JPH0359443A - Device for spectrochemical analysis - Google Patents

Device for spectrochemical analysis

Info

Publication number
JPH0359443A
JPH0359443A JP19576889A JP19576889A JPH0359443A JP H0359443 A JPH0359443 A JP H0359443A JP 19576889 A JP19576889 A JP 19576889A JP 19576889 A JP19576889 A JP 19576889A JP H0359443 A JPH0359443 A JP H0359443A
Authority
JP
Japan
Prior art keywords
light
light receiving
filter
wavelength
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19576889A
Other languages
Japanese (ja)
Inventor
Ryoji Suzuki
良治 鈴木
Masataka Shichiri
雅隆 七里
Masaaki Tsuchimoto
土本 正明
Hitoshi Ishibashi
石橋 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19576889A priority Critical patent/JPH0359443A/en
Publication of JPH0359443A publication Critical patent/JPH0359443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve working efficiency and to simplify a device by constituting a light receiving part of a spectroscope for dispersing optical paths and an optical sensor having resolving power in the optical path dispersion direction thereof in order of the wavelengths of light. CONSTITUTION:The light receiving part 5 is provided with a prism 7 as the spectroscope for dispersing the optical path and the optical sensor 9 having the resolving power in the optical path dispersion direction of the light transmitted through the prism 7 in order of the wavelengths of the light from a collimator 6. The light emitted from a light source 3 transmits an object F to be measured and a filter 4 and is made incident through the collimator 6, the prism 7 and a lens system 8 on the sensor 9. The filter 4 having the peak transmission wavelength lambdao at about 685 nm is selected in the case of identification of the chlorophyll having a correlative relation with the sugar content of an object (fruit) F to be measured. The photodetector S0 of the sensor 9 corresponding to the wavelength lambdao can be identified by detecting the detector having the max. light receiving intensity. The photodetectors S1, S2 in the positions apart by a prescribed distance forward/backward from the detector S0 are selected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定物に光を照射する投光部と、狭帯域透
過特性を有するフィルタと、前記被測定物と前記フィル
タとを透過した光を受光する受光部とからなる分光分析
装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention includes a light projector that irradiates light onto an object to be measured, a filter having a narrow band transmission characteristic, and a filter that transmits light through the object to be measured and the filter. The present invention relates to a spectroscopic analyzer comprising a light receiving section that receives the light.

〔従来の技術〕[Conventional technology]

分光分析装置の工業的用途として、例えば、果実の熟度
選別等がある。このような用途に使用される分析装置は
、簡素且つ安価であることが望ましい。
Industrial applications of spectroscopic analyzers include, for example, sorting the ripeness of fruits. It is desirable that an analysis device used for such a purpose be simple and inexpensive.

そこで、光を被測定物に照射し、その透過光の特定の波
長におけるスペクトルの吸収を利用して成分の分析判定
を行うことが考えられる。
Therefore, it is conceivable to irradiate the object to be measured with light and use the absorption of the spectrum at a specific wavelength of the transmitted light to analyze and determine the components.

このとき各部の経時変化等による誤差を防止するため、
その特定波長におけるスペクトル強度の傾き(以下、ス
ペクトル微分値という)に基づいて、成分分析を行うこ
とがある。
At this time, in order to prevent errors due to changes in each part over time,
Component analysis may be performed based on the slope of the spectral intensity at the specific wavelength (hereinafter referred to as spectral differential value).

従来、簡易にスペクトル微分値を得る構成として、下記
のようなものがあった。
Conventionally, there have been the following configurations for easily obtaining spectral differential values.

つまり、特定波長近辺の異なる波長に夫々ピーク透過特
性を有する狭帯域フィルタを複数用意し、順次フィルタ
を交換しながら各フィルタのピーク波長におけるスペク
トル強度を単一の受光素子で検出するようにしていた。
In other words, multiple narrowband filters each having peak transmission characteristics at different wavelengths near a specific wavelength were prepared, and the spectral intensity at the peak wavelength of each filter was detected by a single photodetector while sequentially replacing the filters. .

そして、各波長でのスペクトル強度に基づいて、スペク
トル微分値を得るようにしていた。
Then, a spectral differential value was obtained based on the spectral intensity at each wavelength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、次のような欠点があった。 The above conventional technology has the following drawbacks.

つまり、順次フィルタを交換しながら測定せねばならな
いので測定作業を迅速に行うことができず作業効率を高
くすることができない。
In other words, since measurements must be made while sequentially replacing filters, measurement work cannot be carried out quickly and work efficiency cannot be increased.

又、近接した波長にピーク透過特性を有する複数のフィ
ルタを準備せねばならない。
Furthermore, it is necessary to prepare a plurality of filters having peak transmission characteristics at adjacent wavelengths.

本発明の目的は、上記従来欠点を解消して、一つのフィ
ルタを用いることによって、高能率にスペクトル微分値
を得ることができる分光分析装置を得る点にある。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to obtain a spectroscopic analyzer that can obtain spectral differential values with high efficiency by using one filter.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明による分光分析装置の
特徴構成は、前記受光部が、光の波長の順に光路を分散
させる分光器と、その光路分散方向に分解能を有する光
センサとから構成されていることである。
In order to achieve this object, the spectroscopic analyzer according to the present invention has a characteristic configuration in which the light receiving section is composed of a spectrometer that disperses the optical path in the order of the wavelength of the light, and an optical sensor that has resolution in the direction of the optical path dispersion. This is what is happening.

〔作 用〕[For production]

分光器のスペクトル結像面にフォトダイオードアレイ等
の複数受光素子を有する光センサを配設することにより
、被測定物の透過光のスペクトル分布を検出することが
可能となる。
By arranging an optical sensor having a plurality of light receiving elements such as a photodiode array on the spectral imaging plane of the spectrometer, it becomes possible to detect the spectral distribution of the transmitted light of the object to be measured.

フィルタのピーク透過波長に対応する光センサの受光素
子は、受光強度が最大の素子を検出することにより容易
に特定できる。
The light receiving element of the optical sensor corresponding to the peak transmission wavelength of the filter can be easily identified by detecting the element with the highest received light intensity.

そこで、ピーク透過波長での受光強度と、その波長に近
接した波長での受光強度に基づいて、ピーク透過波長に
おけるスペクトル微分値を得ることができる。
Therefore, the spectral differential value at the peak transmission wavelength can be obtained based on the received light intensity at the peak transmission wavelength and the received light intensity at a wavelength close to that wavelength.

〔発明の効果〕〔Effect of the invention〕

一つのフィルタを用いることにより、特定波長近辺の異
なる波長におけるスペクトル強度を同時に検出すること
ができるので作業効率の高い分光分析装置を得ることが
できる。
By using one filter, spectral intensities at different wavelengths around a specific wavelength can be detected simultaneously, so a spectroscopic analysis device with high working efficiency can be obtained.

又、光センサを構成する複数の受光素子のうちいずれの
素子を測定に使用するかを受光強度から特定できるので
装置の組付精度はそれほど高くなくても良い。その結果
、装置の簡素化を図ることができる。
Furthermore, since it is possible to identify which element among the plurality of light receiving elements constituting the optical sensor is to be used for measurement based on the received light intensity, the assembly accuracy of the apparatus does not need to be very high. As a result, the device can be simplified.

〔実施例〕〔Example〕

以下、本発明を糖度による果実選別に適用した実施例に
ついて図面に基づいて説明する。
Hereinafter, an example in which the present invention is applied to fruit sorting based on sugar content will be described based on the drawings.

第4図に示すように、果実(F)を搬送する搬送ライン
(L)に果実選別用の分光分析装置(1)が設けられ、
もって果実選別装置が構成されている。尚、分光分析装
置(1)には光電式の検出スイッチ(2)が付設され、
その検出スイッチ(2)が果実(F)を検出するに伴っ
て果実の選別動作を行うようになっている。
As shown in FIG. 4, a spectroscopic analyzer (1) for fruit sorting is installed on a conveyance line (L) that conveys fruits (F),
This constitutes a fruit sorting device. The spectrometer (1) is equipped with a photoelectric detection switch (2).
When the detection switch (2) detects a fruit (F), a fruit sorting operation is performed.

前記分光分析装置(1)について説明を加えると、第1
図に示すように、被測定物に光を照射する投光部(3)
、狭帯域透過特性を有する干渉フィルタ(4〉、及び、
被測定物と前記フィルタ(4)とを透過した光を受光す
る受光部(5)とからなる。
To further explain the spectroscopic analyzer (1), the first
As shown in the figure, a light projector (3) that irradiates light onto the object to be measured
, an interference filter (4) having narrow band transmission characteristics, and
It consists of a light receiving section (5) that receives the light transmitted through the object to be measured and the filter (4).

前記受光部(5)は、入射光を平行光線束として出力す
るコリメータ(6)、コリメータ(6)からの光を波長
の順に光路を分散させる分光器としてのプリズム(7)
、プリズム(7)によって分散された光を光センサ(9
)の受光面に結像させるレンズ系(8)及びプリズムを
透過した光の光路分散方向に分解能を有するように配設
された光センサとしてのフォトダイオードアレイ(9)
とからなる。
The light receiving section (5) includes a collimator (6) that outputs incident light as a parallel beam, and a prism (7) that serves as a spectrometer that disperses the optical path of the light from the collimator (6) in order of wavelength.
, the light dispersed by the prism (7) is sent to the optical sensor (9).
) and a photodiode array (9) as an optical sensor arranged to have resolution in the optical path dispersion direction of the light transmitted through the lens system (8) and the prism.
It consists of.

スペクトル微分値を得る手順について説明を加える。Add an explanation of the procedure for obtaining spectral differential values.

前記フィルタ(4)の透過率分布を第2図に示す。つま
り、被測定物がない状態における前記フィルタ(4)の
透過光も同様のスペクトル分布を示すことになる。尚、
果実(F)の糖度と相関関係にあるクロロフィルの濃度
は、685(nm)の波長の光と相関関係を持っている
。つまり、例えば、クロロフィルを同定したり、その濃
度を測定したりする場合には、ピーク透過波長(λO)
を685(nm)付近に持つフィルタ(4)を選択すれ
ばよい。
FIG. 2 shows the transmittance distribution of the filter (4). In other words, the light transmitted through the filter (4) in the absence of the object to be measured also exhibits a similar spectral distribution. still,
The concentration of chlorophyll, which has a correlation with the sugar content of fruit (F), has a correlation with light at a wavelength of 685 (nm). In other words, for example, when identifying chlorophyll or measuring its concentration, the peak transmission wavelength (λO)
It is sufficient to select a filter (4) having a value around 685 (nm).

又、そのピーク透過波長(λ0)に対応する光センサ(
9)の受光素子(So)は、受光強度が最大の素子を検
出することにより特定できる。
In addition, an optical sensor (
The light receiving element (So) in 9) can be identified by detecting the element with the highest received light intensity.

そして、その受光素子(So)から前後に夫々所定数離
れた位置の受光素子(31)、(St)を選択する。こ
れらの受光素子(31)、 (S2)は夫々ピーク透過
波長(A0)に近接した波長(A1)、(A2)に対応
しているものとする。
Then, light receiving elements (31) and (St) located at a predetermined number of distances from the light receiving element (So) are selected. It is assumed that these light receiving elements (31) and (S2) correspond to wavelengths (A1) and (A2) that are close to the peak transmission wavelength (A0), respectively.

スペクトル結像面、つまり、前記センサ(9)の受光面
におけるスペクトル分布の一例を第3図に示す。前記両
受光素子(Si)、(32)夫々の受光強度(AI)、
(A2)を検出することにより、前記両受光素子(St
)、 (S2)夫々におけるスペクトル強度を求めるこ
とができる。
FIG. 3 shows an example of the spectral distribution on the spectral imaging plane, that is, the light receiving surface of the sensor (9). both of the light receiving elements (Si), (32) the respective light receiving intensities (AI);
(A2), both the light receiving elements (St
), (S2) The spectral intensity in each can be determined.

そして、ピーク透過波長(A0)におけるスペクトル微
分値(D)を下記式 により近似的に求めることができる。
Then, the spectral differential value (D) at the peak transmission wavelength (A0) can be approximately determined by the following formula.

〔別実施例〕[Another example]

上記実施例では、ピーク透過波長(A0)に対応する受
光素子(So)から前後に所定数酸れた位置の受光素子
(Sl)、 (Sりの受光強度(AI)、 (Am)か
らスペクトル微分値を求めていたが、前記受光強度(A
I)、(Aりの一方とピーク透過波長(A0)における
受光強度(Ao)とからスペクトル微分値(D)を求め
てもよい。その場合、各波長(Ao)。
In the above example, the light receiving element (Sl) is located at a predetermined distance from the light receiving element (So) corresponding to the peak transmission wavelength (A0), the received light intensity (AI) of (S), and the spectrum from (Am) Although the differential value was calculated, the received light intensity (A
I), (A) and the received light intensity (Ao) at the peak transmission wavelength (A0) may be used to determine the spectral differential value (D). In that case, each wavelength (Ao).

(A1)におけるフィルタの透過率(KO)、(Kl)
により受光強度(Ao)、(AI)を補正することもで
きる。
Filter transmittance (KO), (Kl) in (A1)
It is also possible to correct the received light intensity (Ao) and (AI).

本発明は、果実に限らず、物質中の水分やたんばく質の
測定等、各種成分の同定や濃度測定に適用することがで
きる。
The present invention is applicable not only to fruits but also to the identification and concentration measurement of various components, such as the measurement of moisture and protein in substances.

上記実施例では、分光器としてプリズムを使用したが、
回折格子やファブリペロ−を用いる等各部の具体構成は
各種変更できる。
In the above embodiment, a prism was used as a spectrometer, but
The specific configuration of each part can be changed in various ways, such as using a diffraction grating or Fabry-Perot.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の分光分析装置の実施例を示し、第1図は
分光分析装置の構成図、第2図はフィルタの透過率分布
を示す説明図、第3図は光センサにおけるスペクトル分
布を示す説明図、第4図は果実選別装置の概略平面図で
ある。 (3)・・・・・・投光部、 (4)・・・・・・フィルタ、 (5)・・・ ・・・受光部、 (7)・・・・・・分光器、 (9)・・・・・・光センサ。
The drawings show an embodiment of the spectroscopic analyzer of the present invention, FIG. 1 is a block diagram of the spectroscopic analyzer, FIG. 2 is an explanatory diagram showing the transmittance distribution of the filter, and FIG. 3 is the spectral distribution in the optical sensor. The explanatory diagram, FIG. 4, is a schematic plan view of the fruit sorting device. (3)... Light emitter section, (4)... Filter, (5)... Light receiving section, (7)... Spectrometer, (9 )... Light sensor.

Claims (1)

【特許請求の範囲】[Claims] 被測定物に光を照射する投光部(3)と、狭帯域透過特
性を有するフィルタ(4)と、前記被測定物と前記フィ
ルタ(4)とを透過した光を受光する受光部(5)とか
らなる分光分析装置であって、前記受光部(5)が、光
の波長の順に光路を分散させる分光器(7)と、その光
路分散方向に分解能を有する光センサ(9)とから構成
されている分光分析装置。
A light projecting section (3) that irradiates light onto the object to be measured, a filter (4) having narrow band transmission characteristics, and a light receiving section (5) that receives the light that has passed through the object to be measured and the filter (4). ), wherein the light receiving section (5) comprises a spectrometer (7) that disperses the optical path in the order of the wavelength of the light, and an optical sensor (9) that has resolution in the direction of the optical path dispersion. A spectrometer consisting of:
JP19576889A 1989-07-27 1989-07-27 Device for spectrochemical analysis Pending JPH0359443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19576889A JPH0359443A (en) 1989-07-27 1989-07-27 Device for spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19576889A JPH0359443A (en) 1989-07-27 1989-07-27 Device for spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPH0359443A true JPH0359443A (en) 1991-03-14

Family

ID=16346639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19576889A Pending JPH0359443A (en) 1989-07-27 1989-07-27 Device for spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPH0359443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171178A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Acquisition method of specimen data
JP2017211345A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Specific bromine-based flame retardant determination method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171178A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Acquisition method of specimen data
JP2017211345A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Specific bromine-based flame retardant determination method and device

Similar Documents

Publication Publication Date Title
US8049881B2 (en) Optical analysis system and methods for operating multivariate optical elements in a normal incidence orientation
EP1784624B1 (en) Calibration for spectroscopic analysis
US8345234B2 (en) Self calibration methods for optical analysis system
CA1082485A (en) Spectrophotometer with photodiode array
US6188476B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
EP1784625B1 (en) Autonomous calibration for optical analysis system
US7196789B2 (en) Light processor providing wavelength control and method for same
US5128549A (en) Stray radiation compensation
GB1583992A (en) Spectrometers
JPH1019885A (en) Concentration-measuring apparatus and method therefor
JP2903457B2 (en) Gas analyzer and gas analyzer
CA2070330C (en) High resolution spectroscopy system
EP0771417B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
ES2070883T3 (en) INFRARED SPECTROMETRIC ANALYSIS PROCEDURE AND MEANS.
US5977546A (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
JPH0359443A (en) Device for spectrochemical analysis
JPH03160344A (en) Device for measuring constitutions of vegetable and fruit
JPH10115583A (en) Spectrochemical analyzer
JPS6219945Y2 (en)
JPS6033378Y2 (en) Photometer for chromatographic detector
KR20010079209A (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JPH0210372B2 (en)
JPH04132938A (en) Spectral measuring device
JPS6029049B2 (en) Multi-channel dual wavelength spectrophotometer
JPH10185816A (en) Infrared analyzer