JPH03260064A - Electric arc evaporator - Google Patents

Electric arc evaporator

Info

Publication number
JPH03260064A
JPH03260064A JP18440090A JP18440090A JPH03260064A JP H03260064 A JPH03260064 A JP H03260064A JP 18440090 A JP18440090 A JP 18440090A JP 18440090 A JP18440090 A JP 18440090A JP H03260064 A JPH03260064 A JP H03260064A
Authority
JP
Japan
Prior art keywords
cathode
magnetic
magnetic circuit
evaporation
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18440090A
Other languages
Japanese (ja)
Inventor
Papken Ehiezar Hovsepyan
パプケン・エヒエザー・ホフセピアン
Daniel Nikolov Djumaliiski
ダニエル・ニコロフ・デュマリイスキ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOL INST PO VAKKUMNI SYST
Original Assignee
TECHNOL INST PO VAKKUMNI SYST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOL INST PO VAKKUMNI SYST filed Critical TECHNOL INST PO VAKKUMNI SYST
Publication of JPH03260064A publication Critical patent/JPH03260064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To easily form compd. thin films by cathode materials and active gases on work surfaces by forming a cathode for vapor deposition in a vacuum vapor deposition apparatus as a large-sized electrode of a rectangular shape, supplying gases for discharge and active gases into the apparatus and electrostatic discharging between the electrode for vapor deposition and a work.
CONSTITUTION: The large-sized work 13 to be subjected to a coating treatment on the surface is placed in a vacuum chamber 9 and the rectangular large-sized cathode 5 of the metals (for example, Ti, B, etc.) for evaporation are arranged to face the same. Gaseous Ar as the inert gas for electrostatic discharging and the active gases, such as gaseous N and gaseous CH4, for reaction with the vapor of the cathode metal are supplied from an inlet 14 into the vacuum chamber 9. The circumference of the metallic electrode 5 for cathode formation is enclosed by magnetic circuits 1, 4 and a permanent magnet 3 is mounted at the magnetic circuit 1. The magnetic circuit 4 is disposed to project by h from the metallic electrode 5. The electricity is discharged between the cathode 5 of Ti, B, etc., and the work 13 by a sparking device 12 to evaporate the Ti and B and to bring the same into reaction with the N2 and CH4 of the active gases, by which the hard thin films of TiN, TiC, BN, etc., are stably formed on the work 13.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、真空中のワークピース及び工具に、窒化物、
炭化物又は窒化物炭化物のような純粋な非磁性金属、合
金、及び粉末のコーティングを施すための蒸発器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides the use of nitrides,
The present invention relates to evaporators for applying coatings of pure non-magnetic metals, alloys, and powders such as carbides or nitrides.

[従来の技術] 従来の電気アーク蒸発器は、導電性材料で形成された長
方形の蒸発陰極を有し、この陰極の前部は、高磁気透過
性材料で形成された保護リングによって覆われ、更に窒
化チタニウム及び窒化ボロンのような第2電子の放射量
の少ない第2リングまたは粉末のコーティングにより保
護されている。
BACKGROUND OF THE INVENTION A conventional electric arc evaporator has a rectangular evaporation cathode made of a conductive material, the front part of which is covered by a protective ring made of a highly magnetically permeable material; It is further protected by a second ring or powder coating that emits less second electrons, such as titanium nitride and boron nitride.

[発明が解決しようとする課題〕 従来の装置の欠点は、装置の製造に窒化チタン及び窒化
ボロンのような特殊で加工し難い材料が必要なことであ
る。そして、蒸発工程中に保護リングが陰極材料によっ
て覆われてしまうので信頼性が低く、装置の性能か悪い
SUMMARY OF THE INVENTION A disadvantage of conventional devices is that their fabrication requires specialized and difficult-to-process materials such as titanium nitride and boron nitride. Additionally, the protection ring is covered with cathode material during the evaporation process, resulting in low reliability and poor device performance.

本発明の課題は、長方形の蒸発陰極を有する電気アーク
蒸発器を作成することにある。その装置は、加工が困難
で高価な材料(窒化チタン及び窒化ボロン)を使用する
ことなく、高い信頼性を達成できる。
The object of the invention is to create an electric arc evaporator with a rectangular evaporation cathode. The device can achieve high reliability without using difficult-to-process and expensive materials (titanium nitride and boron nitride).

[課題を解決するための手段] この課題は、水冷式の長方形状の蒸発陰極を備えた電気
アーク蒸発器によって解決される。本発明では、陰極が
磁気系のN極を形成する永久磁石が取付けられている第
1部分の磁気回路により蒸発される。第2部分は、磁気
回路の第1部分に取付けられ、これは磁気系のS極を構
成している。
Means for Solving the Problem This problem is solved by an electric arc evaporator with a water-cooled rectangular evaporation cathode. In the present invention, the cathode is evaporated by the magnetic circuit of the first part, which is fitted with a permanent magnet forming the north pole of the magnetic system. The second part is attached to the first part of the magnetic circuit, which constitutes the south pole of the magnetic system.

この第2部分は、蒸発陰極の前面から距離り突出し、距
llICを置いて蒸発陰極の作動しない側部の回りに配
置されている。蒸発陰極の前部には、任意の角度で磁力
線が横切り、蒸発陰極の前面における磁気誘導の水平成
分の最大値は、 B wax−1,,5xlO−27である。磁気回路の
第2部分は、磁気回路における最小抵抗(磁気抵抗)を
有する0、1〜0.51の絶縁部材により第1部分から
分離されている。さらに、第2部分は、第2抵抗によっ
て真空チャンバから分離されているか、RCグループに
よって接続されている。磁気回路の第2部分は、同時に
磁極と静電スクリーンを構成している。
This second portion projects a distance from the front face of the evaporative cathode and is arranged around the inactive side of the evaporative cathode at a distance llIC. The front part of the evaporation cathode is crossed by magnetic lines of force at arbitrary angles, and the maximum value of the horizontal component of magnetic induction at the front part of the evaporation cathode is B wax-1,,5xlO-27. The second part of the magnetic circuit is separated from the first part by an insulating member of 0.1 to 0.51 having the lowest resistance (magnetoresistance) in the magnetic circuit. Furthermore, the second part is separated from the vacuum chamber by a second resistor or connected by an RC group. The second part of the magnetic circuit constitutes at the same time a magnetic pole and an electrostatic screen.

[作用] 本発明に係わる長方形の蒸発陰極を有する電気アーク蒸
発器により、電磁場の短絡により蒸発陰極の前部に陰極
点が維持されている時の高い信頼性が得られ、長さの長
い蒸発器が形成可能となる。
[Operation] The electric arc evaporator with a rectangular evaporation cathode according to the present invention provides high reliability when the cathode spot is maintained in front of the evaporation cathode by short-circuiting the electromagnetic field, and allows long evaporation A container can be formed.

[実施例] 以下図面を参照しながら本発明に係わる長方形の蒸発陰
極を有する電気アーク蒸発器について説明する。
[Example] An electric arc evaporator having a rectangular evaporation cathode according to the present invention will be described below with reference to the drawings.

本発明に係わる電気アーク蒸発器は、長方形の磁気回路
の第1部分1からなり、この第1部分1は、第1図に示
す直流(DC)供給源2の陰極に電気的に接続されてい
る。磁気回路の第1部分1の基端部には、蒸発器の磁気
系のN極を形成する永久磁石3が配設されている。
The electric arc evaporator according to the invention consists of a first part 1 of a rectangular magnetic circuit, which first part 1 is electrically connected to the cathode of a direct current (DC) source 2 shown in FIG. There is. At the base end of the first part 1 of the magnetic circuit, a permanent magnet 3 forming the north pole of the magnetic system of the evaporator is arranged.

磁気回路の第1部分1は、磁気回路の第2部分4に連続
している。第2部分4は、蒸発陰極5の不作動側面を有
し、面間には距離Cか設けられている。
The first part 1 of the magnetic circuit is continuous with the second part 4 of the magnetic circuit. The second part 4 has the inactive side of the evaporation cathode 5, with a distance C between the faces.

磁気回路の第1及び第2部分1.4は、高磁気透過性の
材料で形成され、0.2−0.31mの厚さの薄い絶縁
部材により絶縁されている。この絶縁部材は、磁気回路
の画部分1及び4に実質的な抵抗を作用させる部材で形
成されている。
The first and second parts 1.4 of the magnetic circuit are made of a material with high magnetic permeability and are insulated by a thin insulating member with a thickness of 0.2-0.31 m. This insulating member is formed of a member that exerts substantial resistance on the image portions 1 and 4 of the magnetic circuit.

蒸発陰極5は、磁気回路の第1部分1に電気的に接続さ
れ、絶縁部材によって磁気回路の第2部分4から電気的
に絶縁されている。蒸発陰極5は、幅Bで長さLの長方
形の形状を有し、コーティング材料で形成されている。
The evaporation cathode 5 is electrically connected to the first part 1 of the magnetic circuit and electrically insulated from the second part 4 of the magnetic circuit by an insulating member. The evaporation cathode 5 has a rectangular shape with a width B and a length L, and is made of a coating material.

磁気系の第2極としてのS極を形成する磁気回路の第2
部分4は、陰極5の蒸発前面の前方に距離り突出してい
る。
The second part of the magnetic circuit that forms the S pole as the second pole of the magnetic system.
Portion 4 projects a distance in front of the evaporation front of cathode 5 .

概略図示するように、磁気領域の力線は、蒸発陰極の前
面をある一定の角度で横切っている。永久磁石3は、磁
気誘導の水平成分の最大値かB saw−1,5XlO
−2Tとなるように選定されている。
As shown schematically, the field lines of the magnetic field cross the front surface of the evaporation cathode at an angle. Permanent magnet 3 has the maximum horizontal component of magnetic induction or B saw-1,5XlO
-2T.

磁気回路の第2部分4は、真空チャンバ9のカバー8に
より独立している。この独立構造9は、絶縁部材10及
びRCグループによるコーティングの適用により達成さ
れ、カバー8は真空チャンバ9に接続され、真空チャン
バ9はこの装置のアノードの部分を構成している。そし
て、カバー8には、電磁接触型の点火(発火)装置12
か装着されている。
The second part 4 of the magnetic circuit is independent of the cover 8 of the vacuum chamber 9. This independent structure 9 is achieved by the application of a coating with an insulating member 10 and an RC group, the cover 8 being connected to a vacuum chamber 9, which constitutes the anode part of the device. The cover 8 includes an electromagnetic contact type ignition (ignition) device 12.
Or installed.

コーティングされるワークピース13は、蒸発陰極5の
前面の前方に、真空チャンバ9内に設置されている。供
給弁14により真空チャンバ9内に技術的処理に必要な
不活性ガス(アルゴン)または活性ガス(N2.  C
2H2,CH4)の異なるタイプのガスを供給すること
かできる。
The workpiece 13 to be coated is placed in the vacuum chamber 9 in front of the front face of the evaporation cathode 5 . The supply valve 14 supplies the vacuum chamber 9 with an inert gas (argon) or an active gas (N2.C
Different types of gases (2H2, CH4) can be supplied.

第2図には、蒸発陰極5の前面」二に形成された陰極点
の輪郭15が描かれている。
In FIG. 2, the outline 15 of the cathode spot formed on the front surface of the evaporative cathode 5 is depicted.

次に、本発明に係わる長方形の陰極をh゛オZ電気アー
ク蒸発器の作用について説明−1I゛る。
Next, the operation of the rectangular cathode according to the present invention and the electric arc evaporator will be explained.

真空チャンバ9は、2X 1O−3Paまて減圧され、
供給弁14によって不活性ガス(アルゴン)及び活性ガ
ス(N 2 、CH4)か5X10−1〜l X 10
−2 Paの圧力を達成するまで供給される。
The vacuum chamber 9 is depressurized to 2X 1O-3Pa,
Inert gas (argon) and active gas (N 2 , CH4) are supplied by the supply valve 14 to 5×10−1 to 1×10
-2 Pa until a pressure of -2 Pa is achieved.

電圧信号をスパーク装置12に供給することによって、
蒸発陰極5の前面に対する短時間の短絡か発生する。陰
極5の前部への短絡の停止時に、アチ状の放電を特徴と
する陰極点が形成され、このアーチ状の放電は蒸発陰極
の金属蒸気のもととなる。陰極点の特徴は連続した動き
にあり、陰極の移動の結果として、アーク蒸発器の基本
的機能は陰極の前面または作動面上へアークの保持であ
る。
By providing a voltage signal to the spark device 12,
A short-term short circuit to the front surface of the evaporation cathode 5 occurs. At the end of the short-circuit to the front of the cathode 5, a cathode spot is formed characterized by an arch-shaped discharge, which is the source of the metal vapor of the evaporated cathode. The characteristic of the cathode spot is continuous movement, and as a result of the movement of the cathode, the basic function of the arc evaporator is the retention of the arc onto the front or working surface of the cathode.

本発明に係わる蒸発器における全ての動作について説明
する。
All operations in the evaporator according to the present invention will be explained.

陰極点は金属プラズマの領域を示I7、この領域は適当
な電磁場によって特徴づけられる。従って、その動作中
にそれは外部領域の最大磁気誘導のための動作原理が知
れられた外部磁場と共に作動可能である。
The cathode spot represents a region of metal plasma I7, which is characterized by a suitable electromagnetic field. Therefore, during its operation it can be operated with an external magnetic field, the principle of operation of which is known for maximum magnetic induction of the external region.

蒸発器8内の外側磁場は、永久磁石3及び磁気回路の第
1、第2部分1,4により得ることができる。そして、
その磁場の形状は周知のマグネトロン・システムの形状
の相似形である。磁気回路の第2部分4は陰極5の前面
から距離りの位置に延出され、磁場の磁力線は、 B wax−1,5Xl0−2Tの磁気誘導ベクトルの
水平成分の最大値で、この面をある一定の角度で横切る
。蒸発陰極5の前面にB mawが形成され、陰極点は
外側磁場によって維持され、第2図の輪郭線15に沿っ
て移動する。蒸発陰極の全幅に亘る図示した輪郭線に沿
って移動し、その陰極点はその蒸発を誘導し、ワーク1
3のコーティング用の金属蒸気を発生させる。磁気系の
そのような形状は、円形の陰極でも達成される。しかし
、長方形の陰極を有する蒸発器は、長いワークピースの
コーティングをより効果的に達成する。本発明に係わる
異なる長さの蒸発器の形成は、蒸発陰極5の長さに対応
する永久磁石3の数によって可能となる。
The external magnetic field in the evaporator 8 can be obtained by the permanent magnet 3 and the first and second parts 1, 4 of the magnetic circuit. and,
The shape of the magnetic field is analogous to that of well-known magnetron systems. The second part 4 of the magnetic circuit is extended at a distance from the front surface of the cathode 5, and the lines of magnetic field extend across this plane at the maximum value of the horizontal component of the magnetic induction vector of B wax-1,5Xl0-2T. cross at a certain angle. A B maw is formed in front of the evaporation cathode 5, and the cathode spot is maintained by the external magnetic field and moves along the contour line 15 in FIG. Moving along the illustrated contour line across the entire width of the evaporation cathode, the cathode spot guides its evaporation and the workpiece 1
3. Generate metal vapor for coating. Such a shape of the magnetic system is also achieved with a circular cathode. However, an evaporator with a rectangular cathode achieves coating of long workpieces more effectively. The formation of evaporators of different lengths according to the invention is made possible by the number of permanent magnets 3 corresponding to the length of the evaporation cathode 5.

アーク蒸発器の多くの特徴的構成および作動状態、例え
ばア=り放電の最初の点火、陰極の前面及び側面の酸化
物の形成、その他は、蒸発陰極の横、不活性面上に陰極
点を発生させる。これは好ましくない現象であり、技術
的構成の阻害に繋がる。本発明に係わる装置では、陰極
の側面にアク放電か発生することは、距離C(C50m
m)を置いて配置された磁気回路の第2部分4により防
止される。この第2部分4はRCグループ11の媒体を
介して静電スクリーンの一部を構成している。
Many characteristic configurations and operating conditions of the arc evaporator, such as the initial ignition of the arc discharge, the formation of oxides on the front and sides of the cathode, etc. generate. This is an undesirable phenomenon and leads to interference with the technical configuration. In the device according to the present invention, generation of arc discharge on the side surface of the cathode occurs within a distance of C (C50m).
m) by the second part 4 of the magnetic circuit arranged at a distance. This second portion 4 constitutes a part of the electrostatic screen via the medium of the RC group 11.

その結果、陰極点が陰極5の側面に発生した時に、磁気
回路の第2部分4は、RCグループ11のコンデンサの
充電のために陰極5の電位を高める。抵抗Rは回路の電
圧を制限し、陰極点の発生を抑制する。磁気回路のの第
2部分4が磁性材料で形成され、磁気系のS極を形成し
ている限りでは、それは蒸発陰極5の側面上に発生する
陰極点の磁場で作用し、陰極点を前面に移動させる。従
って、磁気回路の第2部分4は、同時にS磁極及び静電
スクリーンの両機能を発揮し、電磁作用により蒸発陰極
5の前面上の陰極点の動作を安定させる。
As a result, when a cathode spot occurs on the side of the cathode 5, the second part 4 of the magnetic circuit increases the potential of the cathode 5 for charging the capacitor of the RC group 11. The resistor R limits the voltage of the circuit and suppresses the occurrence of cathode spots. Insofar as the second part 4 of the magnetic circuit is made of magnetic material and forms the south pole of the magnetic system, it acts on the magnetic field of the cathode spot generated on the side of the evaporation cathode 5 and brings the cathode spot to the front. move it to Therefore, the second part 4 of the magnetic circuit simultaneously performs both the functions of an S magnetic pole and an electrostatic screen, and stabilizes the operation of the cathode spot on the front side of the evaporation cathode 5 by electromagnetic action.

もし、真空チャンバ9内に供給弁]−4を介してアルゴ
ン等の不活性ガスを供給すれば、陰極材料の蒸発により
金属蒸気か発生し、ワークピース13に蒸着し、そこで
、純粋な金属又は合金のコーティングか達成される。も
し、チャンバ内にN2゜CH4,又はそれらの混合ガス
等のガスが供給されれば、活性ガスと陰極の蒸発による
金属蒸気との相互作用により窒化物、炭化物又は窒化物
炭化物のコーティングが達成される。
If an inert gas such as argon is supplied into the vacuum chamber 9 through the supply valve ]-4, metal vapor will be generated by evaporation of the cathode material and deposited on the workpiece 13, where pure metal or Alloy coating or achieved. If a gas such as N2°CH4 or a mixture thereof is supplied into the chamber, a coating of nitride, carbide or nitride-carbide can be achieved by the interaction of the active gas with the metal vapor from the evaporation of the cathode. Ru.

[発明の効果] 本発明に係わる長方形の蒸発陰極を有する電気アーク蒸
発器の利点は、電磁場の短絡により蒸発陰極の前部に陰
極点が維持されている時の高い信頼性と、長さの長い蒸
発器が形成できることである。
[Effects of the Invention] The advantages of the electric arc evaporator with a rectangular evaporation cathode according to the present invention are high reliability when the cathode spot is maintained in front of the evaporation cathode by short-circuiting of the electromagnetic field, and short length. A long evaporator can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる電気アーク蒸発器の断面図、第
2図は第1図の矢印A方向から見た図である。
FIG. 1 is a sectional view of an electric arc evaporator according to the present invention, and FIG. 2 is a view taken from the direction of arrow A in FIG.

Claims (1)

【特許請求の範囲】[Claims]  長方形の水冷式蒸発陰極を備えた電気アーク蒸発器で
あって、陰極(5)は磁気回路(1,4)により取囲ま
れ、磁気系のN極を形成する永久磁石(3)が第1部分
(1)に取付けられ、磁気系のS極を形成する第2部分
(4)が第1部分(1)に取付けられ、第2部分(4)
の磁極は蒸発陰極(5)の前部から距離h突出し、その
作動しない側部から距離Cを置いて回りに配置され、蒸
発陰極(5)の前部には任意の角度で磁力線が横切り、
蒸発陰極(5)の前面における磁気誘導の水平成分の最
大値は、B_m_a_x=1.5x10^−^2Tであ
り、磁気回路の第2部分(4)は、磁気回路内において
磁気抵抗を有する0.1〜0.5mmの厚の絶縁部材(
6)により第1部分(1)から絶縁され、さらに第2部
分(4)は、第2絶縁部材(10)により磁気チャンバ
(9)から絶縁されているが、RCグループ(11)を
介して接続され、磁気回路の第2部分(4)は同時に磁
極と静電スクリーンとを構成している電気アーク蒸発器
Electric arc evaporator with a rectangular water-cooled evaporation cathode, the cathode (5) being surrounded by a magnetic circuit (1, 4) and a permanent magnet (3) forming the north pole of the magnetic system in the first A second part (4) is attached to the first part (1) and forms the south pole of the magnetic system.
protrudes a distance h from the front of the evaporation cathode (5) and is placed around it at a distance C from its inactive side, with lines of magnetic force intersecting the front of the evaporation cathode (5) at arbitrary angles;
The maximum value of the horizontal component of magnetic induction in front of the evaporation cathode (5) is B_m_a_x=1.5x10^-^2T, and the second part (4) of the magnetic circuit has a magnetic resistance of 0 Insulating material with a thickness of .1 to 0.5 mm (
6) from the first part (1), and the second part (4) is further insulated from the magnetic chamber (9) by a second insulating member (10), but via an RC group (11). The electric arc evaporator is connected, and the second part (4) of the magnetic circuit constitutes a magnetic pole and an electrostatic screen at the same time.
JP18440090A 1989-07-13 1990-07-13 Electric arc evaporator Pending JPH03260064A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BG8917789A BG49771A1 (en) 1989-07-13 1989-07-13 Electric- bow evaparator
BG89177 1989-07-13

Publications (1)

Publication Number Publication Date
JPH03260064A true JPH03260064A (en) 1991-11-20

Family

ID=3922103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18440090A Pending JPH03260064A (en) 1989-07-13 1990-07-13 Electric arc evaporator

Country Status (4)

Country Link
JP (1) JPH03260064A (en)
BG (1) BG49771A1 (en)
DE (1) DE4022308A1 (en)
GB (1) GB2234265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256698A (en) * 2008-04-11 2009-11-05 Kuramoto Seisakusho Co Ltd Sputtering cathode and sputtering apparatus using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9207046U1 (en) * 1992-05-25 1992-07-23 Vtd-Vakuumtechnik Dresden Gmbh, O-8017 Dresden, De
DE4223592C2 (en) * 1992-06-24 2001-05-17 Leybold Ag Arc vaporization device
JP3287163B2 (en) * 1995-01-23 2002-05-27 日新電機株式会社 Arc evaporation source
TWI242049B (en) 1999-01-14 2005-10-21 Kobe Steel Ltd Vacuum arc evaporation source and vacuum arc vapor deposition apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2727936A (en) * 1954-11-23 1955-12-20 Westinghouse Electric Corp Titanium furnace
US3783231A (en) * 1972-03-22 1974-01-01 V Gorbunov Apparatus for vacuum-evaporation of metals under the action of an electric arc
US4512867A (en) * 1981-11-24 1985-04-23 Andreev Anatoly A Method and apparatus for controlling plasma generation in vapor deposition
US4448659A (en) * 1983-09-12 1984-05-15 Vac-Tec Systems, Inc. Method and apparatus for evaporation arc stabilization including initial target cleaning
US4559125A (en) * 1983-09-12 1985-12-17 Vac-Tec Systems, Inc. Apparatus for evaporation arc stabilization during the initial clean-up of an arc target
US4724058A (en) * 1984-08-13 1988-02-09 Vac-Tec Systems, Inc. Method and apparatus for arc evaporating large area targets
DE3707545A1 (en) * 1987-02-03 1988-08-11 Balzers Hochvakuum ARRANGEMENT FOR STABILIZING AN ARC BETWEEN AN ANODE AND A CATHODE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256698A (en) * 2008-04-11 2009-11-05 Kuramoto Seisakusho Co Ltd Sputtering cathode and sputtering apparatus using the same

Also Published As

Publication number Publication date
DE4022308A1 (en) 1991-01-31
BG49771A1 (en) 1992-02-14
GB2234265A (en) 1991-01-30
GB9015513D0 (en) 1990-08-29

Similar Documents

Publication Publication Date Title
US5037522A (en) Electric arc vapor deposition device
US4673477A (en) Controlled vacuum arc material deposition, method and apparatus
US9165749B2 (en) Arc source and magnet configuration
JPS63230866A (en) Vacuum vapor deposition method and apparatus by arc discharge between anode and cathode
JP5306198B2 (en) Electrical insulation film deposition method
JP2010525158A (en) Vacuum arc evaporation source and arc evaporation chamber having a vacuum arc evaporation source
TW201219582A (en) ARC-evaporation source with defined electric field
US4622122A (en) Planar magnetron cathode target assembly
JP4989026B2 (en) Vacuum arc source with magnetic field generator
JPH05247645A (en) Cathode sputtering device
WO1985003954A1 (en) Controlled vacuum arc material deposition, method and apparatus
JPH03260064A (en) Electric arc evaporator
KR19980086991A (en) Powered Shield Sources for High Density Plasma
US20020020356A1 (en) Vacuum arc evaporation source and film formation apparatus using the same
US5540823A (en) Magnetron cathode
JP2009191340A (en) Film-forming apparatus and film-forming method
JPH01298154A (en) Opposed target-type planar magnetron sputtering device
JPH01240645A (en) Vacuum deposition apparatus
JPH1136063A (en) Arc type evaporating source
JPS61204371A (en) Magnetic circuit device for cathode sputtering
EP2865783B1 (en) Arc-type evaporation source
JPS5943548B2 (en) Magnetron type sputtering equipment
KR100329632B1 (en) Planar typed arc ion plating apparatus using cathodic arc discharge
JP2580149B2 (en) Spatter equipment
JP3030420B2 (en) Ion plating equipment