JPH0310603B2 - - Google Patents

Info

Publication number
JPH0310603B2
JPH0310603B2 JP57035195A JP3519582A JPH0310603B2 JP H0310603 B2 JPH0310603 B2 JP H0310603B2 JP 57035195 A JP57035195 A JP 57035195A JP 3519582 A JP3519582 A JP 3519582A JP H0310603 B2 JPH0310603 B2 JP H0310603B2
Authority
JP
Japan
Prior art keywords
inorganic oxide
particle size
paste
composite composition
dental composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57035195A
Other languages
Japanese (ja)
Other versions
JPS58152804A (en
Inventor
Shigeki Yuasa
Koji Kusumoto
Katsumi Suzuki
Hideki Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP57035195A priority Critical patent/JPS58152804A/en
Publication of JPS58152804A publication Critical patent/JPS58152804A/en
Publication of JPH0310603B2 publication Critical patent/JPH0310603B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は複合組成物特に歯科用として好適な複
合組成物に関する。さらに詳しくは、耐摩耗性,
滑沢性に優れなおかつ表面硬度が高く表面研摩仕
上げの容易な複合組成物を提供するものである。 現在、複合組成物例えば歯科用複合修復材とし
ては重合収縮が比較的小さいとされているビスフ
エノールAグリシジルメタアクリレート(ビスフ
エノールAとグリシジルメタクリレートの付加生
成物、以下Bis−GMAと略す。)を主成分とする
アクリル系モノマー液に粒径数+μmのガラスビ
ーズあるいは石英の粉砕物を大量に配合し、使用
時にさらに常温分解型の重合開始剤を添加して口
腔内で重合硬化させるものが一般的に用いられて
いる。 上記の如き修復材は光学的に透明な無機粉体を
充填材として用いているため、アクリル系のポリ
マーと同モノマーからなるレジン系修復材と比較
して重合時の収縮および透明性に於いて劣ること
なく、さらに線膨張係数と機械的強度に優れた性
質を有する点で特徴があり、広く臨床医に愛用さ
れている。しかし、機械的強度,耐摩耗性,表面
の滑沢性,および表面硬度の点で自然歯に比べる
とはるかに劣り、さらに改良すべき点を有してい
る。 本発明者らは上述の如き諸々の欠点を改良すべ
く、特に無機充填材について鋭意研究を重ねた。
その結果、無機充填材の粒径が適当な範囲にあ
り、しかも粒子径の分布が均一な球状粒子を組み
合せて用いることにより機械的強度および耐摩耗
性が改善され、表面の滑沢性が向上する事を見い
出した。さらに驚くべきことに、粒子径のそろつ
た球状粒子を用いることにより、公知の充填材例
えば超微粒子状の充填剤を用いたものに比べ高い
表面硬度を有し、その上に修復後の表面研磨仕上
げが非常にやりやすく、しかも滑らかな光沢のあ
る表面を容易に得ることが出来る等の種々の予想
外の効果が発揮出来るのである。 即ち本発明は粒子径が0.1〜1.0μmの範囲にある
球形状の無機酸化物で、平均粒子径が異なる少く
とも2つの群からなる混合無機酸化物と重合可能
なビニルモノマーとよりなる複合組成物である。 本発明の歯科用複合組成物の1成分は重合可能
なビニルモノマーである。該ビニルモノマーは特
に限定的ではなく、重合が可能であればいかなる
ものも使用出来る。例えば一般に歯科用修復材と
して使用されている公知なものが使用出来る。該
ビニルモノマーとして最も代表的なものはアクリ
ル基及び/又はメタクリル基を有する重合可能な
ビニルモノマーである。具体的に上記アクリル基
及び/又はメタクリル基を有するビニルモノマー
について例示すると例えばビスフエノールAジグ
リシジルメタクリレート,メチルメタクリレー
ト,ビスメタクリロエトキシフエニルプロパン,
トリエチレングリコールジメタクリレート,ジエ
チレングリコールジメタクリレート,テトラメチ
ロールトリアクリレート,テトラメチロールメタ
ントリメタクリレート,トリメチールエタントリ
メタクリレート等が好適である。また下記構造式
で示されるウレタン構造を有するビニルモノマー
も好適に使用される。 但し上記式中、R1,R2,R3,及びR4は同種又
は異種のH又はCH3で、(―A)―は(―CH2)―6
The present invention relates to a composite composition, particularly a composite composition suitable for dental use. For more details, see wear resistance,
The object of the present invention is to provide a composite composition that has excellent lubricity, high surface hardness, and is easy to polish. Currently, bisphenol A glycidyl methacrylate (addition product of bisphenol A and glycidyl methacrylate, hereinafter abbreviated as Bis-GMA), which is said to have relatively small polymerization shrinkage, is used as a composite composition, such as a dental composite restorative material. Generally, a large amount of glass beads or pulverized quartz with a particle diameter of several micrometers is mixed with the acrylic monomer liquid as the main component, and a polymerization initiator that decomposes at room temperature is added to polymerize and harden in the oral cavity. It is used in many ways. Because the above-mentioned restorative materials use optically transparent inorganic powder as a filler, they suffer from shrinkage and transparency during polymerization compared to resin-based restorative materials made of acrylic polymer and the same monomer. It is characterized by its excellent linear expansion coefficient and mechanical strength, and is widely used by clinicians. However, they are far inferior to natural teeth in terms of mechanical strength, wear resistance, surface smoothness, and surface hardness, and there are still points that need to be improved. In order to improve the various drawbacks mentioned above, the present inventors have conducted extensive research, especially regarding inorganic fillers.
As a result, mechanical strength and abrasion resistance are improved, and the surface smoothness is improved by using a combination of spherical particles with an inorganic filler particle size within an appropriate range and a uniform particle size distribution. I found something to do. Furthermore, surprisingly, by using spherical particles of uniform particle size, the surface hardness is higher than that of known fillers, such as those using ultrafine particle fillers. It is very easy to finish, and it can produce a variety of unexpected effects, such as being able to easily obtain a smooth, glossy surface. That is, the present invention is a spherical inorganic oxide with a particle size in the range of 0.1 to 1.0 μm, and a composite composition consisting of a mixed inorganic oxide consisting of at least two groups with different average particle sizes and a polymerizable vinyl monomer. It is a thing. One component of the dental composite composition of the present invention is a polymerizable vinyl monomer. The vinyl monomer is not particularly limited, and any vinyl monomer can be used as long as it can be polymerized. For example, known materials commonly used as dental restorative materials can be used. The most typical vinyl monomer is a polymerizable vinyl monomer having an acrylic group and/or a methacrylic group. Specific examples of vinyl monomers having acrylic and/or methacrylic groups include bisphenol A diglycidyl methacrylate, methyl methacrylate, bismethacryloethoxyphenylpropane,
Preferred are triethylene glycol dimethacrylate, diethylene glycol dimethacrylate, tetramethylol triacrylate, tetramethylolmethane trimethacrylate, trimethylethane trimethacrylate, and the like. Also preferably used is a vinyl monomer having a urethane structure represented by the following structural formula. However, in the above formula, R 1 , R 2 , R 3 , and R 4 are the same or different H or CH 3 , and (-A)- is (-CH 2 )- 6 ,

【式】又は[Formula] or

【式】が好適である。 これらのビニルモノマーは歯科用材料としては
公知なものであるので必要に応じて単独で或いは
混合して使用すればよい。 本発明の複合組成物の他の成分は無機酸化物で
ある。本発明で使用する無機酸化物は粒子径が
0.1〜1.0μmの範囲にある球状粒子である。上記粒
子径の範囲にある無機酸化物であれば特に限定さ
れず用いうる。一般に好適に使用される前記粒子
径の範囲にある無機酸化物を具体的に例示する
と、例えば非晶質シリカ;周期律表第族,同第
族,同第族および同第族からなる群から選
ばれた少くとも1種の金属成分と珪素成分とを主
な構成成分とする無機酸化物等である。 本発明で用いる無機酸化物は平均粒子径が異な
る少くとも2つの群からなる混合されたものであ
ることが必要である。該無機酸化物の混合物は同
種又は異なる種類の無機酸化物であつてもよく、
平均粒子径が異なる群は必ずしも2つの群だけで
なく3つの群或いはそれ以上の群になつていても
よい。また上記無機酸化物の粒子径の分布は特に
限定されないが本発明の目的をもつとも良好に発
揮するのは該分布の標準偏差値が1.30以内にある
ようなシヤープなものである。上記粒子径及び粒
子形状はいずれも非常に重要な要因となり、いず
れの条件が欠けても本発明の目的を達成すること
が出来ない。例えば無機酸化物の粒子径が0.1μm
より小さい場合には重合可能なビニルモノマーと
練和してペースト状の混合物とする際に粘度の上
昇が著しく、配合割合を増加させて粘度上昇を防
ごうとすれば操作性が悪化するので実質的に実用
に供する材料となり得ない。また該粒子径が
1.0μmより大きい場合は、ビニルモノマーを重合
硬化後の樹脂が耐摩耗性あるいは表面の滑沢性が
低下し、更に表面硬度も低下する等の欠陥がある
ため好ましくない。また該粒子径の分布の標準偏
差値が1.30より大きくなると複合組成物の操作性
が低下する場合もあるので一般的には該粒子径の
分布は標準偏差値が1.30以内のものを使用するの
が好ましい。更にまた無機酸化物が前記粒子径
0.1〜1.0μmの範囲で、粒子径の分布の標準偏差値
が1.30以内の粒子であつても、該粒子の形状が球
形状でなければ前記したような本発明の効果特に
耐摩耗性,表面の滑沢性,表面硬度等に於いて満
足のいくものとはなり得ない。 次に前記平均粒子径が異なる少くとも2つの群
からなる混合無機酸化物の粒子径の差は特に限定
されないが一般には2倍以上の差があるのが好ま
しい。また第1群の無機酸化物と第2群の無機酸
化物とよりなる混合無機酸化物における第1群の
無機酸化物と第2群の無機酸化物との混合割合は
粒子径の差によつても異なるが一般には重量で、
第1群の無機酸化物の方が第2群の無機酸化物よ
りも多い方が好ましく、第1群の無機酸化物の量
は第2群の無機酸化物の1.2〜10倍量の範囲が好
適である。さらに、粒子径範囲が0.1〜1.0μmでか
つ粒子径の標準偏差値が1.30以内である球形状の
無機酸化物で、その平均粒子径が第2群の無機酸
化物の平均粒子径のおよそ半分以下である第3群
の無機酸化物が上記混合無機酸化物に混在しても
よい。 本発明で使用する無機酸化物の製造方法につい
ては特に限定されず前記粒子径及び形状を有する
ものであれば、如何なる製法によつて得られたも
のであつてもよい。一般に工業的には珪酸エステ
ルの加水分解によつて製造する方法(無機材質研
究所報告書第14号第49頁〜第58頁(1977年))が
好適に採用される。又、加水分解可能な有機珪素
化合物と、加水分解可能な周期律表第族,第
族,第族,および第族の金属よりなる群から
選ばれた少なくとも1種の金属の有機化合物とを
含む混合溶液を該有機珪素化合物及び周期律表第
族,第族,第族および第族の金属の有機
化合物は溶解するが反応生成物は実質的に溶解し
ないアルカリ性溶媒中に添加し加水分解を行い反
応生成物を析出させて得る、周期律表第族,第
族,第族および第族の金属酸化物よりなる
群から選ばれた少なくとも1種の金属酸化物とシ
リカとを主な構成成分とする無機酸化物の製造方
法が好適に採用される。また一般に工業的に得ら
れる無機酸化物は表面安定性を保持するため表面
のシラノール基を減ずるのが好ましい。そのため
に球形状の無機酸化物を乾燥後更に500〜1000℃
の温度で焼成する手段がしばしば好適に採用され
る。該焼成に際しては無機酸化物の一部が焼結し
凝集する場合もあるので、通常は擂潰機,振動ボ
ールミル,ジエツト粉砕機等を用いて凝集粒子を
ときほぐすのが好ましい。また一般に前記焼成し
た無機酸化物は安定性を保持するため有機珪素化
合物を用いて表面処理を行つた後使用するのが最
も好適である。上記表面処理の方法は特に限定さ
れず公知の方法例えばシリカ粒子とγ−メタクリ
ロキシプロピルトリメトキシシラン,ビニルトリ
エトキシシラン等の公知の有機珪素化合物とを、
アルコール/水の混合溶媒中で一定時間接触させ
た後、該溶媒を除去する方法が採用される。 本発明で使用する無機酸化物の形状は顕微鏡写
真をとることにより、その粒子径,形状を確認す
ることが出来、粒子径の分布の標準偏差値は顕微
鏡写真の単位面積或いは顕微鏡の単位視野内に存
在する粒子の数とそれぞれの直径から、後述する
算出式によつて算出することが出来る。上記顕微
鏡写真は無機酸化物の粒子形状が観察出来るもの
であればどんなものでもよいが、一般には走査型
電子顕微鏡写真,透過型電子顕微鏡写真等が好適
である。また無機酸化物が他の液状物質例えば重
合可能なビニルモノマーと混合されペースト状混
合物となつている場合はあらかじめ適当な有機溶
媒を用いて液状物質を抽出除去した後、前記同様
な操作で無機酸化物の性状を調べるとよい。 本発明で使用する前記無機酸化物は前記したよ
うに球状粒子が使用されるが該球状であるかどう
かは上記顕微鏡の他に無機酸化物の比表面積を測
定することによつて確認することが出来る。例え
ば粒子径0.1〜1.0μmの範囲にある無機酸化物はそ
の比表面積が4.0〜40.0m2/g程度であれば完全
な球型と仮定して計算される比表面積とほヾ一致
する。従つて本発明で使用する無機酸化物はその
比表面積が4.0〜40.0m2/gの範囲のものを使用
するのが好適である。 本発明の複合組成物は前記重合可能なビニルモ
ノマー成分と前記特定の無機酸化物とを混合して
使用される。例えば歯科用修復材として上記複合
組成物を用いる場合には操作性が重要な要因とな
るばかりでなく、得られる硬化後の複合レジンの
機械的強度,耐摩耗性,表面の滑沢性等を十分に
良好に保持しなければならない。そのために一般
に無機酸化物の添加量は70〜90%の範囲となるよ
うに選ぶのが好ましい。 また上記歯科用複合修復材として使用する場合
には一般に無機酸化物と重合可能なビニルモノマ
ーおよび重合促進剤(例えば第三級アミン化合
物)からなるペースト状混合物と無機酸化物とビ
ニルモノマーおよび重合開始剤(例えばベンゾイ
ルパーオキサイドの如き有機過酸化物))からな
るペースト状混合物とをそれぞれあらかじめ調製
しておき、修復操作の直前に両者を混練して硬化
させる方法が好適に用いられる。本発明の複合組
成物を硬化させた複合レジンは従来のものに比べ
て圧縮強度等の機械的強度は劣ることなく、しか
も耐摩耗性あるいは表面の滑沢性に優れ、さらに
は表面硬度が高く、表面研磨仕上げが非常に容易
であるという多くの優れた特徴を有している。し
かしこのような特徴があらわれる理由については
現在必ずしも明確ではないが、本発明者等は次の
ように考えている。即ち、第1に粒子の形状が球
形型で粒子径が0.1〜1.0μmでしかも好ましくは粒
子径の分布の標準偏差値が13.0以内というような
粒子径のそろつた無機酸化物を組み合せて用いる
事によつて、従来の単に粒子径分布の広いしかも
形状の不揃いな充填材を用いる場合に比べて、硬
化して得られる複合レジン中に無機酸化物がより
均一にしかも密に充填される事及び第2にさらに
粒子径の範囲が0.1〜1.0μmの範囲内であるものを
用いる事により、粒子径が数十μmもある従来の
無機充填材を用いる場合に比べて、硬化後の複合
レジンの研磨面は滑らかになり、逆に数十nmの
微細粒子を主成分とする超微粒子充填材を用いる
場合に比べて充填材の全比表面積が小さく、従つ
て適当な操作性を有する条件下で充填材の充填量
が多くできる事などの理由が考えられる。 本発明の複合組成物は前記特定の無機酸化物と
重合可能なビニルモノマーとを配合することによ
り、上記したように従来予想し得なかつた数々の
メリツトを発揮させるものである。本発明の前記
複合組成物は重合可能なビニルモノマー成分と特
定の無機酸化物成分との2成分の配合で前記メリ
ツトを発揮するものであるが、これらの成分の他
に一般に歯科用修復材として使用される添加成分
を必要に応じて添加することも出来る。これらの
添加成分の代表的なものは次のようなものがあ
る。例えばラジカル重合禁止剤,色合せのための
着色顔料,紫外線吸収剤などがある。 以下実施例および比較例を挙げ、本発明をさら
に具体的に説明するが、本発明はこれらの実施例
に限定されるものではない。なお、以下の実施
例,比較例に示した無機酸化物を含む無機充填材
の諸特性(粒子径,粒子径分布の標準偏差値,比
表面積)の測定、および複合修復材のペーストの
調製および硬化方法、ならびに硬化後の複合レジ
ンの物性値(圧縮強度,曲げ強度,歯ブラシ摩耗
深さ,表面粗さ,表面硬度)の測定は、以下の方
法に従つた。 (1) 粒子径および粒子径分布の標準偏差値 粉体の走査型電子顕微鏡写真を撮り、その写
真の単位視野内に観察される粒子の数(n),
および粒子径(直径xi)を求め、次式により算
出される。 標準偏差値=x+σo-1/x 但し (2) 比表面積 柴田化学器機工業(株)迅速表面測定装置SA−
1000を用いた。測定原理はBET法である。 (3) 複合修復材のペーストの調製および硬化方法
先ず、γ−メタクリロキシプロピルトリメトキ
シシランによつて表面処理された非晶質シリカ
とビニルモノマーを所定の割合でメノウ乳鉢に
入れ均一なペーストとなるまで十分混練した。
次いで該ペーストを二等分し、一方のペースト
にはさらに重合促進剤を加え十分混合した(こ
れをペーストAとする)。また他方のペースト
には有機過酸化物触媒を加え十分混合した(こ
れをペーストBとする)。 次にペーストA及びペーストBの等量を約30秒
間混練し、型枠に充填し硬化させた。 (4) 圧縮強度 ペーストAおよびペーストBを混合して、室
温で30分間重合させた後、37℃、水中24時間浸
漬したものを試験片とした。その大きさ,形状
は直径6mm,高さ12mmの円柱状のものである。
この試験片を試験機(東洋ボードウイン製
UTM−5T)に装着し、クロスヘツドスピード
10mm/minで圧縮強度を測定した。 (5) 曲げ強度 ペーストA及びペーストBを混合して室温で
30分間重合させた後、37℃,水中24時間浸漬し
たものを試験片とした。その大きさ,形状は2
×2×25mmの角柱状のものである。曲げ試験は
支点間距離20mmの曲げ試験装置を東洋ボードウ
イン製UTM−5Tに装着して行ない、クスヘツ
ドスピード0.5mm/minとした。 (6) 歯ブラシ摩耗深さ、および表面粗さ ペーストA及びペーストBを混合して室温で
30分間重合させた後、37℃,水中24時間浸漬し
たものを試験片とした。その大きさ,形状は
1.5×10×10mmの板状のものである。試験片を
荷重400gで歯ブラシで1500m摩耗した後、表面
粗さ計(サーフコムA−100)で十点平均あら
さを求めた。又摩耗深さは摩耗重合を複合レジ
ンの密度で除して求めた。 (7) 表面硬度 ペーストA及びペーストBを混合して室温で
30分間重合させた後、37℃,水中24時間浸漬し
たものを試験片とした。その大きさ,形状は
2.5×10mmの円板状のものである。測定はミク
ロブリネル硬さ試験を用いた。 また実施例及び比較例で使用した略記は特に
記さない限り次の通りである。 実施例 1 テトラエチルシリケート(Si(OC2H54日本コ
ルコート化学社製,製品名:エチルシリケート
28)500g,メタノール1.2を容量3のビーカ
ーに入れ混合した。(この溶液を以下供給液と言
う。)もう一つ別の容量10のガラス容器にメタ
ノール6.0,アンモニア水(アンモニア濃度25
〜28%)650g仕込んだ。(この溶液を反応槽液と
言う。)反応槽液の液温を20℃に保ち、撹拌しな
がら供給液を30分間で添加した。反応終了後、白
濁した反応槽液をエバポレーターで溶媒を除去し
乾燥し1000℃,1時間焼成した。焼成後、メノウ
乳鉢で焼成物を粉砕しシリカ粒子を得た。このシ
リカ粒子は走査型電子顕微鏡の観察から粒子径は
0.18〜0.24μmの範囲にあり、平均粒子径は
0.20μmで、形状は真球で、さらに粒子径の分布
の標準偏差値は1.04で比表面積20.6m2/gであつ
た。得られたシリカ粒子はさらにγ−メタクリロ
キシプロピルトリメトキシシランで表面処理を行
なつた。処理はシリカ粒子に対してγ−メタクリ
ロキシプロピルトリメトキシシランを6wt%、添
加し、水−エタノール溶媒中で80℃,2時間還流
した後エバポレーターで溶媒を除去し、さらに真
空乾燥させる方法によつた。 次に、上記と同様な方法で、供給液組成及び反
応槽液組成を変えることにより粒子径分布の異な
るシリカ粒子を調製した。これらの結果をまとめ
て表1に示した。
[Formula] is preferred. Since these vinyl monomers are known as dental materials, they may be used alone or in combination as required. Other components of the composite composition of the present invention are inorganic oxides. The inorganic oxide used in the present invention has a particle size of
They are spherical particles in the range of 0.1 to 1.0 μm. Any inorganic oxide having a particle size within the above range can be used without particular limitation. Specific examples of inorganic oxides having the above particle size range that are generally preferably used include, for example, amorphous silica; It is an inorganic oxide or the like whose main constituents are at least one selected metal component and a silicon component. The inorganic oxide used in the present invention needs to be a mixture of at least two groups having different average particle diameters. The mixture of inorganic oxides may be the same or different types of inorganic oxides,
The groups having different average particle diameters are not necessarily limited to two groups, but may be three groups or more. The particle size distribution of the inorganic oxide is not particularly limited, but the purpose of the present invention is best achieved by a sharp distribution with a standard deviation value within 1.30. Both the particle size and the particle shape are very important factors, and the object of the present invention cannot be achieved if any of the conditions are absent. For example, the particle size of inorganic oxide is 0.1μm
If it is smaller, the viscosity will increase significantly when it is kneaded with the polymerizable vinyl monomer to form a paste mixture, and if you try to prevent the increase in viscosity by increasing the blending ratio, the operability will deteriorate, so Therefore, it cannot be used as a material for practical use. Also, the particle size is
If it is larger than 1.0 μm, it is not preferable because the resin obtained by polymerizing and curing the vinyl monomer has defects such as a decrease in abrasion resistance or surface smoothness, and further a decrease in surface hardness. In addition, if the standard deviation value of the particle size distribution becomes larger than 1.30, the operability of the composite composition may deteriorate, so generally, it is preferable to use a particle size distribution with a standard deviation value of 1.30 or less. is preferred. Furthermore, the inorganic oxide has the above particle size.
Even if the particle size is within the range of 0.1 to 1.0 μm and the standard deviation value of the particle size distribution is within 1.30, if the shape of the particle is spherical, the above-mentioned effects of the present invention, especially wear resistance and surface The smoothness, surface hardness, etc. of these materials cannot be satisfactory. Next, the difference in particle size of the mixed inorganic oxides made up of at least two groups having different average particle sizes is not particularly limited, but it is generally preferred that the difference is two times or more. In addition, the mixing ratio of the first group inorganic oxide and the second group inorganic oxide in the mixed inorganic oxide consisting of the first group inorganic oxide and the second group inorganic oxide depends on the difference in particle size. It varies, but generally it's weight,
It is preferable that the amount of inorganic oxides in the first group is greater than the amount of inorganic oxides in the second group, and the amount of inorganic oxides in the first group is in the range of 1.2 to 10 times the amount of inorganic oxides in the second group. suitable. Furthermore, it is a spherical inorganic oxide with a particle size range of 0.1 to 1.0 μm and a standard deviation value of particle size within 1.30, and the average particle size is approximately half the average particle size of the second group of inorganic oxides. The following third group of inorganic oxides may be mixed in the mixed inorganic oxide. The method for producing the inorganic oxide used in the present invention is not particularly limited, and any production method may be used as long as the inorganic oxide has the above particle size and shape. Generally, industrially, a method of producing by hydrolysis of silicate ester (Inorganic Materials Research Institute Report No. 14, pages 49 to 58 (1977)) is suitably employed. Further, it contains a hydrolyzable organosilicon compound and a hydrolyzable organic compound of at least one metal selected from the group consisting of metals of Groups 1, 2, 3, and 3 of the periodic table. The mixed solution is added to an alkaline solvent that dissolves the organosilicon compound and the organic compounds of metals of Groups, Groups, and Groups of the Periodic Table, but does not substantially dissolve the reaction products, and performs hydrolysis. The main constituents are at least one metal oxide selected from the group consisting of metal oxides of Groups 1, 2, 3, and 3 of the periodic table, obtained by precipitating a reaction product, and silica. A method for producing an inorganic oxide is preferably employed. In general, it is preferable to reduce the number of silanol groups on the surface of industrially obtained inorganic oxides in order to maintain surface stability. For this purpose, the spherical inorganic oxide is further heated to 500 to 1000℃ after drying.
A method of firing at a temperature of During the firing, some of the inorganic oxides may sinter and aggregate, so it is usually preferable to use a crusher, vibrating ball mill, jet pulverizer, etc. to loosen the aggregated particles. In general, in order to maintain stability, the fired inorganic oxide is most preferably used after surface treatment using an organic silicon compound. The surface treatment method described above is not particularly limited, and may be performed using a known method such as using silica particles and a known organosilicon compound such as γ-methacryloxypropyltrimethoxysilane or vinyltriethoxysilane.
A method is adopted in which the solvent is removed after contacting for a certain period of time in a mixed solvent of alcohol/water. The particle size and shape of the inorganic oxide used in the present invention can be confirmed by taking a microscopic photograph, and the standard deviation value of the particle size distribution can be determined within the unit area of the microscopic photograph or the unit field of view of the microscope. It can be calculated from the number of particles existing in and the diameter of each particle using the calculation formula described below. The above-mentioned microscopic photograph may be any photograph as long as the particle shape of the inorganic oxide can be observed, but scanning electron micrographs, transmission electron micrographs, etc. are generally suitable. In addition, if the inorganic oxide is mixed with another liquid substance such as a polymerizable vinyl monomer to form a paste mixture, the liquid substance is extracted and removed using an appropriate organic solvent, and then the inorganic oxide is oxidized by the same operation as described above. It is good to investigate the properties of things. As described above, the inorganic oxide used in the present invention is a spherical particle, but whether or not it is spherical can be confirmed by measuring the specific surface area of the inorganic oxide in addition to the above-mentioned microscope. I can do it. For example, if the specific surface area of an inorganic oxide having a particle diameter in the range of 0.1 to 1.0 μm is about 4.0 to 40.0 m 2 /g, it almost matches the specific surface area calculated assuming a perfect spherical shape. Therefore, the inorganic oxide used in the present invention preferably has a specific surface area of 4.0 to 40.0 m 2 /g. The composite composition of the present invention is used by mixing the polymerizable vinyl monomer component and the specific inorganic oxide. For example, when using the above composite composition as a dental restorative material, not only the operability is an important factor, but also the mechanical strength, abrasion resistance, surface smoothness, etc. of the resulting cured composite resin. Must be well maintained. For this reason, it is generally preferable to select the amount of inorganic oxide added to be in the range of 70 to 90%. In addition, when used as the above-mentioned dental composite restorative material, a paste-like mixture consisting of an inorganic oxide, a polymerizable vinyl monomer, and a polymerization accelerator (for example, a tertiary amine compound), an inorganic oxide, a vinyl monomer, and a polymerization initiator is generally used. A suitable method is to prepare a paste-like mixture of the above agents (for example, an organic peroxide such as benzoyl peroxide) in advance, and knead and harden the two immediately before the repair operation. The composite resin obtained by curing the composite composition of the present invention has mechanical strength such as compressive strength that is comparable to conventional resins, and has excellent abrasion resistance and surface smoothness, as well as high surface hardness. It has many excellent features such as being very easy to polish the surface. However, the reason why such characteristics appear is not necessarily clear at present, but the inventors of the present invention think as follows. That is, first, it is necessary to use a combination of inorganic oxides having a uniform particle size, such that the particle shape is spherical, the particle size is 0.1 to 1.0 μm, and preferably the standard deviation value of the particle size distribution is within 13.0. This allows the inorganic oxide to be more uniformly and densely filled in the composite resin obtained by curing, compared to the conventional case of simply using a filler with a wide particle size distribution and irregular shape. Second, by using particles with a particle size in the range of 0.1 to 1.0 μm, compared to the case of using conventional inorganic fillers with particle sizes of several tens of μm, the composite resin after curing is The polished surface becomes smooth, and the total specific surface area of the filler is smaller than when using ultrafine particle fillers mainly composed of fine particles of several tens of nanometers. Possible reasons include the ability to fill a large amount of filler. By blending the specific inorganic oxide and a polymerizable vinyl monomer, the composite composition of the present invention exhibits a number of previously unanticipated advantages as described above. The composite composition of the present invention exhibits the above merits by combining two components, a polymerizable vinyl monomer component and a specific inorganic oxide component, but in addition to these components, it is generally used as a dental restorative material. Additional components to be used can also be added as necessary. Typical of these additive components are as follows. Examples include radical polymerization inhibitors, coloring pigments for color matching, and ultraviolet absorbers. EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to these Examples. In addition, measurements of various properties (particle size, standard deviation value of particle size distribution, specific surface area) of inorganic fillers containing inorganic oxides shown in the following Examples and Comparative Examples, preparation of paste of composite restorative materials, and The curing method and the physical property values (compressive strength, bending strength, toothbrush wear depth, surface roughness, surface hardness) of the cured composite resin were measured according to the following methods. (1) Standard deviation value of particle size and particle size distribution Take a scanning electron micrograph of a powder, and calculate the number of particles observed within a unit field of view of the photograph (n),
and the particle diameter (diameter x i ), which is calculated using the following formula. Standard deviation value = x + σ o-1 /x However (2) Specific surface area Shibata Chemical Equipment Co., Ltd. Rapid surface measuring device SA−
1000 was used. The measurement principle is the BET method. (3) Preparation and curing method of paste of composite restorative material First, amorphous silica surface-treated with γ-methacryloxypropyltrimethoxysilane and vinyl monomer are placed in an agate mortar in a predetermined ratio to form a uniform paste. Knead thoroughly until smooth.
Next, the paste was divided into two equal parts, and a polymerization accelerator was further added to one paste and thoroughly mixed (this was referred to as paste A). Further, an organic peroxide catalyst was added to the other paste and thoroughly mixed (this is referred to as paste B). Next, equal amounts of paste A and paste B were kneaded for about 30 seconds, filled into a mold, and hardened. (4) Compressive strength Paste A and paste B were mixed, polymerized for 30 minutes at room temperature, and then immersed in water at 37°C for 24 hours to prepare test pieces. Its size and shape are cylindrical with a diameter of 6 mm and a height of 12 mm.
This test piece was tested using a testing machine (manufactured by Toyo Baudouin).
UTM-5T) and crosshead speed
Compressive strength was measured at 10 mm/min. (5) Bending strength Mix paste A and paste B and
After polymerizing for 30 minutes, the test piece was immersed in water at 37°C for 24 hours. Its size and shape are 2
It has a prismatic shape with dimensions of 2 x 25 mm. The bending test was conducted using a bending test device with a distance between fulcrums of 20 mm attached to Toyo Baudouin's UTM-5T, and a bending speed of 0.5 mm/min. (6) Toothbrush wear depth and surface roughness Mix paste A and paste B and
After polymerizing for 30 minutes, the test piece was immersed in water at 37°C for 24 hours. Its size and shape are
It is a plate shape of 1.5 x 10 x 10 mm. After abrading the test piece for 1500 m with a toothbrush under a load of 400 g, the ten-point average roughness was determined using a surface roughness meter (Surfcom A-100). In addition, the wear depth was determined by dividing the wear polymerization by the density of the composite resin. (7) Surface hardness Mix paste A and paste B and heat at room temperature.
After polymerizing for 30 minutes, the test piece was immersed in water at 37°C for 24 hours. Its size and shape are
It is a disc-shaped object measuring 2.5 x 10 mm. The measurement used a micro Brinell hardness test. In addition, the abbreviations used in Examples and Comparative Examples are as follows unless otherwise specified. Example 1 Tetraethylsilicate (Si(OC 2 H 5 ) 4manufactured by Nippon Colcoat Chemical Co., Ltd., product name: Ethylsilicate
28) 500 g and 1.2 methanol were placed in a beaker with a capacity of 3 and mixed. (This solution is hereinafter referred to as the supply solution.) In another glass container with a capacity of 10, methanol 6.0 and ammonia water (ammonia concentration 25
~28%) 650g was prepared. (This solution is referred to as the reaction tank liquid.) The temperature of the reaction tank liquid was maintained at 20°C, and the feed liquid was added over 30 minutes while stirring. After the reaction was completed, the solvent was removed from the cloudy reaction tank liquid using an evaporator, and the mixture was dried and calcined at 1000°C for 1 hour. After firing, the fired product was crushed in an agate mortar to obtain silica particles. The particle size of these silica particles was determined by observation using a scanning electron microscope.
The average particle size is in the range of 0.18-0.24μm.
The particle diameter was 0.20 μm, the shape was a perfect sphere, the standard deviation value of the particle size distribution was 1.04, and the specific surface area was 20.6 m 2 /g. The obtained silica particles were further surface-treated with γ-methacryloxypropyltrimethoxysilane. The treatment was carried out by adding 6 wt% of γ-methacryloxypropyltrimethoxysilane to the silica particles, refluxing in a water-ethanol solvent at 80°C for 2 hours, removing the solvent with an evaporator, and drying in vacuum. Ivy. Next, silica particles having different particle size distributions were prepared by changing the feed liquid composition and the reaction tank liquid composition in the same manner as above. These results are summarized in Table 1.

【表】 次に、表1に示したNo.2のシリカ粒子とNo.3の
シリカ粒子とを混合して、混合無機酸化物を作り
(混合比は、No.2のシリカ粒子/No.2のシリカ粒
子=2.4とした。)、これにビニルモノマーとして
ビスフエノールAジグリシジルメタクリレート
(以下Bis−GMAと言う。)とトリエチレングリ
コールジメタクリレート(以下TEGDMAと言
う。)の混合物(混合割合はBis−GMA/
TEGDMA=3/7モル比である。)を配合し充
分練和することによりペースト状の複合修復材を
得た。この際複合修復材のシリカ粒子の充填量は
78.5wt%でペーストの粘度は操作上適正であつ
た。次にペーストを2等分に一方には重合促進剤
としてN,N−ジメチル−P−トルイジンを、も
う一方には重合開始剤として過酸化ベンゾイルを
各々ビニルモノマーに対して1wt%添加しペース
トA(前者)及びペーストB(後者)を調製した。 上記のペーストAとペーストBを等量取り30秒
間,室温で練和し硬化させたものについて物性を
測定した結果、圧縮強度4100Kg/cm2,曲げ強度
760Kg/cm2,表面あらさ0.5μm,表面硬度70.0,歯
ブラシ摩耗深さ4.0μmであつた。又表面研摩仕上
げについてはソフトフレツクス(スリーエム社
製)で仕上げたところ複合レジンの表面を削り過
ぎることなく、容易に滑沢性の良い表面が得られ
た。 実施例 2〜3 表1のシリカ粒子を用いて、表2に示した混合
比で混合無機酸化物を作り、実施例1と同様な組
成のビニルモノマーを用い、同様な方法でペース
トを調製し、さらに硬化させ複合レジンの物性を
測定した。その結果を合せて表2にまとめて示し
た。
[Table] Next, the No. 2 silica particles and No. 3 silica particles shown in Table 1 are mixed to make a mixed inorganic oxide (the mixing ratio is No. 2 silica particles/No. 3 silica particles). 2 silica particles = 2.4), and a mixture of bisphenol A diglycidyl methacrylate (hereinafter referred to as Bis-GMA) and triethylene glycol dimethacrylate (hereinafter referred to as TEGDMA) as vinyl monomers (the mixing ratio is Bis-GMA/
TEGDMA=3/7 molar ratio. ) and sufficiently kneaded to obtain a paste-like composite restorative material. At this time, the filling amount of silica particles in the composite restorative material is
The viscosity of the paste was 78.5 wt%, which was appropriate for operation. Next, divide the paste into two equal parts, add N,N-dimethyl-P-toluidine as a polymerization accelerator to one side, and add 1wt% of benzoyl peroxide as a polymerization initiator to the other side, based on the vinyl monomer. Paste A (former) and paste B (latter) were prepared. The physical properties of paste A and paste B were mixed in equal amounts at room temperature for 30 seconds and cured. As a result, the compressive strength was 4100 Kg/cm 2 and the bending strength was 4100 Kg/cm 2 .
The weight was 760 kg/cm 2 , the surface roughness was 0.5 μm, the surface hardness was 70.0, and the toothbrush wear depth was 4.0 μm. When the surface was polished using Soft Flex (manufactured by 3M), a smooth surface was easily obtained without excessively abrading the surface of the composite resin. Examples 2 to 3 A mixed inorganic oxide was prepared using the silica particles in Table 1 at the mixing ratio shown in Table 2, and a paste was prepared in the same manner using a vinyl monomer with the same composition as in Example 1. Then, the physical properties of the composite resin were measured after curing. The results are summarized in Table 2.

【表】 実施例 4〜6 表1のNo.2のシリカ粒子とNo.3のシリカ粒子と
からなる混合無機酸化物(混合割合は重量比で、
No.3のシリカ粒子/No.2のシリカ粒子=2.4)を
用い、ビニルモノマー成分としてU−4HMA,
U−4TMA,U−4BMA,テトラメチロールメ
タントリアクリレート(以下TMMTと言う。)
及びメチルメタアクリレート(以下MMAと言
う。)を用いた以外は実施例1と同様な方法でペ
ースト状の複合修復材を調製した。ビニルモノマ
ー成分の混合割合は表3に示したとおりである。
ペースト状の複合修復材をさらに実施例1と同様
な操作で硬化させ物性を測定した。その結果を同
じく表3に示した。
[Table] Examples 4 to 6 Mixed inorganic oxides consisting of silica particles No. 2 and silica particles No. 3 in Table 1 (mixing ratio is by weight,
Using No. 3 silica particles/No. 2 silica particles = 2.4), U-4HMA as the vinyl monomer component,
U-4TMA, U-4BMA, Tetramethylolmethane triacrylate (hereinafter referred to as TMMT)
A paste composite restorative material was prepared in the same manner as in Example 1, except that methyl methacrylate (hereinafter referred to as MMA) was used. The mixing proportions of the vinyl monomer components are shown in Table 3.
The paste-like composite restorative material was further cured in the same manner as in Example 1, and its physical properties were measured. The results are also shown in Table 3.

【表】 実施例 7 水4.0gと実施例1で用いたと同一のテトラエチ
ルシリケート158gとをメタノール1.2に溶かし、
この溶液を室温で約2時間撹拌しながら加水分解
した。その後、これをテトラブチルチタネート
(Ti(O−nC4H94,日本曹達製)40.9gをイソプ
ロパノール0.5に溶かした溶液に撹拌しながら
添加し、テトラエチルシリケートの加水分解物と
テトラブチルチタネートとの混合溶液を調製し
た。次に撹拌機付きの内容積10のガラス製反応
容器にメタノール2.5を導入し、これに500gの
アンモニア水溶液(濃度25wt%)を加えてアン
モニア性アルコール溶液を調製し、これにシリカ
の種子を作るための有機珪素化合物溶液としてテ
トラエチルシリケート4.0gをメタノール100mlに
溶かした溶液を約5分間かけて添加し、添加終了
5分後反応液がわずか乳白色のところで、さらに
続けて上記の混合液を反応容器の温度を20℃に保
ちながら約2時間かけて添加し反応生成物を析出
させた。その後さらに続けてテトラエチルシリケ
ート128gを含むメタノール0.5からなる溶液を
該反応生成物が析出した系に約2時間かけて添加
した。添加終了後更に1時間撹拌を続けた後乳白
色の反応液からエバポレーターで溶媒を除き、さ
らに80℃、減圧乾燥することにより乳白色の粉体
を得た。 さらに、この乳白色の粉体を900℃,4時間焼
成した後、メノウ乳鉢で粉砕しシリカとチタニア
を主な構成成分とする無機酸化物を得た。この無
機酸化物は走査型電子顕微鏡の観察から、粒子径
は0.10〜0.20μmの範囲にあり、平均粒子径は
0.13μmであり形状は真球で、さらに粒子径の分
布の標準偏差値は1.08で、比表面積20m2/gであ
つた。得られた無機酸化物はさらにγ−メタクリ
ロキシプロピルトリメトキシシランで実施例1と
同様な方法で表面処理した。 次に、上記と同様な方法で反応容器に仕込むア
ンモニア性のアルコールの組成を変えることによ
り、粒子径分布の異なる無機酸化物を得た。これ
らの結果をまとめて表4に示した。 次に、表4のNo.5の無機酸化物とNo.6の無機酸
化物とからなる混合無機酸化物(混合割合は重量
比で、No.6の無機酸化物/No.5の無機酸化物=
2.4である。)に実施例1と同様な混合割合のBis
−GMAとTEGDMAの混合物を配合し、充分練
和することによりペースト状の複合修復材を得
た。この際、複合修復材の無機酸化物の充填量は
78.5wt%でペーストの粘度は操作上適正であつ
た。この複合修復材を実施例1と同様な方法で硬
化させ、硬化させたものについて物性を測定した
結果、圧縮強度4100Kg/cm2,曲げ強度740Kg/cm2
表面あらさ0.5μm,歯ブラシ摩耗深さ3.0μmであ
つた。
[Table] Example 7 4.0 g of water and 158 g of the same tetraethyl silicate used in Example 1 were dissolved in 1.2 methanol.
This solution was hydrolyzed at room temperature with stirring for about 2 hours. Thereafter, this was added to a solution of 40.9 g of tetrabutyl titanate (Ti(O-nC 4 H 9 ) 4 , manufactured by Nippon Soda) dissolved in 0.5 g of isopropanol with stirring, and the hydrolyzate of tetraethyl silicate and tetrabutyl titanate were combined. A mixed solution was prepared. Next, introduce 2.5 methanol into a glass reaction vessel with an internal volume of 10 and a stirrer, add 500 g of ammonia aqueous solution (concentration 25 wt%) to this to prepare an ammonia alcohol solution, and make silica seeds in this. A solution of 4.0 g of tetraethyl silicate dissolved in 100 ml of methanol was added as an organosilicon compound solution for about 5 minutes. 5 minutes after the addition was completed, when the reaction liquid was slightly milky, the above mixture was added to the reaction vessel. The reaction product was precipitated by adding the reaction product over about 2 hours while maintaining the temperature at 20°C. Thereafter, a solution containing 128 g of tetraethyl silicate and 0.5 g of methanol was added over about 2 hours to the system in which the reaction product had precipitated. After the addition was completed, stirring was continued for an additional hour, and then the solvent was removed from the milky white reaction liquid using an evaporator, and the mixture was further dried at 80°C under reduced pressure to obtain a milky white powder. Further, this milky white powder was calcined at 900°C for 4 hours and then ground in an agate mortar to obtain an inorganic oxide whose main components were silica and titania. Observation using a scanning electron microscope reveals that the particle size of this inorganic oxide is in the range of 0.10 to 0.20 μm, with an average particle size of
The particle size was 0.13 μm, and the shape was a perfect sphere. Furthermore, the standard deviation value of the particle size distribution was 1.08, and the specific surface area was 20 m 2 /g. The obtained inorganic oxide was further surface-treated with γ-methacryloxypropyltrimethoxysilane in the same manner as in Example 1. Next, inorganic oxides with different particle size distributions were obtained by changing the composition of the ammonia alcohol charged into the reaction vessel in the same manner as above. These results are summarized in Table 4. Next, a mixed inorganic oxide consisting of No. 5 inorganic oxide and No. 6 inorganic oxide in Table 4 (the mixing ratio is by weight, No. 6 inorganic oxide/No. 5 inorganic oxide thing=
It is 2.4. ) with Bis at the same mixing ratio as in Example 1.
- A paste-like composite restorative material was obtained by blending a mixture of GMA and TEGDMA and thoroughly kneading it. At this time, the filling amount of inorganic oxide in the composite restoration material is
The viscosity of the paste was 78.5 wt%, which was appropriate for operation. This composite restorative material was cured in the same manner as in Example 1, and the physical properties of the cured material were measured. As a result, the compressive strength was 4100 Kg/cm 2 , the bending strength was 740 Kg/cm 2 ,
The surface roughness was 0.5 μm and the toothbrush wear depth was 3.0 μm.

【表】 実施例 8 表4のNo.5の無機酸化物とNo.7の無機酸化物と
からなる混合無機酸化物(混合割合は重量比で、
No.7の無機酸化物/No.5の無機酸化物=2.5とし
た。)を用いて、実施例7と同様なビニルモノマ
ーを用い、同様な方法でペーストを調製した。こ
の際、このペーストの無機酸化物の充填量は
78.0wt%で、ペーストの粘度は操作上適正であつ
た。さらに硬化させ複合レジンの物性を測定し
た。その結果、圧縮強度4220Kg/cm2,曲げ強度
790Kg/cm2,表面あらさ0.6μm,歯ブラシ摩耗深
さ3.0μmであつた。 実施例 9〜11 表4のNo.5の無機酸化物とNo.6の無機酸化物
(混合割合は重量比で、No.6の無機酸化物/No.5
の無機酸化物=2.4である。)を用いビニルモノマ
ーはU−4HMA,U−4TMA,U−4BMA,
TMMT及びMMAを用いた以外は実施例7と同
様な方法でペースト状の複合修復材を調製した。
ビニルモノマー成分の混合割合は表5に示したと
おりである。ペースト状の複合修復材をさらに実
施例7と同様な操作で硬化させ物性を測定した。
その結果を同じく表5に示した。
[Table] Example 8 Mixed inorganic oxide consisting of inorganic oxide No. 5 and inorganic oxide No. 7 in Table 4 (mixing ratio is by weight,
No. 7 inorganic oxide/No. 5 inorganic oxide = 2.5. ), a paste was prepared in a similar manner using the same vinyl monomer as in Example 7. At this time, the filling amount of inorganic oxide in this paste is
At 78.0 wt%, the viscosity of the paste was appropriate for operation. The composite resin was further cured and its physical properties were measured. As a result, the compressive strength was 4220Kg/cm 2 and the bending strength was
The weight was 790 kg/cm 2 , the surface roughness was 0.6 μm, and the toothbrush wear depth was 3.0 μm. Examples 9 to 11 No. 5 inorganic oxide and No. 6 inorganic oxide in Table 4 (mixing ratio is by weight, No. 6 inorganic oxide/No. 5
of inorganic oxide = 2.4. ) and the vinyl monomers are U-4HMA, U-4TMA, U-4BMA,
A paste composite restorative material was prepared in the same manner as in Example 7 except that TMMT and MMA were used.
The mixing ratio of the vinyl monomer components is as shown in Table 5. The paste-like composite restorative material was further cured in the same manner as in Example 7, and its physical properties were measured.
The results are also shown in Table 5.

【表】 実施例 12 実施例1で用いたと同一のテトラエチルシリケ
ート208gとナトリウムメチルラート5.4gとをメタ
ノール1.0に溶かし、この溶液を乾燥窒素下、
80℃,30分記間加熱還流した後室温まで冷却して
混合溶液を調製した。次に、撹拌機付きの内容積
10のガラス製反応容器にメタノール2.5を満
し、これに500gのアンモニア水溶液(濃度25wt
%)を加えてアンモニア性アルコール溶液を調製
し、この溶液に先に調製したテトラエチルシリケ
ートとナトリウムメチルラートの混合溶液を反応
容器の温度を20℃に保ちながら約2時間かけて添
加し、反応生成物を析出させた。添加終了後、更
に続けて、テトラエチルシリケート104gを含む
メタノール0.5からなる溶液を該反応生成物が
析出した系に約2時間かけて添加した。添加終了
後更に1時間撹拌を続けた後、乳白色の反応液か
らエバポレーターで溶媒を除き、700℃,2時間
焼成した。焼成後、メノウ乳鉢で焼成物を粉砕し
無機酸化物を得た。この無機酸化物は走査型電子
顕微鏡の観察から、粒子径は0.22〜0.34μmの範囲
にあり、平均粒子径は0.30μmで、形状は真球で、
さらに粒子径の分布の標準偏差値は1.05で比表面
積13m2/gであつた。得られた無機酸化物はさら
に実施例1と同様な表面処理を行つた。 次に、上記と同様な方法で、反応容器に仕込む
アンモニア性アルコールの組成を変えることによ
り、粒子径分布の異なる無機酸化物を得た。これ
らの結果をまとめて表6に示した。
[Table] Example 12 208 g of the same tetraethyl silicate used in Example 1 and 5.4 g of sodium methylate were dissolved in 1.0 methanol, and this solution was dissolved under dry nitrogen.
A mixed solution was prepared by heating under reflux at 80°C for 30 minutes and then cooling to room temperature. Next, the internal volume with a stirrer
Fill 10 glass reaction vessels with 2.5 methanol and add 500 g of ammonia aqueous solution (concentration 25 wt).
%) to prepare an ammoniacal alcohol solution, and to this solution, the previously prepared mixed solution of tetraethyl silicate and sodium methylate was added over about 2 hours while keeping the temperature of the reaction vessel at 20°C, and the reaction product was The substance was precipitated. After the addition was completed, a solution containing 104 g of tetraethyl silicate and 0.5 g of methanol was added over about 2 hours to the system in which the reaction product had precipitated. After the addition was completed, stirring was continued for another 1 hour, and then the solvent was removed from the milky white reaction liquid using an evaporator, and the mixture was calcined at 700°C for 2 hours. After firing, the fired product was ground in an agate mortar to obtain an inorganic oxide. The particle size of this inorganic oxide is found to be in the range of 0.22 to 0.34 μm, the average particle size is 0.30 μm, and the shape is a perfect sphere.
Further, the standard deviation value of the particle size distribution was 1.05, and the specific surface area was 13 m 2 /g. The obtained inorganic oxide was further subjected to the same surface treatment as in Example 1. Next, inorganic oxides with different particle size distributions were obtained by changing the composition of the ammoniacal alcohol charged into the reaction vessel in the same manner as above. These results are summarized in Table 6.

【表】 次に、表6のNo.8の無機酸化物とNo.9の無機酸
化物とからなる混合無機酸化物(混合割合は重量
比で、No.9の無機酸化物/No.8の無機酸化物=
2.5)に実施例1と同様な混合割合のBis−GMA
とTEGDMAの混合物を配合し、充分練和するこ
とによりペースト状の複合復材を得た。この際、
複合修復材の無機酸化物の充填量は78.0wt%で、
ペーストの粘度は操作上適正であつた。この複合
修復材を実施例1と同様な方法で硬化させ、硬化
させたものについて物性を測定した結果圧縮強度
4050Kg/cm2,曲げ強度770Kg/cm2,表面あらさ
0.6μm,歯ブラシ摩耗深さ3.0μm,表面硬度65で
あつた。 実施例 13 実施例1で用いたと同一のエチルシリケート
208gとアルミニウムトリスsec.ブトキサイド
24.6gとをイソプロパノール1.4に溶かし、この
溶液を80℃,30分間加熱還流した後、室温まで冷
却して混合溶液を調製した。次に撹拌機付きの内
容積10のガラス製反応容器にメタノール2.5
を満しこれに500gのアンモニア水溶液(濃度
25wt%)を加えてアンモニア性アルコール溶液
を調製し、この溶液に先に調製したテトラエチル
シリケートとアルミニウムsec−ブトキサイドと
の混合溶液を反応器の温度20℃に保ちながら約2
時間かけて添加し、反応生成物を析出させた。添
加終了後、更に続けてテトラエチルシリケート
104gを含むメタノール0.5からなる溶液を該反
応生成物が析出した系に約2時間かけて添加し
た。添加終了後更に1時間撹拌を続けた後、乳白
色の反応液からエバポレーターで溶媒を除き、
900℃で2時間焼成した。焼成後、メノウ乳鉢で
焼成物を粉砕し、無機酸化物を得た。次に、上記
と同様な方法で、反応容器に仕込むアンモニア性
アルコールの組成を変えることにより、粒子径分
布の異なる無機酸化物を得た。これらの結果をま
とめて表7に示した。
[Table] Next, a mixed inorganic oxide consisting of No. 8 inorganic oxide and No. 9 inorganic oxide in Table 6 (mixing ratio is by weight, No. 9 inorganic oxide/No. 8 Inorganic oxide =
2.5) with Bis-GMA at the same mixing ratio as in Example 1.
A paste-like composite material was obtained by blending a mixture of and TEGDMA and thoroughly kneading the mixture. On this occasion,
The filling amount of inorganic oxide in the composite restorative material is 78.0wt%,
The viscosity of the paste was appropriate for operation. This composite restorative material was cured in the same manner as in Example 1, and the physical properties of the cured material were measured, resulting in compressive strength.
4050Kg/cm 2 , bending strength 770Kg/cm 2 , surface roughness
The toothbrush wear depth was 0.6 μm, the toothbrush wear depth was 3.0 μm, and the surface hardness was 65. Example 13 Same ethyl silicate used in Example 1
208g and aluminum tris sec.butoxide
24.6 g was dissolved in 1.4 g of isopropanol, this solution was heated under reflux at 80° C. for 30 minutes, and then cooled to room temperature to prepare a mixed solution. Next, 2.5 methanol was added to a glass reaction vessel with an internal volume of 10 with a stirrer.
Fill this with 500g of ammonia aqueous solution (conc.
25 wt%) to prepare an ammoniacal alcohol solution, and to this solution was added the previously prepared mixed solution of tetraethyl silicate and aluminum sec-butoxide, while keeping the reactor temperature at 20°C.
It was added over time to precipitate the reaction product. After the addition is complete, continue adding tetraethyl silicate.
A solution consisting of 0.5 methanol containing 104 g was added over a period of about 2 hours to the system in which the reaction product was precipitated. After the addition was completed, stirring was continued for another hour, and the solvent was removed from the milky white reaction solution using an evaporator.
It was baked at 900°C for 2 hours. After firing, the fired product was crushed in an agate mortar to obtain an inorganic oxide. Next, inorganic oxides with different particle size distributions were obtained by changing the composition of the ammoniacal alcohol charged into the reaction vessel in the same manner as above. These results are summarized in Table 7.

【表】 次に、表7のNo.10の無機酸化物とNo.11の無機酸
化物とかなる混合無機酸化物(混合割合は重量比
で、No.11の無機酸化物/No.10の無機酸化物=2.2)
に実施例1と同様な混合割合のBis−GMAと
TEGDMAの混合物を配合し、充分練和すること
によりペースト状の複合修復材を得た。この際、
複合修復材の無機酸化物の充填量は78.5wt%で、
ペーストの粘度は操作上適正であつた。この複合
修復材を実施例1と同様な方法で硬化させ、硬化
させたものについて物性を測定した結果、圧縮強
度4070Kg/cm2,曲げ強度800Kg/cm2,表面あらさ
0.7μm,歯ブラシ摩耗深さ2.5μm,表面硬度66で
あつた。 実施例 14 表7のNo.10の無機酸化物とNo.12の無機酸化物と
からなる混合無機酸化物(混合割合重量比で、No.
12の無機酸化物/No.10の無機酸化物=2.8とし
た。)を用いて、実施例7と同様なビニルモノマ
ーを用い、同様な方法でペーストを調製した。こ
の際、このペーストの無機酸化物の充填量は
78.0wt%で、ペーストの粘度は操作上適正であつ
た。さらに硬化させ複合レジンの物性を測定し
た。その結果、圧縮強度4090Kg/cm2,曲げ強度
850Kg/cm2,表面あらさ0.5μm,歯ブラシ摩耗深
さ3.5μm,表面硬度67であつた。 実施例 15 実施例1で用いたと同一のエチルシリケート
208gとバリウムビスイソペントキサイド31.1gと
をイソアミルアルコール1.0に溶かし、この溶
液を90℃,30分間加熱還流した後、室温まで冷却
して混合溶液を調製した。次に撹拌機付きの内容
積10のガラス製反応容器にメタノール2.5を
満し、これに500gのアンモニア水溶液(濃度
25wt%)を加えてアンモニア性アルコール溶液
を調製し、この溶液に先に調製したテトラエチル
シリケートとバリウムビスイソペントキサイドと
の混合溶液を反応容器の温度20℃に保ちながら約
2時間かけて添加し、反応生成物を析出させた。
添加終了後、更に続けてテトラエチルシリケート
104gを含むメタノール0.5からなる溶液を該反
応生成物が析出した系に約2時間かけて添加し
た。添加終了後更に11時間撹拌を続けた後、乳白
色の反応液からエバポレーターで溶媒を除き、
1000℃で2時間焼成した。焼成後、メノウ乳鉢で
焼成物を粉砕し、無機酸化物を得た。その無機酸
化物の平均粒子径,粒子径範囲,標準偏差値及び
比表面積を8に示した。(表8中No.13の無機酸化
物) 次に、上記と同様な方法で、反応容器に仕込む
アンモニア性アルコールの組成を変えることによ
り、粒子径分布の異なる無機酸化物を得た。これ
らの結果をまとめて表8に示した。
[Table] Next, mix inorganic oxides consisting of No. 10 inorganic oxide and No. 11 inorganic oxide in Table 7 (mixing ratio is by weight, No. 11 inorganic oxide/No. 10 inorganic oxide). Inorganic oxide = 2.2)
Bis-GMA with the same mixing ratio as in Example 1 and
A paste-like composite restorative material was obtained by blending the TEGDMA mixture and thoroughly kneading it. On this occasion,
The filling amount of inorganic oxide in the composite restorative material is 78.5wt%,
The viscosity of the paste was appropriate for operation. This composite restorative material was cured in the same manner as in Example 1, and the physical properties of the cured material were measured. As a result, the compressive strength was 4070 Kg/cm 2 , the bending strength was 800 Kg/cm 2 , and the surface roughness was
The toothbrush wear depth was 0.7 μm, the toothbrush wear depth was 2.5 μm, and the surface hardness was 66. Example 14 Mixed inorganic oxide consisting of inorganic oxide No. 10 and inorganic oxide No. 12 in Table 7 (in terms of mixing ratio and weight ratio, No.
No. 12 inorganic oxide/No. 10 inorganic oxide = 2.8. ), a paste was prepared in a similar manner using the same vinyl monomer as in Example 7. At this time, the filling amount of inorganic oxide in this paste is
At 78.0 wt%, the viscosity of the paste was appropriate for operation. The composite resin was further cured and its physical properties were measured. As a result, the compressive strength was 4090Kg/ cm2 , and the bending strength was 4090Kg/cm2.
The weight was 850 kg/cm 2 , the surface roughness was 0.5 μm, the toothbrush wear depth was 3.5 μm, and the surface hardness was 67. Example 15 Same ethyl silicate as used in Example 1
208 g and 31.1 g of barium bisisopentoxide were dissolved in 1.0 g of isoamyl alcohol, and this solution was heated under reflux at 90° C. for 30 minutes, and then cooled to room temperature to prepare a mixed solution. Next, fill a glass reaction vessel with an internal volume of 10 with a stirrer with 2.5 methanol, and add 500 g of ammonia aqueous solution (conc.
25 wt%) to prepare an ammoniacal alcohol solution, and the previously prepared mixed solution of tetraethyl silicate and barium bisisopentoxide was added to this solution over about 2 hours while keeping the temperature of the reaction vessel at 20°C. The reaction product was precipitated.
After the addition is complete, continue adding tetraethyl silicate.
A solution consisting of 0.5 methanol containing 104 g was added over a period of about 2 hours to the system in which the reaction product was precipitated. After the addition was complete, stirring was continued for another 11 hours, and the solvent was removed from the milky white reaction solution using an evaporator.
It was baked at 1000°C for 2 hours. After firing, the fired product was crushed in an agate mortar to obtain an inorganic oxide. The average particle size, particle size range, standard deviation value, and specific surface area of the inorganic oxide are shown in 8. (Inorganic oxide No. 13 in Table 8) Next, inorganic oxides with different particle size distributions were obtained by changing the composition of the ammoniacal alcohol charged into the reaction vessel in the same manner as above. These results are summarized in Table 8.

【表】 次に、表8のNo.13の無機酸化物とNo.15の無機酸
化物とからなる混合無機酸化物(混合割合は重量
比で、No.15の無機酸化物/No.13の無機酸化物=
2.0とした。)に実施例1と同様な混合割合のBis
−GMAとTEGDMAの混合物を配合し、充分練
和することによりペースト状の複合修復材の無機
酸化物を得た。この際、複合修復材の無機酸化物
の充填量は77.8wt%で、ペーストの粘度は操作上
適正であつた。この複合修復材を実施例1と同様
な方法で硬化させ、硬化させたものについて物性
を測定した結果、圧縮強度4000Kg/cm2,曲げ強度
710Kg/cm2,表面あらさ0.5μm,歯ブラシ摩耗深
さ3.1μm,表面硬度63であつた。 実施例 16 表8のNo.14の無機酸化物とNo.15の無機酸化物と
からなる混合無機酸化物(混合割合は重量比で、
No.15の無機酸化物/No.14の無機酸化物=2.5とし
た。)を用いて、実施例7と同様なビニルモノマ
ーを用い、同様な方法でペーストを調製した。こ
の際、このペーストの無機酸化物の充填量は
78.2wt%で、ペーストの粘度は操作上適正であつ
た。さらに硬化させ複合レジンの物性を測定し
た。その結果、圧縮強度4100Kg/cm2,曲げ強度
790Kg/cm2,表面あらさ0.5μm,歯ブラシ摩耗深
さ3.0μm,表面硬度65であつた。 実施例 17 表4のNo.5の無機酸化物,No.6の無機酸化物及
び表6のNo.9の無機酸化物からなる混合無機酸化
物(混合割合は重量比で、No.5の無機酸化物:No.
6の無機酸化物:No.9の無機酸化物=1:2:4
とした。)を用いて、実施例7と同様なビニルモ
ノマーを用い、同様な方法でペーストを調製し
た。この際、このペーストの無機酸化物の充填量
は81.0wt%で、ペーストの粘度は操作上適正であ
つた。さらに硬化させ複合レジンの物性を測定し
た。 その結果、圧縮強度4300Kg/cm2,曲げ強度780
Kg/cm2,表面あらさ0.7μm,歯ブラシ摩耗深さ
3.0μm,表面硬度75であつた。
[Table] Next, a mixed inorganic oxide consisting of inorganic oxide No. 13 and inorganic oxide No. 15 in Table 8 (the mixing ratio is by weight, inorganic oxide No. 15/No. 13 Inorganic oxide =
It was set to 2.0. ) with Bis at the same mixing ratio as in Example 1.
- A paste-like inorganic oxide composite restorative material was obtained by blending a mixture of GMA and TEGDMA and thoroughly kneading it. At this time, the filling amount of inorganic oxide in the composite restorative material was 77.8 wt%, and the viscosity of the paste was appropriate for operation. This composite restorative material was cured in the same manner as in Example 1, and the physical properties of the cured material were measured. As a result, the compressive strength was 4000 Kg/cm 2 and the bending strength was 4000 Kg/cm 2 .
The weight was 710 kg/cm 2 , the surface roughness was 0.5 μm, the toothbrush wear depth was 3.1 μm, and the surface hardness was 63. Example 16 Mixed inorganic oxide consisting of inorganic oxide No. 14 and inorganic oxide No. 15 in Table 8 (mixing ratio is by weight,
No. 15 inorganic oxide/No. 14 inorganic oxide = 2.5. ), a paste was prepared in a similar manner using the same vinyl monomer as in Example 7. At this time, the filling amount of inorganic oxide in this paste is
At 78.2 wt%, the viscosity of the paste was appropriate for operation. The composite resin was further cured and its physical properties were measured. As a result, the compressive strength was 4100Kg/ cm2 , and the bending strength was 4100Kg/cm2.
The weight was 790Kg/cm 2 , the surface roughness was 0.5μm, the toothbrush wear depth was 3.0μm, and the surface hardness was 65. Example 17 Mixed inorganic oxide consisting of inorganic oxide No. 5 in Table 4, inorganic oxide No. 6 and inorganic oxide No. 9 in Table 6 (mixing ratio is by weight, Inorganic oxide: No.
Inorganic oxide No. 6: Inorganic oxide No. 9 = 1:2:4
And so. ), a paste was prepared in a similar manner using the same vinyl monomer as in Example 7. At this time, the filling amount of inorganic oxide in this paste was 81.0 wt%, and the viscosity of the paste was appropriate for operation. The composite resin was further cured and its physical properties were measured. As a result, the compressive strength was 4300Kg/cm 2 and the bending strength was 780.
Kg/cm 2 , surface roughness 0.7μm, toothbrush wear depth
It had a surface hardness of 3.0 μm and a surface hardness of 75.

Claims (1)

【特許請求の範囲】 1 粒子径が0.1〜1.0μmの範囲にある球形状の無
機酸化物で、平均粒子径が異なる少くとも2つの
群からなる混合無機酸化物と重合可能なビニルモ
ノマーとよりなることを特徴とする歯科用複合組
成物。 2 混合無機酸化物が、少くとも2つの群からな
り且つ第1群の無機酸化物の平均粒子径と第2群
の無機酸化物の平均粒子径との間に2倍以上の平
均粒子径差があるものである特許請求の範囲1記
載の歯科用複合組成物。 3 無機酸化物の粒子径の標準偏差値が1.30以内
である特許請求の範囲1記載の歯科用複合組成
物。 4 無機酸化物が非晶質シリカである特許請求の
範囲1記載の歯科用複合組成物。 5 無機酸化物が周期律表第族、同第族、同
第族および同第族からなる群から選ばれた少
くとも1種の金属成分と珪素成分とを主な構成成
分とする無機酸化物である特許請求の範囲1記載
の歯科用複合組成物。 6 無機酸化物が70〜90wt%含まれてなる特許
請求の範囲1記載の歯科用複合組成物。 7 無機酸化物が有機珪素化合物で表面処理され
ている特許請求の範囲1記載の歯科用複合組成
物。 8 重合可能なビニルモノマーがアクリル基又は
メタクリル基を有するビニルモノマーである特許
請求の範囲1記載の歯科用複合組成物。
[Scope of Claims] 1 A spherical inorganic oxide with a particle size in the range of 0.1 to 1.0 μm, comprising a mixed inorganic oxide consisting of at least two groups with different average particle sizes and a polymerizable vinyl monomer. A dental composite composition characterized by: 2. The mixed inorganic oxide consists of at least two groups, and the average particle size difference between the average particle size of the inorganic oxide of the first group and the average particle size of the inorganic oxide of the second group is two times or more. The dental composite composition according to claim 1, which comprises: 3. The dental composite composition according to claim 1, wherein the standard deviation value of the particle diameter of the inorganic oxide is within 1.30. 4. The dental composite composition according to claim 1, wherein the inorganic oxide is amorphous silica. 5. An inorganic oxide whose main constituents are at least one metal component selected from the group consisting of Groups 1, 2, 3, and 3 of the periodic table, and a silicon component. The dental composite composition according to claim 1. 6. The dental composite composition according to claim 1, comprising 70 to 90 wt% of the inorganic oxide. 7. The dental composite composition according to claim 1, wherein the inorganic oxide is surface-treated with an organic silicon compound. 8. The dental composite composition according to claim 1, wherein the polymerizable vinyl monomer is a vinyl monomer having an acrylic group or a methacrylic group.
JP57035195A 1982-03-08 1982-03-08 Composite composition Granted JPS58152804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035195A JPS58152804A (en) 1982-03-08 1982-03-08 Composite composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035195A JPS58152804A (en) 1982-03-08 1982-03-08 Composite composition

Publications (2)

Publication Number Publication Date
JPS58152804A JPS58152804A (en) 1983-09-10
JPH0310603B2 true JPH0310603B2 (en) 1991-02-14

Family

ID=12435075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035195A Granted JPS58152804A (en) 1982-03-08 1982-03-08 Composite composition

Country Status (1)

Country Link
JP (1) JPS58152804A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503169A (en) * 1984-04-19 1985-03-05 Minnesota Mining And Manufacturing Company Radiopaque, low visual opacity dental composites containing non-vitreous microparticles
JPS61148109A (en) * 1984-12-24 1986-07-05 Tokuyama Soda Co Ltd Compound reparative material
JP5291296B2 (en) * 2007-02-20 2013-09-18 富士フイルム株式会社 Polymerizable composition, dental or surgical curable material and curable material, and method for producing dental or surgical molded article
JP5479147B2 (en) * 2010-02-19 2014-04-23 株式会社トクヤマデンタル Method for producing inorganic oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124491A (en) * 1974-01-23 1975-09-30
JPS5573605A (en) * 1978-11-24 1980-06-03 Bayer Ag Dental substance based on xxray impermeable pasty organic plastics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124491A (en) * 1974-01-23 1975-09-30
JPS5573605A (en) * 1978-11-24 1980-06-03 Bayer Ag Dental substance based on xxray impermeable pasty organic plastics

Also Published As

Publication number Publication date
JPS58152804A (en) 1983-09-10

Similar Documents

Publication Publication Date Title
JP3214982B2 (en) Inorganic composition
JP3487395B2 (en) Curable composition
US7670580B2 (en) Dental resin materials, method of manufacture, and uses thereof
US4617327A (en) Inorganic-organic fillers for polymerizable compositions
JP2732968B2 (en) Dental filling composition
CN1070664A (en) Highly filled, polymerisable compositions
JPH0127976B2 (en)
GB2141700A (en) Novel crystalline metal oxide and process for production thereof
JPH0418453A (en) Organic-inorganic composite powder and production of the same powder
JPH0651735B2 (en) Curable composition
JPH07496B2 (en) Manufacturing method of artificial stone molding
JP3859737B2 (en) Dental composite material
US9296891B2 (en) Dental resin materials, method of manufacture, and uses thereof
JPH0310603B2 (en)
JP4798680B2 (en) Dental curable composition
JPH0312043B2 (en)
JPH0157082B2 (en)
JPH0312044B2 (en)
JPH0461003B2 (en)
JP3575150B2 (en) Aluminum hydroxide for resin filling and resin composition using the same
JP2523993B2 (en) Method for manufacturing dental composite material
JP3277502B2 (en) Method for producing inorganic filler and dental restoration material
JPH0559043B2 (en)
JPS608214A (en) Dental material
JPH0333721B2 (en)