JPH01118521A - Preparation of flame-retardant resin composition for laminate - Google Patents

Preparation of flame-retardant resin composition for laminate

Info

Publication number
JPH01118521A
JPH01118521A JP27695587A JP27695587A JPH01118521A JP H01118521 A JPH01118521 A JP H01118521A JP 27695587 A JP27695587 A JP 27695587A JP 27695587 A JP27695587 A JP 27695587A JP H01118521 A JPH01118521 A JP H01118521A
Authority
JP
Japan
Prior art keywords
diglycidyl ether
flame
reacting
brominated bisphenol
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27695587A
Other languages
Japanese (ja)
Inventor
Yukihiro Yamashita
幸宏 山下
Mitsutoshi Kamata
満利 鎌田
Masaru Ogata
緒方 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP27695587A priority Critical patent/JPH01118521A/en
Publication of JPH01118521A publication Critical patent/JPH01118521A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement

Landscapes

  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a resin compsn. having excellent heat resistance and can stability, by reacting two specified kinds of glycidyl ether in the presence of a tert. amine and reacting the product with triphenyl phosphite. CONSTITUTION:The aimed resin compsn. is obtd. by reacting a brominated bisphenol A diglycidyl ether and a brominated bisphenol A alkyl oxide adduct diglycidyl ether of formula I in the presence of a tert. amine as a catalyst and reacting the product with triphenyl phosphite. In the formula, R1 and R2 are each -CH2-, -C2H4- or formula II; m and n are each 1-6. As the triphenyl phosphite is trifunctional, it is possible for the compd. itself to act as a center of crosslink formation. A high phosphorus content can be therefore achieved and the amt. of P can be increased to a point where the synergistic effect of Br and P to flame retardancy becomes the most effective.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は難燃性、耐熱性の優れた積層板を提供でき、貯
蔵安定性に優れた積層板用難燃性樹脂組成物の製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a flame-retardant resin composition for a laminate, which can provide a laminate with excellent flame retardancy and heat resistance, and has excellent storage stability.

従来の技術 近年家庭用電気機器の安全性の面から、それに使用され
るプリント回路基板(積層板で構成される)の難燃化の
要求が高まって来た。
BACKGROUND OF THE INVENTION In recent years, in view of the safety of household electrical appliances, there has been an increasing demand for flame retardant printed circuit boards (composed of laminated boards) used therein.

同時に、多岐にわたる要求特性項目の中でも、寸法精度
の要求から、低温打抜性、あるいは無加熱打抜性及び耐
熱性に対する要求が年々厳しくなっている。
At the same time, among the wide variety of required property items, demands for low-temperature punching properties, or non-heating punching properties, and heat resistance are becoming stricter year by year due to demands for dimensional accuracy.

これに対し、従来の難燃樹脂、あるいは難燃剤の使用で
はこれらの要求を完全に満足することは困難であった。
On the other hand, it has been difficult to completely satisfy these requirements using conventional flame retardant resins or flame retardants.

即ち、従来の難燃剤として、反応性を持たない低分子量
の添加型難燃剤と反応性を持つ反応型難燃剤が知られて
いる。
That is, as conventional flame retardants, there are known low molecular weight additive flame retardants that are not reactive and reactive flame retardants that are reactive.

添加型難燃剤を使用した場合、これを配合した樹脂の耐
熱性、耐薬品性、電気特性が低下し、さらに、架橋密度
の低下により層間密着性が著しく低下する。特に、打抜
き加工性については、層間はく離、打抜き時の粉落ち、
ダイスの穴詰り等の欠点が現われやすくなる。
When an additive flame retardant is used, the heat resistance, chemical resistance, and electrical properties of the resin blended with the flame retardant are reduced, and furthermore, the interlayer adhesion is significantly reduced due to a reduction in crosslinking density. In particular, regarding punching processability, interlayer peeling, powder falling during punching,
Defects such as die hole clogging are more likely to appear.

反応型難燃剤を配合して使用した場合、前記の欠点は少
ないものの、積層板とした時の樹脂の架橋密度の増加に
より、積層板の軟化温度を哩 高温側に移動させ、低温あるいは嬰加熱の打抜きに適さ
なくなり、また、その反応性のため、ニルエール類、ト
リフェニルフォスフェート及びそのアルキル誘導体があ
り、また、後者の代表例として、ブロム化エポキシ樹脂
がある。
When used in combination with a reactive flame retardant, although the above-mentioned disadvantages are small, the increase in the crosslinking density of the resin when it is made into a laminate moves the softening temperature of the laminate to a higher temperature side, allowing it to be heated to a lower temperature or lower temperature. Because of their reactivity, they are unsuitable for punching, and due to their reactivity, there are nyleals, triphenyl phosphate, and their alkyl derivatives, and representative examples of the latter include brominated epoxy resins.

実際には、多岐にわたる特性上の要求から、添加型と反
応型難燃剤の両者それぞれの長所短所を考慮しつつ両者
が併用されている。
In reality, due to a wide variety of property requirements, additive type flame retardants and reactive type flame retardants are used in combination, taking into account their respective advantages and disadvantages.

また、両者の併用、特にハロゲン(実用上Brが多用さ
れている)、リンの併用は別の側面からも利点がある。
In addition, the combination of both, particularly halogen (Br is often used in practice) and phosphorus, has advantages from other aspects as well.

即ち、難燃効果を持つ元素(ハロゲン、リン、窒素、ホ
ウ素等)を単独で使用する場合より、それらを複数併用
した場合の方が、相乗効果により難燃効果が増大し、結
果的に難燃剤の総使用量を減少することができる。また
、添加型難燃剤は、優れた可塑効果を持つため、その併
用により積層板の可撓性、打抜き加工性の向上を行うこ
とができる。
In other words, rather than using elements that have flame retardant effects (halogen, phosphorus, nitrogen, boron, etc.) alone, when multiple of them are used together, the flame retardant effect increases due to the synergistic effect, and as a result, the flame retardant effect increases. The total amount of fuel used can be reduced. Further, since the additive flame retardant has an excellent plasticizing effect, the flexibility and punching workability of the laminate can be improved by using it in combination.

しかし、例を最も使用頻度の高いBr、Pの複合系につ
いて挙げると、Br系のものは、添加型と反応型の両方
が実用化されているが、P系のものについては添加型し
か実用化されていない。
However, to give an example of the most frequently used composite system of Br and P, both the additive type and the reactive type are in practical use for the Br type, but only the additive type is in practical use for the P type. has not been standardized.

従って、Br、pの複合系において、最適難燃効果を示
す配合比を探し得たとしても前述の添加。
Therefore, in a composite system of Br and p, even if it is possible to find a blending ratio that exhibits the optimum flame retardant effect, the above-mentioned additions are necessary.

型難燃剤の持つ欠点のため、簡単に使用量を増加するこ
とができなかった。
Due to the disadvantages of type flame retardants, it has not been possible to easily increase their usage.

発明が解決しようとする問題点 以上から、従来P系化合物を使用する難燃性樹脂及び難
燃剤は、積層板特性上での様々な制約から最適な難燃効
果を得るための配合比率の自由度が非常に狭く、必ずし
も最も難燃効果の高い配合系が選択されているとは言え
なかった。
Problems to be Solved by the Invention From the above, flame retardant resins and flame retardants that conventionally use P-based compounds have been found to have a flexible blending ratio in order to obtain the optimal flame retardant effect due to various constraints on the properties of laminates. The degree of flame retardancy was very narrow, and it could not be said that the blending system with the highest flame retardant effect was necessarily selected.

本発明は、上記の点に鑑み、これを配合使用して難燃性
、耐熱性に優れた積層板を得られ、また、貯蔵安定性に
優れた積層板用離燃性樹脂組成物を提供することを目的
とする。
In view of the above points, the present invention provides a flame retardant resin composition for laminates that can be blended and used to obtain laminates with excellent flame retardancy and heat resistance, and also has excellent storage stability. The purpose is to

問題点を解決するための手段 本発明は上記の目的を達成するためになされたもので、
ブロム化ビスフェノールAジグリシジルエーテルと一般
式(1) で示されるブロム化ビスフェノールAアルキルオキシド
付加物ジグリシジエーテルを第三級アミンを触媒として
反応させた後、トリフェニルフォスファイト((C,H
,O)、P)を反応させることを特徴とする積層板用難
燃性樹脂組成物の製造法である。
Means for Solving the Problems The present invention has been made to achieve the above objects.
After reacting brominated bisphenol A diglycidyl ether with brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula (1) using a tertiary amine as a catalyst, triphenylphosphite ((C,H
, O), and P) for producing a flame-retardant resin composition for a laminate.

作用 ブロム化ビスフェノールAジグリシジルエーテルと、一
般式(1)で示されるブロム化ビスフェノールAアルキ
ルオキシド付加物ジグリシジルエーテルを併用すること
により、後者のアルキルオキシド構造により可撓性を与
え、従来ブロム化ビスフェノールAジグリシジルエーテ
ルにおいては充分でなかった可撓性を発揮させ、かつ、
なお反応分子末端には反応基であるエポキシ基を残すこ
とにより、可撓性に優れた反応型難燃性樹脂を得ること
ができる。同時に、反応によりアルキルオキシド基を分
子骨格に入れることは、!ロム置換されたビスフェノー
ルA構造の間隔を可撓性を持つアルキルオキシド基によ
って広げることになり、これにより結晶化を抑制するた
め、貯蔵安定性が向上する。前記反応の触媒として第三
級アミンを使用するのは、し 第一、第二級アミでは反応生成物に三次元の架△ 橋構造が生成しやすくなり、製造した離燃性樹脂組成物
をフェノール樹脂に配合して使用するとき相溶性が失わ
れる。また、一般式(1)においてR,、R,が炭素数
4以上になると、耐熱性が若干低下し、また、製造した
難燃性樹脂組成物をメタノールリッチなフェノール樹脂
に配合して使用するとき相溶性が低下する。
Effect By using together brominated bisphenol A diglycidyl ether and brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula (1), flexibility is imparted to the alkyl oxide structure of the latter. Demonstrates flexibility that was insufficient in bisphenol A diglycidyl ether, and
By leaving an epoxy group as a reactive group at the end of the reactive molecule, a reactive flame-retardant resin with excellent flexibility can be obtained. At the same time, it is possible to introduce an alkyl oxide group into the molecular skeleton through a reaction! The spacing between the rom-substituted bisphenol A structures is widened by the flexible alkyl oxide group, which suppresses crystallization and improves storage stability. The reason why a tertiary amine is used as a catalyst for the above reaction is that primary and secondary amines tend to form a three-dimensional cross-bridge structure in the reaction product, making it difficult to use the produced flame retardant resin composition. When used in combination with phenolic resin, compatibility is lost. In addition, when R,,R, in general formula (1) has a carbon number of 4 or more, the heat resistance slightly decreases, and the produced flame-retardant resin composition is mixed with methanol-rich phenolic resin and used. When the compatibility decreases.

トリフェニル7オスフアイトハ、フロム化ヒスフェノー
ルAジグリシジルエーテルと一般式(1)で示される化
合物との反応生成物が持つ水酸基とエステル反応を起こ
し、フェノールを放出しながら該反応生成物に化学的に
結合する(式1式%) トリフェニル7オスフアイトは、三官能のためそれ自身
が架橋形成の中心となり得る。この反応により、トリフ
ェニル7オスフアイトは前記反応生成物の架橋に関与し
、その骨格に取り込まれて行くため、従来の添加型リン
酸エステル類の持つ諸欠点を顕在化させずに、従来より
高いリン含有量を持たせる事が可能であり、Br、Pの
難燃性に対する相乗効果が最も効果的な所まで使用量を
増加することができる。式(2)に示した様に、トリフ
ェニルフォスファイトが水酸基1モルとエステル反応を
行うと1モルのフェノールが生成する。生成フェノール
は、エポキシ基と反応することにより若干架橋密度を低
下させる事になり、可撓性を向とさせる。
Triphenyl-7-osphite causes an ester reaction with the hydroxyl group of the reaction product of the furomated hisphenol A diglycidyl ether and the compound represented by the general formula (1), and chemically reacts with the reaction product while releasing phenol. Binding (Formula 1 Formula %) Triphenyl 7-osphite can itself be the center of crosslink formation due to its trifunctionality. Through this reaction, triphenyl-7-osphite participates in the crosslinking of the reaction product and is incorporated into its skeleton. It is possible to increase the phosphorus content, and the amount used can be increased to the point where the synergistic effect of Br and P on flame retardancy is most effective. As shown in formula (2), when triphenylphosphite undergoes an ester reaction with 1 mole of hydroxyl group, 1 mole of phenol is produced. The generated phenol slightly lowers the crosslinking density by reacting with the epoxy group, thereby improving flexibility.

実施例 化」 本発明を実施するに当り、ブロムビスフェノ△ 一ルAジグリシジルエーテルと一般式(1)で示される
ブロム化ビスフェノールAアルキルオキシド付加物ジグ
リシジルエーテルの混合比については、特に制限するも
のではないが、可撓性、貯蔵安定性に対して効果を発揮
するためには、前者100重量部に対し後者が5重量部
以上であることが望ましい。後者が増加して来ると、可
撓性、貯蔵安定性は向tするため、単独で使用しても良
い。しかし、前者の配合が多い場合に比較すると、若干
Br含有率が少なくなるため、所定の難燃効果を得るた
めに適用系に応じて二者の混合比率を調整する方が良い
。この両者の反応に触媒として使用する第三級アミンは
、トリメチルアミン、トリエチルアミン、トリエタノー
ルアミン、ベンジルジメチルアミン等である触媒添加社
としては、ブロム化ビスフェノールAジグリシジルエー
テルと一般式(1)で示される化合物の固形重量に対し
、0.05〜5%の範囲が望ましい。
In carrying out the present invention, there are no particular restrictions on the mixing ratio of the brominated bisphenol A diglycidyl ether and the brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula (1). However, in order to have an effect on flexibility and storage stability, it is desirable that the latter be 5 parts by weight or more per 100 parts by weight of the former. As the latter increases, flexibility and storage stability deteriorate, so it may be used alone. However, since the Br content is slightly lower than when the former is blended in large amounts, it is better to adjust the mixing ratio of the two depending on the application system in order to obtain a predetermined flame retardant effect. The tertiary amine used as a catalyst for both reactions is trimethylamine, triethylamine, triethanolamine, benzyldimethylamine, etc. As a catalyst additive, brominated bisphenol A diglycidyl ether and the general formula (1) are used as tertiary amines. It is preferably in the range of 0.05 to 5% based on the solid weight of the compound to be added.

ブロム化ビスフェノールAジグリシジルエーテルと一般
式(1)で示される化合物とトリフェニルフォスファイ
トの使用比率については、未反応のトリフェニルフォス
ファイトが残存することを避けるため、〔ブロム化ビス
フェノールAジグリシジルエーテルと一般式(1)で示
される化合物との反応生成物の水酸基当量〕≧〔トリフ
ェニルフォスファイトの分子ff1X ’A)となるよ
うにした方が良い。
Regarding the usage ratio of brominated bisphenol A diglycidyl ether, the compound represented by general formula (1), and triphenylphosphite, in order to avoid unreacted triphenylphosphite remaining, [brominated bisphenol A diglycidyl ether] It is preferable that the hydroxyl group equivalent of the reaction product of the ether and the compound represented by the general formula (1)]≧[triphenylphosphite molecule ff1X'A).

本発明の鴛懲性樹脂は、これを配合して使用するとき単
独で使用しても、あるいは比較的少量のトリフェニルホ
スフェート、ブロム化ジフェニルエーテル等の添加型難
燃剤と併用する事も可能であるが、いずれの場合も、難
燃性樹脂及び難燃剤の総使用量を減少することができる
When the flame retardant resin of the present invention is blended and used, it can be used alone or in combination with a relatively small amount of additive flame retardant such as triphenyl phosphate or brominated diphenyl ether. However, in either case, the total amount of flame retardant resin and flame retardant used can be reduced.

本発明の一実施例を説明する。An embodiment of the present invention will be described.

実施例1 ブロム含有率48%、エポキシ当ff1400、水酸基
当j12,500のプロふ化ビスフェノールAジグリシ
ジルエーテルの60%トルエン溶液780gト式(a) −O−CH,−CH,−0−CH,−CH−CH,(a
)で示されるジグリシジルエーテルの60%トルエン溶
液520fと、ジメチルベンジルアミン2.71を三ツ
ロフラスコに投入し、90℃で3時間反応させた。さら
に、トリフェニルフォスファイト18fを投入し、80
℃で2時間反応させた(反応物1)。
Example 1 780 g of a 60% toluene solution of prophylated bisphenol A diglycidyl ether with a bromine content of 48%, an epoxy weight of 1400, and a hydroxyl group of 12,500 g. Formula (a) -O-CH, -CH, -0-CH, -CH-CH, (a
520 f of a 60% toluene solution of diglycidyl ether represented by ) and 2.7 l of dimethylbenzylamine were charged into a Mitsuro flask and reacted at 90°C for 3 hours. Furthermore, 18f of triphenylphosphite was added, and 80
The reaction was carried out at ℃ for 2 hours (reactant 1).

別途、桐油変性フェノール樹脂を次の様にして得た。Separately, a tung oil modified phenolic resin was obtained as follows.

三ツロフラスコに桐油720f、m−クレゾール580
 f 、パラトルエンスルホン酸0.74 Fを投入し
、80℃で1時反応後、フェノール50(1゜86%パ
ラホルムアルデヒド450 f 、 25%アンモニア
水35Fを投入し、80℃で反応を進めて、反応生成物
の160℃熱盤とでの硬化時間が6分になった時点で脱
水濃縮し、後にメタノールを加え樹脂分5096に調整
した。
Tung oil 720f, m-cresol 580 in Mitsuro flask
Phenol 50 (1° 86% paraformaldehyde 450 F, 25% aqueous ammonia 35 F) was added, and the reaction was carried out at 80°C. When the reaction product had been hardened for 6 minutes on a 160° C. hot plate, it was dehydrated and concentrated, and methanol was subsequently added to adjust the resin content to 5,096.

この桐油変性フェノール樹脂と前記反応物1を固形分比
率で〔桐油変性フェノール樹脂〕/〔反応物1)=80
/20の割合で混合溶解し、11ミルスのクラフト紙基
材に樹脂付着ff15096となるよう塗工乾燥した。
The solid content ratio of this tung oil modified phenolic resin and the reactant 1 is [tung oil modified phenolic resin]/[reactant 1] = 80
The mixture was mixed and dissolved at a ratio of /20, coated on an 11 mils kraft paper base material and dried to give a resin adhesion of ff15096.

接着剤付き35μ厚銅箔1枚と前記塗工基材8枚を組合
せ積層し、加熱加圧して厚さ1.6mの片面銅張り積層
板を得た。
One 35μ thick copper foil coated with adhesive and eight of the above-mentioned coated base materials were combined and laminated, and heated and pressed to obtain a single-sided copper-clad laminate with a thickness of 1.6 m.

実施例2 実施例1と同様のブロム化ビスフエ+ルAジグリシジル
エーテルトルエン溶液1,253yと式で示されるジグ
リシジルエーテルの60%トルエアミ ン溶液135yとトリエチル、ン1.6fを三ツロフラ
スコに投入し、90℃で3時間反応させた。次に、トリ
フェニルフォスファイト299を投入し、80℃で4時
間反応させた(反応物2)。
Example 2 1,253 y of the same brominated bisphenol A diglycidyl ether toluene solution as in Example 1, 135 y of a 60% toluamine solution of diglycidyl ether represented by the formula, and 1.6 f of triethyl ether were charged into a Mitsuro flask. , and reacted at 90°C for 3 hours. Next, triphenylphosphite 299 was added and reacted at 80° C. for 4 hours (Reactant 2).

反応物2を用い、以下、実施例1と同様の配合量、方法
により厚さ1.6.の片面銅張り積層板を得た。
Using reactant 2, a thickness of 1.6. A single-sided copper-clad laminate was obtained.

比較例1 実施例1で使用した桐油変性フェノール樹脂とブロム含
有率4896、“エポキシ当量400のブロム化ビスフ
ェノールAジグリシジルエーテルの6096トルエン溶
液を固形分比率で〔桐油変性フェノール樹脂) / (
ブロム化ビスフェノールAジグリシジルエーテル) =
80/20の割合で混合溶解し、これを11ミルスのク
ラフト紙に塗工乾燥して、以下、実施例1と同様の方法
で厚さ1.61の片面銅張り積層板を得た。
Comparative Example 1 The tung oil modified phenolic resin used in Example 1 and the 6096 toluene solution of brominated bisphenol A diglycidyl ether with an epoxy equivalent of 400 were combined with the bromine content of 4896 and the solid content ratio [tung oil modified phenolic resin] / (
Brominated bisphenol A diglycidyl ether) =
The mixture was mixed and dissolved in a ratio of 80/20, coated on 11 mils kraft paper, and dried. A single-sided copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in Example 1.

比較例2 実施例1で使用した桐油変性フェノール樹脂と比較例1
で使用したブロム化ビスフェノールAジグリシジルエー
テルと、トリフェニルホスフェートを固形分比率で〔桐
油変性フェノール樹脂〕/〔ブロム化ビスフェノールA
ジグリシジルエーテル) / ()リフェニルホス7エ
ート〕=60/30/10の割合で混合溶解し、これを
11ミルスのクラフト紙に塗工乾燥して、以下実施例1
と同様の方法で厚さ46ffilの片面銅張り積層板を
得た。
Comparative Example 2 Tung oil modified phenolic resin used in Example 1 and Comparative Example 1
The solid content ratio of the brominated bisphenol A diglycidyl ether and triphenyl phosphate used in [tung oil modified phenol resin]/[brominated bisphenol A]
Diglycidyl ether)/()riphenyl phos7ate] was mixed and dissolved in a ratio of 60/30/10, coated on 11 mils kraft paper and dried, and the following Example 1 was prepared.
A single-sided copper-clad laminate having a thickness of 46 ffil was obtained in the same manner as above.

実施例、比較例で得た積層板の試験結果を第1表に示す
Table 1 shows the test results of the laminates obtained in Examples and Comparative Examples.

第  1  表 発明の効果 以上の試験結果から明らかなように、本発明により難燃
効果が向上し、可撓性、耐熱性に優れた積層板のための
難燃性樹脂組成物を製造でき、樹脂溶液及び塗工基材の
貯蔵安定性も向上する。
Table 1 Effects of the Invention As is clear from the above test results, the present invention improves the flame retardant effect and makes it possible to produce a flame retardant resin composition for a laminate with excellent flexibility and heat resistance. The storage stability of the resin solution and coating substrate is also improved.

Claims (1)

【特許請求の範囲】 ブロム化ビスフェノールAジグリシルエーテルと一般式
(1) ▲数式、化学式、表等があります▼(1) m、n=1〜6の整数 で示されるブロム化ビスフェノールAアルキルオキシド
付加物ジグリシジエルエーテルを第三級アミンを触媒と
して反応させた後、トリフェニルフォスファイトを反応
させることを特徴とする積層板用難燃性樹脂組成物の製
造法。
[Claims] Brominated bisphenol A diglycyl ether and general formula (1) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (1) Brominated bisphenol A alkyl oxide represented by m and n = integers from 1 to 6 1. A method for producing a flame-retardant resin composition for a laminate, which comprises reacting an adduct diglycidyl ether with a tertiary amine as a catalyst and then reacting it with triphenyl phosphite.
JP27695587A 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate Pending JPH01118521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27695587A JPH01118521A (en) 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27695587A JPH01118521A (en) 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate

Publications (1)

Publication Number Publication Date
JPH01118521A true JPH01118521A (en) 1989-05-11

Family

ID=17576739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27695587A Pending JPH01118521A (en) 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate

Country Status (1)

Country Link
JP (1) JPH01118521A (en)

Similar Documents

Publication Publication Date Title
JPH0411662A (en) Flame-retardant thermosetting resin composition
US9215803B2 (en) Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
CN102051026B (en) Halogen-free flame-retardant epoxy resin composition and application thereof
US20080097014A1 (en) Non-Halogen Flame Retardant and Highly Heat Resistant Phosphorous-Modified Epoxy Resin Compositions
WO2003042291A1 (en) Halogen-free phosphorous- and nitrogen-containing flame-resistant epoxy resin compositions, and prepregs derived from thereof
CN102838841B (en) Epoxy resin composition and prepreg and copper clad laminate manufactured by using same
JPS636016A (en) Production of flame-retarding resin composition for laminate
JPH01118521A (en) Preparation of flame-retardant resin composition for laminate
JPS58189219A (en) Flame retardant for thermosetting resin
JPH01118520A (en) Preparation of flame-retardant resin composition for laminate
JPH0315927B2 (en)
JPH01118522A (en) Preparation of flame-retardant resin composition for laminate
JPH01144414A (en) Production of flame-retardant resin composition for laminated board
JPH01144413A (en) Production of flame-retardant resin composition for laminated board
JPS60192732A (en) Production of laminated sheet
JPH01115922A (en) Production of flame-retardant resin composition for laminated board
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JPS6357627A (en) Production of flame-retarding resin composition for laminate
JPS6356517A (en) Production of flame-retardant resin composition for laminated sheet
JPS6018531A (en) Resin composition for flame-retardant laminated board
JPH0853533A (en) Brominated epoxy resin composition for laminate
JPS6112720A (en) Flame-retardant for laminate
JPS5853909A (en) Preparation of modified phenolic resin composition for flame retardant laminate
JPS633016A (en) Production of flame-retardant resin composition for laminated sheet
JPH0393849A (en) Flame-retardant phenol resin composition