JPH03160344A - Device for measuring constitutions of vegetable and fruit - Google Patents

Device for measuring constitutions of vegetable and fruit

Info

Publication number
JPH03160344A
JPH03160344A JP29770089A JP29770089A JPH03160344A JP H03160344 A JPH03160344 A JP H03160344A JP 29770089 A JP29770089 A JP 29770089A JP 29770089 A JP29770089 A JP 29770089A JP H03160344 A JPH03160344 A JP H03160344A
Authority
JP
Japan
Prior art keywords
light
vegetable
vegetables
fruits
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29770089A
Other languages
Japanese (ja)
Other versions
JP2882824B2 (en
Inventor
Kenichi Yoneda
健一 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1297700A priority Critical patent/JP2882824B2/en
Publication of JPH03160344A publication Critical patent/JPH03160344A/en
Application granted granted Critical
Publication of JP2882824B2 publication Critical patent/JP2882824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable instantaneous and highly precise measurement of constituents by near- infrared rays by dispercing a reflected light into spectral lights of a number of wavelength bands and by converting them into electric signals by a detector array wherein a plurality of detecting elements are arranged. CONSTITUTION:A measuring head unit 1 having a light-projecting device 1a inside irradiates vegetable 2 and a reflected light therefrom is made to enter a spectroscope 10 through an optical fiber 3. A diffraction grating 22 provided in the spectroscope 10 disperses the light into a plurality of spectral lights of different wavelengths and the light of each wavelength band enters each of detecting elements of a detector array 11 and is subjected to photoelectric conversion. An electric signal therefrom is inputted to an arithmetic unit 24 together with an electric signal of a reference light which is made to enter a light-sensing element 7 through the other optical fiber 3a and subjected to photoelectric conversion, and thereby a constituent of vegetable 2 is measured. Since the reflected light from the vegetable 2 is dispersed into spectral lights of a number of wavelength bands and the light of each wavelength band is converted into the electric signal by the detector array 11 made up of a number of detecting elements in this way, the constituents of the vegetable 2 can be measured instantaneously and highly precisely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、選果機等K適用される青果物の成分測定装置
κ関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fruit and vegetable component measuring device for use in fruit sorting machines and the like.

〔従来の技術〕[Conventional technology]

従来の選果機等に適用される青果物の内容成分の測定は
、青果物の形状要素により成分を間接的に推定するもの
、あるいは、685nmの波長の光を用いてクロロフィ
ル(葉緑素)の濃度を測定し、熟度や糖度な間接的に判
定するものがあった。さらに従来の内容成分の測定とし
ては、回折格子型分析装置を用いるものがあった。この
分析装置は、スリクトより回転している回折格子に光を
邑で、分光した光を反対側のスリットから順次取り出す
装置であるが、本装置を用いた場合、青果物の内容成分
を直接かつ迅速に、例えば1秒間に数個の青果物を測定
することは困難であった。
Conventional fruit sorting machines, etc., are used to measure the content of fruits and vegetables by indirectly estimating the components based on the shape of the fruits or vegetables, or by measuring the concentration of chlorophyll using light with a wavelength of 685 nm. However, there were methods to indirectly determine ripeness and sugar content. Furthermore, as a conventional measurement of content components, a diffraction grating type analyzer has been used. This analyzer is a device that sends light through a rotating diffraction grating from a slit, and sequentially extracts the separated light from a slit on the opposite side. When this device is used, the contents of fruits and vegetables can be directly and quickly detected. For example, it is difficult to measure several fruits and vegetables per second.

〔発明が解決しよりとする課題〕[Problems that the invention helps solve]

従来の青果物等の内容成分の測定においては、回折格子
を回転し、各波長を分光する時には回折格子を止め、又
次の波長を分光する時には回転するといったよりに、回
転と制動をくう返すため、測定時間が長くなり、かつ測
定結果は光源、温度及び環境等の変化によって影響を受
けるため精度が悪かった。
In the conventional measurement of content components of fruits and vegetables, etc., rather than rotating the diffraction grating, stopping it when dispersing each wavelength, and rotating it when dispersing the next wavelength, the method repeats rotation and braking. However, the measurement time was long, and the accuracy was poor because the measurement results were affected by changes in the light source, temperature, environment, etc.

本発明は、青果物等の内容成分を近赤外線を用いて瞬間
に、精度よく、かつ非破壊的に測定できる装置を提供し
よりとするものである。
The present invention provides an apparatus that can instantly, accurately, and non-destructively measure the contents of fruits and vegetables using near-infrared rays.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の青果物の成分測定装置は、内部に投光部と集光
レンズを有し内容成分が測定される青果物に当てられる
測定ヘッド部、同測定ヘッド部K一端が接続された一方
の光ファイバの他端より青果物の反射光を入光し内部に
波長の異なる複数の光に分光する回折格子を有する分光
器、同分光器により分光された波長帯の異る光をそれぞ
れが入光する複数の検出素子が配列されたディテクタア
レイ、上記測定ヘッド部に一端が接続された他方の光フ
ァイバの他端よりフィルタを介して参照光を入光する受
光素子、および上記ディテクタアレイと受光素子より電
気信号を八カレて青果物の成分を測定する演算部を備え
たことを特徴としている。
The fruit and vegetable component measuring device of the present invention has a measuring head section which has a light projecting section and a condensing lens inside and is applied to the fruit or vegetables whose content components are to be measured, and one optical fiber to which one end of the measuring head section K is connected. A spectrometer has a diffraction grating that inputs reflected light from fruits and vegetables from the other end and separates it into multiple lights with different wavelengths, and a multiple spectrometer that each receives light with different wavelength bands separated by the same spectrometer. a detector array in which detection elements are arranged; a light receiving element that receives reference light through a filter from the other end of the other optical fiber, one end of which is connected to the measurement head; and an electrical It is characterized by being equipped with an arithmetic unit that measures the components of fruits and vegetables by inputting eight signals.

〔作用〕[Effect]

上記にかいて、内容成分が測定される青果物κ測定へク
ド部が当てられ、内部κ設けられた投光部が発光すると
、青果物の内部で拡散反射し、その反射光が集光レンズ
により集光され、一方の光71イパの一端を照射する。
In the above, when the fruit and vegetable κ measurement part is applied to the fruit and vegetables whose content components are to be measured, and the light emitting part provided inside the fruit emits light, it is diffusely reflected inside the fruit and the fruit, and the reflected light is passed through the condensing lens. The light is focused and illuminates one end of the light 71.

同一方の光77イバの一端に照射された反射光は、光フ
ァイバ中を通って他端より分光器内に入光する。同分光
器内では、反射光は波長の異る複数の光に分光され、そ
れぞれの波長帯の光はディテクタアレイのそれぞれの検
出素子κ人光し、それぞれの波長毎の光の強さに応じた
電気信号に変換される。
The reflected light irradiated onto one end of the same light beam 77 passes through the optical fiber and enters the spectroscope from the other end. Inside the spectrometer, the reflected light is split into multiple lights with different wavelengths, and the light in each wavelength band is transmitted to each detection element of the detector array, depending on the intensity of the light for each wavelength. is converted into an electrical signal.

1た、上記測定ヘッド部からは、他方の光71イバ及び
フィルタを介して受光素子に参胆光が入光され、電気信
号に変換される。上記ディテクタアレイ及び受光素子よ
り出力されたそれぞれの電気信号は演算部に入力され、
同演算部は光の波長帯毎の吸収率を求め、同吸収率より
青果物の成分の濃度を求める。
In addition, reference light enters the light receiving element from the measurement head section through the other light beam 71 and the filter, and is converted into an electrical signal. The respective electrical signals output from the detector array and the light receiving element are input to the calculation section,
The calculation unit calculates the absorption rate for each wavelength band of light, and uses the absorption rate to calculate the concentration of components of fruits and vegetables.

上記によク、従来の装置にかいては、1個当シ?分の測
定時間を要していた青果物の成分測定が瞬時に高精度で
行えるよりくなうた。
According to the above, when it comes to conventional equipment, only one piece is required? A song that makes it easier to instantly and accurately measure the components of fruits and vegetables, which used to take minutes of measurement time.

〔実施例〕〔Example〕

本発明の一実施例を第1図乃至第4図κ示す0第1図乃
至第4図に示す本発明の一実施例は、内容成分が測定さ
れる青果物2K当てられる測定へクド部1、同測定ヘッ
ド部1に一端が接続され他端にファイバ端5を有する光
ファイバ3、同党ファイバ3のファイバ端5より青果物
20反射光を入光しミラー23と回折格子22を有する
分光器10,同分光器10より分光された波長帯の異な
る光をそれぞれ入光して電気信号に変換する100個以
上の検出素子(たとえばゲルマニウムあるいは硫化鉛よ
りなる)が配列されたディテクタアレイ11、同ディテ
クタアレイ11が電流増幅器12及び微分演算処理器1
3を介して電線κより接続された出力端子14、上記測
定ヘッド部1に一端が接続され他端■ファイバ端4を有
する光ファイバ3m,同光ファイバ3aのファイバ端4
より可視光フィルタ6を介して入光する受光素子7、同
受光素子7が電流増幅器8を介して電線により接続され
た出力端子9、ふ・よび上記出力端子9、14が接続さ
れた演算部24を備えている。
An embodiment of the present invention is shown in Figs. 1 to 4. An embodiment of the present invention shown in Figs. , an optical fiber 3 having one end connected to the same measuring head part 1 and a fiber end 5 at the other end, a spectrometer having a mirror 23 and a diffraction grating 22, into which reflected light from fruits and vegetables 20 enters from the fiber end 5 of the same optical fiber 3. 10, a detector array 11 in which 100 or more detection elements (made of germanium or lead sulfide, for example) are arranged, each receiving light in different wavelength bands separated by the spectrometer 10 and converting it into an electrical signal; The detector array 11 is a current amplifier 12 and a differential calculation processor 1.
3, an output terminal 14 connected to the electric wire κ through 3, an optical fiber 3m with one end connected to the measuring head 1 and the other end 4, and a fiber end 4 of the same optical fiber 3a.
A light-receiving element 7 receives light through a visible light filter 6, an output terminal 9 to which the light-receiving element 7 is connected by an electric wire via a current amplifier 8, and an arithmetic unit to which the output terminals 9 and 14 are connected. It is equipped with 24.

上記測定ヘッド部11は、第2図κ示すよりに青果物2
との接触部分にゴム製外乱光遮へい物20が設けられ、
内部には青果物2による反射光を入光し内面が金メッキ
された7−ド17、同フードl7の青果物2との接触す
る一端に配設されたゴム製光遮へい物16、上記フード
17の他端に配設された集光レンズ15、同集光レンズ
l5を介して青果物2による反射光を受光し第3図に示
すよりに配設された光ファイバ3のファイバ端18、及
び上記フード17の外側に第4図K示すよりに配設され
た投光装置1aが設けられている。
The measuring head section 11 is connected to a fruit or vegetable 2 as shown in FIG.
A rubber disturbance light shield 20 is provided at the contact portion with the
Inside, there is a 7-door 17 whose inner surface is gold-plated to allow light reflected by the fruits and vegetables 2 to enter therein, a rubber light shield 16 disposed at one end of the hood 17 that comes into contact with the fruits and vegetables 2, and other parts of the hood 17. A condensing lens 15 disposed at the end, a fiber end 18 of the optical fiber 3 which receives reflected light from the fruits and vegetables 2 through the condensing lens 15 and is disposed as shown in FIG. A light projecting device 1a is provided on the outside as shown in FIG. 4K.

上記に!?いて、投光装置1aより青果物2に当てられ
た近赤外線は、青果物2の内部で拡散反射し、その光は
内面が金メッキされている7−ド17で反射し、集光レ
ンズ15により集められて7アイパ端18K当てられる
Above! ? The near-infrared rays emitted from the projector 1a to the fruits and vegetables 2 are diffusely reflected inside the fruits and vegetables 2, and the light is reflected by the 7-door 17 whose inner surface is gold-plated, and then collected by the condenser lens 15. 7-eyeper end 18K can be applied.

上記ファイバ端1Bに当った光は、光ファイバ3中を経
てファイバ端5に至り、同ファイバ端5よυ分光器10
内に入光し、同分光器10の内部ではミラー23に反射
した光が回折格子22Kより複数の異なる波長帯の光に
分光される。同回折格子22Kより分光された光は、上
記分光器10の出口に設置されたディテクタアレイ11
に当てられディテクタアレイ14を構成する100個以
上の検出素子がそれぞれ異なる波長帯の光を入光し電気
信号に変換する。
The light hitting the fiber end 1B passes through the optical fiber 3 and reaches the fiber end 5, and from the fiber end 5 to the υ spectrometer 10.
Inside the spectrometer 10, the light reflected by the mirror 23 is separated into a plurality of different wavelength bands by the diffraction grating 22K. The light separated by the diffraction grating 22K is transmitted to a detector array 11 installed at the exit of the spectrometer 10.
More than 100 detection elements constituting the detector array 14 receive light in different wavelength bands and convert it into electrical signals.

上記電気信号は、電流増幅器12により増幅された後、
波長による光量の変化を明瞭にするため微分演算処理器
13により微分され出力端子14より出力される。
After the electric signal is amplified by the current amplifier 12,
In order to clarify the change in the amount of light depending on the wavelength, it is differentiated by a differential calculation processor 13 and outputted from an output terminal 14.

オた、上記測定ヘッド部11からは、光源の出力の変化
及び青果物の位置の変化等についての補正を行なうため
の参照光か光ファイバ3aにより取り出され、ファイバ
端子4よb可視光フィルタ6を通して受光素子7に導か
れ光電変換される。
Additionally, a reference light for correcting changes in the output of the light source, changes in the position of fruits and vegetables, etc. is taken out from the measuring head section 11 through an optical fiber 3a, and is passed through a visible light filter 6 through fiber terminals 4 and b. The light is guided to the light receiving element 7 and subjected to photoelectric conversion.

同光電変換された電気信号は、電流増幅器8により増幅
されて出力端子9に導かれる0上記出力端子14,9よ
りそれぞれ出力された電気信号A2Bは、演算部24κ
入力される。
The photoelectrically converted electrical signal is amplified by the current amplifier 8 and guided to the output terminal 9.The electrical signal A2B outputted from the output terminals 14 and 9, respectively, is
is input.

上記演算部24においては、次式により波長帯毎に吸収
率αが求められる 吸収率α=jnA/B 上記吸収率αはgCx (こXでe;吸光係数、Cx;
吸収物質の濃度)に比例するため、上記波長帯毎の吸収
率αより青果物の成分とその濃度Cxが求められる。
In the arithmetic unit 24, the absorption coefficient α is calculated for each wavelength band using the following formula: absorption coefficient α=jnA/B.
The components of fruits and vegetables and their concentrations Cx can be determined from the absorption coefficient α for each wavelength band.

次に本実施例の装置を用いて行った試験の結果について
説明する。本実施例の装置を用いて、6 0 0 nm
より2500nm  tでの波長につき桃の糖度と吸光
度の関係を求めた結果、1784nrnの場合には、吸
光度より計算した糖度はBrlx計で測定した糖変に対
する誤差が0.50φ糖度で重相関係数は0.95であ
った。1た、その他の糖度と相関の高い波長を試験した
結果、1148nm,900nm及び8 4 5 nm
についても同様の結果が得られたため、これらの波長の
光の吸収率を用いることによって高い精度でm度の測定
ができることが判った。上記糖度の測定に要した時間は
、1個0.1秒であった。上記の試験結果に対して、回
折格子を回転させる従来の方式の場合は、1波長毎に回
折格子を回転させて分光するので、たとえば6 0 0
 nmから2500nmtで1 9 0 0 nmにつ
いて2nm毎に分光すると、1900/2=950波長
について回折格子を動かしては止めるという動作を繰返
すことになり、動かして止める時間が約0.1秒程度、
実際の計測時間は0. 1秒程度であり、1波長κつい
て0.19秒要するため、通常3分程度必要であった。
Next, the results of tests conducted using the apparatus of this example will be explained. Using the apparatus of this example, 600 nm
As a result of determining the relationship between the sugar content and absorbance of peaches for the wavelength at 2500nmt, in the case of 1784nrn, the sugar content calculated from the absorbance has a multiple correlation coefficient with an error of 0.50φ sugar content compared to the sugar content measured with the Brlx meter. was 0.95. 1. As a result of testing other wavelengths highly correlated with sugar content, 1148 nm, 900 nm and 845 nm
Since similar results were obtained for these wavelengths, it was found that m degrees can be measured with high accuracy by using the absorption rate of light at these wavelengths. The time required to measure the sugar content was 0.1 seconds per piece. Regarding the above test results, in the case of the conventional method in which the diffraction grating is rotated, the diffraction grating is rotated for each wavelength to perform spectroscopy, so for example, 600
If you perform spectroscopy every 2 nm from 1900 nm to 2500 nm, you will have to repeat the operation of moving and stopping the diffraction grating for 1900/2 = 950 wavelengths, and the time it takes to move and stop is about 0.1 seconds.
The actual measurement time is 0. Since it takes about 1 second and 0.19 seconds for one wavelength κ, it usually takes about 3 minutes.

また、従来の装置の場合、回折格子を動かして止めると
いう動作を必要とするため、波長再現性が悪く、その結
果、吸光度より計算した糖度はBrix計で測定した糖
度に対する誤差が1.0%糖度、相関係数は0.8であ
った。上記により、青果物の反射光が多数の波長帯の光
に分光され波長帯毎に多数の検出素子よりなるディテク
タアレイによって電気信号に変換されるため、従来の装
置では1個当り3分の測定時間を要していた青果物の成
分測定が瞬時κ高精度で測定することができるよりにな
った0 本発明の他の実施例を第5図に示す。
In addition, in the case of conventional devices, wavelength reproducibility is poor because it is necessary to move and stop the diffraction grating, and as a result, the sugar content calculated from the absorbance has an error of 1.0% from the sugar content measured with a Brix meter. The sugar content and correlation coefficient were 0.8. As a result of the above, the reflected light from fruits and vegetables is separated into light in many wavelength bands and converted into electrical signals by a detector array consisting of many detection elements for each wavelength band, so it takes 3 minutes for each fruit to measure with conventional equipment. Component measurement of fruits and vegetables, which previously required a time-consuming process, can now be carried out instantaneously and with high precision.Another embodiment of the present invention is shown in FIG.

第5図に示す本実施例は、第2図に示す上記一実施例の
測定ヘッド部1を改良したものであり、投光装置1aは
測定ヘッド部外κ設けられ、投光装置1より出た光は集
光レンズ15を貫通するχファイバ21の端部より青果
物2に当てられる。青果物2の内部で拡散反射された光
は集光レンズ15及び集光レンズ19により集められ、
ファイバ端18に当てられる。ファイバ端18及び光フ
ァイバ3を通った光は、参照光ファイバ端4及び分光器
側の7アイパ端5に導かれるものである。
The present embodiment shown in FIG. 5 is an improved version of the measuring head section 1 of the above-mentioned embodiment shown in FIG. The light is applied to the fruits and vegetables 2 from the end of the χ fiber 21 passing through the condenser lens 15. The light diffusely reflected inside the fruits and vegetables 2 is collected by a condenser lens 15 and a condenser lens 19,
applied to the fiber end 18. The light passing through the fiber end 18 and the optical fiber 3 is guided to the reference optical fiber end 4 and the seven-eyeper end 5 on the spectrometer side.

本実施例の場合には、投光装置1が測定へクド部の外に
設けられるため、第2図に示す測定ヘッド部に比べてコ
ンパクトなものとすることができる0 なお上記実施例の装置は、CH, , CH, ,OH
 ,NH等の官能基の成分分析ができるため、青果物以
外のこれらの官能基を含む食品の成分分析にも適用する
ことができる。
In the case of this embodiment, since the light projecting device 1 is provided outside the measurement head section, it can be made more compact than the measurement head section shown in FIG. The device is CH, , CH, ,OH
, NH, and other functional groups, it can also be applied to the component analysis of foods other than fruits and vegetables that contain these functional groups.

〔発明の効果〕〔Effect of the invention〕

本発明の青果物の成分測定装置は、内部に投光部を有す
る測定ヘッド部が青果物K光を照射し、その反射光を光
ファイバを介して分光器に八光し、同分光器内に設けら
れた回折格子が波長の異なる複数の光に分光し、それぞ
れの波長帯の光がディテクタアレイのそれぞれの検出素
子κ入党して光電変換され、電気信号が光電変換された
参照光の電気信号と共に演算部に入力されることによっ
て、従来の装置においては、1個当シ3分の測定時間を
要していた青果物の成分測定が瞬時に高精度で行えるよ
りになった。
In the fruit and vegetable component measuring device of the present invention, a measuring head section having a light projecting section inside irradiates the fruit and vegetable K light, and transmits the reflected light to a spectrometer via an optical fiber. The diffraction grating splits the light into multiple lights with different wavelengths, and the light in each wavelength band enters each detection element κ of the detector array and is photoelectrically converted, and the electrical signal is converted together with the electrical signal of the photoelectrically converted reference light. By inputting the information to the arithmetic unit, it is now possible to instantaneously and accurately measure the components of fruits and vegetables, which took three minutes per piece using conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は上記一実
施例の測定ヘッド部の説明図、第3図は第2図のI−1
矢視図、第4図は第2図のIV −ff矢視図、第5図
は本発明の他の実施例の説明図である。 l・・・測定へフド部、 la・・・投光装置、2・・
・青果物、 3,3a・・・光ファイバ、4・・・ファ
イバ端、 5・・・ファイバ端、6・・・可視光フィル
タ、 7・・・受光素子、8・・・電流増幅器、 9・
・・出力端子、10・・・分光器、  11−・・ディ
テクタアレイ、12・・・電流増幅器、 13・・・微
分演算処理器、14・・・出力端子、 15・・・集光
レンズ、16・・・ゴム製光遮へい物、  17・・・
フード、18・・・ファイバ端、19・一集光レンズ、
20・・・ゴム製外乱光遮へい物、 21・・−L77イバ、 22・・・回折格子、23・
・・ミラー   24・・・演算部。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of the measuring head section of the above embodiment, and Fig. 3 is I-1 in Fig. 2.
4 is a view taken along the IV-ff arrow in FIG. 2, and FIG. 5 is an explanatory view of another embodiment of the present invention. l...Measurement hood part, la...Light emitter, 2...
・Fruits and vegetables, 3, 3a... Optical fiber, 4... Fiber end, 5... Fiber end, 6... Visible light filter, 7... Light receiving element, 8... Current amplifier, 9.
... Output terminal, 10... Spectrometer, 11-... Detector array, 12... Current amplifier, 13... Differential calculation processor, 14... Output terminal, 15... Condenser lens, 16...Rubber light shield, 17...
Hood, 18...Fiber end, 19. One converging lens,
20...Rubber disturbance light shield, 21...-L77 fiber, 22...Diffraction grating, 23...
...Mirror 24...Arithmetic section.

Claims (1)

【特許請求の範囲】[Claims] 内部に投光部と集光レンズを有し内容成分が測定される
青果物に当てられる測定ヘッド部、同測定ヘッド部に一
端が接続された一方の光ファイバの他端より青果物の反
射光を入光し内部に波長帯の異なる複数の光に分光する
回折格子を有する分光器、同分光器により分光された波
長帯の異る光をそれぞれが入光する複数の検出素子が配
列されたディテクタアレイ、上記測定ヘッド部に一端が
接続された他方の光ファイバの他端よりフィルタを介し
て参照光を入光する受光素子、および上記ディテクタア
レイと受光素子より電気信号を入力して青果物の成分を
測定する演算部を備えたことを特徴とする青果物の成分
測定装置。
A measuring head section has a light projecting section and a condensing lens inside and is applied to the fruits and vegetables whose content components are to be measured.One end of the measuring head section is connected to the other end of one optical fiber, and the reflected light from the fruits and vegetables is input into the measuring head section. A spectrometer has a diffraction grating that separates light into multiple light beams with different wavelength bands, and a detector array has multiple detection elements each receiving the light beams with different wavelength bands separated by the spectrometer. , a light-receiving element that receives reference light from the other end of the other optical fiber, one end of which is connected to the measurement head section through a filter; A component measuring device for fruits and vegetables, characterized by comprising a calculating section for measuring.
JP1297700A 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device Expired - Lifetime JP2882824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297700A JP2882824B2 (en) 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297700A JP2882824B2 (en) 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device

Publications (2)

Publication Number Publication Date
JPH03160344A true JPH03160344A (en) 1991-07-10
JP2882824B2 JP2882824B2 (en) 1999-04-12

Family

ID=17850031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297700A Expired - Lifetime JP2882824B2 (en) 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device

Country Status (1)

Country Link
JP (1) JP2882824B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288903A (en) * 1993-03-31 1994-10-18 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Light transmission detector for inspecting internal quality of vegetables and fruits
US5867265A (en) * 1995-08-07 1999-02-02 Ncr Corporation Apparatus and method for spectroscopic product recognition and identification
JP2001091447A (en) * 1999-09-17 2001-04-06 Saika Gijutsu Kenkyusho Vegetable and fruit quality measurement device
JP2006337255A (en) * 2005-06-03 2006-12-14 Yanmar Agricult Equip Co Ltd Apparatus for nondestructively determining residual agricultural chemical
JP2016505148A (en) * 2013-02-05 2016-02-18 ラファル・パヴルチイクRafalPAWLUCZYK Fiber optic probe for remote spectroscopy
JP2017227642A (en) * 2016-06-24 2017-12-28 タイゲン バイオサイエンス コーポレイション Multichannel fluorescent detection system and method using the same
JP6395981B1 (en) * 2015-12-28 2018-09-26 サンフォーレスト インコーポレイテッド Light source integrated lens assembly and spectroscopic analysis apparatus including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291869B (en) * 2016-09-06 2022-09-20 株式会社爱宕 Nondestructive measuring apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168145A (en) * 1980-05-29 1981-12-24 Ishikawajima Harima Heavy Ind Co Ltd Multichannel radiation flux measuring device
JPS63200040A (en) * 1987-01-22 1988-08-18 カール・ツアイス―スチフツング Diffuse reflectance measuring device for noncontact measurement
JPS6428544A (en) * 1987-07-23 1989-01-31 Mitsui Mining & Smelting Co Method and apparatus for measuring quality of fruit
JPH01216265A (en) * 1988-02-25 1989-08-30 Natl Food Res Inst Nondestructive measurement for quality of fruit and vegetable by near infra red rays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168145A (en) * 1980-05-29 1981-12-24 Ishikawajima Harima Heavy Ind Co Ltd Multichannel radiation flux measuring device
JPS63200040A (en) * 1987-01-22 1988-08-18 カール・ツアイス―スチフツング Diffuse reflectance measuring device for noncontact measurement
JPS6428544A (en) * 1987-07-23 1989-01-31 Mitsui Mining & Smelting Co Method and apparatus for measuring quality of fruit
JPH01216265A (en) * 1988-02-25 1989-08-30 Natl Food Res Inst Nondestructive measurement for quality of fruit and vegetable by near infra red rays

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288903A (en) * 1993-03-31 1994-10-18 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Light transmission detector for inspecting internal quality of vegetables and fruits
US5867265A (en) * 1995-08-07 1999-02-02 Ncr Corporation Apparatus and method for spectroscopic product recognition and identification
JP2001091447A (en) * 1999-09-17 2001-04-06 Saika Gijutsu Kenkyusho Vegetable and fruit quality measurement device
JP2006337255A (en) * 2005-06-03 2006-12-14 Yanmar Agricult Equip Co Ltd Apparatus for nondestructively determining residual agricultural chemical
JP4589808B2 (en) * 2005-06-03 2010-12-01 ヤンマー株式会社 Non-destructive pesticide residue analyzer
JP2016505148A (en) * 2013-02-05 2016-02-18 ラファル・パヴルチイクRafalPAWLUCZYK Fiber optic probe for remote spectroscopy
JP6395981B1 (en) * 2015-12-28 2018-09-26 サンフォーレスト インコーポレイテッド Light source integrated lens assembly and spectroscopic analysis apparatus including the same
JP2018534562A (en) * 2015-12-28 2018-11-22 サンフォーレスト インコーポレイテッド Light source integrated lens assembly and spectroscopic analysis apparatus including the same
JP2017227642A (en) * 2016-06-24 2017-12-28 タイゲン バイオサイエンス コーポレイション Multichannel fluorescent detection system and method using the same

Also Published As

Publication number Publication date
JP2882824B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
JP3526652B2 (en) Optical measuring method and optical measuring device
US3994590A (en) Discrete frequency colorimeter
US5908789A (en) Analysis of gas mixtures with an infrared method
JP2010538266A (en) Noise cancellation in Fourier transform spectrophotometry
JPH04297854A (en) Correction method of photoabsorption spectrum and spectroscopic measuring apparatus of photodiffusive substance using the same
CN212321419U (en) High-resolution photoacoustic spectroscopy gas detection system based on optical frequency comb frequency calibration
CN111650127A (en) High-resolution photoacoustic spectroscopy gas detection system and method based on optical frequency comb frequency calibration
FI90592B (en) IR spectrometric analysis method and IR spectrometer
AU2009300424A1 (en) An arrangement adapted for spectral analysis of high concentrations of gas
JPH03160344A (en) Device for measuring constitutions of vegetable and fruit
JPH04104041A (en) Method and apparatus for measuring quality of vegetable and fruit
CN113406036A (en) Portable greenhouse gas detection system based on spectrum reconstruction technology
US3851176A (en) Plural gas non-dispersive infrared analyzer
JPH1189799A (en) Concentration measuring device for specified ingredient
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
JPH06213804A (en) Method and apparatus for measuring percentage sugar content
JPH07151685A (en) Non-dispersion type infrared gas analyzer
JPH02147940A (en) Component measuring apparatus for vegetable
JP2014142299A (en) Gas concentration measurement device
JPS60205336A (en) System for removing and processing interference spectrum of mixed material in spectrochemical analyzing apparatus
JPH07301598A (en) Optical sensor probe
JPH04268439A (en) Quantitative analysis using ftir
JPH1144638A (en) Method for measuring fruit sugar level and fruit sugar level meter
KR100205532B1 (en) Moisture measuring apparatus
US20230375468A1 (en) Multi-monochromatic light source system for slope spectroscopy