JPH0157082B2 - - Google Patents

Info

Publication number
JPH0157082B2
JPH0157082B2 JP56139684A JP13968481A JPH0157082B2 JP H0157082 B2 JPH0157082 B2 JP H0157082B2 JP 56139684 A JP56139684 A JP 56139684A JP 13968481 A JP13968481 A JP 13968481A JP H0157082 B2 JPH0157082 B2 JP H0157082B2
Authority
JP
Japan
Prior art keywords
particle size
amorphous silica
paste
restorative material
vinyl monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56139684A
Other languages
Japanese (ja)
Other versions
JPS5841810A (en
Inventor
Koji Kusumoto
Shigeki Yuasa
Katsumi Suzuki
Takeshi Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP56139684A priority Critical patent/JPS5841810A/en
Publication of JPS5841810A publication Critical patent/JPS5841810A/en
Publication of JPH0157082B2 publication Critical patent/JPH0157082B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は複合修復材特に歯科用として好適な複
合修復材に関する。さらに詳しくは、耐摩耗性、
滑沢性に優れなおかつ表面硬度が高く表面研摩仕
上げの容易な複合修復材に関するものである。 現在、複合修復材例えば歯科用複合修復材とし
ては重合収縮が比較的小さいとされているビスフ
エノールAグリシジルメタアクリレート(ビスフ
エノールAとグリシジルメタクリレートの付加生
成物、以下Bis−GMAと略す。)を主成分とする
アクリル系モノマー液に粒径数+μmのガラスビ
ーズあるいは石英の粉砕物を大量に配合し、使用
時にさらに常温分解型の重合開始剤を添加して口
腔内で重合硬化させるものが一般的に用いられて
いる。 上記の如き修復材は光学的に透明な無機粉体を
充填材として用いているため、アクリル系のポリ
マーと同モノマーからなるレジン系修復材と比較
して重合時の収縮および透明性に於いて劣ること
なく、さらに線膨張係数と機械的強度に優れた性
質を有する点で特徴があり、広く臨床医に愛用さ
れている。しかし、耐摩耗性、表面の滑沢性、お
よび表面硬度の点で自然歯に比べるとはるかに劣
り、さらに改良すべき点を有している。 上記の如き欠点を改良するために、種々の改良
技術が提案されている。例えば、特開昭50−
124491では、粒径が10〜400mμの範囲で、その内
少なくとも50%以上が10〜40mμの粒径を有する
無機粉体を充填材として用いる事により機械的強
度および透明性を損うことなく、従来の無機充填
材の欠点の一つである表面滑沢性が改良された修
復材が提案されている。 しかしながら、上記の如き10〜40mμの超微粒
子を大量に含有する無機粉体を充填材として用い
る場合には、充填材の表面積が著しく大きくなる
ために、アクリル系モノマー液に配合した際、粘
度が著しく上昇する。そのため、無機充填材とア
クリル系モノマー液からなる複合修復材の特徴を
生かすべく無機充填材の配合割合を増加させると
使用時の練和操作あるいは口腔内での修復操作は
ほとんど不可能な状態となる。即ち、上記の如き
超微粒子を充填材として用いる場合には操作性の
要請上30〜60wt%におさえざるを得ない状況に
ある。この様に操作性を適正にするという使用上
の要請からくる無機充填材の配合量の低下のため
に、透明性および表面の滑沢性は改良されるもの
の、熱膨張係数は逆に大きくなり、又、表面硬度
も低くなるという欠点が生じる。さらにこのよう
な無機充填材の配合割合の低下は、歯科材料の耐
摩耗性の評価方法の一つである歯ブラシ摩耗試験
において、その摩耗量を増大させる結果となり好
ましくない。 以上の様な諸々の欠点の他に、従来型の充填材
を用いたもの、および超微粒子の無機粉体を充填
材として用いたもののいずれについても修復後の
表面研磨仕上げがやりにくいという実用上の大き
な欠点を持つている。即ち前者の場合には充填材
が数十μmと大きいために研磨により滑らかな平
面を出す事が困難とされ、後者の場合には、滑ら
かな面は得られるものの、容易に削れ過ぎて形態
修正がやりにくい欠点を有している。 そこで、本発明者らは上述の如き諸々の欠点を
改良すべく、特に無機充填材について鋭意研究を
重ねた。その結果、無機充填材の粒径が適当な範
囲にあり、しも粒子径の分布が均一な球状粒子を
用いる事により機械的強度を損うことなく、耐摩
耗性が改善され、表面の滑沢性が向上する事を見
い出した。さらに驚くべきことに、上述のごとき
粒子径のそろつた球状粒子を用いることにより、
公知の充填材例えば超微粒子状の充填材を用いた
ものに比べ高い表面硬度を有し、その上に修復後
の表面研磨仕上げが非常にやりやすく、しかも滑
らかな光沢のある表面を容易に得ることが出来る
等の種々の予想外の効果が発揮出来るのである。 本発明は重合可能なビニルモノマーと粒子径が
0.1〜1.0μの範囲にある球状粒子で且つ該粒子径
の分布の標準偏差値が1.30以内にある非晶質シリ
カとよりなる複合修復材である。 本発明の複合修復材の1成分は重合可能なビニ
ルモノマーである。該ビニルモノマーは特に限定
的ではなく、一般に歯科用修復材として使用され
ている公知なものが使用出来る。該ビニルモノマ
ーとして最も代表的なものはアクリル基及び/又
はメタクリル基を有する重合可能なビニルモノマ
ーである。具体的に上記アクリル基及び/又はメ
タクリル基を有するビニルモノマーについて例示
すると例えばビスフエノールAジグリシジルメタ
クリレート、メチルメタクリレート、ビスメタク
リロエトキシフエニルプロパン、トリエチレング
リコールジメタクリレート、ジエチレングリコー
ルジメタクリレート、テトラメチロールトリアク
リレート、テトラメチロールメタントリメタクリ
レート、トリメチロールエタントリメタクリレー
ト等が好適である。また下記の構造式で示される
ウレタン構造を有するビニルモノマーも好適に使
用される。 但し上記式中、R1,R2,R3及びR4は同種又は
異種のH又はCH3で、(―A―)は―(CH2―)6
The present invention relates to a composite restorative material, particularly a composite restorative material suitable for dental use. More specifically, wear resistance,
The present invention relates to a composite restorative material that has excellent smoothness, high surface hardness, and is easy to polish. Currently, bisphenol A glycidyl methacrylate (addition product of bisphenol A and glycidyl methacrylate, hereinafter abbreviated as Bis-GMA) is used as a composite restorative material, such as a dental composite restorative material, which is said to have relatively small polymerization shrinkage. Generally, a large amount of glass beads or pulverized quartz with a particle diameter of several micrometers is mixed with the acrylic monomer liquid as the main component, and a polymerization initiator that decomposes at room temperature is added to polymerize and harden in the oral cavity. It is used in many ways. Because the above-mentioned restorative materials use optically transparent inorganic powder as a filler, they suffer from shrinkage and transparency during polymerization compared to resin-based restorative materials made of acrylic polymer and the same monomer. It is characterized by its excellent linear expansion coefficient and mechanical strength, and is widely used by clinicians. However, they are far inferior to natural teeth in terms of wear resistance, surface smoothness, and surface hardness, and there are still points that need to be improved. Various improvement techniques have been proposed to improve the above-mentioned drawbacks. For example, JP-A-1987-
124491 uses inorganic powder as a filler with a particle size in the range of 10 to 400 mμ, of which at least 50% has a particle size of 10 to 40 mμ, without impairing mechanical strength and transparency. Restorative materials have been proposed that have improved surface smoothness, which is one of the drawbacks of conventional inorganic fillers. However, when an inorganic powder containing a large amount of ultrafine particles of 10 to 40 mμ as described above is used as a filler, the surface area of the filler becomes significantly large, so when it is blended into an acrylic monomer liquid, the viscosity increases. rises significantly. Therefore, if the blending ratio of the inorganic filler is increased to take advantage of the characteristics of a composite restorative material consisting of an inorganic filler and an acrylic monomer liquid, kneading operations during use or restorative operations in the oral cavity will become almost impossible. Become. That is, when using the above-mentioned ultrafine particles as a filler, it is necessary to limit the amount to 30 to 60 wt% due to operability requirements. In this way, due to the demand for appropriate operability, the amount of inorganic filler blended is reduced, and although transparency and surface smoothness are improved, the coefficient of thermal expansion is conversely increased. Moreover, there is a drawback that the surface hardness becomes low. Further, such a decrease in the blending ratio of the inorganic filler is undesirable because it results in an increase in the amount of wear in the toothbrush wear test, which is one of the methods for evaluating the wear resistance of dental materials. In addition to the above-mentioned drawbacks, both those using conventional fillers and those using ultrafine inorganic powder as a filler have the practical difficulty of polishing the surface after repair. It has a big drawback. That is, in the former case, it is difficult to obtain a smooth surface by polishing because the filler is large, several tens of micrometers; in the latter case, although a smooth surface can be obtained, it is too easy to scrape and the shape cannot be corrected. It has the disadvantage that it is difficult to do. Therefore, the inventors of the present invention have conducted extensive research, especially regarding inorganic fillers, in order to improve the various drawbacks mentioned above. As a result, the particle size of the inorganic filler is within an appropriate range, and by using spherical particles with a uniform particle size distribution, wear resistance is improved without compromising mechanical strength, and the surface becomes smooth. It was found that the water quality was improved. Even more surprisingly, by using spherical particles with uniform particle sizes as described above,
To have a surface hardness higher than that of known fillers, such as those using ultrafine particle fillers, and in addition, it is very easy to polish the surface after repair, and to easily obtain a smooth and glossy surface. Various unexpected effects can be achieved, such as the ability to The present invention uses a polymerizable vinyl monomer and a particle size
This is a composite restorative material made of amorphous silica, which is a spherical particle in the range of 0.1 to 1.0μ and the standard deviation value of the particle size distribution is within 1.30. One component of the composite restorative material of the present invention is a polymerizable vinyl monomer. The vinyl monomer is not particularly limited, and known ones commonly used as dental restorative materials can be used. The most typical vinyl monomer is a polymerizable vinyl monomer having an acrylic group and/or a methacrylic group. Specific examples of vinyl monomers having an acrylic group and/or methacrylic group include bisphenol A diglycidyl methacrylate, methyl methacrylate, bismethacryloethoxyphenylpropane, triethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and tetramethylol trimethacrylate. Acrylate, tetramethylolmethane trimethacrylate, trimethylolethane trimethacrylate, etc. are suitable. Also preferably used is a vinyl monomer having a urethane structure represented by the following structural formula. However, in the above formula, R 1 , R 2 , R 3 and R 4 are the same or different H or CH 3 , (-A-) is -(CH 2 -) 6 ,

【式】又は[Formula] or

【式】が好適である。 これらのビニルモノマーは歯科用材料としては公
知なものであるので必要に応じて単独で或いは混
合して使用すればよい。 本発明の複合修復材の他の成分は非晶質シリカ
である。本発明で使用する非晶質シリカは粒子径
が0.1〜1.0μの範囲にある球状粒子で且つ該粒子
径の分布の標準偏差値が1.30以内にある必要があ
る。上記粒子径、粒子形状及び粒子径の分布はい
ずれも非常に重要な要因となり、いずれの条件が
欠けても本発明の目的を達成することが出来な
い。例えば非晶質シリカの粒子径が0.1μより小さ
い場合には重合可能なビニルモノマーと練和して
ペースト状の混合物とする際に粒度の上昇が著し
く、配合割合を増加させて粘度上昇を防ごうとす
れば操作性が悪化するので実質的に実用に供する
材料となり得ない。また該粒子径が1.0μより大き
い場合は、ビニルモノマーを重合硬化後の樹脂が
耐摩耗性あるいは表面の滑沢性が低下し、更に表
面硬度も低下する等の欠陥があるため好ましくな
い。また粒子径の分布の標準偏差値が1.30より大
きくなると複合修復材の操作性が著しく低下する
ので実用に供する修復材とはなり得ない。更にま
た非晶質シリカが前記粒子径0.1〜1.0μの範囲で、
粒子径の分布の標準偏差が1.30以内の粒子であつ
ても、該粒子の形状が球形状でなければ前記した
ような本発明の効果特に耐摩耗性、表面の滑沢
性、表面硬度等に於いて満足のいくものとはなり
得ない。 本発明で使用する非晶質シリカの製造方法につ
いては特に限定されず前記粒子径、形状及び粒子
径の分布の標準偏差値を有するものであれば、如
何なる製法によつて得られたものであつてもよ
い。一般に工業的には珪酸エステルの加水分解に
よつて製造する方法(無機材質研究所報告書第14
号第49頁〜第58頁(1977年))が好適に採用され
る。一般に工業的に得られる非晶質の球状シリカ
は表面安定性を保持するため表面のシラノール基
を減ずるのが好ましい。そのために球形状の非晶
質シリカを乾燥後更に500〜1000℃の温度で焼成
する手段がしばしば好適に採用される。該焼成に
際してはシリカ粒子の一部が焼結し凝集する場合
もあるので、通常は擂潰機、振動ボールミル、ジ
エツト粉砕機等を用いて凝集粒子をときほぐすの
が好ましい。また一般に前記焼成したシリカ粒子
は安定性を保持するため有機珪素化合物を用いて
表面処理を行つた後使用するのが最も好適であ
る。上記表面処理の方法は特に限定されず公知の
方法例えばシリカ粒子とγ―メタクリロキシプロ
ピルトリメトキシシラン、ビニルトリエトキシシ
ラン等の公知の有機珪素化合物とを、アルコー
ル/水の混合溶媒中で一定時間接触させた後、該
溶媒を除去する方法が採用される。 本発明で使用する非晶質シリカの形状は顕微鏡
写真をとることにより、その粒子径、形状を確認
することが出来、粒子径の分布の標準偏差値は顕
微鏡写真の単位面積或いは顕微鏡の単位視野内に
存在する粒子の数とそれぞれの直径から、後述す
る算出式によつて算出することが出来る。上記顕
微鏡写真は非晶質シリカの粒子形状が観察出来る
ものであればどんなものでもよいが、一般には走
査型電子顕微鏡写真、透過型電子顕微鏡写真等が
好適である。また非晶質シリカが他の液状物質例
えば重合可能なビニルモノマーと混合されペース
ト状混合物となつている場合はあらかじめ適当な
有機溶媒を用いて液状物質を抽出除去した後、前
記同様な操作で非晶質シリカの性状を調べるとよ
い。 本発明で使用する前記非晶質シリカは前記した
ように球状粒子が使用されるが該球状であるかど
うかは上記顕微鏡の他に非晶質シリカの比表面積
を測定することによつて確認することが出来る。
例えば粒子径0.1〜1.0μmの範囲にある非晶質シリ
カはその比表面積が4.0〜40.0m2/g程度であれ
ば完全な球型と仮定して計算される比表面積と
ほゞ一致する。従つて本発明で使用する非晶質シ
リカはその比表面積が4.0〜40.0m2/gの範囲の
ものを使用するのが好適である。 本発明の複合修復材は前記重合可能なビニルモ
ノマー成分と前記特定の非晶質シリカとを混合し
て使用される。例えば歯科用修復材として上記複
合修復材を用いる場合には操作性が重要な要因と
なるばかりでなく、得られる硬化後の複合レジン
の機械的強度、耐摩耗性、表面の滑沢性等を十分
に良好に保持しなければならない。そのために一
般に非晶質シリカの添加量は70〜90%の範囲とな
るように選ぶのが好ましい。 また上記歯科用複合修復材として使用する場合
には一般に非晶質シリカと重合可能なビニルモノ
マーおよび重合促進剤(例えば第三級アミン化合
物)からなるペースト状混合物と非晶質シリカと
ビニルモノマーおよび重合開始剤(例えばベンゾ
イルパーオキサイドの如き有機過酸化物)からな
るペースト状混合物とをそれぞれあらかじめ調製
しておき、修復操作の直前に両者を混練して硬化
させる方法が好適に用いられる。本発明の複合修
復材を硬化させた複合レジンは従来のものに比べ
て圧縮強度等の機械的強度は劣ることなく、しか
も耐摩耗性あるいは表面の滑沢性に優れ、さらに
は表面硬度が高く、表面研磨仕上げが非常に容易
であるという多くの優れた特徴を有している。し
かしこのような特徴があらわれる理由については
現在必ずしも明確ではないが、本発明者等は次の
様に考えている。即ち、第1に粒子の形状が球形
型でしかも粒子径の分布の標準偏差値が1.30以内
というような粒子径のそろつた非晶質シリカを用
いる事によつて、従来の粒子径分布の広いしかも
形状の不揃いな充填材を用いる場合に比べて、硬
化して得られる複合レジン中に非晶質シリカがよ
り均一にしかも密に充填される事及び第2にさら
に粒子径の範囲が0.1〜1.0μmの範囲内であるもの
を用いる事により、粒子径が数十μもある従来の
無機充填材を用いる場合に比べて、硬化後の複合
レジンの研磨面は滑らかになり、逆に数十mμの
微細粒子を主成分とする超微粒子充填材を用いる
場合に比べて充填材の全比表面積が小さく、従つ
て適当な操作性を有する条件下で充填材の充填量
が多くできる事などの理由が考えられる。 本発明の複合修復材は前記特定の非晶質シリカ
と重合可能なビニルモノマーとを配合することに
より、上記したように従来予想し得なかつた数々
のメリツトを発揮させるものである。本発明の前
記複合修復材は重合可能なビニルモノマー成分と
特定の非晶質シリカ成分との2成分の配合で前記
メリツトを発揮するものであるが、これらの成分
の他に一般に歯科用修復材として使用される添加
成分を必要に応じて添加することも出来る。これ
らの添加成分の代表的なものは次のようなものが
ある。例えばラジカル重合禁止剤、色合せのため
の着色顔料、紫外線吸収剤などがある。 以下実施例および比較例を挙げ、本発明をさら
に具体的に説明するが、本発明はこれらの実施例
に限定されるものではない。尚以下の実施例、比
較例に示した非晶質シリカを含む無機充填材の諸
特性(粒子径、粒子径分布の標準偏差値、比表面
積)の測定、および複合修復材のペーストの調製
および硬化方法、ならびに硬化後の複合レジンの
物性値(圧縮強度、曲げ強度、歯ブラシ摩耗深
さ、表面粗さ、表面硬度)の測定は、以下の方法
に従つた。 (1) 粒子径および粒子径分布の標準偏差値 粉体の走査型電子顕微鏡写真を撮り、その写真
の単位視野内に観察される粒子の数(n)、およ
び粒子径(直径xi)を求め、次式により算出され
る。 (2) 比表面積 柴田化学器機工業(株)迅速表面測定装置SA−
1000を用いた。測定原理はBET法である。 (3) 複合修復材のペーストの調製および硬化方法 先ず、γ―メタクリロキシプロピルトリメトキ
シシランによつて表面処理された非晶質シリカと
ビニルモノマーを所定の割合でメノウ乳鉢に入れ
均一なペーストとなるまで十分混練した。次いで
該ペーストを二等分し、一方のペーストにはさら
に重合促進剤を加え十分混合した(これをペース
トAとする)。また他方のペーストには有機過酸
化物触媒を加え十分混合した(これをペーストB
とする)。次にペーストA及びペーストBの等量
を約30秒間混練し、型枠に充填し硬化させた。 (4) 圧縮強度 ペーストA及びペーストBを混合して、室温で
30分間重合させた後、37℃、水中24時間浸漬した
ものを試験片とした。その大きさ、形状は直径6
mm、高さ12mmの円柱状のものである。この試験片
を試験機(東洋ボードウイン製UTM−5T)に装
着し、クロスヘツドスピード10mm/minで圧縮強
度を測定した。 (5) 曲げ強度 ペーストA及びペーストBを混合して室温で30
分間重合させた後、37℃、水中24時間浸漬したも
のを試験片とした。その大きさ、形状は2×2×
25mmの角柱状のものである。曲げ試験は支点間距
離20mmの曲げ試験装置を東洋ボードウイン製
UTM−5Tに装着して行ない、クロスヘツドスピ
ード0.5mm/minとした。 (6) 歯ブラシ摩耗深さ、および表面粗さ ペーストA及びペーストBを混合して室温で30
分間重合させた後、37℃、水中24時間浸漬したも
のを試験片とした。その大きさ、形状は1.5×10
×10mmの板状のものである。試験片を荷重400g
で歯ブラシで1500m摩耗した後、表面粗さ計(サ
ーフコムA−100)で十点平均あらさを求めた。
又摩耗深さは摩耗重量を複合レジンの密度で除し
て求めた。 (7) 表面硬度 ペーストA及びペーストBを混合して室温で30
分間重合させた後、37℃、水中24時間浸漬したも
のを試験片とした。その大きさ、形状は2.5×10
mmの円板状のものである。測定はミクロブリネル
硬さ試験を用いた。 また実施例及び比較例で使用した略記は特に記
さない限り次の通りである。 実施例 1 エチルシリケート(日本コルコート社製)500
g、メタノール1.2を容量3のビーカーに入
れ混合した。(この溶液を以下供給液と言う。)も
う一つ別の容量10のガラス容器にメタノール
6.0、アンモニア水(アンモニア濃度25〜28%)
650g仕込んだ。(この溶液を反応槽液と言う。)
反応槽液の液温を20℃に保ち、撹拌しながら供給
液を30分間で添加した。反応終了後、白濁した反
応槽液をエバポレーターで溶媒を除去し乾燥し
1000℃、1時間焼成した。焼成後、メノウ乳鉢で
焼成物を粉砕しシリカ粒子を得た。このシリカ粒
子は走査型電子顕微鏡の観察から粒子径は0.18〜
0.24μの範囲にあり、形状は真球で、さらに粒子
径の分布の標準偏差値は1.04で比表面積20.6m2
gであつた。得られたシリカ粒子はさらにγ―メ
タクリロキシプロピルトリメトキシシランで表面
処理を行なつた。処理はシリカ粒子に対してγ―
メタクリロキシプロピルトリメトキシシランを
6wt%添加し、水−エタノール溶媒中で80℃、2
時間還流した後エバポレーターで溶媒を除去し、
さらに真空乾燥させる方法によつた。 次にビニルモノマーとしてビスフエノールAジ
グリシジルメタクリレート(以下Bis−GMAと
言う。)とトリエチレングリコールジメタクリレ
ート(以下TEGDMAと言う。)の混合物(混合
割合はBis−GMA/TEGDMA=3/7モル比で
ある。)に上記シリカ粒子を配合し充分練和する
ことによりペースト状の複合修復材を得た。この
際複合修復材のシリカ粒子の充填量は75.8wt%で
ペーストの粘度は操作上適正であつた。次にペー
ストを2等分に一方には重合促進剤としてN,N
―ジメチル―p―トルイジンを、もう一方には重
合開始剤剤として過酸化ベンゾイルを各々ビニル
モノマーに対して1wt%添加しペーストA(前者)
及びペーストB(後者)を調製した。 上記のペーストAとペーストBを等量取り、30
秒間、室温で練和し硬化させたものについて物性
を測定した結果、圧縮強度3420Kg/cm2、曲げ強度
750Kg/cm2、表面あらさ0.5μm、表面硬度60.0、歯
ブラシ摩耗深さ7.0μであつた。又表面研摩仕上げ
についてはソフレツクス(スリーエム社製)で仕
上げたところ複合レジンの表面を削り過ぎること
なく、容易に滑沢性の良い表面が得られた。 実施例 2〜4 実施例1と同様な方法で、供給液組成および反
応槽液組成を変えることにより粒子径及び粒子径
分布の異なるシリカ粒子を調製した。結果はまと
めて表1に示したが、これら三種のシリカ粒子を
用いて、実施例1と同様なビニルモノマーを用
い、同様な方法でペーストを調製し、さらに硬化
させ複合レジンの物性を測定した。その結果を同
じく表1にまとめて示した。
[Formula] is preferred. Since these vinyl monomers are known as dental materials, they may be used alone or in combination as required. Another component of the composite restorative material of the present invention is amorphous silica. The amorphous silica used in the present invention must be spherical particles with a particle size in the range of 0.1 to 1.0 μm, and the standard deviation value of the particle size distribution must be within 1.30. The above-mentioned particle size, particle shape, and particle size distribution are all very important factors, and the object of the present invention cannot be achieved if any of the conditions is absent. For example, if the particle size of amorphous silica is smaller than 0.1μ, the particle size will increase significantly when it is kneaded with a polymerizable vinyl monomer to form a paste-like mixture, and the blending ratio should be increased to prevent the increase in viscosity. If the material is used as a material, the operability deteriorates, so that it cannot be used as a material for practical use. If the particle size is larger than 1.0 μm, it is not preferable because the resin obtained by polymerizing and curing the vinyl monomer has defects such as a decrease in abrasion resistance or surface smoothness, and also a decrease in surface hardness. Furthermore, if the standard deviation value of the particle size distribution is larger than 1.30, the operability of the composite restorative material will be significantly reduced, so that it cannot be used as a restorative material for practical use. Furthermore, the amorphous silica has a particle size in the range of 0.1 to 1.0μ,
Even if the standard deviation of the particle size distribution is within 1.30, if the shape of the particle is spherical, the effects of the present invention as described above will not be achieved, especially in terms of wear resistance, surface smoothness, surface hardness, etc. It cannot be satisfactory. The method for producing amorphous silica used in the present invention is not particularly limited, and any production method may be used as long as the amorphous silica has the above-mentioned particle size, shape, and standard deviation of particle size distribution. It's okay. Generally, industrially, it is produced by hydrolysis of silicate ester (Inorganic Materials Research Institute Report No. 14)
No. 49 to 58 (1977)) are preferably adopted. Generally, it is preferable to reduce the number of silanol groups on the surface of industrially obtained amorphous spherical silica in order to maintain surface stability. For this purpose, a method of drying the spherical amorphous silica and then firing it at a temperature of 500 to 1000°C is often suitably employed. During the firing, some of the silica particles may be sintered and aggregated, so it is usually preferable to use a crusher, vibrating ball mill, jet pulverizer, etc. to loosen the aggregated particles. Generally, in order to maintain stability, the fired silica particles are most preferably used after surface treatment using an organic silicon compound. The surface treatment method described above is not particularly limited and may be carried out by any known method, for example, by treating silica particles with a known organosilicon compound such as γ-methacryloxypropyltrimethoxysilane or vinyltriethoxysilane in a mixed solvent of alcohol/water for a certain period of time. A method is adopted in which the solvent is removed after contacting. The particle size and shape of the amorphous silica used in the present invention can be confirmed by taking a microscopic photograph, and the standard deviation value of the particle size distribution is determined by the unit area of the microscopic photograph or the unit field of view of the microscope. It can be calculated from the number of particles present in the particle and their respective diameters using the calculation formula described below. The above-mentioned microscopic photograph may be any photograph as long as the shape of the particles of amorphous silica can be observed, but in general, scanning electron micrographs, transmission electron micrographs, etc. are suitable. In addition, if amorphous silica is mixed with another liquid substance such as a polymerizable vinyl monomer to form a paste mixture, first extract and remove the liquid substance using an appropriate organic solvent, and then remove the liquid substance by the same operation as above. It is a good idea to investigate the properties of crystalline silica. As described above, the amorphous silica used in the present invention is a spherical particle, but whether or not it is spherical is confirmed by measuring the specific surface area of the amorphous silica in addition to the above-mentioned microscope. I can do it.
For example, if the specific surface area of amorphous silica having a particle diameter in the range of 0.1 to 1.0 μm is about 4.0 to 40.0 m 2 /g, it almost matches the specific surface area calculated assuming a perfect spherical shape. Therefore, the amorphous silica used in the present invention preferably has a specific surface area of 4.0 to 40.0 m 2 /g. The composite restorative material of the present invention is used by mixing the polymerizable vinyl monomer component and the specific amorphous silica. For example, when using the above-mentioned composite restorative material as a dental restorative material, not only the operability is an important factor, but also the mechanical strength, abrasion resistance, surface smoothness, etc. of the resulting cured composite resin. Must be well maintained. For this reason, it is generally preferable to select the amount of amorphous silica to be added within a range of 70 to 90%. In addition, when used as the above-mentioned dental composite restorative material, a paste-like mixture consisting of amorphous silica, a polymerizable vinyl monomer, and a polymerization accelerator (for example, a tertiary amine compound), amorphous silica, a vinyl monomer, and A method is preferably used in which a paste-like mixture consisting of a polymerization initiator (for example, an organic peroxide such as benzoyl peroxide) is prepared in advance, and both are kneaded and cured immediately before the repair operation. The composite resin made by curing the composite restorative material of the present invention has mechanical strength such as compressive strength that is comparable to conventional ones, and has excellent wear resistance and surface smoothness, as well as high surface hardness. It has many excellent features such as being very easy to polish the surface. However, the reason why such characteristics appear is not necessarily clear at present, but the inventors of the present invention think as follows. Firstly, by using amorphous silica, which has a spherical particle shape and a uniform particle size with a standard deviation of particle size distribution within 1.30, it is possible to achieve a wide particle size distribution compared to conventional methods. Moreover, compared to the case where fillers with irregular shapes are used, the amorphous silica is more uniformly and densely packed into the composite resin obtained by curing, and secondly, the particle size range is 0.1~ By using particles with a particle size within the range of 1.0 μm, the polished surface of the composite resin after curing becomes smoother than when using conventional inorganic fillers with a particle size of several tens of micrometers. The total specific surface area of the filler is smaller than when using an ultrafine particle filler whose main component is mμ fine particles, and therefore the amount of filler packed can be increased under conditions with appropriate operability. There could be a reason. By blending the specific amorphous silica and a polymerizable vinyl monomer, the composite restorative material of the present invention exhibits a number of previously unanticipated advantages as described above. The above-mentioned composite restorative material of the present invention exhibits the above-mentioned merits by a two-component combination of a polymerizable vinyl monomer component and a specific amorphous silica component, but in addition to these components, dental restorative materials are generally used. Additional components used as additives can also be added as necessary. Typical of these additive components are as follows. Examples include radical polymerization inhibitors, coloring pigments for color matching, and ultraviolet absorbers. EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to these Examples. In addition, measurements of various properties (particle size, standard deviation value of particle size distribution, specific surface area) of inorganic fillers containing amorphous silica shown in the following Examples and Comparative Examples, preparation of paste of composite restorative materials, and The curing method and the physical property values (compressive strength, bending strength, toothbrush wear depth, surface roughness, surface hardness) of the cured composite resin were measured according to the following methods. (1) Standard deviation value of particle size and particle size distribution Take a scanning electron micrograph of the powder, and calculate the number of particles (n) observed within the unit field of view of the photo and the particle size (diameter x i ). It is calculated using the following formula. (2) Specific surface area Shibata Chemical Equipment Co., Ltd. Rapid surface measuring device SA−
1000 was used. The measurement principle is the BET method. (3) Method for preparing and curing paste of composite restorative material First, amorphous silica surface-treated with γ-methacryloxypropyltrimethoxysilane and vinyl monomer were placed in an agate mortar in a predetermined ratio to form a uniform paste. Knead thoroughly until smooth. Next, the paste was divided into two equal parts, and a polymerization accelerator was further added to one paste and thoroughly mixed (this was referred to as paste A). In addition, an organic peroxide catalyst was added to the other paste and mixed thoroughly (this was added to paste B).
). Next, equal amounts of paste A and paste B were kneaded for about 30 seconds, filled into a mold, and hardened. (4) Compressive strength Mix paste A and paste B and
After polymerizing for 30 minutes, the test piece was immersed in water at 37°C for 24 hours. Its size and shape are 6 in diameter
It is cylindrical with a height of 12 mm. This test piece was mounted on a testing machine (UTM-5T manufactured by Toyo Baudouin), and the compressive strength was measured at a crosshead speed of 10 mm/min. (5) Bending strength: Mix paste A and paste B and
After polymerizing for a minute, the test pieces were immersed in water at 37°C for 24 hours. Its size and shape are 2×2×
It is a 25mm prismatic shape. For the bending test, we used a bending test device with a distance between fulcrums of 20 mm made by Toyo Baudouin.
The test was carried out by attaching it to UTM-5T, and the crosshead speed was 0.5 mm/min. (6) Toothbrush wear depth and surface roughness Mix paste A and paste B and heat at room temperature for 30 minutes.
After polymerizing for a minute, the test pieces were immersed in water at 37°C for 24 hours. Its size and shape are 1.5×10
It is a plate-shaped piece with a size of 10 mm. Load the test piece at 400g
After abrasion of 1500 m with a toothbrush, the 10-point average roughness was determined using a surface roughness meter (Surfcom A-100).
Further, the wear depth was determined by dividing the wear weight by the density of the composite resin. (7) Surface hardness: Mix paste A and paste B to 30 at room temperature.
After polymerizing for a minute, the test pieces were immersed in water at 37°C for 24 hours. Its size and shape are 2.5×10
It is in the shape of a mm disc. The measurement used a micro Brinell hardness test. In addition, the abbreviations used in Examples and Comparative Examples are as follows unless otherwise specified. Example 1 Ethyl silicate (manufactured by Nippon Colcoat Co., Ltd.) 500
g and 1.2 methanol were placed in a beaker with a capacity of 3 and mixed. (This solution is hereinafter referred to as the feed solution.) In another glass container with a capacity of 10 methanol.
6.0, ammonia water (ammonia concentration 25-28%)
I prepared 650g. (This solution is called the reaction tank liquid.)
The temperature of the reaction tank liquid was maintained at 20°C, and the feed liquid was added over 30 minutes while stirring. After the reaction is complete, remove the solvent from the cloudy reaction tank liquid using an evaporator and dry it.
It was baked at 1000°C for 1 hour. After firing, the fired product was crushed in an agate mortar to obtain silica particles. This silica particle has a particle size of 0.18~ as observed with a scanning electron microscope.
It is in the range of 0.24μ, the shape is a true sphere, the standard deviation value of the particle size distribution is 1.04, and the specific surface area is 20.6m 2 /
It was hot at g. The obtained silica particles were further surface-treated with γ-methacryloxypropyltrimethoxysilane. The treatment is γ-
methacryloxypropyltrimethoxysilane
Added 6wt% and incubated at 80℃ in water-ethanol solvent for 2 hours.
After refluxing for an hour, remove the solvent with an evaporator.
Furthermore, a method of vacuum drying was used. Next, as a vinyl monomer, a mixture of bisphenol A diglycidyl methacrylate (hereinafter referred to as Bis-GMA) and triethylene glycol dimethacrylate (hereinafter referred to as TEGDMA) (mixing ratio is Bis-GMA/TEGDMA = 3/7 molar ratio). A paste-like composite restorative material was obtained by blending the above-mentioned silica particles with the above-mentioned silica particles and thoroughly kneading the mixture. At this time, the filling amount of silica particles in the composite restorative material was 75.8 wt%, and the viscosity of the paste was appropriate for operation. Next, divide the paste into two equal parts, one with N and N as polymerization accelerator.
-Dimethyl-p-toluidine was added to the other side, and benzoyl peroxide as a polymerization initiator was added at 1 wt% to the vinyl monomer to make paste A (former).
and Paste B (latter) was prepared. Take equal amounts of Paste A and Paste B above and 30
After kneading and hardening at room temperature for a few seconds, the physical properties were measured, and the results showed a compressive strength of 3420 Kg/cm 2 and a bending strength.
The weight was 750 kg/cm 2 , the surface roughness was 0.5 μm, the surface hardness was 60.0, and the toothbrush wear depth was 7.0 μm. When the surface was polished using Soflex (manufactured by 3M), a smooth surface was easily obtained without excessively abrading the surface of the composite resin. Examples 2 to 4 In the same manner as in Example 1, silica particles having different particle sizes and particle size distributions were prepared by changing the feed liquid composition and the reaction tank liquid composition. The results are summarized in Table 1. Using these three types of silica particles, a paste was prepared in the same manner as in Example 1 using the same vinyl monomer, and the paste was further cured and the physical properties of the composite resin were measured. . The results are also summarized in Table 1.

【表】 実施例 5〜7 実施例3で得たシリカ粒子を用い、ビニルモノ
マー成分としてU―4HMA,U―4TMA,U―
4BMA、テトラメチロールメタントリアクリレ
ート(以下TMMTと言う。)およびメチルメタ
クリレート(以下MMAと言う。)を用いた以外
は実施例1と同様な方法でペースト状の複合修復
材を調製した。ビニルモノマー成分の混合割合は
表2に示した通りである。ペースト状の複合修復
材をさらに実施例1と同様な操作で硬化させ物性
を測定した。その結果を同じく表2に示した。
[Table] Examples 5 to 7 Using the silica particles obtained in Example 3, U-4HMA, U-4TMA, U-
A paste composite restorative material was prepared in the same manner as in Example 1 except that 4BMA, tetramethylolmethane triacrylate (hereinafter referred to as TMMT) and methyl methacrylate (hereinafter referred to as MMA) were used. The mixing proportions of the vinyl monomer components are shown in Table 2. The paste-like composite restorative material was further cured in the same manner as in Example 1, and its physical properties were measured. The results are also shown in Table 2.

【表】 比較例 1〜3 無機充填材に石英粉末、非晶質シリカの超微粒
子粉末(日本アエロジル製エロジルR−972)お
よび非晶質シリカ以外は、実施例1と同様な方法
でペースト状の複合修復材を調製し、硬化させ物
性を測定した。その結果を同じく表3に示した。
比較例3に供した非晶質シリカは実施例1,2,
3,4で用いた非晶質シリカを各々順に10wt%,
20wt%,30wt%,40wt%の割合で混合したもの
を用いた。
[Table] Comparative Examples 1 to 3 A paste was prepared in the same manner as in Example 1, except for quartz powder, amorphous silica ultrafine particle powder (Erosil R-972 manufactured by Nippon Aerosil), and amorphous silica as the inorganic filler. A composite restorative material was prepared, cured, and its physical properties were measured. The results are also shown in Table 3.
The amorphous silica used in Comparative Example 3 was Example 1, 2,
10wt% of each of the amorphous silica used in 3 and 4,
A mixture of 20wt%, 30wt%, and 40wt% was used.

【表】【table】

Claims (1)

【特許請求の範囲】 1 重合可能なビニルモノマーと粒子径が0.1〜
1.0μの範囲にある球状粒子で且つ該粒子径の分布
の標準偏差値が1.30以内にある非晶質シリカとよ
りなることを特徴とする複合修復材。 2 非晶質シリカが70〜90(重量)%含まれてな
る特許請求の範囲第1記載の複合修復材。 3 非晶質シリカが4.0〜40.0m2/gの比表面積
を有するものである特許請求の範囲1記載の複合
修復材。 4 非晶質シリカが有機珪素化合物で表面処理さ
れている特許請求の範囲1記載の複合修復材。 5 重合可能なビニルモノマーがアクリル基及
び/又はメタクリル基を有するビニルモノマーで
ある特許請求の範囲1記載の複合修復材。
[Claims] 1. A polymerizable vinyl monomer and a particle size of 0.1 to
A composite restorative material comprising amorphous silica having spherical particles in the range of 1.0μ and a standard deviation value of the particle size distribution within 1.30. 2. The composite restorative material according to claim 1, which contains 70 to 90% (by weight) of amorphous silica. 3. The composite restorative material according to claim 1, wherein the amorphous silica has a specific surface area of 4.0 to 40.0 m 2 /g. 4. The composite restorative material according to claim 1, wherein the amorphous silica is surface-treated with an organic silicon compound. 5. The composite restorative material according to claim 1, wherein the polymerizable vinyl monomer is a vinyl monomer having an acrylic group and/or a methacrylic group.
JP56139684A 1981-09-07 1981-09-07 Composite reparative material Granted JPS5841810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139684A JPS5841810A (en) 1981-09-07 1981-09-07 Composite reparative material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139684A JPS5841810A (en) 1981-09-07 1981-09-07 Composite reparative material

Publications (2)

Publication Number Publication Date
JPS5841810A JPS5841810A (en) 1983-03-11
JPH0157082B2 true JPH0157082B2 (en) 1989-12-04

Family

ID=15251014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139684A Granted JPS5841810A (en) 1981-09-07 1981-09-07 Composite reparative material

Country Status (1)

Country Link
JP (1) JPS5841810A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148316A (en) * 1985-12-20 1987-07-02 Agency Of Ind Science & Technol Preparation of microspherical silica
JPH02289481A (en) * 1988-09-02 1990-11-29 Hitoyoshi Nama Concrete Kk Method for blasting cryptomeria bark, cypress bark or the like and its blasted material
JPH02120221A (en) * 1988-10-31 1990-05-08 Nippon Steel Chem Co Ltd Production of silica particle
JPH0741152A (en) * 1993-08-02 1995-02-10 O G K Giken Kk Wheel selector/carrier
DE102004022566B4 (en) 2004-05-07 2019-05-09 Schott Ag Homogeneously coated powder particles with functional groups, a process for their preparation and their use

Also Published As

Publication number Publication date
JPS5841810A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
US4267097A (en) Material for dental purposes
US6849670B2 (en) Photo-curable reparative material for dental use
US4389497A (en) Use of agglomerates of silicic acid as fillers in dental materials
JP3487395B2 (en) Curable composition
US4617327A (en) Inorganic-organic fillers for polymerizable compositions
JP2732968B2 (en) Dental filling composition
JP2000143431A (en) Dental restorative material composition
MXPA00004281A (en) Dental restorative composite.
US5852096A (en) Filler based on silicon dioxide, method for its preparation, and its use
JPH02132102A (en) Curable composition
Mabie et al. Microporous glassy fillers for dental composites
JP3481660B2 (en) Fillers and dental composites containing fillers
CA1340145C (en) Pasty dental veneer material
JPH0157082B2 (en)
JP4798680B2 (en) Dental curable composition
JPH0312043B2 (en)
JPH0310603B2 (en)
JP3575150B2 (en) Aluminum hydroxide for resin filling and resin composition using the same
JPS61171404A (en) Complex restorative dental material
JPH0312044B2 (en)
JPH0461003B2 (en)
JPS608214A (en) Dental material
JP3421072B2 (en) Dental filling composition
JPH04210609A (en) Production of composite material for dental use
JPH0977624A (en) Dental composite resin