JP2882824B2 - Fruit and vegetable ingredient measuring device - Google Patents

Fruit and vegetable ingredient measuring device

Info

Publication number
JP2882824B2
JP2882824B2 JP1297700A JP29770089A JP2882824B2 JP 2882824 B2 JP2882824 B2 JP 2882824B2 JP 1297700 A JP1297700 A JP 1297700A JP 29770089 A JP29770089 A JP 29770089A JP 2882824 B2 JP2882824 B2 JP 2882824B2
Authority
JP
Japan
Prior art keywords
light
fruits
vegetables
optical fiber
fruit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1297700A
Other languages
Japanese (ja)
Other versions
JPH03160344A (en
Inventor
健一 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1297700A priority Critical patent/JP2882824B2/en
Publication of JPH03160344A publication Critical patent/JPH03160344A/en
Application granted granted Critical
Publication of JP2882824B2 publication Critical patent/JP2882824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、選果機等に適用される青果物の成分測定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a component measuring device for fruits and vegetables applied to fruit sorting machines and the like.

〔従来の技術〕[Conventional technology]

従来の選果機等に適用される青果物の内容成分の測定
は、青果物の形状要素により成分を間接的に推定するも
の、あるいは、685nmの波長の光を用いてクロロフィル
(葉緑素)の濃度を測定し、熟度や糖度を間接的に判定
するものがあった。さらに従来の内容成分の測定として
は、回析格子型分析装置を用いるものがあった。この分
析装置は、スリットより回転している回折格子に光を当
て、分光した光を反対側のスリットから順次取り出す装
置であるが、本装置を用いた場合、青果物の内容成分を
直接かつ迅速に、例えば1秒間に数個の青果物を測定す
ることは困難であった。
For the measurement of the components of fruits and vegetables applied to conventional fruit sorters, the components are indirectly estimated by the shape elements of the fruits or vegetables, or the concentration of chlorophyll (chlorophyll) is measured using light with a wavelength of 685 nm. In some cases, the maturity and sugar content are determined indirectly. Further, there has been a conventional measurement of content components using a diffraction grating type analyzer. This analyzer irradiates the diffraction grating rotating from the slit with light, and sequentially extracts the separated light from the slit on the opposite side. For example, it was difficult to measure several fruits and vegetables per second.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の青果物等の内容成分の測定においては、回折格
子を回転し、各波長を分光する時には回折格子を止め、
又次の波長を分光する時には回転するといったように、
回転と制動をくり返すため、測定時間が長くなり、かつ
測定結果は光源、温度及び環境等の変化によって影響を
受けるため精度が悪かった。
In the conventional measurement of content components such as fruits and vegetables, the diffraction grating is rotated, and when spectrally separating each wavelength, the diffraction grating is stopped.
Also, when spectrally splitting the next wavelength,
Since the rotation and braking are repeated, the measurement time becomes longer, and the measurement result is affected by changes in the light source, temperature, environment, and the like, so that the accuracy is poor.

本発明は、青果物等の内容成分を近赤外線を用いて瞬
間に、精度よくかつ非破壊的に測定できる装置を提供し
ようとするものである。
An object of the present invention is to provide a device capable of measuring a content component such as fruits and vegetables instantly, accurately and non-destructively using near infrared rays.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の青果物の成分測定装置は、内部に投光部と集
光レンズを有し、内容成分が測定される青果物に当てら
れる遮へい物を先端部に設けられた測定ヘッド部、同測
定ヘッド部に一端が接続された一方の光ファイバの他端
より青果物の反射光を入光し内部に波長帯の異なる複数
の光に分光する回折格子を有する分光器、同分光器によ
り分光された波長帯の異なる光をそれぞれが入光する複
数の検出素子が配列されたディテクタアレイ、上記測定
ヘッド部に一端が接続された他方の光ファイバの他端よ
り可視光を通さない可視光フィルタを介して光源及び環
境等の変化による測定値の変動を補正するための参照光
を入光する受光素子、および上記ディテクタアレイと受
光素子より電気信号を入力して青果物の成分を測定する
演算部を備えたことを特徴としている。(2)本発明
は、上記発明(1)に記載の青果物の成分測定装置にお
いて、上記演算器は1784nm及び900nmの波長の光の吸光
度を求めて青果物の糖度を測定することを特徴としてい
る。
The component measuring device for fruits and vegetables of the present invention has a light projecting part and a condensing lens therein, and a measuring head unit provided with a shield applied to the fruits and vegetables whose contents are to be measured, provided at the tip, and the measuring head unit. A spectroscope having a diffraction grating that receives reflected light of fruits and vegetables from the other end of one optical fiber whose one end is connected to the inside and splits the reflected light into a plurality of lights having different wavelength bands, a wavelength band separated by the spectrometer A detector array in which a plurality of detection elements each receiving different light are arranged, and a light source through a visible light filter that does not transmit visible light from the other end of the other optical fiber having one end connected to the measurement head unit. And a light receiving element for inputting reference light for correcting a change in measured value due to a change in environment and the like, and an arithmetic unit for inputting an electric signal from the detector array and the light receiving element to measure a component of a fruit and vegetable. It is characterized. (2) The present invention provides the apparatus for measuring a component of fruits and vegetables according to the invention (1), wherein the computing unit measures the sugar content of the fruits and vegetables by determining the absorbance of light having wavelengths of 1784 nm and 900 nm.

〔作用〕[Action]

上記発明(1)において、内容成分が測定される青果
物に測定ヘッド部が当てられ、内部に設けられた投光部
が発光すると、青果物の内部で拡散反射し、その反射光
が集光レンズにより集光され、一方の光ファイバの一端
を照射する。同一方の光ファイバの一端に照射された反
射光は、光ファイバ中を通って他端より分光器内に入光
する。同分光器内では、反射光は波長の異る複数の光に
分光され、それぞれの波長帯の光はディテクタアレイの
それぞれの検出素子に入光し、それぞれの波長毎の光の
強さに応じた電気信号に変換される。
In the above invention (1), when the measuring head portion is applied to the fruit or vegetable whose content component is to be measured, and the light emitting portion provided inside emits light, the light is diffusely reflected inside the fruit and vegetable, and the reflected light is condensed by the condenser lens. It is focused and irradiates one end of one optical fiber. The reflected light applied to one end of the one optical fiber passes through the optical fiber and enters the spectroscope from the other end. In the spectroscope, the reflected light is split into a plurality of lights with different wavelengths, and the light in each wavelength band enters each detector element of the detector array, and depends on the intensity of light for each wavelength. Is converted to an electrical signal.

また、上記測定ヘッド部からは、他方の光ファイバ及
びフィルタを介して受光素子に参照光が入光され、電気
信号に変換される。上記それぞれの電気信号は演算部に
入力され、この演算部はディテクタアレイが出力したそ
れぞれの波長毎の電気信号について受光素子が出力した
電気信号により光源及び環境等の変化による変動を補正
した後、光の波長毎の吸収率を求め、光の吸収率が青果
物の成分の濃度に比例するため、上記吸収率より青果物
の成分の濃度を求める。
Further, reference light enters the light receiving element from the measurement head section via the other optical fiber and the filter, and is converted into an electric signal. Each of the electric signals is input to an arithmetic unit, and the arithmetic unit corrects a change due to a change in a light source, an environment, and the like by an electric signal output by the light receiving element with respect to an electric signal for each wavelength output by the detector array, The absorptance for each wavelength of light is determined, and since the absorptivity of light is proportional to the concentration of the components of the fruits and vegetables, the concentration of the components of the fruits and vegetables is determined from the above-described absorptivity.

本発明においては、ディテクタアレイを用いてそれぞ
れの波長毎の光の強さを一度に電気信号に変換してお
り、この変換された電気信号については光源及び環境等
の変化による変動の補正が行われているため、高精度で
高速の青果物の成分測定が行えるようになった。
In the present invention, the intensity of light for each wavelength is converted into an electric signal at a time using a detector array, and the converted electric signal is corrected for fluctuations due to changes in the light source, environment, and the like. As a result, it has become possible to measure ingredients of fruits and vegetables with high accuracy and high speed.

また、上記発明(2)は、実験を重ねた結果、1784n
m、及び900nmの波長の光の吸収率(吸光度)が青果物の
糖度と高い相関関係のあることを見出したことにより得
られたものであり、演算器がこれらの波長の吸光度を求
め、これらの吸光度より糖度を求めることにより、青果
物の糖度についての高精度の測定が上記発明(1)と同
様に効率的にできるようになった。
In addition, the above invention (2) shows that 1784n
m, and the absorbance of light at a wavelength of 900 nm (absorbance) was obtained by finding that there is a high correlation with the sugar content of fruits and vegetables, the calculator determines the absorbance at these wavelengths, By obtaining the sugar content from the absorbance, highly accurate measurement of the sugar content of the fruits and vegetables can be performed efficiently as in the above invention (1).

〔実施例〕〔Example〕

本発明の一実施例を第1図乃至第4図に示す。 One embodiment of the present invention is shown in FIGS.

第1図乃至第4図に示す本発明の一実施例は、内容成
分が測定される青果物2に当てられる測定ヘッド部1、
同測定ヘッド部1に一端が接続され他端にファイバ端5
を有する光ファイバ3、同光ファイバ3のファイバ端5
より青果物2の反射光を入光しミラー23と回折格子22を
有する分光器10、同分光器10より分光された波長帯の異
なる光をそれぞれ入光して電気信号に変換する100個以
上の検出素子(たとえばゲルマニウムあるいは硫化鉛よ
りなる)が配列されたディテクタアレイ11、同ディテク
タアレイ11が電流増幅器12及び微分演算処理器13を介し
て電線により接続された出力端子14、上記測定ヘッド部
1に一端が接続され他端にファイバ端4を有する光ファ
イバ3a、同光ファイバ3aのファイバ端4より可視光フィ
ルタ6を介して入光する受光素子7、同受光素子7が電
流増幅器8を介して電線により接続された出力端子9、
および上記出力端子9、14が接続された演算部24を備え
ている。上記測定ヘッド部1は、第2図に示すように青
果物2との接触部分にゴム製外乱光遮へい物20が設けら
れ、内部には青果物2による反射光を入光し内面が金メ
ッキされたフード17、同フード17の青果物2と接触する
一端に配設されたゴム製光遮へい物16、上記フード17の
他端に配設された集光レンズ15、同集光レンズ15を介し
て青果物2による反射光を受光し第3図に示すように配
設された光ファイバ3のファイバ端18、及び上記フード
17の外側に第4図に示すように配設された投光装置1aが
設けられている。
One embodiment of the present invention shown in FIGS. 1 to 4 is a measuring head unit 1 applied to a fruit or vegetable 2 whose content is to be measured.
One end is connected to the measuring head unit 1 and the other end is a fiber end 5.
Optical fiber 3 having an optical fiber, fiber end 5 of the optical fiber 3
A spectroscope 10 having a mirror 23 and a diffraction grating 22 which receives the reflected light of the fruits and vegetables 2 and more than 100 light beams having different wavelength bands which are split by the spectroscope 10 and converted into electric signals. A detector array 11 on which detection elements (for example, made of germanium or lead sulfide) are arranged; an output terminal 14 to which the detector array 11 is connected via a current amplifier 12 and a differential operation processor 13 by an electric wire; An optical fiber 3a having one end connected to the other end and a fiber end 4 at the other end, a light receiving element 7 which receives light from the fiber end 4 of the optical fiber 3a through a visible light filter 6, and the light receiving element 7 is connected through a current amplifier 8. Output terminals 9 connected by electric wires,
And an arithmetic unit 24 to which the output terminals 9 and 14 are connected. As shown in FIG. 2, the measuring head section 1 is provided with a rubber disturbance light shield 20 at a portion in contact with the fruits and vegetables 2 and receives a reflected light from the fruits and vegetables 2 therein, and has a gold-plated inner surface. 17, a rubber light shield 16 disposed at one end of the hood 17 which comes into contact with the fruits and vegetables 2, a condenser lens 15 disposed at the other end of the hood 17, and the fruits and vegetables 2 via the condenser lens 15 Fiber end 18 of the optical fiber 3 which receives the reflected light of the optical fiber 3 and is disposed as shown in FIG.
A light projecting device 1a arranged as shown in FIG.

上記において、投光装置1aより青果物2に当てられた
近赤外線は、青果物2の内部で拡散反射し、その光は内
面が金メッキされているフード17で反射し、集光レンズ
15により集められてファイバ端18に当てられる。
In the above, the near-infrared light applied to the fruits and vegetables 2 by the light projecting device 1a is diffused and reflected inside the fruits and vegetables 2, and the light is reflected by the hood 17 whose inner surface is plated with gold.
Collected by 15 and applied to fiber end 18.

上記ファイバ端18に当った光は、光ファイバ3中を経
てファイバ端5に至り、同ファイバ端5より分光器10内
に入光し、同分光器10の内部ではミラー23に反射した光
が回折格子22により複数の異なる波長帯の光に分光され
る。同回折格子22により分光された光は、上記分光器10
の出口に設置されたディテクタアレイ11に当てられディ
テクタアレイ11を構成する100個以上の検出素子がそれ
ぞれ異なる波長帯の光を入光し電気信号に変換する。
The light hitting the fiber end 18 reaches the fiber end 5 through the optical fiber 3, enters the spectroscope 10 from the fiber end 5, and the light reflected by the mirror 23 inside the spectroscope 10 is The light is split into a plurality of different wavelength bands by the diffraction grating 22. The light split by the diffraction grating 22 is transmitted to the spectroscope 10.
The detector array 11 placed at the exit of the detector array 11 receives light from different wavelength bands and converts the light into an electric signal.

上記電気信号は、電流増幅器12により増幅された後、
波長による光量の変化を明瞭にするため微分演算処理器
13により微分された出力端子14より出力される。
After the electric signal is amplified by the current amplifier 12,
Differential processing unit to clarify changes in light amount due to wavelength
The output from the output terminal 14 differentiated by 13 is output.

また、上記測定ヘッド部1からは、光源の出力の変化
及び青果物の位置の変化等についての補正を行なうため
の参照光が光ファイバ3aにより取り出され、ファイバ端
子4より可視光フィルタ6を通して受光素子7に導かれ
光電変換される。同光電変換された電気信号は、電流増
幅器8により増幅されて出力端子9に導かれる。上記出
力端子14,9よりそれぞれ出力された電気信号A,Bは、演
算部24に入力される。
From the measuring head unit 1, reference light for correcting a change in the output of the light source and a change in the position of the fruits and vegetables is extracted by the optical fiber 3a. 7 and photoelectrically converted. The electric signal subjected to the photoelectric conversion is amplified by a current amplifier 8 and guided to an output terminal 9. The electric signals A and B output from the output terminals 14 and 9 are input to the calculation unit 24.

上記演算部24においては、次式により波長帯毎に吸収
率αが求められる 吸収率α=ln A/B 上記吸収率αはεCx(こゝでε;吸光係数、Cx;吸収物
質の濃度)に比例するため、上記波長帯毎の吸収率αよ
り青果物の成分とその濃度Cxが求められる。
In the calculation unit 24, the absorption rate α is obtained for each wavelength band by the following equation: Absorption rate α = ln A / B Absorption rate α is εCx (here, ε; extinction coefficient, Cx; concentration of absorbing substance) Therefore, the components of vegetables and fruits and the concentration Cx thereof are obtained from the absorption rate α for each wavelength band.

次に本実施例の装置を用いて行った試験の結果につい
て説明する。本実施例の装置を用いて、600nmより2500n
mまでの波長につき桃の糖度と吸光度との関係を求めた
結果、1784nmの場合には、吸光度より計算した糖度はBr
ixで測定した糖度に対する誤差が0.50%糖度で重相関係
は0.95であった。また、その他の糖度と相関の高い波長
を試験した結果、1148nm、900nm及び845nmについても同
様の結果が得られたため、これらの波長の光の吸収率を
用いることによって高い精度で糖度の測定ができること
が判った。上記糖度の測定に要した時間は、1個0.1秒
であった。上記の試験結果に対して、回折格子を回転さ
せる従来の方式の場合は、1波長毎に回折格子を回転さ
せて分光するので、たとえば600nmから2500nmまで1900n
mについて2nm毎に分光すると、1900/2=950波長につい
て回折格子を動かしては止めるという動作を繰返すこと
になり、動かして止める時間が約0.1秒程度、実際の計
測時間は0.1秒程度であり、1波長について0.19秒要す
るため、通常3分程度必要であった。また、従来の装置
の場合、回折格子を動かして止めるという動作を必要と
するため、波長再現性が悪く、その結果、吸光度より計
算した糖度はBrix計で測定した糖度に対する誤差が1.0
%糖度、相関関係は0.8であった。上記により、青果物
の反射光が多数の波長帯の光に分光され波長帯毎に多数
の検出素子によりなるディテクタアレイによって電気信
号に変換されるため、従来の装置では1個当り3分の測
定時間を要していた青果物の成分測定が瞬時に高精度で
測定することができるようになった。
Next, the results of tests performed using the apparatus of the present embodiment will be described. Using the apparatus of this embodiment, from 600 nm to 2500n
As a result of determining the relationship between the sugar content of peach and the absorbance for wavelengths up to m, in the case of 1784 nm, the sugar content calculated from the absorbance was Br
The difference from the sugar content measured in ix was 0.50% sugar content, and the heavy phase relationship was 0.95. In addition, as a result of testing other wavelengths having a high correlation with the sugar content, similar results were obtained for 1148 nm, 900 nm, and 845 nm.Thus, it is possible to measure the sugar content with high accuracy by using the absorptivity of light at these wavelengths. I understood. The time required for measuring the sugar content was 0.1 second per piece. In contrast to the above test results, in the case of the conventional method in which the diffraction grating is rotated, the diffraction grating is rotated for each wavelength and the light is separated, so that, for example, 1900 nm from 600 nm to 2500 nm.
When spectroscopy is performed at every 2 nm for m, the operation of moving and stopping the diffraction grating for 1900/2 = 950 wavelengths is repeated, and the time to move and stop is about 0.1 second, and the actual measurement time is about 0.1 second. 0.19 seconds for one wavelength, which usually required about 3 minutes. Further, in the case of the conventional apparatus, since the operation of moving and stopping the diffraction grating is required, the wavelength reproducibility is poor. As a result, the sugar content calculated from the absorbance has an error of 1.0 relative to the sugar content measured by the Brix meter.
The percent sugar content and the correlation were 0.8. According to the above, the reflected light of fruits and vegetables is split into light of a number of wavelength bands and converted into an electric signal by a detector array including a number of detection elements for each wavelength band. The component measurement of fruits and vegetables, which required, can be measured instantaneously and with high accuracy.

本発明の他の実施例を第5図に示す。 FIG. 5 shows another embodiment of the present invention.

第5図に示す本実施例は、第2図に示す上記一実施例
の測定ヘッド部1を改良したものであり、投光装置1aは
測定ヘッド部外に設けられ、投光装置1aより出た光は集
光レンズ15を貫通する光ファイバ21の端部より青果物2
に当てられる。青果物2の内部で拡散反射された光は集
光レンズ15及び集光レンズ19により集められ、ファイバ
端18に当てられる。ファイバ端18及び光ファイバ3を通
った光は、参照光ファイバ端4及び分光器側のファイバ
端5に導かれるものである。
The present embodiment shown in FIG. 5 is a modification of the measuring head unit 1 of the above-described embodiment shown in FIG. 2, and the light projecting device 1a is provided outside the measuring head unit and emits light from the light projecting device 1a. The light from the end of the optical fiber 21 passing through the condenser lens 15 is
It is applied to. The light diffusely reflected inside the fruits and vegetables 2 is collected by the condenser lens 15 and the condenser lens 19 and applied to the fiber end 18. The light passing through the fiber end 18 and the optical fiber 3 is guided to the reference optical fiber end 4 and the fiber end 5 on the spectroscope side.

本実施例の場合には、投光装置1aが測定ヘッド部の外
に設けられるため、第2図に示す測定ヘッド部に比べて
コンパクトなものとすることができる。
In the case of the present embodiment, since the light projecting device 1a is provided outside the measuring head unit, it can be made more compact than the measuring head unit shown in FIG.

なお上記実施例の装置は、CH2,CH3,OH,NH等の官能基
の成分分析ができるため、青果物以外のこれらの官能基
を含む食品の成分分析にも適用することができる。
Since the apparatus of the above embodiment can analyze the components of functional groups such as CH 2 , CH 3 , OH and NH, it can also be applied to the analysis of components of foods other than fruits and vegetables that contain these functional groups.

〔発明の効果〕〔The invention's effect〕

本発明の青果物の成分測定装置は、内部に投光部を有
する測定ヘッド部が青果物に光を照射し、その反射光を
光ファイバを介して分光器に入光し、同分光器内に設け
られた回折格子が波長の異なる複数の光に分光し、それ
ぞれの波長帯の光がディテクタアレイのそれぞれの検出
素子に入光して光電変換され、この電気信号が可視光フ
ィルタを通過し受光素子により光電変換された参照光の
電気信号と共に演算部に入力されることによって、従来
の装置においては、1個当り3分の測定時間を要してい
た青果物の成分測定が瞬時に高精度で行えるようになっ
た。
In the fruit and vegetable component measuring device of the present invention, a measuring head having a light projecting section irradiates the fruit and vegetable with light, and the reflected light enters a spectroscope via an optical fiber and is provided in the spectroscope. The diffraction grating splits the light into a plurality of lights having different wavelengths, and the light in each wavelength band enters each detection element of the detector array and is photoelectrically converted, and the electric signal passes through the visible light filter and is received by the light receiving element. Is input to the arithmetic unit together with the electric signal of the reference light photoelectrically converted by the method described above, and in the conventional apparatus, the component measurement of fruits and vegetables can be instantaneously and accurately performed, which required a measurement time of 3 minutes per piece. It became so.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の説明図、第2図は上記一実
施例の測定ヘッド部の説明図、第3図は第2図のIII−I
II矢視図、第4図は第2図のIV−IV矢視図、第5図は本
発明の他の実施例の説明図である。 1……測定ヘッド部、1a……投光装置、 2……青果物、3,3a……光ファイバ、 4……ファイバ端、5……ファイバ端、 6……可視光フィルタ、7……受光素子、 8……電流増幅器、9……出力端子、 10……分光器、11……ディテクタアレイ、 12……電流増幅器、13……微分演算処理器、 14……出力端子、15……集光レンズ、 16……ゴム製光遮へい物、17……フード、 18……ファイバ端、19……集光レンズ、 20……ゴム製外乱光遮へい物、 21……光ファイバ、22……回折格子、 23……ミラー、24……演算部。
FIG. 1 is an explanatory view of an embodiment of the present invention, FIG. 2 is an explanatory view of a measuring head unit of the above-described embodiment, and FIG. 3 is III-I of FIG.
FIG. 4 is a view taken in the direction of the arrows IV-IV in FIG. 2, and FIG. 4 is an explanatory view of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Measurement head part, 1a ... Light emitting device, 2 ... Fruits, 3,3a ... Optical fiber, 4 ... Fiber end, 5 ... Fiber end, 6 ... Visible light filter, 7 ... Reception Element 8 Current amplifier 9 Output terminal 10 Spectroscope 11 Detector array 12 Current amplifier 13 Differential processing unit 14 Output terminal 15 Collection Optical lens, 16: Rubber light shield, 17: Hood, 18: Fiber end, 19: Condensing lens, 20: Rubber disturbance light shield, 21: Optical fiber, 22: Diffraction Lattice, 23 Mirror, 24 Calculator.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部に投光部と集光レンズを有し、内容成
分が測定される青果物に当接される遮へい物を先端部に
設けられた測定ヘッド部、同測定ヘッド部に一端が接続
された一方の光ファイバの他端より青果物の反射光を入
光し内部に波長帯の異なる複数の光に分光する回析格子
を有する分光器、同分光器により分光された波長帯の異
なる光をそれぞれが入光する複数の検出素子が配列され
たディテクタアレイ、上記測定ヘッド部に一端が接続さ
れた他方の光ファイバの他端より可視光を通さない可視
光フィルタを介して光源及び環境等の変化による測定値
の変動を補正するための参照光を入光する受光素子、お
よび上記ディテクタアレイと受光素子より電気信号を入
力して青果物の成分を測定する演算部を備えたことを特
徴とする青果物の成分測定装置。
1. A measuring head part having a light projecting part and a condensing lens therein, and a shield provided at a tip end thereof, which is brought into contact with fruits and vegetables whose contents are to be measured. A spectroscope that has a diffraction grating that receives reflected light of fruits and vegetables from the other end of one connected optical fiber and splits it into a plurality of lights with different wavelength bands inside, and different wavelength bands separated by the same spectrometer A detector array in which a plurality of detection elements each of which receives light are arranged; a light source and an environment through a visible light filter that does not transmit visible light from the other end of the other optical fiber having one end connected to the measurement head unit; A light receiving element for inputting reference light for correcting a change in measured value due to a change in the light receiving element, and an arithmetic unit for inputting an electric signal from the detector array and the light receiving element and measuring a component of fruits and vegetables. Of fruits and vegetables Minute measurement device.
【請求項2】特許請求の範囲(1)に記載の青果物の成
分測定装置において、上記演算器は1784nm及び900nmの
波長の光の吸光度を求めて青果物の糖度を測定すること
を特徴とする青果物の成分測定装置。
2. The fruit and vegetable component measuring apparatus according to claim 1, wherein said arithmetic unit determines the sugar content of the fruit and vegetable by measuring the absorbance of light having wavelengths of 1784 nm and 900 nm. Component measuring device.
JP1297700A 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device Expired - Lifetime JP2882824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297700A JP2882824B2 (en) 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297700A JP2882824B2 (en) 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device

Publications (2)

Publication Number Publication Date
JPH03160344A JPH03160344A (en) 1991-07-10
JP2882824B2 true JP2882824B2 (en) 1999-04-12

Family

ID=17850031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297700A Expired - Lifetime JP2882824B2 (en) 1989-11-17 1989-11-17 Fruit and vegetable ingredient measuring device

Country Status (1)

Country Link
JP (1) JP2882824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190003963A1 (en) * 2016-09-06 2019-01-03 Atago Co., Ltd. Nondestructive measurement apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249628B2 (en) * 1993-03-31 2002-01-21 株式会社果実非破壊品質研究所 Light transmission detector for internal quality inspection of fruits and vegetables
CA2179338C (en) * 1995-08-07 2000-04-25 Gordon Albert Thomas Apparatus and method for spectroscopic product recognition and identification
JP4218149B2 (en) * 1999-09-17 2009-02-04 財団法人雑賀技術研究所 Fruit and vegetable quality measuring device
JP4589808B2 (en) * 2005-06-03 2010-12-01 ヤンマー株式会社 Non-destructive pesticide residue analyzer
US9599507B2 (en) * 2013-02-05 2017-03-21 Rafal Pawluczyk Fiber optic probe for remote spectroscopy
KR101690073B1 (en) * 2015-12-28 2016-12-27 (주)해아림 The Apparatus of Spectroscopic Analysis with compact structure
TWI586957B (en) * 2016-06-24 2017-06-11 諾貝爾生物有限公司 Multi-channel fluorescene detecting system and method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168145A (en) * 1980-05-29 1981-12-24 Ishikawajima Harima Heavy Ind Co Ltd Multichannel radiation flux measuring device
DE3701721A1 (en) * 1987-01-22 1988-08-04 Zeiss Carl Fa REMISSION MEASURING DEVICE FOR CONTACTLESS MEASUREMENT
JPS6428544A (en) * 1987-07-23 1989-01-31 Mitsui Mining & Smelting Co Method and apparatus for measuring quality of fruit
JPH07117490B2 (en) * 1988-02-25 1995-12-18 農林水産省食品総合研究所長 Non-destructive method for determining the taste of fruits and vegetables by near infrared rays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190003963A1 (en) * 2016-09-06 2019-01-03 Atago Co., Ltd. Nondestructive measurement apparatus
US11099127B2 (en) * 2016-09-06 2021-08-24 Atago Co., Ltd. Nondestructive measurement apparatus

Also Published As

Publication number Publication date
JPH03160344A (en) 1991-07-10

Similar Documents

Publication Publication Date Title
US4054389A (en) Spectrophotometer with photodiode array
JP3526652B2 (en) Optical measuring method and optical measuring device
WO2001069191A1 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
JPH04297854A (en) Correction method of photoabsorption spectrum and spectroscopic measuring apparatus of photodiffusive substance using the same
JP2882824B2 (en) Fruit and vegetable ingredient measuring device
FI90592B (en) IR spectrometric analysis method and IR spectrometer
KR20060120046A (en) Spectrophotometer
JP2009168747A (en) Method of inspecting food and inspection apparatus implementing the same
JPH04104041A (en) Method and apparatus for measuring quality of vegetable and fruit
JPWO2013133171A1 (en) Seed sorting method and seed sorting device
JPH06213804A (en) Method and apparatus for measuring percentage sugar content
KR19990029895A (en) Concentration measuring device and measuring method of specific ingredient
Sharma et al. Application of a Vis-NIR spectroscopic technique to measure the total soluble solids content of intact mangoes in motion on a belt conveyor
US3218914A (en) Single beam frequency modulated dispersive analyzer
JPH02147940A (en) Component measuring apparatus for vegetable
US3211051A (en) Optical measuring device for obtaining a first derivative of intensity with respect to wavelength
JPH0763616A (en) Measuring method for temperature of inner section of fruit or vegetable
JPH1144638A (en) Method for measuring fruit sugar level and fruit sugar level meter
JPH0763674A (en) Measuring method of sugar content of vegetables or fruits
JP2989459B2 (en) Spectrometer
JP3521500B2 (en) Temperature estimation method by near infrared spectroscopy
KR100205532B1 (en) Moisture measuring apparatus
JPS58111728A (en) Optical measuring device
Malinen et al. PbS-array based NIR spectrometer for analysing fast moving process streams
JPH0359443A (en) Device for spectrochemical analysis