted at 80°C for 1 hour (reactant (4)). Using the reaction product (4), a phenolic resin laminate having a thickness of 1.6 mm and having a copper-clad paper base on one side was obtained in the same manner as in Example 1. Comparative Example 1 A 60% toluene solution of the tung oil modified phenolic resin used in Example 1 and brominated bisphenol A diglycidyl ether with a bromine content of 48% and an epoxy equivalent of 400 was mixed at a solid content ratio of tung oil modified phenolic resin/brominated. Mix and dissolve bisphenol A diglycidyl ether in a ratio of 80/20, and use this varnish to form a layer of 1.6 mm in thickness in the same manner as in Example 1.
A phenolic resin laminate with a single-sided copper-clad paper base was obtained. Comparative Example 2 Tung oil modified phenolic resin used in Example 1, brominated bisphenol A diglycidyl ether used in Comparative Example 1, and triphenyl phosphate in solid content ratio, tung oil modified phenolic resin/brominated bisphenol A Diglycidyl ether/
Triphenyl phosphate was mixed and dissolved in a ratio of 60/30/10, and using this varnish, a 1.6 mm thick one-sided copper-clad paper base phenolic resin laminate was obtained in the same manner as in Example 1. The test results of the laminates obtained in Examples and Comparative Examples were
Shown in the table.

【衚】 発明の効果 以䞊の詊隓結果から、本発明により、難燃剀の
䜿甚量が枛少でき、積局板の䜎枩打抜性が向䞊す
る。さらに、難燃性暹脂溶液及び塗工基材の貯蔵
安定性が向䞊する点、その工業的䟡倀は極めお倧
である。
[Table] Effects of the Invention From the above test results, the present invention can reduce the amount of flame retardant used and improve the low-temperature punchability of the laminate. Furthermore, the storage stability of the flame retardant resin solution and coating substrate is improved, and its industrial value is extremely large.

Claims (1)

【特蚱請求の範囲】  ブロム化ビスプノヌルゞグリシゞル゚ヌ
テルず䞀般匏〔〕 R1R2は−CH2、−C2H4 -、
【匏】より遞ばれ、、〜の 敎数で瀺されるブロム化ビスプノヌルアル
キルオキシド付加物ゞグリシゞル゚ヌテルを第䞉
玚アミンを觊媒ずしお反応させた埌、䞀般匏
〔〕 R3は、炭玠数〜のアルキル基、
【匏】【匏】〜 の敎数、R4は炭玠数〜のアルキル基、
【匏】〜の敎数、はClあ るいはBr、【匏】≊ より遞ばれるで瀺されるリン酞゚ステルを、該
リン酞゚ステルが含有する氎酞基のモル数が前二
者の反応埌に残存する゚ポキシ基のモル数より少
くなる様に添加しお反応させた埌、さらに䞀般匏
〔〕 R5は、、炭玠数〜のアルキル基より
遞ばれるで瀺される芳銙族アミンを、該芳銙族
アミンが含有する−NH基のモル数が前蚘ブロム
化ビスプノヌルゞグリシゞル゚ヌテル、䞀般
匏〔〕および〔〕の䞉者の反応埌に残存する
゚ポキシ基のモル数ず等しくなる様に添加しお反
応させるこずを特城ずする積局板甚難燃性暹脂組
成物の補造法。  ブロム化ビスプノヌルゞグリシゞル゚ヌ
テルず䞀般匏〔〕 R1、R2は、−CH2、−C2H4−、
【匏】より遞ばれ、、〜の敎 数で瀺されるブロム化ビスプノヌルアルキ
ルオキシド付加物ゞグリシゞル゚ヌテルを第䞉玚
アミンを觊媒ずしお反応させた埌、䞀般匏〔〕 R3は、炭玠数〜のアルキル基、
【匏】【匏】〜 の敎数、R4は炭玠数〜のアルキル基、
【匏】〜の敎数、はClあ るいはBr、【匏】≊ より遞ばれるで瀺されるリン酞゚ステルを、該
リン酞゚ステルが含有する氎酞基のモル数が前二
者の反応埌に残存する゚ポキシ基のモル数より少
くなる様に添加しお反応させた埌、さらに匏
〔〕 で瀺される芳銙族アミンを、該芳銙族アミンが含
有する−NH基のモル数が前蚘ブロム化ビスプ
ノヌルゞグリシゞル゚ヌテル、䞀般匏〔〕お
よび〔〕の䞉者の反応埌に残存する゚ポキシ基
のモル数ず等しくなる様に添加しお反応させるこ
ずを特城ずする積局板甚難燃性暹脂組成物の補造
法。  ブロム化ビスプノヌルゞグリシゞル゚ヌ
テルず䞀般匏〔〕 R1、R2は、−CH2−、C2H4−、
【匏】より遞ばれ、、〜の敎 数で瀺されるブロム化ビスプノヌルアルキ
ルオキシド付加物ゞグリシゞル゚ヌテルを第䞉玚
アミンを觊媒ずしお反応させた埌、䞀般匏〔〕 R3は、炭玠数〜のアルキル基
【匏】【匏】〜 の敎数、R4は炭玠数〜のアルキル基、
【匏】〜の敎数、はClあ るいはBr、【匏】≊ より遞ばれるで瀺されるリン酞゚ステルを、該
リン酞゚ステルが含有する氎酞基のモル数が前二
者の反応埌に残存する゚ポキシ基のモル数より少
くなる様に添加しお反応させた埌、さらに匏
〔〕 で瀺される芳銙族アミンを、該芳銙族アミンが含
有する−NH基のモル数が前蚘ブロム化ビスプ
ノヌルゞグリシゞル゚ヌテル、䞀般匏〔〕お
よび〔〕の䞉者の反応埌に残存する゚ポキシ基
のモル数ず等しくなる様に添加しお反応させるこ
ずを特城ずする積局板甚難燃性暹脂組成物の補造
法。
[Claims] 1. Brominated bisphenol A diglycidyl ether and general formula [] (R 1 and R 2 are −CH 2 , −C 2 H 4 − ,
After reacting a brominated bisphenol A alkyl oxide adduct diglycidyl ether selected from [Formula] and represented by m, n = an integer of 1 to 6) using a tertiary amine as a catalyst, the general formula [] (R 3 is an alkyl group having 1 to 6 carbon atoms,
[Formula] [Formula] (p = an integer of 1 to 3, R 4 is an alkyl group having 1 to 3 carbon atoms),
[Formula] (r = an integer of 1 to 3, X is Cl or Br), [Formula] (p+r≩5) is added so that the number of moles of epoxy groups remaining after the reaction of the former two is smaller than the number of moles of epoxy groups remaining after the reaction, and then the general formula [] (R 5 is selected from H and an alkyl group having 1 to 3 carbon atoms), the number of moles of -NH groups contained in the aromatic amine is A method for producing a flame-retardant resin composition for a laminate, which comprises adding and reacting the three members of general formula [] and [] in an amount equal to the number of moles of epoxy groups remaining after the reaction. 2 Brominated bisphenol A diglycidyl ether and general formula [] (R 1 and R 2 are −CH 2 , −C 2 H 4 −,
After reacting a brominated bisphenol A alkyl oxide adduct diglycidyl ether selected from [Formula] and represented by m, n = an integer of 1 to 6) using a tertiary amine as a catalyst, the general formula [] (R 3 is an alkyl group having 1 to 6 carbon atoms,
[Formula] [Formula] (p = an integer of 1 to 3, R 4 is an alkyl group having 1 to 3 carbon atoms),
[Formula] (r = an integer of 1 to 3, X is Cl or Br), [Formula] (p+r≩5) is added and reacted in such a way that the number of moles of epoxy groups remaining after the reaction of the first two is smaller, and then the formula [] The number of moles of -NH groups contained in the aromatic amine is determined by the amount of epoxy groups remaining after the reaction of the above-mentioned brominated bisphenol A diglycidyl ether, the general formulas [] and [], 1. A method for producing a flame-retardant resin composition for a laminate, which comprises adding and reacting the composition in an amount equal to the number of moles. 3 Brominated bisphenol A diglycidyl ether and general formula [] (R 1 and R 2 are −CH 2 −, C 2 H 4 −,
After reacting a brominated bisphenol A alkyl oxide adduct diglycidyl ether selected from [Formula] and represented by m, n = an integer of 1 to 6) using a tertiary amine as a catalyst, the general formula [] (R 3 is an alkyl group having 1 to 6 carbon atoms [Formula] [Formula] (p = an integer of 1 to 3, R 4 is an alkyl group having 1 to 3 carbon atoms),
[Formula] (r = an integer of 1 to 3, X is Cl or Br), [Formula] (p+r≩5) is added and reacted in such a way that the number of moles of epoxy groups remaining after the reaction of the first two is smaller, and then the formula [] The number of moles of -NH groups contained in the aromatic amine is determined by the amount of epoxy groups remaining after the reaction of the above-mentioned brominated bisphenol A diglycidyl ether, the general formulas [] and [], 1. A method for producing a flame-retardant resin composition for a laminate, which comprises adding and reacting the composition in an amount equal to the number of moles.
JP15002186A 1986-06-26 1986-06-26 Production of flame-retarding resin composition for laminate Granted JPS636016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15002186A JPS636016A (en) 1986-06-26 1986-06-26 Production of flame-retarding resin composition for laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15002186A JPS636016A (en) 1986-06-26 1986-06-26 Production of flame-retarding resin composition for laminate

Publications (2)

Publication Number Publication Date
JPS636016A JPS636016A (en) 1988-01-12
JPH0334770B2 true JPH0334770B2 (en) 1991-05-23

Family

ID=15487757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15002186A Granted JPS636016A (en) 1986-06-26 1986-06-26 Production of flame-retarding resin composition for laminate

Country Status (1)

Country Link
JP (1) JPS636016A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357805B2 (en) * 2001-12-13 2008-04-15 Sumitomo Bakelite Company Clip device for endoscope and clip for endoscope for use therein
JP4109030B2 (en) 2002-07-19 2008-06-25 オリンパス株匏䌚瀟 Biological tissue clip device
CA2785246C (en) 2009-12-22 2014-10-21 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
US8939997B2 (en) 2010-10-11 2015-01-27 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
BR112013008763B1 (en) 2010-10-11 2021-02-17 Cook Medical Technologies LLC. medical device for engaging a tissue
JP2015117333A (en) * 2013-12-19 2015-06-25 旭化成むヌマテリアルズ株匏䌚瀟 Masterbatch type latent epoxy resin hardening agent composition and epoxy resin composition using the same

Also Published As

Publication number Publication date
JPS636016A (en) 1988-01-12

Similar Documents

Publication Publication Date Title
JPH0334770B2 (en)
CN102838841B (en) Epoxy resin composition and prepreg and copper clad laminate manufactured by using same
JPH0315927B2 (en)
JPS58189219A (en) Flame retardant for thermosetting resin
JPH0315926B2 (en)
JPH0315925B2 (en)
JPS60192732A (en) Production of laminated sheet
JPH01115922A (en) Production of flame-retardant resin composition for laminated board
JPH01118520A (en) Preparation of flame-retardant resin composition for laminate
JPH0715018B2 (en) Flame-retardant laminate manufacturing method
JPS6356517A (en) Production of flame-retardant resin composition for laminated sheet
JPH01118522A (en) Preparation of flame-retardant resin composition for laminate
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JPH01144413A (en) Production of flame-retardant resin composition for laminated board
JPS5853909A (en) Preparation of modified phenolic resin composition for flame retardant laminate
JPH01118521A (en) Preparation of flame-retardant resin composition for laminate
JPS6357627A (en) Production of flame-retarding resin composition for laminate
JPS5952905B2 (en) Flame retardant phenolic resin composition
JPH0393849A (en) Flame-retardant phenol resin composition
JPH01144414A (en) Production of flame-retardant resin composition for laminated board
JPS6053045B2 (en) Method for producing modified phenolic resin composition for flame-retardant laminates
JPS6051493B2 (en) Method for producing phenolic resin composition for flame-retardant laminates
JPH0267310A (en) Non-flammable phenol resin composition and laminate
JPH0455462A (en) Phenolic resin composition for laminate
JPS6033140B2 (en) Flame retardant phenolic resin composition