JPH01118522A - Preparation of flame-retardant resin composition for laminate - Google Patents

Preparation of flame-retardant resin composition for laminate

Info

Publication number
JPH01118522A
JPH01118522A JP27695687A JP27695687A JPH01118522A JP H01118522 A JPH01118522 A JP H01118522A JP 27695687 A JP27695687 A JP 27695687A JP 27695687 A JP27695687 A JP 27695687A JP H01118522 A JPH01118522 A JP H01118522A
Authority
JP
Japan
Prior art keywords
diglycidyl ether
brominated bisphenol
flame
triphenyl phosphite
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27695687A
Other languages
Japanese (ja)
Inventor
Yukihiro Yamashita
幸宏 山下
Mitsutoshi Kamata
満利 鎌田
Masaru Ogata
緒方 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP27695687A priority Critical patent/JPH01118522A/en
Publication of JPH01118522A publication Critical patent/JPH01118522A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement

Landscapes

  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a resin compsn. giving a laminated sheet having excellent flame retardancy and heat resistance and having excellent can stability, by reacting a brominated bisphenol A diglycidyl ether with triphenyl phosphite. CONSTITUTION:The aimed resin compsn. can be obtd. by reacting a brominated bisphenol A diglycidyl ether with triphenyl phosphite. Triphenyl phosphite causes esterification with the hydroxyl group of the brominated bisphenol A diglycidyl ether and is chemically combined with the molecule of the brominated bisphenol A diglycidyl ether. As triphenyl phosphite is trifunctional, it is possible for the compd. itself to act as a center of crosslink formation. A high phosphorus content can be therefore achieved and the amt. of P can be increased to a point where the synergistic effect of Br and P to flame retardancy becomes the most effective.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、難燃性、耐熱性の優れた積層板を提供でき貯
蔵安定性に優れた積層板用難燃性樹脂組成物の製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a flame-retardant resin composition for a laminate, which can provide a laminate with excellent flame retardancy and heat resistance and has excellent storage stability.

従来の技術 近年、家庭用電気機器の安全性の面から、それに使用さ
れるプリント回路基板((積層板で構成される)の難燃
化の要求が高まって来た。同時に、多岐にわたる要求特
性項目の中でも、寸法精度の要求から低温打抜き加工性
、あるいは無加熱打抜き加工性及び耐熱性に対する要求
が年々厳しくなっている。
Conventional technology In recent years, from the standpoint of safety in household electrical equipment, there has been an increasing demand for flame retardant printed circuit boards (composed of laminated boards) used in them.At the same time, a wide variety of required characteristics have been Among these items, demands for low-temperature punching workability, non-heating punching workability, and heat resistance are becoming stricter year by year due to demands for dimensional accuracy.

これに対し、従来の難燃樹脂、あるいは難燃剤の使用で
は、これらの要求を完全に満足することは困難であった
On the other hand, it has been difficult to completely satisfy these requirements using conventional flame retardant resins or flame retardants.

即ち、従来の難燃剤として、反応性を持たない低分子量
の添加型難燃剤と反応性を持つ反応型難燃剤が知られて
いる。
That is, as conventional flame retardants, there are known low molecular weight additive flame retardants that are not reactive and reactive flame retardants that are reactive.

添加型難燃剤を使用した場合、これを配合した樹脂の耐
熱性、耐薬品性、電気特性が低下し、さらに、架橋密度
の低下により層間密着性が著しく低下する。特に、打抜
き加工性については、層間は(離、打抜き時の粉落ち、
ダイスの穴詰り等の欠点が現われやすくなる。
When an additive flame retardant is used, the heat resistance, chemical resistance, and electrical properties of the resin blended with the flame retardant are reduced, and furthermore, the interlayer adhesion is significantly reduced due to a reduction in crosslinking density. In particular, regarding punching workability, the difference between layers (distance, powder falling during punching,
Defects such as die hole clogging are more likely to appear.

反応型難燃剤を配合して使用した場合、前記の欠点は少
ないものの、積層板とした時の樹脂の架橋密度の増加に
より、積層板の軟化温度を高温側に移動させ、低温ある
いは無加熱の打抜きに適さなくなり、また、その反応性
のため、配合樹脂、塗工基材の貯蔵安定性が悪くなる。
When used in combination with reactive flame retardants, although the above-mentioned disadvantages are small, the increased crosslinking density of the resin when used as a laminate moves the softening temperature of the laminate to a higher temperature side, making it easier to use at low temperatures or without heating. It becomes unsuitable for punching, and due to its reactivity, the storage stability of the compounded resin and coated substrate deteriorates.

前者の代表的な例として、ブロム化ビスフェノールA、
ブロム化ジフェニルエール類、トリド フェニルフォスフエ−!及びそのアルキル誘導体があり
、また、後者の代表例として、ブロム化エポキシ樹脂が
ある。
Representative examples of the former include brominated bisphenol A,
Brominated diphenyl ales, tridophenyl phosphate! and its alkyl derivatives, and a representative example of the latter is brominated epoxy resin.

実際には、多岐にわたる特性上の要求から、添加型と反
応型難燃剤の両者それぞれの長所短所を考慮しつつ、両
者が併用されている。
In reality, due to a wide variety of property requirements, additive type flame retardants and reactive type flame retardants are used in combination, taking into consideration their respective advantages and disadvantages.

また、両者の併用、特にハロゲン(実用上Brが多用さ
れている)、リンの併用は別の側面からも利点がある。
In addition, the combination of both, particularly halogen (Br is often used in practice) and phosphorus, has advantages from other aspects as well.

即ち、難燃効果を持つ元素(ハロゲン、リン、窒素、ホ
ウ素等)を単独で使用する場合より、それらを複数併用
した場合の方が、相乗効果により難燃効果が増大し、結
果的に難燃剤の総使用短を減少することができる。また
、添加型難燃剤は、優れた可塑効果を持つため、その併
用により積層板の可撓性、打抜き加工性の向上を行うこ
とができる。
In other words, rather than using elements that have flame retardant effects (halogen, phosphorus, nitrogen, boron, etc.) alone, when multiple of them are used together, the flame retardant effect increases due to the synergistic effect, and as a result, the flame retardant effect increases. The total usage of fuel can be reduced. Further, since the additive flame retardant has an excellent plasticizing effect, the flexibility and punching workability of the laminate can be improved by using it in combination.

しかし、例を最も使用頻度の高いBr、Pの複合系につ
いて挙げると、Br系のものは、添加型と反応型の両方
が実用化されているが、P系のものについては添加型し
か実用化されていない。
However, to give an example of the most frequently used composite system of Br and P, both the additive type and the reactive type are in practical use for the Br type, but only the additive type is in practical use for the P type. has not been standardized.

従って、Br、Pの複合系において、最適難燃効果を示
す配合比を探し得たとしても、前述の添加型難燃剤の持
つ欠点のため、簡単に使用量を増加することができなか
った。
Therefore, even if it were possible to find a blending ratio that exhibits the optimum flame retardant effect in a composite system of Br and P, it was not possible to easily increase the amount used due to the drawbacks of the additive type flame retardant described above.

発明が解決しようとする問題点 以上から、従来P系化合物を使用する難燃性樹脂及び難
燃剤は、積層板特性上での様々な制約から、最適な難燃
効果を得るための配合比率の自由度が非常に狡く、必ず
しも最も難燃効果の高い配合系が選択されているとは言
えなかった。
Problems to be Solved by the Invention From the above, flame retardant resins and flame retardants that conventionally use P-based compounds have been difficult to adjust the blending ratio to obtain the optimal flame retardant effect due to various constraints on the properties of laminates. The degree of freedom was very flexible, and it could not be said that the combination system with the highest flame retardant effect was necessarily selected.

本発明は、上記の点に鑑み、これを配合使用して難燃性
、耐熱性に優れた積層板を得られ、また、貯蔵安定性に
優れた積層板用難燃性樹脂組成物を提供することを目的
とする。
In view of the above points, the present invention provides a flame-retardant resin composition for laminates that can be blended and used to obtain laminates with excellent flame retardancy and heat resistance, and also has excellent storage stability. The purpose is to

問題点を解決するための手段 本発明は上記の目的を達成するためになされたもので、
ブロム化ビスフェノールAジグリシジルエーテルとトリ
フェニルフォスファイト((C,H,O)、P)を反応
させることを特徴とする積層板用難燃性樹脂組成物の製
造法である。
Means for Solving the Problems The present invention has been made to achieve the above objects.
This is a method for producing a flame-retardant resin composition for a laminate, which is characterized by reacting brominated bisphenol A diglycidyl ether with triphenylphosphite ((C,H,O), P).

作用 トリフェニルフォスファイトは、プロふ化ビスフェノー
ルAジグリシジルエーテルの持つ水酸基とエステル反応
を起こし、フェノールを放出しながらブロム化ビスフェ
ノールAジグリシジルエーテル分子に化学的に結合する
(式(1)を参照)。
Action Triphenylphosphite causes an ester reaction with the hydroxyl group of pro-brominated bisphenol A diglycidyl ether, and chemically bonds to the brominated bisphenol A diglycidyl ether molecule while releasing phenol (see formula (1)). .

トリフェニルフォスファイトは、三官能のためそれ自身
が架橋形成の中心となり得る。この反応により、トリフ
ェニルフォスファイトは、ブロム化ジフェニルエーテル
の架橋に関与シ、その骨格に取り込まれて行くため、従
来の添加型リン酸エステル類の持つ諸欠点を顕在化させ
ずに、従来より高いリン含有量を持たせる事が可能であ
り、Br、Pの難燃性に対する相乗効果が最も効果的な
所まで使用量を増加することができる。
Since triphenylphosphite is trifunctional, it can itself become the center of crosslink formation. Through this reaction, triphenyl phosphite participates in the crosslinking of brominated diphenyl ether and is incorporated into its skeleton. It is possible to increase the phosphorus content, and the amount used can be increased to the point where the synergistic effect of Br and P on flame retardancy is most effective.

式(1)に示した様に、トリフェニルフォスファイトが
水酸基1モルとエステル反応を行うと、1モルのフェノ
ールが生成する。生成フェノールは、エポキシ基と反応
することにより若干架橋密度を低下させる事により、可
撓性を向上させる。
As shown in formula (1), when triphenylphosphite undergoes an ester reaction with 1 mole of hydroxyl group, 1 mole of phenol is produced. The generated phenol improves flexibility by slightly lowering the crosslinking density by reacting with epoxy groups.

実施例 本発明を実施するに当り、ブロム化ビスフェノールAジ
グリシジルエーテルとトリフェニルフォスファイトの使
用比率については、未反応のトリフェニルファイトが残
存することを避けるため、〔プロふ化ビスフェノールA
ジグリシジルエーテルの水酸基当量〕≧〔トリフェニル
フォスファイトの分子量×偽〕となる様にした方が良い
。プロふ化ビスフェノールAジグリシジルエーテルとト
リフェニルフォスファイトの反応の際に使用する触媒と
しては、ブロム化ビスフェノールAジグリシジルエーテ
ル単独での高分子化、三次元の架橋を防止するため、並
びニ耐熱性の点から、ベンジルジメチルアミン、2−(
ジメチルアミノメチル)フェノール、2,4゜6−トリ
ス(ジメチルアミノメチル)フェノール等の芳香族三級
アミンが好ましい。添加量としては、ブロム化ビスフェ
ノールAジグリシジルエーテルとトリフェニル7オスフ
アイトの固型総重量100に対し、0.5〜5重量部が
望ましい。
EXAMPLE In carrying out the present invention, the ratio of brominated bisphenol A diglycidyl ether and triphenyl phosphite to be used is determined to avoid residual unreacted triphenyl phosphite.
It is better to set it so that the hydroxyl group equivalent of diglycidyl ether]≧[molecular weight of triphenylphosphite x false]. The catalyst used in the reaction of pro-brominated bisphenol A diglycidyl ether and triphenyl phosphite has the following properties: From the point of view, benzyldimethylamine, 2-(
Aromatic tertiary amines such as dimethylaminomethyl)phenol and 2,4°6-tris(dimethylaminomethyl)phenol are preferred. The amount added is desirably 0.5 to 5 parts by weight based on 100 parts of the total solid weight of brominated bisphenol A diglycidyl ether and triphenyl 7-osphite.

本発明の難燃性樹脂は、これを配合して使用するとき、
単独で使用しても、あるいは比較的少量のトリフェニル
ホスフェート、ブロム化ジフェニルエーテル等の添加型
難燃剤と併用する事も可能であるが、いずれの場合も難
燃性樹脂及び難燃剤の総使用量を減少することができる
When the flame retardant resin of the present invention is blended and used,
It can be used alone or in combination with a relatively small amount of additive flame retardant such as triphenyl phosphate or brominated diphenyl ether, but in either case, the total amount of flame retardant resin and flame retardant used can be reduced.

本発明の一実施例を説明する。An embodiment of the present invention will be described.

実施例1 ブロム含有率4896、エポキシ当量400、水酸基当
ff12,500のブロム化ビスフェノールAジグリシ
ジルエーテルの6096)ルエン溶液1.333 yト
、トリフェニルフォスファイト31Fと、ベンジルメチ
ルアミン2.7fを三ツロフラスコに投入し、90℃で
3時間反応させた(反応物1)。
Example 1 A 6096) toluene solution of brominated bisphenol A diglycidyl ether with a bromine content of 4896, an epoxy equivalent of 400, and a ff of 12,500 per hydroxyl group, triphenylphosphite 31F, and benzylmethylamine 2.7f. The mixture was poured into a Mitsuro flask and reacted at 90°C for 3 hours (Reactant 1).

また、別途、桐油変性フェノール樹脂を次の様にして得
た。
Separately, a tung oil-modified phenol resin was obtained as follows.

三ツロフラスコに桐油720 f!、m−クレゾール5
80F、パラトルエンスルホン酸0.74gヲ投・入し
、80℃で1時間反応後、フェノール500 F、86
%パラホルムアルデヒド450 f 、 25%アンモ
ニア水35gを投入し、80℃で反応を進めて、反応生
成物の160℃熱盤上での硬化時間が6分になった時点
で脱水濃縮し、後にメタノールを加え樹脂分5096に
調整した。
Tung oil 720 f in a Mitsuro flask! , m-cresol 5
80F, add 0.74g of para-toluenesulfonic acid, react at 80℃ for 1 hour, then phenol 500F, 86
Add 450 f% paraformaldehyde and 35 g of 25% ammonia water, proceed with the reaction at 80°C, and when the reaction product hardens on a 160°C hot plate for 6 minutes, dehydrate and concentrate, and then add methanol. was added to adjust the resin content to 5096.

この桐油変性フェノール樹脂と前記反応物1を固形分比
率で〔桐油変性フェノール樹脂〕/〔反応物1 ) =
80/20の割合で混合溶解し11ミルスのクラフト紙
基材に樹脂付着fft5096となるよう塗工乾燥した
The solid content ratio of this tung oil-modified phenolic resin and the reactant 1 is [tung oil-modified phenolic resin]/[reactant 1] =
The mixture was mixed and dissolved in a ratio of 80/20, coated on an 11 mils kraft paper base material, and dried to give a resin adhesion of fft5096.

接着剤付き35μ厚銅箔1枚と前記塗工紙基材8枚を組
合せ積層し、加熱加圧して厚さ1.6mの片面銅張り積
層板を得た。
One sheet of 35μ thick copper foil with adhesive and eight sheets of the coated paper base material were combined and laminated, and heated and pressed to obtain a single-sided copper-clad laminate having a thickness of 1.6 m.

実施例2 実施例1と同様のブロム化ビスフェノールAジグリシジ
ルエーテルトルエン溶液1.333 f 、!ニトリフ
ェニルフォスファイト319 ト)リエチルアミン2.
Ofを三ツロフラスコに投入し、90℃で3時間反応さ
せた(反応物2)。
Example 2 Brominated bisphenol A diglycidyl ether toluene solution similar to Example 1 1.333 f,! Nitriphenylphosphite 319 t) Ethylamine2.
Of was charged into a Mitsuro flask and reacted at 90°C for 3 hours (Reactant 2).

反応物2を用い、以下、実施例1と同様の配合量、方法
により厚さ1.6n+の片面銅張り積層板を得た。
Using Reactant 2, a single-sided copper-clad laminate having a thickness of 1.6n+ was obtained using the same blending amount and method as in Example 1.

比較例1 実施例1で使用した桐油変性フェノール樹脂とブロム含
有率4896、エポキシ当m 400のプ慢ム化ビ不フ
エ、ノールAジグリシジルエーテルの60%トルエン溶
液を固形分比率で〔桐油変性フェノールtaJ脂) /
 (ブロム化ビスフェノールAジグリシジルエーテル)
 =80/20の割合で混合溶解し、これを11ミルス
のクラフト紙に塗工乾燥して、以下、実施例1と同様の
方法で厚さ1.6輪の片面銅張り積層板を得た。
Comparative Example 1 A 60% toluene solution of tung oil-modified phenolic resin used in Example 1, a bromine content of 4896, an epoxy equivalent of 400 m, and a 60% toluene solution of Nol A diglycidyl ether was added to the solid content ratio [tung oil modified]. Phenol taJ fat) /
(Brominated bisphenol A diglycidyl ether)
= Mixed and dissolved in a ratio of 80/20, coated on 11 mils kraft paper and dried. Hereinafter, in the same manner as in Example 1, a single-sided copper-clad laminate with a thickness of 1.6 wheels was obtained. .

比較例2 実施例1で使用した桐油変性フェノール樹脂と比較例1
で使用したブロム化ビスフェノールAジグリシジルエー
テルと、トリフェニルホスフェートを固形分世率で〔桐
油変性フェノール樹脂) / (ブロム化ビスフェノー
ルAジグリシジルエーテル)/()リフェニルホスフエ
ート〕=60/30/10の割合で混合溶解し、これを
11ミルスのクラフト紙に塗工乾燥して、以下、実施例
1と同様の方法で厚さ1.6−の片面銅張り積層板を得
た。
Comparative Example 2 Tung oil modified phenolic resin used in Example 1 and Comparative Example 1
Brominated bisphenol A diglycidyl ether and triphenyl phosphate used in solid fraction [tung oil modified phenol resin] / (brominated bisphenol A diglycidyl ether) / () triphenyl phosphate] = 60/30/ The mixture was mixed and dissolved in a ratio of 10:1, and then coated on 11 mils kraft paper and dried. A single-sided copper-clad laminate with a thickness of 1.6 mm was obtained in the same manner as in Example 1.

実施例、比較例で得た積層板の試験結果を第第  1 
 表 発明の効果 以上の試験結果から明らかなように、本発明により難燃
効果が向上し、可撓性、耐熱性に優れた積層板のための
難燃性樹脂組成物を製造でき、樹脂溶液及び塗工基材の
貯蔵安定性も向上する。
The test results of the laminates obtained in Examples and Comparative Examples are
As is clear from the test results described above, the present invention improves the flame retardant effect, makes it possible to produce a flame retardant resin composition for laminates with excellent flexibility and heat resistance, and And the storage stability of the coated substrate is also improved.

Claims (1)

【特許請求の範囲】[Claims] ブロム化ビスフェノールAジグリシジルエーテルとトリ
フェニルフォスファイトを反応させることを特徴とする
積層板用難燃性樹脂組成物の製造法。
A method for producing a flame-retardant resin composition for laminates, which comprises reacting brominated bisphenol A diglycidyl ether with triphenyl phosphite.
JP27695687A 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate Pending JPH01118522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27695687A JPH01118522A (en) 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27695687A JPH01118522A (en) 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate

Publications (1)

Publication Number Publication Date
JPH01118522A true JPH01118522A (en) 1989-05-11

Family

ID=17576754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27695687A Pending JPH01118522A (en) 1987-10-30 1987-10-30 Preparation of flame-retardant resin composition for laminate

Country Status (1)

Country Link
JP (1) JPH01118522A (en)

Similar Documents

Publication Publication Date Title
EP2412740A1 (en) Epoxy resin composition, prepreg, metal foil with resin, resin sheet, laminate and multi-layer board
JPH0411662A (en) Flame-retardant thermosetting resin composition
WO2006096033A1 (en) Non-halogen flame retardant and highly heat resistant phosphorous-modified epoxy resin compositions
WO2011152412A1 (en) Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
WO2003042291A1 (en) Halogen-free phosphorous- and nitrogen-containing flame-resistant epoxy resin compositions, and prepregs derived from thereof
JPS636016A (en) Production of flame-retarding resin composition for laminate
JPH01118522A (en) Preparation of flame-retardant resin composition for laminate
JP2016153497A (en) Epoxy resin composition, prepreg using the epoxy resin composition, resin film with supporter, metal foil-clad laminate sheet and multilayer printed board
JPS60192732A (en) Production of laminated sheet
JPH0315927B2 (en)
JPH01118521A (en) Preparation of flame-retardant resin composition for laminate
JPH01115922A (en) Production of flame-retardant resin composition for laminated board
JPH01144413A (en) Production of flame-retardant resin composition for laminated board
JPS6018531A (en) Resin composition for flame-retardant laminated board
JPH01118520A (en) Preparation of flame-retardant resin composition for laminate
JPS5853909A (en) Preparation of modified phenolic resin composition for flame retardant laminate
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JPS6356517A (en) Production of flame-retardant resin composition for laminated sheet
JPS6357627A (en) Production of flame-retarding resin composition for laminate
JPH0267310A (en) Non-flammable phenol resin composition and laminate
JPH01144414A (en) Production of flame-retardant resin composition for laminated board
JPH0315926B2 (en)
JPS5952905B2 (en) Flame retardant phenolic resin composition
JPS6112720A (en) Flame-retardant for laminate
JPS6248733A (en) Production of flame-retardant laminate of paper and phenolic resin