JPH07151685A - Non-dispersion type infrared gas analyzer - Google Patents

Non-dispersion type infrared gas analyzer

Info

Publication number
JPH07151685A
JPH07151685A JP33405793A JP33405793A JPH07151685A JP H07151685 A JPH07151685 A JP H07151685A JP 33405793 A JP33405793 A JP 33405793A JP 33405793 A JP33405793 A JP 33405793A JP H07151685 A JPH07151685 A JP H07151685A
Authority
JP
Japan
Prior art keywords
gas
infrared
measured
absorption
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33405793A
Other languages
Japanese (ja)
Other versions
JP3261842B2 (en
Inventor
Masahiro Uno
正裕 宇野
Hitoshi Okuyama
仁 奥山
Mitsuru Oishi
満 大石
Kozo Akao
幸造 赤尾
Mitsuo Taniyama
三男 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP33405793A priority Critical patent/JP3261842B2/en
Publication of JPH07151685A publication Critical patent/JPH07151685A/en
Application granted granted Critical
Publication of JP3261842B2 publication Critical patent/JP3261842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make possible the measuring of a high-density gas component in a small curve of output characteristics with a single sample cell long enough to obtain the quantity of a signal allowing stable measurement for a low density gas component in a multi-component infrared gas analyzer which analyzes the low density gas component and the high density gas component simultaneously. CONSTITUTION:An infrared-ray source section 2 which has a gas 10 to be measured of a component with a high density rang as measuring area sealed in at a specified partial pressure is arranged with an infrared transmission window 9 on the incoming side of a measuring cell 1 and a detection block 5 which has a detection unit 7 made up of an infrared sensor 7A and an optical band pass filter 7B in a pair assembled into a sensor mounting block 6, on the outgoing side. A transmission wavelength band of the optical band pass filter provided on the detection unit 7 of the gas to be measured with the high density range as measuring area is so set to cover almost the whole of one absorption band of the gas 10 to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料ガス中に含まれて
いる多成分ガスの注目する複数成分の濃度を、実時間で
連続的に測定する非分散形の赤外線ガス分析計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-dispersive infrared gas analyzer for continuously measuring the concentrations of a plurality of components of interest in a multi-component gas contained in a sample gas.

【0002】[0002]

【従来の技術】赤外線ガス分析計は、複数成分によって
なる試料ガス中の注目するガス成分について、当該ガス
成分による赤外線の吸収量を選択的に検出して当該ガス
成分の濃度を実時間で連続的に測定する装置である。赤
外線ガス分析計は、一般に選択性が良く測定感度が高い
ことから、さまざまな分野におけるガス分析の目的に広
く使用されている。
2. Description of the Related Art An infrared gas analyzer selectively detects the absorption amount of infrared rays by a gas component of interest in a sample gas composed of a plurality of components and continuously determines the concentration of the gas component in real time. It is a device that measures the target. Infrared gas analyzers are widely used for gas analysis purposes in various fields because they generally have good selectivity and high measurement sensitivity.

【0003】次に、従来例の非分散形の赤外線ガス分析
計の構成、並びにその動作原理を図2により説明する。
図2において、1は試料ガスを流す測定セル、2は赤外
線光源部、3は赤外線光源部2から出射した赤外線光束
を断続して測定セル1に導く回転セクタ、4は回転セク
タ3を駆動するモータ、5は測定セル1の赤外線光束出
射側に配備した検出ブロックである。この検出ブロック
5は、透過波長帯域が試料ガス中の注目の測定対象ガス
成分の吸収波長帯域に相当する例えば多層薄膜干渉フィ
ルタなどの光バンドパスフィルタ7Bと、この波長帯域で
平坦な分光感度特性を有する例えば焦電型センサ、半導
体センサなどの赤外線センサ7Aとが、対をなして組み合
わされた検出ユニット7を、測定対象成分ガスに対応す
る数(図示例では#1〜#3で表す3個)集めてセンサ
取付ブロック6に配置収納したものである。
Next, the structure of a conventional non-dispersive infrared gas analyzer and its operating principle will be described with reference to FIG.
In FIG. 2, 1 is a measuring cell for flowing a sample gas, 2 is an infrared light source unit, 3 is a rotating sector which intermittently guides the infrared light flux emitted from the infrared light source unit 2 to the measuring cell 1, and 4 drives a rotating sector 3. The motors 5 are detection blocks arranged on the infrared ray emission side of the measurement cell 1. The detection block 5 includes an optical bandpass filter 7B such as a multi-layer thin film interference filter whose transmission wavelength band corresponds to the absorption wavelength band of the gas component of interest in the sample gas, and a spectral sensitivity characteristic that is flat in this wavelength band. The detection unit 7 in which a pair of infrared sensors 7A such as a pyroelectric type sensor and a semiconductor sensor having the above are combined and combined, the number corresponding to the measurement target component gas (in the illustrated example, 3 represented by # 1 to # 3). These are collected and arranged and housed in the sensor mounting block 6.

【0004】このように構成された赤外線ガス分析計に
おいては、赤外線光源部2から出射された赤外線は、回
転セクタ3の開閉周期で断続する光学的に変調された赤
外線光束8となって測定セル1に入射し、測定セル1内
を透過する過程で、試料ガスを構成するそれぞれのガス
成分に固有の波長帯域の赤外線が、当該ガス成分の濃度
に応じて吸収されて検出ブロック5に到達する。そし
て、検出ブロック5においては、検出ブロック5に配置
収納された各検出ユニット7毎に、その検出ユニット7
に設けられた光バンドパスフィルタ7Bの透過波長帯域の
赤外線が赤外線センサ7Aによって電気信号に変換され、
その光バンドパスフィルタ7Bの透過波長帯域を吸収波長
帯域とするガス成分の濃度を表す信号として出力され
る。
In the infrared gas analyzer configured as described above, the infrared light emitted from the infrared light source unit 2 becomes an optically modulated infrared light flux 8 which is intermittent at the opening / closing cycle of the rotating sector 3 and becomes a measuring cell. In the process of entering the sample cell 1 and passing through the measurement cell 1, infrared rays in a wavelength band peculiar to each gas component constituting the sample gas are absorbed according to the concentration of the gas component and reach the detection block 5. . Then, in the detection block 5, for each of the detection units 7 arranged and housed in the detection block 5, the detection unit 7
Infrared of the transmission wavelength band of the optical bandpass filter 7B provided in is converted into an electric signal by the infrared sensor 7A,
The signal is output as a signal representing the concentration of the gas component having the absorption wavelength band in the transmission wavelength band of the optical bandpass filter 7B.

【0005】上記の試料ガスによる赤外線の吸収は、試
料ガスを構成するガス成分中に、電場に感応する電気的
双極子モーメントを持つ分子によってなるガス成分が含
まれているとき、このガス成分の分子の振動と振動にと
もなう回転運動とが、赤外線の振動電場によって励起さ
れるときに生じるものであり、吸収される赤外線の波長
帯域と吸収の強さは、当該ガス成分を構成する分子の構
造によって定まる当該ガス成分に固有のものである。な
お、赤外線の波長λと振動数νとは、光の速度Cを仲立
ちとして互いに逆数の関係λ=C/νにあり、一方の値
が与えられば他方の値が求められるので以後の説明では
両者を同等に用いることとする。
The absorption of infrared rays by the sample gas described above means that when the gas component constituting the sample gas contains a gas component composed of molecules having an electric dipole moment sensitive to an electric field, The vibration of molecules and the rotational movement associated with the vibration occur when excited by an oscillating electric field of infrared rays. The wavelength band of infrared rays to be absorbed and the strength of absorption are the structures of molecules constituting the gas component. Peculiar to the gas component determined by The infrared wavelength λ and the frequency ν have an inverse relationship λ = C / ν with the speed C of light as an intermediary, and if one value is given, the other value is obtained. Therefore, in the following description, Both will be used equally.

【0006】図4に、大気圧程度の特定成分の異なる濃
度(C1ないしC4)のガス試料によって観測される赤外線
吸収スペクトルを模式的に示す。ガス試料による赤外線
吸収スペクトルにおいては、赤外線吸収を示すガス成分
構成分子の分子振動の振動数に相当の波長λb を中心
に、振動の励起にともなって惹起される分子の回転状態
の変化に対応する赤外線の吸収が、隣接した連続スペク
トルとして図4に例示のように観測される。
FIG. 4 schematically shows an infrared absorption spectrum observed with gas samples having different concentrations (C1 to C4) of specific components at atmospheric pressure. In the infrared absorption spectrum of the gas sample, it corresponds to the change in the rotational state of the molecule caused by the excitation of the vibration around the wavelength λb corresponding to the frequency of the molecular vibration of the gas component molecule showing the infrared absorption. Infrared absorption is observed as an adjacent continuous spectrum as illustrated in FIG.

【0007】上記の試料ガスによる赤外線の吸収の強さ
と該ガス濃度との間には、下記式(1) で表されるランベ
ルト・ベールの法則が成立することが知られている。
It is known that the Lambert-Beer law represented by the following equation (1) holds between the intensity of infrared absorption by the sample gas and the gas concentration.

【0008】[0008]

【数1】 I=I0 exp(−kcL) ----------- (1) ここに、 I0 ;赤外線の入射光量 I ;赤外線の透過光量 c ;被測定ガス成分の濃度 k ;吸光係数 L ;赤外線の透過厚さ 式(1) における吸光係数kの値は、赤外線の吸収されや
すさの程度を表す数値であるから、図4に例示の赤外線
吸収スペクトルは、この吸光係数kの値を表すものと見
做される。この吸光係数kの値は、図に見られるように
分子振動の振動数に対応する波長λb の吸収中心付近の
赤外線に対して大きな値となり、この吸収中心波長λb
から離れた領域では小さい値となる波長依存性を示すこ
ととなるが、前記のように赤外線の吸収が、ガス成分構
成分子の分子振動と振動の励起にともなって惹起される
分子の回転状態の変化に対応して生じるものであること
から、ガス成分を構成する分子の構造によって定まる当
該ガス成分に固有のものである。
## EQU1 ## I = I 0 exp (-kcL) ----------- (1) where, I 0 ; incident light amount of infrared ray I; transmitted light amount of infrared ray c; of measured gas component Concentration k; Extinction coefficient L; Infrared transmission thickness The value of the extinction coefficient k in the equation (1) is a numerical value indicating the degree of ease of absorption of infrared rays, and thus the infrared absorption spectrum illustrated in FIG. It is considered to represent the value of the extinction coefficient k. As shown in the figure, the value of this extinction coefficient k becomes a large value for infrared rays near the absorption center of the wavelength λb corresponding to the frequency of molecular vibration, and this absorption center wavelength λb
Although it will show a small wavelength dependence in the region away from, the absorption of infrared rays as described above, the molecular vibration of the gas component constituent molecules and the rotational state of the molecule caused by the excitation of vibration. Since it occurs in response to changes, it is unique to the gas component, which is determined by the structure of molecules constituting the gas component.

【0009】前記の赤外線ガス分析計では、光バンドパ
スフイルタ7Bを用いて測定対象の成分分子の赤外線吸収
波長域に相当する波長の広がりをもつ光を赤外線センサ
7Aに導いているので、透過光量の変化分ΔIとしてセン
サが出力する信号値Sと測定対象成分の濃度cとは、厳
密には下記の式(2) で表される関係となる。
In the above infrared gas analyzer, an optical bandpass filter 7B is used to detect light having a wavelength spread corresponding to the infrared absorption wavelength range of the component molecule to be measured.
Since it is led to 7A, the signal value S output from the sensor as the change amount ΔI of the transmitted light amount and the concentration c of the component to be measured have a relationship represented by the following expression (2) in a strict sense.

【0010】[0010]

【数2】 [Equation 2]

【0011】S ;赤外線ガス分析計の信号 S0 ;信号スパン k(λ,c) ;吸光係数、波長および濃度の函数 λ ;赤外線の波長 λ1 ,λ2 ;積分範囲 c ;被測定ガス成分の濃度 しかしながら、式(2) の積分で求まる透過光量の変化分
に相当する吸光係数の値を、光バンドパスフイルタ透過
波長域における測定対象の分子の平均の吸光係数の値と
見做し、これを等価吸光係数とすると、この積分範囲λ
1 からλ2 に渡る波長域の入射光と透過光についても、
式(1) の関係が実用的な水準で成立しているので、以下
の説明では式(1) の関係を前提として進める。
S: signal of infrared gas analyzer S 0 ; signal span k (λ, c); function of extinction coefficient, wavelength and concentration λ; wavelengths of infrared rays λ 1 , λ 2 ; integration range c; gas component to be measured However, the value of the extinction coefficient corresponding to the change in the amount of transmitted light obtained by the integral of equation (2) is regarded as the value of the average extinction coefficient of the molecule to be measured in the optical bandpass filter transmission wavelength range, If this is taken as the equivalent extinction coefficient, this integration range λ
For incident light and transmitted light in the wavelength range from 1 to λ 2 ,
Since the relationship of equation (1) is established at a practical level, the following description will be premised on the relationship of equation (1).

【0012】上記のように、赤外線ガス分析計における
入射光と透過光の間には、式(1) の関係が成立成立して
いるので、赤外線センサ7Aにおいては、上記の式(1) で
表される赤外線の透過光量Iと入射光量I0 の差分ΔI
が濃度分析信号Sとして検出される。即ち、赤外線ガス
分析計の濃度分析信号Sは下記式(3) で表される。
As described above, since the relationship of the formula (1) is established between the incident light and the transmitted light in the infrared gas analyzer, the infrared sensor 7A has the following formula (1). Difference ΔI between the amount I of transmitted infrared light and the amount I 0 of incident light
Is detected as the concentration analysis signal S. That is, the concentration analysis signal S of the infrared gas analyzer is expressed by the following equation (3).

【0013】[0013]

【数3】 S∽ΔI=I0 −I=I0 {1−exp(−kcL)}------ (3) 一方、式(1) の両辺をI0 で除して両辺の対数を採り、
対数の展開式を適用し、赤外線の入射光量I0 と透過光
量Iの差分ΔIの値が小さい場合ΔI/I0 の2乗以上
の項は通常十分小さい値となるのでこれを省略する近似
を行うと式(4)が導かれる。
## EQU3 ## S∽ΔI = I 0 −I = I 0 {1-exp (−kcL)} ------ (3) On the other hand, dividing both sides of equation (1) by I 0 Taking the logarithm,
Applying the logarithmic expansion formula, if the value of the difference ΔI between the incident light amount I 0 of infrared light and the transmitted light amount I is small, the terms of ΔI / I 0 squared or more are usually sufficiently small values, and therefore the approximation is omitted. Equation (4) is derived by doing.

【0014】[0014]

【数4】 log I/I0 =log (1−ΔI/I0 )≒−ΔI/I0 =log exp {−kcL}=−kcL すなわち、 ΔI/I0 =S/I0 =kcL ----------- (4) この式(4) は、赤外線の入射と透過の光量変化ΔIがあ
まり大きくなくΔI/I0 の2乗以上の項の省略近似が
可能な場合、赤外線ガス分析計の感度がセル長Lに比例
することを示している。
## EQU00004 ## log I / I 0 = log (1−ΔI / I 0 ) ≈−ΔI / I 0 = log exp {−kcL} = − kcL That is, ΔI / I 0 = S / I 0 = kcL-- --------- (4) This formula (4) shows that when the change ΔI in the amount of light incident and transmitted by infrared rays is not so large and the omission approximation of the terms of ΔI / I 0 squared or more is possible, It shows that the sensitivity of the infrared gas analyzer is proportional to the cell length L.

【0015】ところで、低濃度ガス成分と高濃度ガス成
分とを同時に測定する赤外線ガス分析計では、通常、低
濃度ガス成分の測定においても十分な信号量が得られる
よう長いセル長の試料セルが選択される。長いセル長の
試料セルによって高濃度ガス成分の測定を行うと、赤外
線の入射光量I0 と透過光量との差ΔIは大きくなって
式(4) を導く近似は成立しなくなり、赤外線センサ7Aが
検出した電気信号Sと被測定成分ガスの濃度cとは、式
(3) で表される非直線な関係となる。
By the way, in an infrared gas analyzer for simultaneously measuring a low-concentration gas component and a high-concentration gas component, a sample cell having a long cell length is usually used so that a sufficient signal amount can be obtained even in the measurement of the low-concentration gas component. To be selected. When a high-concentration gas component is measured with a sample cell having a long cell length, the difference ΔI between the incident light amount I 0 of infrared rays and the transmitted light amount becomes large, and the approximation for deriving equation (4) cannot be established. The detected electric signal S and the concentration c of the component gas to be measured are expressed by the formula
It has a non-linear relationship expressed by (3).

【0016】上記式(3) は、吸光係数kと試料セルの長
さLおよび被測定ガス成分の濃度cの積であるkcLの
値に対して、電気信号Sが一定値I0 を漸近線とする曲
線上を変動することを示している。このため、吸光係数
kの値に対比して長いセル長の試料セルで高濃度の試料
ガス成分を測定すると、測定ガス濃度のフルスケール近
辺では、濃度変化に対する信号出力は飽和し、その変化
分は小さくなって信号分解能が低下してしまう。このよ
うな場合に、入出力間の非直線的関係を電気的に補正す
る直線化回路を応用するとしても、上記のような濃度変
化に対する信号出力の変化分が小さい領域では、直線化
回路は機能を発揮できない。
In the above equation (3), the electric signal S has a constant value I 0 with respect to the value of kcL which is the product of the extinction coefficient k, the length L of the sample cell and the concentration c of the gas component to be measured. It shows that it fluctuates on the curve. Therefore, when a high-concentration sample gas component is measured in a sample cell having a long cell length in comparison with the value of the extinction coefficient k, the signal output with respect to the concentration change is saturated near the full scale of the measured gas concentration, and Becomes smaller and the signal resolution decreases. In such a case, even if a linearization circuit that electrically corrects the non-linear relationship between the input and output is applied, the linearization circuit will not work in the region where the change in the signal output with respect to the density change is small as described above. It cannot function.

【0017】そこで、高濃度ガス成分測定用の検出ユニ
ット(7A',7B') を光源の近くに設け、高濃度ガス成分に
対するセル長Lを短くして前記kcL の値を小さくして高
濃度領域における信号出力の変化分の減少を避ける図3
に例示のような方法が採られることがあるが、この方法
は構造が複雑となる欠点を有する。また、別法として、
光バンドパスフィルタの透過波長域を、被測定ガスの吸
収帯域において吸光係数kが小さい領域の狭い範囲に設
定し、前記kcL の値を小さくする方策が採られることが
あり、図4の赤外線の吸収スペクトル特性の例を示す図
中に、吸光係数kが小さい領域の狭い範囲として選択設
定された光バンドパスフィルタの透過波長域の一例を領
域(a) として図示する。
Therefore, a detection unit (7A ', 7B') for measuring the high-concentration gas component is provided near the light source, and the cell length L for the high-concentration gas component is shortened to reduce the value of kcL to reduce the high concentration. Avoiding a decrease in the change in signal output in the region
However, this method has a drawback that the structure is complicated. Also, as an alternative,
The transmission wavelength range of the optical bandpass filter may be set to a narrow range of the absorption band of the gas to be measured having a small extinction coefficient k to reduce the value of kcL. In the figure showing an example of the absorption spectrum characteristic, an example of the transmission wavelength range of the optical bandpass filter selected and set as a narrow range of the area where the absorption coefficient k is small is shown as an area (a).

【0018】上記のように選択された領域(a) は、強い
吸収を示す領域に隣接し、吸光係数kの値が波長と共に
大きく変化する領域である。したがって、光バンドパス
フィルタの透過波長域の中心波長やバンド幅の僅かな差
によって、赤外線センサ7Aが検出する電気信号Sと被測
定成分ガスの濃度cとの関係は大きく変動することとな
る。
The region (a) selected as described above is a region adjacent to the region exhibiting strong absorption and the value of the extinction coefficient k largely changes with wavelength. Therefore, the relationship between the electric signal S detected by the infrared sensor 7A and the concentration c of the component gas to be measured changes greatly due to a slight difference in the center wavelength of the transmission wavelength band of the optical bandpass filter and the band width.

【0019】一方、透過波長域が薄膜の厚さによって定
まる多層薄膜干渉フィルタ方式の光バンドパスフィルタ
では、上記の変動が目立たない程度に薄膜の厚さを高い
精度で制御して繰返し製作することは極めて困難であ
る。それゆえ、光バンドパスフィルタの透過波長域を、
被測定ガスの吸収帯域の吸光係数kが小さい狭い領域に
限定する方式によって特性のばらつきの小さい赤外線ガ
ス分析を繰返して製作することは困難である。
On the other hand, in the optical bandpass filter of the multilayer thin film interference filter system in which the transmission wavelength range is determined by the thickness of the thin film, the thickness of the thin film is controlled with high accuracy so that the above fluctuations are not noticeable, and it is repeatedly manufactured. Is extremely difficult. Therefore, the transmission wavelength range of the optical bandpass filter is
It is difficult to repeat the infrared gas analysis with a small variation in characteristics by a method in which the absorption band k of the gas to be measured is limited to a narrow region where the absorption coefficient k is small.

【0020】[0020]

【発明が解決しようとする課題】本発明の目的は、低濃
度ガス成分の測定を安定に実行しうる長いセル長の試料
セルによって高濃度ガス成分の濃度測定を行うとき、出
力信号が飽和せず濃度と出力信号間の直線性が小さい変
化幅の範囲で保たれる繰り返して実施可能な方策を編み
だして、単一の試料セルを備えた一台の装置で同一試料
ガス中の低濃度ガス成分と高濃度ガス成分とが、同時に
連続して測定可能な非分散形の赤外線ガス分析計を提供
しようとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent the output signal from being saturated when the concentration of a high concentration gas component is measured by a sample cell having a long cell length capable of stably measuring the low concentration gas component. The linearity between the concentration and the output signal is kept small within the range of change, and a reproducible method is devised to reduce the concentration of the same sample gas in one device equipped with a single sample cell. An object of the present invention is to provide a non-dispersion type infrared gas analyzer capable of simultaneously and continuously measuring a gas component and a high-concentration gas component.

【0021】[0021]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明による非分散形の赤外線ガス分析計におい
ては、赤外線光源部を赤外線透過窓を設けた密封構造の
ものとし、この赤外線光源部に、測定範囲が高濃度領域
にわたる被測定ガス成分または被測定ガスと同一の分子
構造部分を有し、被測定ガスによる一つの赤外線吸収と
同等の赤外線吸収を示す被測定ガスとは異なる成分のガ
スを、該ガスの赤外線吸収帯域で吸光係数kの値が大き
い吸収中心波長域の赤外線を完全に吸収するに十分な分
圧で封入するものとする。そして、赤外線光源部に封入
された成分のガスを検出する検出ユニットに設けられる
光バンドパスフィルターの透過波長帯域は、該ガスの一
つの赤外線吸収帯域の全域に相当する範囲に設定するも
のとし、この検出ユニットに備えられる赤外線センサ
は、分光感度が上記の光バンドパスフィルターの透過波
長帯域で平坦な特性を有するものとする。
In order to achieve the above object, in the non-dispersion type infrared gas analyzer according to the present invention, the infrared light source has a sealed structure provided with an infrared transmitting window, The light source part has the same molecular structure as the measured gas component or the measured gas over the high concentration range of the measurement range, and is different from the measured gas that shows the infrared absorption equivalent to one infrared absorption by the measured gas. The component gas is enclosed at a partial pressure sufficient to completely absorb infrared rays in the absorption center wavelength region having a large absorption coefficient k in the infrared absorption band of the gas. Then, the transmission wavelength band of the optical bandpass filter provided in the detection unit for detecting the gas of the component sealed in the infrared light source unit is set to a range corresponding to the entire one infrared absorption band of the gas, The infrared sensor provided in this detection unit has a flat spectral sensitivity in the transmission wavelength band of the optical bandpass filter.

【0022】また、複数成分の同時分析を行う本発明に
よる非分散形の赤外線ガス分析計においては、複数個の
非選択性赤外線センサと光バンドパスフィルタの対から
なる検出ユニットを設け、赤外線光源部を赤外線透過窓
を設けた密封構造のものとし、この赤外線光源部に、測
定範囲が高濃度領域にわたる被測定ガス成分または被測
定ガスと同一の分子構造部分を有し、被測定ガスによる
一つの赤外線吸収と同等の赤外線吸収を示す被測定ガス
とは異なる成分のガスを、該ガスの赤外線吸収帯域で吸
光係数kの値が大きい吸収中心波長域の赤外線を完全に
吸収するに十分な分圧で封入するものとする。そして、
複数成分に共通の単一の測定セルを設け、赤外線光源部
に封入された成分のガスを検出する検出ユニットに設け
られる光バンドパスフィルターの透過波長帯域は、該ガ
スの一つの赤外線吸収帯域の全域に相当する範囲に設定
するものとし、この検出ユニットに備えられる赤外線セ
ンサは、分光感度が上記の光バンドパスフィルターの透
過波長帯域で平坦な特性を有するものとする。
Further, in the non-dispersive infrared gas analyzer according to the present invention for simultaneously analyzing a plurality of components, a detection unit composed of a plurality of non-selective infrared sensors and an optical bandpass filter is provided, and an infrared light source is provided. The infrared light source part has a sealed structure with an infrared transmission window, and the infrared light source part has a molecular structure part that is the same as the measured gas component or the measured gas over a high concentration range. A gas having a component different from that of the gas to be measured that exhibits an infrared absorption equivalent to two infrared absorptions is sufficient to completely absorb infrared rays in the absorption center wavelength region having a large absorption coefficient k in the infrared absorption band of the gas. It shall be sealed by pressure. And
A single measurement cell common to a plurality of components is provided, and the transmission wavelength band of the optical bandpass filter provided in the detection unit for detecting the gas of the component enclosed in the infrared light source part is one infrared absorption band of the gas. The infrared sensor provided in this detection unit has a flat characteristic in the transmission wavelength band of the above optical bandpass filter.

【0023】[0023]

【作用】上記構成により、被測定ガスが封入された赤外
線光源部からは、被測定ガスの吸収中心波長域の赤外線
が除かれた赤外線光束が射出され、赤外線透過窓を介し
て測定セルに入射し、測定セル内を透過し、検出部にて
受光される。そして測定セル内では、光源に封入した被
測定ガスによって吸収されつくされなっかった、吸光係
数kの値が小さい波長域の赤外線の被測定ガスによる吸
収が起こる。
With the above structure, the infrared light source section in which the gas to be measured is enclosed emits the infrared light flux from which the infrared rays in the absorption center wavelength region of the gas to be measured are removed, and enters the measurement cell through the infrared transmitting window. Then, the light passes through the measurement cell and is received by the detection unit. Then, in the measurement cell, infrared rays in the wavelength region having a small value of the absorption coefficient k, which has not been absorbed by the measured gas enclosed in the light source, are absorbed by the measured gas.

【0024】一方、検出ユニットで検出される赤外光の
波長域は、光バンドパスフィルターによって入射波長域
が制限されている上に、赤外線光源部で被測定ガスの吸
収中心波長域の赤外線が除かれているので、被測定ガス
の吸光係数kの値が小さい相対的に狭い波長域となって
いる。上記のように被測定ガスの吸光係数kの値が小さ
い波長領域のみが有効な検出波長域となるので、高濃度
の測定対象ガス成分が測定セルに導入されたときでも、
吸収の飽和は起こらず、赤外線センサからは相対的に大
きな信号変化が出力される。
On the other hand, in the wavelength range of infrared light detected by the detection unit, the incident wavelength range is limited by the optical bandpass filter, and the infrared light source section detects infrared rays in the absorption center wavelength range of the gas to be measured. Since it is excluded, the value of the extinction coefficient k of the measured gas is small and the wavelength range is relatively narrow. As described above, only the wavelength region in which the value of the absorption coefficient k of the gas to be measured is small becomes the effective detection wavelength region, so even when a high-concentration gas component to be measured is introduced into the measurement cell,
Absorption does not saturate, and a relatively large signal change is output from the infrared sensor.

【0025】[0025]

【実施例】本発明による非分散形赤外線ガス分析計の一
実施例のブロック構成を図1に示し、この図によって本
発明を説明する。図1において、1は試料ガスを流す測
定セル、2は赤外線光源部である。この赤外線光源部2
は赤外線透過窓9を設けて密封構造に作られており、こ
の中に高濃度域までを測定範囲とする成分の被測定ガス
10が、吸収中心波長域の赤外線を完全に吸収するに十分
な所定の分圧で封入されている。このため、赤外線光源
部2からは、封入したガスの吸収中心波長直近の波長域
の赤外線成分が欠落した、図4のスペクトル図中にC3
で例示されているような波長分布の赤外線が射出され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A block configuration of an embodiment of a non-dispersive infrared gas analyzer according to the present invention is shown in FIG. 1, and the present invention will be described with reference to this drawing. In FIG. 1, 1 is a measuring cell for flowing a sample gas, and 2 is an infrared light source unit. This infrared light source unit 2
Is a hermetically sealed structure provided with an infrared transmission window 9, and the gas to be measured is a component whose measurement range is up to a high concentration range.
10 is enclosed at a predetermined partial pressure sufficient to completely absorb infrared rays in the central absorption wavelength region. Therefore, the infrared light source section 2 lacks the infrared component in the wavelength region near the absorption center wavelength of the enclosed gas.
Infrared rays having a wavelength distribution as illustrated in FIG.

【0026】ところで、ガスによる赤外線の吸収が、ガ
ス成分構成分子の分子振動と振動の励起にともなって惹
起される分子の回転状態の変化に対応して生じるもので
ガス成分を構成する分子の構造によって定まるものであ
ることから、異なる分子であっても分子の構成に同一の
構造部分があると、この構造部分に対応する波長域に同
等の吸収を示すこととなる。よって測定対象ガスが活性
で不安定なガスの場合、赤外線光源部2に封入するガス
を測定対象ガスと同じ構造部分をもつ他の安定なガスに
よって代替えすることが可能な場合がある。たとえば、
合成繊維出発原料の一つである塩化ニトロシル(分子式
NOCl )は不安定で反応性が高いガスなので、高濃度
の塩化ニトロシルを分析範囲に含む赤外線ガス計の赤外
線光源部2に塩化ニトロシルガスを封入することは長期
の安定性確保の観点からは好ましくない。そこで、分子
構造に塩化ニトロシルと同じ窒素酸素間結合(N−O)
を含んでいるため塩化ニトロシルの赤外線吸収波長域と
重なる領域に吸収波長域をもつ化学的に安定な亜酸化窒
素(N2 O)を赤外線光源部2に封入すると、塩化ニト
ロシルガスを封入したと同等に機能するが、赤外線光源
部2の腐食等の不具合を引き起こすことはない。
By the way, the absorption of infrared rays by the gas occurs in response to the molecular vibration of the gas component constituent molecules and the change in the rotational state of the molecule caused by the excitation of the vibration, and the structure of the molecules constituting the gas component. Therefore, even if different molecules have the same structural part in the structure of the molecule, they show the same absorption in the wavelength range corresponding to this structural part. Therefore, when the measurement target gas is an active and unstable gas, it may be possible to substitute the gas sealed in the infrared light source unit 2 with another stable gas having the same structural portion as the measurement target gas. For example,
Nitrosyl chloride (molecular formula NOCl), which is one of the starting materials for synthetic fibers, is an unstable and highly reactive gas, so nitrosyl chloride gas is enclosed in the infrared light source 2 of the infrared gas meter that contains a high concentration of nitrosyl chloride in the analysis range. Doing so is not preferable from the viewpoint of ensuring long-term stability. Therefore, the molecular structure has the same nitrogen-oxygen bond (N-O) as nitrosyl chloride.
Since nitrosyl chloride is contained in the infrared light source section 2 when chemically stable nitrous oxide (N 2 O) having an absorption wavelength range overlapping with the infrared absorption wavelength range of nitrosyl chloride is enclosed, the nitrosyl chloride gas is said to be enclosed. It functions similarly, but does not cause a problem such as corrosion of the infrared light source section 2.

【0027】次に、3は赤外線光源部2から出射した赤
外線光束を断続させる回転セクタ、4は回転セクタ3を
駆動するモータ、5は測定セル1の出射側に配備した検
出ブロックであり、検出ブロック5は、センサ取付ブロ
ック6に試料ガス中に含まれる各測定成分ガスに対応す
る複数(図示例では#1〜#3で表す3個)の赤外線セ
ンサ7Aと、例えば、多層膜干渉フィルタによってなる光
バンドパスフィルタ7Bとを対にして構成される検出ユニ
ット7が並列配置されている。そして、高濃度ガス成分
測定用の検出ユニット7に備える光バンドパスフィルタ
7Bの透過帯域の境界波長を、フィルタの製作にあたって
透過帯域の境界波長に多少の誤差を生じても、測定対象
成分の吸光係数が波長によって大きく変化する領域がこ
の境界波長と重なることがないよう、被測定ガスの吸収
帯域のすぐ外側の波長、例えば図4のスペクトル図中で
λ1 からλ2 の範囲となるように設計する。一方、低濃
度ガス成分測定用の検出ユニット7に装着する光バンド
パスフィルタ7Bについては、測定対象ガスの吸収中心に
重なる範囲に設定するものとする。
Next, 3 is a rotating sector for connecting and disconnecting the infrared light flux emitted from the infrared light source section 2, 4 is a motor for driving the rotating sector 3, and 5 is a detection block provided on the emitting side of the measuring cell 1, for detection. The block 5 includes a plurality of infrared sensors 7A (three represented by # 1 to # 3 in the illustrated example) corresponding to each measurement component gas contained in the sample gas in the sensor mounting block 6, and a multilayer film interference filter, for example. The detection unit 7 formed by pairing the optical bandpass filter 7B is arranged in parallel. An optical bandpass filter provided in the detection unit 7 for measuring the high concentration gas component
Even if there is some error in the boundary wavelength of the transmission band when the filter makes the boundary wavelength of the 7B transmission band, the region where the absorption coefficient of the component to be measured greatly changes with wavelength does not overlap with this boundary wavelength. The wavelength outside the absorption band of the gas to be measured is designed to fall within the range of λ1 to λ2 in the spectrum of FIG. On the other hand, the optical bandpass filter 7B mounted on the detection unit 7 for measuring low-concentration gas components is set in a range overlapping the absorption center of the measurement target gas.

【0028】なお、検出ユニット7のもう一つの構成要
素である赤外線センサ7Aとしては、前記光バンドパスフ
ィルタ7Bの透過波長帯域において分光感度が平坦な特性
を有する、例えば、焦電型センサあるいは半導体センサ
などが適宜選択される。このような構成としたとき、濃
度が高濃度にわたる被測定ガスの成分に関しては、前述
の様に、赤外線光源部2に被測定ガス10が吸収中心波長
域の赤外線を吸収するに十分な所定の分圧で封入されて
いるので、吸収中心波長域の赤外線は赤外線光源部2の
内部で吸収されてしまい、この波長域の赤外線は測定セ
ル1には実質的に入射しないことなり、測定セル1では
吸収中心波長域に隣接する吸光係数の値が小さい波長域
の赤外線の吸収のみが起こる。
The infrared sensor 7A, which is another component of the detection unit 7, has a characteristic that the spectral sensitivity is flat in the transmission wavelength band of the optical bandpass filter 7B, for example, a pyroelectric sensor or a semiconductor. A sensor or the like is appropriately selected. With such a configuration, as to the components of the gas to be measured whose concentration is high, as described above, the infrared light source unit 2 has a predetermined amount sufficient to absorb the infrared rays in the absorption center wavelength region. Since the infrared rays in the absorption center wavelength range are absorbed inside the infrared light source section 2 because they are sealed by partial pressure, the infrared rays in this wavelength range do not substantially enter the measuring cell 1. In, only absorption of infrared rays in a wavelength region adjacent to the absorption center wavelength region and having a small absorption coefficient value occurs.

【0029】図5は測定セル1における吸収の様子を模
式的に示す図であり、以下この図によって高濃度ガス成
分分析用の検出ユニット7の赤外線センサ7Aに入射する
赤外光の波長分布について説明する。図5において、λ
1 ,λ2 は光バンドパスフィルタ7Bの透過帯域の境界波
長を表しているおり、赤外線センサ7Aには、λ1 ,λ2
より外側の波長の赤外線は入射しない。又、λc とλd
は、高濃度ガス成分の吸収中心波長域を示しており、赤
外線光源部2に封入された該ガス成分は、この波長域の
赤外線を吸収し尽くしてしまうので、赤外線センサ7Aに
はこの波長域の赤外線も入射しない。結局、高濃度ガス
成分分析用の検出ユニット7の赤外線センサ7Aに実質的
に入射する赤外線は、図5中ハッチングで示されている
λc からλd の波長域が欠落したλ1 からλc およびλ
2 からλd の、波長範囲の赤外線となる。
FIG. 5 is a diagram schematically showing the state of absorption in the measuring cell 1. The wavelength distribution of infrared light incident on the infrared sensor 7A of the detection unit 7 for analyzing high-concentration gas components will be described below with reference to this diagram. explain. In FIG. 5, λ
1 and λ2 represent the boundary wavelengths of the transmission band of the optical bandpass filter 7B, and the infrared sensor 7A includes λ1 and λ2.
Infrared rays with wavelengths outside are not incident. Also, λc and λd
Indicates the absorption center wavelength region of the high-concentration gas component, and the gas component enclosed in the infrared light source unit 2 completely absorbs infrared rays in this wavelength region, so the infrared sensor 7A has this wavelength region. Infrared rays do not enter. After all, the infrared rays substantially incident on the infrared sensor 7A of the detection unit 7 for analyzing the high-concentration gas component are λ1 to λc and λ in which the wavelength region of λc to λd shown by hatching in FIG. 5 is missing.
Infrared rays in the wavelength range from 2 to λd.

【0030】なお、一般に光バンドパスフィルタの透過
域とガス成分による赤外線吸収の吸収中心波長域のいず
れも、図5に模式的に示されているよう急峻明確な境界
を有するものではない。しかしながら、測定セル1に入
射する光と測定セル1を透過して赤外線センサ7Aで検出
される光の相対強度の関係のみに注目すれば上記の模式
化によって現象の本質が曲げて解釈されることはない。
In general, neither the transmission band of the optical bandpass filter nor the absorption center wavelength band of infrared absorption by the gas component has a sharp and clear boundary as schematically shown in FIG. However, if the attention is paid only to the relationship between the relative intensity of the light incident on the measurement cell 1 and the light transmitted through the measurement cell 1 and detected by the infrared sensor 7A, the essence of the phenomenon is bent and interpreted by the above modelization. There is no.

【0031】上記のように、高濃度ガス成分分析用の検
出ユニット7の赤外線センサ7Aは、測定対象ガス成分の
吸光係数kの値が小さいλ1 からλc およびλ2 からλ
d の波長範囲の赤外線を検出するので、長いセル長の測
定セルを用いても、高濃度になるガス成分による吸収が
飽和することなく、測定対象ガス成分濃度cに対する出
力信号Sの関係は、式(4) の近似が可能となって直線関
係となる。
As described above, the infrared sensor 7A of the detection unit 7 for analyzing the high-concentration gas component has the small absorption coefficient k of the gas component to be measured, that is, λ1 to λc and λ2 to λ.
Since infrared rays in the wavelength range of d are detected, even if a measurement cell having a long cell length is used, the absorption of the gas component having a high concentration is not saturated, and the relationship between the output signal S and the concentration c of the gas component to be measured is: Equation (4) can be approximated and a linear relationship is established.

【0032】図6は、検出ユニット7の出力信号Sに対
する測定対象ガス成分濃度cと測定セル1のセル長Lと
の積cLの関係を説明する図である。図6において、k
=1.0 の曲線は、高濃度ガス成分分析用の検出ユニット
7の光バンドパスフィルタの透過域が、高濃度ガス成分
による赤外線吸収の吸収中心波長域に設定された図2に
例示の従来技術による構成の低濃度と高濃度成分同時分
析用の赤外線ガス計の高濃度ガス成分についての分析特
性を例示したものである。この曲線に見られるように、
kの値が大きい場合、濃度セル長積が2%mを超えると出
力信号は飽和して濃度が増加したときの出力信号変化は
小さくなってしまう。
FIG. 6 is a diagram for explaining the relationship between the output signal S of the detection unit 7 and the product cL of the concentration c of the gas component to be measured and the cell length L of the measuring cell 1. In FIG. 6, k
= 1.0 is the curve according to the prior art illustrated in FIG. 2 in which the transmission band of the optical bandpass filter of the detection unit 7 for analyzing the high concentration gas component is set to the absorption center wavelength region of infrared absorption by the high concentration gas component. It is an example of analysis characteristics of high-concentration gas components of an infrared gas meter for simultaneous analysis of low-concentration and high-concentration components of the constitution. As you can see in this curve,
When the value of k is large and the density cell length product exceeds 2% m, the output signal is saturated and the change in the output signal when the density increases becomes small.

【0033】一方、k=0.1 の曲線は、本発明の方法に
よって高濃度ガス成分分析用の検出ユニット7の検出波
長域を制約した結果、測定対象ガス成分についての吸光
係数の値が吸収中心波長域における値の1/10となった
場合における検出ユニット7の出力信号Sに対する測定
対象ガス成分のセル長濃度積cLの関係を例示したもの
である。この場合、最大濃度セル長積5%mにおける出力
信号の値は、吸光係数の値が1のときの約40% に減少す
るので、この出力を最大濃度セル長積における出力信号
の値がk=1.0 の場合と同じ値となるように増幅したと
きの分析特性が図中に規格化出力として示されている。
On the other hand, the curve of k = 0.1 shows that the value of the extinction coefficient for the gas component to be measured is the absorption center wavelength as a result of restricting the detection wavelength region of the detection unit 7 for analyzing the high concentration gas component by the method of the present invention. It illustrates the relationship of the cell length concentration product cL of the gas component to be measured with respect to the output signal S of the detection unit 7 when it becomes 1/10 of the value in the range. In this case, the value of the output signal at the maximum concentration cell length product of 5% m is reduced to about 40% when the value of the extinction coefficient is 1, so that the output signal value at the maximum concentration cell length product is k = 1.0, the analytical characteristics when amplified to the same value are shown as the normalized output in the figure.

【0034】前述に説明のように、ガス成分による赤外
線吸収は、強い吸収を示す吸収中心波長域に隣接して弱
い吸収を示す領域が分布しているので、赤外線光源部2
に封入する高濃度域までを測定範囲とする被測定ガス成
分10の分圧を変化調整することによって、赤外線光源部
2から射出される吸収中心波長域がカットされた残りの
赤外線の強度波長分布を変えることができる。
As described above, in the infrared absorption due to the gas component, since the region showing the weak absorption is distributed adjacent to the absorption central wavelength region showing the strong absorption, the infrared light source unit 2
By changing and adjusting the partial pressure of the gas component 10 to be measured, which has a measurement range up to the high-concentration range to be sealed in, the absorption infrared wavelength range emitted from the infrared light source unit 2 is cut off, and the remaining infrared intensity wavelength distribution is obtained. Can be changed.

【0035】また、高濃度ガス成分測定用の検出ユニッ
ト7に備える光バンドパスフィルタ7Bとして多層薄膜干
渉フィルタを適用する場合、その透過帯域の境界波長
は、薄膜層の構造設計によって基本的に定まり、更に、
制作時の条件変動を反映して分布を示すものである。そ
れゆえ、赤外線光源部2に封入するガス10の分圧の調整
と、検出ユニット7に備える光バンドパスフィルタ7Bの
選択によって、検出ユニット7の構成要素である赤外線
センサ7Aに入射する赤外線の強度の波長分布をある程度
変えることができる。
When a multilayer thin film interference filter is applied as the optical bandpass filter 7B provided in the detection unit 7 for measuring high concentration gas components, the boundary wavelength of its transmission band is basically determined by the structural design of the thin film layer. , In addition,
The distribution reflects the changes in the conditions during production. Therefore, by adjusting the partial pressure of the gas 10 enclosed in the infrared light source unit 2 and selecting the optical bandpass filter 7B included in the detection unit 7, the intensity of the infrared light incident on the infrared sensor 7A, which is a component of the detection unit 7, is adjusted. The wavelength distribution of can be changed to some extent.

【0036】上記の手段によって分析に利用する赤外線
強度の波長分布を変えると、この変化に応じて、式
(2)の原理によって定まる当該の波長域における測定
対象成分の等価吸光係数の値もある程度変えることがで
き、その結果、分析特性としての直線性も変動すること
となる。測定対象ガス成分の濃度cと、測定セルのセル
長Lとの積cLの値の最高値が5%mとなる場合に、被
測定ガス成分の等価的吸光係数の値を上記の方法によっ
て調節したときの、濃度セル長積cLにおいて赤外線セ
ンサ7Aで検出される式(3)によって表される濃度分析
信号Sの値を求め、濃度セル長積の最高値5%mにおけ
る濃度分析信号の値FSと、濃度セル長積の値が零と最
高値5%mにおける値を両端基準として求めた濃度分析
信号Sの直線性とを、表1に示す。そして、濃度セル長
積の最高値における濃度分析信号の値FSによって規格
化した濃度分析信号Sの値を図7に示す。
When the wavelength distribution of the infrared intensity used for analysis is changed by the above means, the value of the equivalent extinction coefficient of the component to be measured in the wavelength range of interest, which is determined by the principle of equation (2), is also changed to some extent according to this change. It can be changed, and as a result, the linearity as an analysis characteristic also changes. When the maximum value of the product cL of the concentration c of the gas component to be measured and the cell length L of the measurement cell is 5% m, the value of the equivalent extinction coefficient of the gas component to be measured is adjusted by the above method. Then, the value of the concentration analysis signal S represented by the equation (3) detected by the infrared sensor 7A in the concentration cell length product cL is obtained, and the value of the concentration analysis signal at the maximum value 5% m of the concentration cell length product is obtained. Table 1 shows FS and the linearity of the concentration analysis signal S obtained with the value of the concentration cell length product being zero and the value at the maximum value of 5% m as the both ends reference. The value of the concentration analysis signal S normalized by the value FS of the concentration analysis signal at the highest value of the concentration cell length product is shown in FIG.

【0037】[0037]

【表1】 [Table 1]

【0038】表1と図7に例示のように、本発明の方法
によって高濃度ガス成分分析用の検出ユニット7の検出
波長域を制約した赤外線分析計では、検出ユニット7の
出力信号Sの絶対値は多少減少するが、直線性は大きく
改善される。上記のように、高濃度成分の測定に不都合
な波長域の赤外線を取り除くカット機能を、当該波長域
で強い吸収を示す測定対象成分のガスそのものによって
付与すれば、カット波長域は当該ガスの分子構造そのも
のに依存するので、人工的に薄膜の厚さを制御して透過
波長域を定めている薄膜干渉式の光バンドパスフィルタ
などに比べて極めて正確にカット領域が定められること
となる。
As shown in Table 1 and FIG. 7, in the infrared analyzer in which the detection wavelength range of the detection unit 7 for high-concentration gas component analysis is restricted by the method of the present invention, the absolute value of the output signal S of the detection unit 7 is reduced. The value is slightly reduced, but the linearity is greatly improved. As described above, if the cut function for removing infrared rays in the wavelength range that is inconvenient for the measurement of high-concentration components is imparted by the gas itself of the measurement target component that exhibits strong absorption in the wavelength range, the cut wavelength range is the molecule of the gas. Since it depends on the structure itself, the cut region can be defined extremely accurately as compared with a thin film interference type optical bandpass filter that artificially controls the thickness of the thin film to determine the transmission wavelength range.

【0039】また、高濃度ガス成分測定用検出ユニット
に備える光バンドパスフィルタ7Bの透過帯域の境界波長
は、多少の製作誤差があっても、測定対象成分の吸光係
数が波長によって大きく変化する領域に重なることがな
いよう、測定対象成分が吸収を示す領域の外側に設計さ
れているので、測定セルにおける吸収中心波長域に隣接
する波長域の吸収は、光バンドパスフィルタ7Bの透過帯
域の範囲内に収まる。このため、高濃度ガス成分測定用
検出ユニット7の赤外線センサ7Aの出力信号は、光バン
ドパスフィルタ7Bの透過帯域に多少の製作誤差があって
も同一の濃度変化に対して同等の大きさとなり、光バン
ドパスフィルタ7Bの透過波長域を、被測定ガスの吸収帯
域において吸光係数kが小さい領域の狭い範囲に設定す
る従来技術による赤外線ガス分析計におけるような、光
バンドパスフィルタ7Bの透過波長域の中心波長やバンド
幅の僅かな差によって、赤外線センサ7Aが検出する電気
信号Sと被測定成分ガスの濃度cとの関係が大きく変動
することはない。
Further, the boundary wavelength of the transmission band of the optical bandpass filter 7B provided in the high-concentration gas component measuring detection unit is a region where the absorption coefficient of the component to be measured largely changes depending on the wavelength even if there is some manufacturing error. Since the component to be measured is designed outside the region showing absorption, the absorption in the wavelength region adjacent to the absorption center wavelength region in the measurement cell is the range of the transmission band of the optical bandpass filter 7B. Fits inside. Therefore, the output signal of the infrared sensor 7A of the high-concentration gas component measuring detection unit 7 has the same magnitude for the same concentration change even if there is some manufacturing error in the transmission band of the optical bandpass filter 7B. , The transmission wavelength range of the optical bandpass filter 7B as in the infrared gas analyzer according to the prior art in which the transmission wavelength range of the optical bandpass filter 7B is set to a narrow range of the region where the absorption coefficient k is small in the absorption band of the gas to be measured. The relationship between the electric signal S detected by the infrared sensor 7A and the concentration c of the component gas to be measured does not change significantly due to a slight difference in the center wavelength of the band or the band width.

【0040】また、同一試料ガス中の低濃度ガス成分と
高濃度ガス成分とを同時に連続して測定しようとする複
数成分分析用の赤外線ガス分析計においては、低濃度ガ
ス成分測定用の検出ユニット7に装着する光バンドパス
フィルタ7Bの透過帯域の境界波長は、測定対象のガス成
分の吸収中心に重なる範囲に設定し、試料セルの長さを
低濃度ガス成分の測定を安定に実行しうる長い値に設定
する。
Further, in an infrared gas analyzer for analyzing a plurality of components for simultaneously and continuously measuring a low concentration gas component and a high concentration gas component in the same sample gas, a detection unit for measuring the low concentration gas component is used. The boundary wavelength of the transmission band of the optical bandpass filter 7B mounted on the No. 7 is set to a range overlapping with the absorption center of the gas component to be measured, and the length of the sample cell can stably measure the low concentration gas component. Set to a long value.

【0041】一方、高濃度ガス成分については、密封構
造に作られた赤外線光源部2に、高濃度域までを測定範
囲とする成分の被測定ガス10または測定対象成分の吸収
波長域と重なる吸収波長域をもつ代替えガスを、該ガス
の吸収中心波長域の赤外線を完全に吸収するに十分な分
圧で封入し、検出ユニット7に備える光バンドパスフィ
ルタ7Bの透過帯域の境界波長は、測定対象のガス成分の
吸収帯域のすぐ外側の波長に設定し、試料セルは低濃度
ガス成分測定に適するようにセルの長が設定されている
試料セルを共通に用いる構成とする。
On the other hand, for the high-concentration gas component, the infrared light source section 2 formed in a sealed structure absorbs the gas to be measured 10 of the component whose measurement range is up to the high-concentration region or the absorption wavelength region of the measurement target component. An alternative gas having a wavelength range is enclosed at a partial pressure sufficient to completely absorb infrared rays in the absorption center wavelength range of the gas, and the boundary wavelength of the transmission band of the optical bandpass filter 7B provided in the detection unit 7 is measured. The wavelength is set just outside the absorption band of the target gas component, and the sample cell has a configuration in which the cell length is set so as to be suitable for the measurement of low-concentration gas components.

【0042】低・高濃度複数成分分析用の非分散形赤外
線ガス分析計を本発明にもとずいて上記のように構成す
ると、低濃度ガス成分については、吸光係数の値が大き
い測定対象ガスの吸収中心波長域の光が捉えられて感度
良く安定に測定される一方、高濃度ガス成分について
は、該ガスの吸収中心波長域の外側の吸光係数の値が小
さい波長域の光を捉えて測定が行われるので、低濃度ガ
ス成分測定に適するように設定された長いセル長の試料
セルを共通に用いても、出力が飽和することなく高濃度
域まで直線性を保って分析測定される。
When the non-dispersion type infrared gas analyzer for low and high concentration multi-component analysis is constructed as described above according to the present invention, the low concentration gas component has a large absorption coefficient and the gas to be measured has a large absorption coefficient. While the light in the absorption center wavelength range of is captured with high sensitivity and stability, for high-concentration gas components, the light in the wavelength range where the value of the absorption coefficient outside the absorption center wavelength range of the gas is small is detected. Since the measurement is performed, even if a sample cell with a long cell length set to be suitable for measuring low-concentration gas components is used in common, the output is not saturated and the measurement is performed linearly up to the high-concentration range. .

【0043】[0043]

【発明の効果】低濃度ガス成分と高濃度ガス成分とを同
時に分析する赤外線ガス分析計を上記のような構成とし
たとき、前述の様に、濃度が高濃度にわたる被測定ガス
の成分に関しては、測定セルでは吸収中心波長域に隣接
する吸光係数の値が小さい波長域の赤外線の吸収のみが
起こるので、低濃度ガス成分の分析に適した長いセル長
の測定セルを共通に用いても、高濃度になるガス成分に
よる吸収が飽和することはなくなる。その結果、赤外線
光源部2に被測定ガス10が封入されていない従来構成の
装置によって測定したとき両端基準直線性が約54%とな
って、高濃度域での分析が実際上不可能であった測定対
象が、本発明にもとづいて等価吸光計数の値が従来構成
の装置に於ける値の40%ないし50%程度になるように赤
外線光源部2に封入する被測定ガスの分圧と光バンドパ
スフィルタの透過帯域の選択によって、濃度分析信号の
最高値FSの値が95%と僅かに減少する条件のもとに、
両端基準直線性は実用に耐えることができる35%に低減
されて測定することができるという実績が得られた。す
なわち、本発明にもとづいて単一の測定セルを設けて単
純な構成として低価格にした1台の多成分ガスの赤外線
ガス計によって、低濃度度ガス成分と高濃度ガス成分の
いずれもが、直線性を保って精度よく測定可能となると
いう効果が得られる。
When the infrared gas analyzer for simultaneously analyzing low-concentration gas components and high-concentration gas components is constructed as described above, as described above, the components of the measured gas having high concentrations are , In the measurement cell, since the absorption of infrared rays in the wavelength range where the value of the absorption coefficient adjacent to the absorption center wavelength range is small occurs, even if a measurement cell with a long cell length suitable for the analysis of low-concentration gas components is commonly used, Absorption due to high-concentration gas components is no longer saturated. As a result, the reference linearity at both ends was about 54% when measured by an apparatus having a conventional structure in which the gas to be measured 10 was not enclosed in the infrared light source section 2, which made it practically impossible to analyze in the high concentration range. According to the present invention, the measured object has a partial pressure and light of the gas to be measured enclosed in the infrared light source section 2 so that the value of the equivalent absorption coefficient is about 40% to 50% of the value in the conventional apparatus. Under the condition that the maximum value FS of the concentration analysis signal is slightly reduced to 95% by selecting the transmission band of the bandpass filter,
The results show that the linearity at both ends can be measured while being reduced to 35%, which can withstand practical use. That is, according to the present invention, by using a single infrared gas meter of a multi-component gas, which has a simple structure and has a simple structure and is inexpensive, both the low-concentration gas component and the high-concentration gas component are It is possible to obtain the effect that the linearity can be maintained and the measurement can be performed accurately.

【0044】また、光源へ高濃度領域を測定範囲とする
ガス成分を封入して高濃度成分の測定に不都合な波長域
の赤外線を取り除くカット機能を付与しているので、高
濃度ガス成分の検出ユニットの有感波長帯域を被測定ガ
スの一つの吸収帯域のほぼ全域に相当する範囲となるよ
うな広い透過波長域の光バンドパスフィルタを選択して
も、実効的な透過域は濃度変化に対して十分な変化が得
られる相対的に狭い範囲となるので、濃度対出力の特性
が安定し、分析計を製作する度毎に、非直線性の試験お
よび電気回路による毎個の調整を不要にすることができ
るという効果も得られる。
Since the light source is filled with a gas component having a high-concentration region as a measurement range and is provided with a cutting function for removing infrared rays in a wavelength region which is inconvenient for measuring the high-concentration component, detection of the high-concentration gas component is performed. Even if an optical bandpass filter with a wide transmission wavelength range is selected so that the sensitive wavelength band of the unit corresponds to almost the entire absorption band of one gas to be measured, the effective transmission range will not change in concentration. In contrast, a relatively narrow range where sufficient change can be obtained, the concentration vs. output characteristics are stable, and non-linearity tests and adjustments by electrical circuits are not required each time the analyzer is manufactured. The effect that can be obtained is also obtained.

【0045】さらに、赤外線光源の寿命を長くするため
に、光源部への不活性ガスの封入が行われることがある
が、本発明においては、この封入ガスが、例えば測定対
象がCO2 ガスの場合、被測定ガスで代替することがで
き、この場合、光フィルターを別置する必要もなく、経
済的に赤外線ガス分析計を構成できるという効果も得ら
れる。
Further, in order to prolong the life of the infrared light source, an inert gas may be filled in the light source section. In the present invention, this filled gas is, for example, a CO 2 gas to be measured. In this case, the gas to be measured can be used as a substitute, and in this case, it is not necessary to separately install an optical filter, and an effect that an infrared gas analyzer can be economically constructed can be obtained.

【0046】なお、多成分分析用の赤外線ガス計にかぎ
らず、測定対象ガス成分の吸収中心波長域を透過帯域と
する光バンドパスフィルタを用いると、測定セルのセル
長をガスの出入口を設けるのが困難なほど短くしなけれ
ばならない吸光係数が大きいガス成分を高濃度に渡って
測定する目的の赤外線ガス分析計において本発明の方法
を適用すれば、試料ガスの導入置換に無理のない測定セ
ルのセル長を設定することができるという効果も得られ
る。
Not only the infrared gas meter for multi-component analysis but also an optical band pass filter having a transmission band in the absorption center wavelength region of the gas component to be measured is used, the cell length of the measurement cell is set to a gas inlet / outlet. If the method of the present invention is applied to an infrared gas analyzer for the purpose of measuring a gas component having a large extinction coefficient over a high concentration that must be shortened so that it is difficult to measure, it is possible to measure the introduction and replacement of the sample gas reasonably. The effect that the cell length of the cell can be set is also obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の要部構成断面図FIG. 1 is a cross-sectional view of the essential parts of an embodiment of the present invention.

【図2】従来技術による赤外線ガス分析計の要部構成断
面図
FIG. 2 is a cross-sectional view of a main part configuration of an infrared gas analyzer according to a conventional technique.

【図3】他の従来技術による赤外線ガス分析計の要部構
成断面図
FIG. 3 is a sectional view showing the configuration of the main part of an infrared gas analyzer according to another conventional technique.

【図4】赤外線吸収スペクトルの性質と光バンドパスフ
ィルタの透過波長域を説明する説明図
FIG. 4 is an explanatory diagram for explaining properties of an infrared absorption spectrum and a transmission wavelength range of an optical bandpass filter.

【図5】本発明による赤外線ガス分析計の高濃度ガス成
分分析用検出ユニットで検出される赤外線の波長域を説
明する説明図
FIG. 5 is an explanatory view for explaining a wavelength range of infrared rays detected by a detection unit for analyzing a high concentration gas component of an infrared gas analyzer according to the present invention.

【図6】赤外線ガス分析計におけるセル長濃度積と出力
信号の関係に対する吸光係数の値の影響を説明する説明
FIG. 6 is an explanatory diagram for explaining the influence of the value of the extinction coefficient on the relationship between the cell length concentration product and the output signal in the infrared gas analyzer.

【図7】吸光係数の値と規格化濃度分析信号Sの関係を
説明する説明図
FIG. 7 is an explanatory diagram illustrating the relationship between the value of the extinction coefficient and the normalized concentration analysis signal S.

【符号の説明】[Explanation of symbols]

1 測定セル 2 赤外線光源部 3 回転セクタ 5 検出ブロック 6 センサ取付ブロック 7 検出ユニット 7A 赤外線センサ 7B 光バンドパスフィルタ 8 赤外線光束 9 赤外線透過窓 10 被測定ガス 1 Measuring Cell 2 Infrared Light Source Section 3 Rotating Sector 5 Detection Block 6 Sensor Mounting Block 7 Detection Unit 7A Infrared Sensor 7B Optical Bandpass Filter 8 Infrared Luminous Beam 9 Infrared Transmission Window 10 Measured Gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤尾 幸造 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 谷山 三男 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kozo Akao No. 1 Tanabe Shinden, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 inside Fuji Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】非選択性の赤外線センサと、 この赤外線センサに前置される光バンドパスフィルタ
と、 赤外線透過窓を有し、気密に構成された赤外線光源部
と、 この赤外線光源部に所定の分圧で封入された被測定ガス
と、 を備えたことを特徴とする非分散形赤外線ガス分析計。
1. A non-selective infrared sensor, an optical bandpass filter placed in front of the infrared sensor, an infrared light source section having an infrared transmitting window, and an airtightly configured infrared light source section. A non-dispersive infrared gas analyzer, comprising: a gas to be measured sealed at a partial pressure of.
【請求項2】気密に構成された赤外線光源部に封入され
たガスが、被測定ガスと同一の分子構造部分を有し、被
測定ガスによる一つの赤外線吸収と同等の赤外線吸収を
示す被測定ガスとは異なる成分のガスであって、このガ
スが所定の分圧で封入されていることを特徴とする請求
項1に記載の非分散形赤外線ガス分析計。
2. A gas to be measured enclosed in an airtight infrared light source section having the same molecular structure as that of the gas to be measured and exhibiting an infrared absorption equivalent to one infrared absorption by the gas to be measured. The non-dispersive infrared gas analyzer according to claim 1, wherein the gas has a component different from that of the gas, and the gas is sealed at a predetermined partial pressure.
【請求項3】光バンドパスフィルタの透過波長帯域が被
測定ガスの一つの吸収帯域の全域に相当し、非選択性の
赤外線センサの分光感度が前記光バンドパスフィルタの
透過波長帯域において平坦な特性を有するものであるこ
とを特徴とする請求項1または2に記載の非分散形赤外
線ガス分析計。
3. The transmission wavelength band of the optical bandpass filter corresponds to the entire absorption band of one gas to be measured, and the spectral sensitivity of the non-selective infrared sensor is flat in the transmission wavelength band of the optical bandpass filter. The non-dispersive infrared gas analyzer according to claim 1 or 2, which has characteristics.
【請求項4】複数成分の同時分析を行う赤外線ガス分析
計において、 複数個の非選択性赤外線センサと光バンドパスフィルタ
の対と、 赤外線透過窓を有し、気密に構成された赤外線光源部
と、 この赤外線光源部に所定の分圧で封入された被測定ガス
成分の内の特定成分のガスと、 前記複数成分に共通の単一の測定セルと、 を備えたことを特徴とする非分散形赤外線ガス分析計。
4. An infrared gas analyzer for simultaneous analysis of a plurality of components, comprising: a plurality of pairs of a non-selective infrared sensor and an optical bandpass filter; And a gas of a specific component of the gas components to be measured enclosed in the infrared light source unit at a predetermined partial pressure, and a single measurement cell common to the plurality of components. Dispersive infrared gas analyzer.
【請求項5】気密に構成された赤外線光源部に封入され
たガスが、被測定ガス成分の内の特定成分のガスと同一
の分子構造部分を有し、被測定ガスによる一つの赤外線
吸収と同等の赤外線吸収を示す被測定ガスとは異なる成
分のガスであって、このガスが所定の分圧で封入されて
いることを特徴とする請求項4に記載の非分散形赤外線
ガス分析計。
5. The gas enclosed in the hermetically-sealed infrared light source section has the same molecular structure as the gas of a specific component among the gas components to be measured, and one infrared absorption by the gas to be measured. The non-dispersive infrared gas analyzer according to claim 4, wherein the gas has a component different from that of the gas to be measured that exhibits the same infrared absorption, and the gas is sealed at a predetermined partial pressure.
【請求項6】光バンドパスフィルタの透過波長帯域が被
測定ガスの一つの吸収帯域の全域に相当し、非選択性赤
外線センサの分光感度が前記光バンドパスフィルタの透
過波長帯域において平坦な特性を有するものであること
を特徴とする請求項5または6に記載の非分散形赤外線
ガス分析計。
6. A characteristic in which the transmission wavelength band of the optical bandpass filter corresponds to the entire one absorption band of the gas to be measured, and the spectral sensitivity of the non-selective infrared sensor is flat in the transmission wavelength band of the optical bandpass filter. The non-dispersive infrared gas analyzer according to claim 5 or 6, characterized in that
JP33405793A 1993-01-08 1993-12-28 Non-dispersive infrared gas analyzer Expired - Fee Related JP3261842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33405793A JP3261842B2 (en) 1993-01-08 1993-12-28 Non-dispersive infrared gas analyzer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP144093 1993-01-08
JP5-1440 1993-10-06
JP5-249612 1993-10-06
JP24961293 1993-10-06
JP33405793A JP3261842B2 (en) 1993-01-08 1993-12-28 Non-dispersive infrared gas analyzer

Publications (2)

Publication Number Publication Date
JPH07151685A true JPH07151685A (en) 1995-06-16
JP3261842B2 JP3261842B2 (en) 2002-03-04

Family

ID=27274920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33405793A Expired - Fee Related JP3261842B2 (en) 1993-01-08 1993-12-28 Non-dispersive infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP3261842B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122007A (en) * 2007-11-16 2009-06-04 Institute Of Physical & Chemical Research Apparatus and method for measuring moisture content of sample slice
JP2015102439A (en) * 2013-11-26 2015-06-04 トヨタ自動車株式会社 Film thickness measurement device
KR20160038314A (en) * 2014-09-30 2016-04-07 전자부품연구원 System for detecting noxious gas with uncooled type using ip
KR101714651B1 (en) * 2015-11-16 2017-03-09 건국대학교 산학협력단 Plate type NDIR gas analyzer
KR101714731B1 (en) * 2015-11-16 2017-03-09 건국대학교 산학협력단 Compact type NDIR gas analyzer
WO2017086555A1 (en) * 2015-11-16 2017-05-26 건국대학교 산학협력단 Compact-type non-dispersive infrared gas analysis device
KR20180138561A (en) * 2018-11-09 2018-12-31 건국대학교 산학협력단 Exhausting Gas Analysis Device With A Thermal Desorption Portion And A NDIR Portion And Analysis Method Thereof
KR102368844B1 (en) * 2020-10-29 2022-03-02 우성이엔디주식회사 How to measure scrubber combustion efficiency

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122007A (en) * 2007-11-16 2009-06-04 Institute Of Physical & Chemical Research Apparatus and method for measuring moisture content of sample slice
JP2015102439A (en) * 2013-11-26 2015-06-04 トヨタ自動車株式会社 Film thickness measurement device
KR20160038314A (en) * 2014-09-30 2016-04-07 전자부품연구원 System for detecting noxious gas with uncooled type using ip
KR101714651B1 (en) * 2015-11-16 2017-03-09 건국대학교 산학협력단 Plate type NDIR gas analyzer
KR101714731B1 (en) * 2015-11-16 2017-03-09 건국대학교 산학협력단 Compact type NDIR gas analyzer
WO2017086555A1 (en) * 2015-11-16 2017-05-26 건국대학교 산학협력단 Compact-type non-dispersive infrared gas analysis device
KR20180138561A (en) * 2018-11-09 2018-12-31 건국대학교 산학협력단 Exhausting Gas Analysis Device With A Thermal Desorption Portion And A NDIR Portion And Analysis Method Thereof
KR102368844B1 (en) * 2020-10-29 2022-03-02 우성이엔디주식회사 How to measure scrubber combustion efficiency

Also Published As

Publication number Publication date
JP3261842B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US3793525A (en) Dual cell non-dispersive gas analyzer
US4829183A (en) Dual sample cell gas analyzer
CA1254281A (en) Method and apparatus for the detection and measurement of gases
JPH0255741B2 (en)
EP0732580A2 (en) Apparatus for automatic identification of gas samples
JPH0231820B2 (en)
US3968367A (en) Filter system for infrared analysis
US4193694A (en) Photosensitive color monitoring device and method of measurement of concentration of a colored component in a fluid
JP2903457B2 (en) Gas analyzer and gas analyzer
JPH102857A (en) Analysis of gas mixture by infrared method
US5429805A (en) Non-dispersive infrared gas analyzer including gas-filled radiation source
JP4790949B2 (en) Analysis equipment
KR100897279B1 (en) NDIR gas analyzer and gas analyzing method using the same
KR20060120700A (en) Device and method of trace gas analysis using cavity ring-down spectroscopy
JP3261842B2 (en) Non-dispersive infrared gas analyzer
US6528791B1 (en) Infrared spectrophotometer employing sweep diffraction grating
US3091690A (en) Two path infrared gas analyzer having one enclosed path
WO2005038436A2 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
US2673297A (en) Analyzing and control device
WO2007121593A1 (en) Method for measurement and determination of concentration within a mixed medium
JP2009257808A (en) Infrared gas analyzer
JPH08247942A (en) Infrared ray gas analyzer
US3622243A (en) Light scattering spectrophotometer with vibrating exit slip
JPH0414298B2 (en)
JP2001194297A (en) Method and apparatus for measuring environment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees