JPH02309580A - Formation method of mould connection for bridging polyolefine insulating cable - Google Patents

Formation method of mould connection for bridging polyolefine insulating cable

Info

Publication number
JPH02309580A
JPH02309580A JP1129565A JP12956589A JPH02309580A JP H02309580 A JPH02309580 A JP H02309580A JP 1129565 A JP1129565 A JP 1129565A JP 12956589 A JP12956589 A JP 12956589A JP H02309580 A JPH02309580 A JP H02309580A
Authority
JP
Japan
Prior art keywords
bridging
peroxide
cable
crosslinking
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1129565A
Other languages
Japanese (ja)
Inventor
Keiichi Higure
日暮 恵一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP1129565A priority Critical patent/JPH02309580A/en
Publication of JPH02309580A publication Critical patent/JPH02309580A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the insulating property by bridging a spindleshaped insulating reinforcement body which consists of a polyolefine composition mixed with a peroxide for bridging, and after that, continuing the heating until the decomposing leftovers of the peroxide for bridging is decomposed perfectly. CONSTITUTION:On a conductor connection where a conductor connecting sleeve 3 is pressed on the exposed conductors 2 of a pair of CV cables 1, a metal mould 5 is set striding on both insulators 4, and after that, a spindle-shaped insulating reinforcement body 6 which consists of a bridgeable polyolefine composition mixed with a peroxide for bridging is filled. Then, after the whole body of the metal mould 5 is heated at 200 deg.C for 8-13 hours to bridge, it is kept for 4-15 hours as at the same temperature to decompose the decomposing leftovers of the peroxide for bridging perfectly, and at the same time, the decomposed product is exhausted to the outside. As a result, the moisture in the insulating reinforcement body 6 is never increased during the current is applied, and no deterioration of the insulating property with the passage of time is generated. Consequently, a high insulating property is maintained for a long period.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は、耐水トリー性が良好で絶縁特性の長期的信頼
性が高い、架橋ポリオレフィン絶縁ケーブルのモールド
接続部を形成する方法に関する。
[Detailed Description of the Invention] [Objective of the Invention 1 (Industrial Application Field) The present invention provides a molded joint for a crosslinked polyolefin insulated cable that has good water resistance and long-term reliability of insulation properties. Regarding the method.

(従来の技術) 従来からCvケーブル(架橋ポリエチレン絶縁ケーブル
)のような架橋ポリオレフィン絶縁ケーブルの接続部の
形成方法として、架橋用過酸化物を配合した架橋可能な
ポリオレフィン組成物を、所定形状の金型内に押出し充
填した後、加熱架橋して接続部絶縁体(絶縁補強体)を
形成する押出しモールドジヨイント法(EMJ法)や、
前述のポリオレフィン組成物からなるテープを、導体接
続部上に巻回した後加熱して巻回層を架橋一体化するテ
ープモールドジヨイント法(TMJ法)などが行われて
いる。
(Prior Art) Conventionally, as a method for forming connections of cross-linked polyolefin insulated cables such as Cv cables (cross-linked polyethylene insulated cables), a cross-linkable polyolefin composition containing a cross-linking peroxide is mixed with a predetermined shape of gold. Extrusion mold joint method (EMJ method) in which the material is extruded and filled into a mold and then heat-crosslinked to form a connection insulator (insulation reinforcement);
A tape mold joint method (TMJ method) is used in which a tape made of the above-mentioned polyolefin composition is wound onto a conductor connection portion and then heated to crosslink and integrate the wound layers.

そしてこのような接続部の形成において架橋のための加
熱は、架橋剤である過酸化物の分解温度である設定温度
に到達した後、架橋反応が完了するまでの最小の時間、
例えば8〜13時間だけに限って行われている。
In the formation of such connections, the heating for crosslinking is carried out for the minimum time required to complete the crosslinking reaction after reaching the set temperature, which is the decomposition temperature of the peroxide, which is the crosslinking agent.
For example, it is limited to 8 to 13 hours.

(発明が解決しようとする課題) しかしながらこのような加熱方法では、架橋終了後に絶
縁補強体中に多量の架橋用過酸化物の分解残渣および水
がそれぞれ存在し、さらにこの分解残渣はその後の通電
による温度上昇で水に分解されるため、絶縁補強体中の
水分量が次第に増加することになる。
(Problem to be Solved by the Invention) However, in such a heating method, a large amount of decomposition residue of the crosslinking peroxide and water are present in the insulation reinforcing body after the completion of crosslinking, and furthermore, this decomposition residue is As the temperature rises due to this, the water is decomposed into water, so the amount of water in the insulation reinforcement gradually increases.

すなわち架橋用過酸化物としてジクミルパーオキサイド
(DCP)を使用した場合に、DCPの分解によってク
ミルオキシラジカルが発生し、このクミルオキシラジカ
ルは、例えばポリエチレンとの反応によってクミルアル
コールを生成し、一部はアセトフェノンとなる。さらに
分解KMであるクミルアルコールは、熱エネルギーを加
えられることによって、α−メチルスチレンと水とをそ
れぞれ生成する。
That is, when dicumyl peroxide (DCP) is used as a crosslinking peroxide, cumyloxy radicals are generated by decomposition of DCP, and these cumyloxy radicals generate cumyl alcohol by reaction with polyethylene, for example. However, some of it becomes acetophenone. Furthermore, cumyl alcohol, which is a decomposed KM, generates α-methylstyrene and water, respectively, by applying thermal energy.

こうして通電中に絶縁補強体中の水分量が次第に増加す
るため、ボイドや水トリーが発生しゃすく、これによっ
て絶縁性能が著しく低下するおそれがあった。
Since the amount of water in the insulation reinforcing body gradually increases during energization, voids and water trees are likely to occur, which may significantly reduce the insulation performance.

本発明はこのような問題を解決するためになされたもの
で、絶縁補強体中に架橋用過酸化物の分解残渣や水が残
留することがないため、水トリーの発生がなく長期的に
高い絶縁特性を発揮する架橋ポリオレフィン絶縁ケーブ
ルのモールド接続部を形成する方法を提供することを目
的とする。
The present invention was made to solve this problem, and since no decomposition residue of cross-linking peroxide or water remains in the insulation reinforcement, there is no water tree generation and the long-term high It is an object of the present invention to provide a method for forming a molded connection part of a crosslinked polyolefin insulated cable that exhibits insulation properties.

[発明の構成] (課題を解決するための手段) 本発明の架橋ポリオレフィン絶縁ケーブルのモールド接
続部の形成方法は、ケーブルの導体接続部上に両側のケ
ーブル絶縁体に跨がって、架橋用過酸化物が配合された
架橋可能なポリオレフィン組成物からなる紡錘状の絶縁
補強体を成形し、次いで前記絶縁補強体を加熱して架橋
した後、前記絶縁補強体中の前記架橋用過酸化物の分解
残渣がさらに完全に分解され、かつその分解生成物が外
部へ排出されるに充分な時間のあいだ、そのまま加熱を
継続することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) A method for forming a molded connection portion of a crosslinked polyolefin insulated cable of the present invention is to form a crosslinked polyolefin insulated cable on the conductor connection portion of the cable, spanning the cable insulators on both sides. After molding a spindle-shaped insulation reinforcement made of a crosslinkable polyolefin composition containing a peroxide, and then heating and crosslinking the insulation reinforcement, the crosslinking peroxide in the insulation reinforcement is The heating is continued for a time sufficient for the decomposition residue to be further completely decomposed and for the decomposition products to be discharged to the outside.

本発明において、絶縁補強体を成形する架橋可能な組成
物のベースとなるポリオレフィンとしては、ポリエチレ
ン、ポリプロピレン、エチレン−プロピレン共重合体、
エチレン−酢酸ビニル川重合体(EvA)、エチレン−
アクリル酸エチル共重合体(EEA)等があり、これら
のポリオレフィンに配合される架橋用の過酸化物として
は、Dcp、t−ブチルパーオキサイド等を使用するこ
とができる。
In the present invention, the polyolefin that is the base of the crosslinkable composition for forming the insulation reinforcement includes polyethylene, polypropylene, ethylene-propylene copolymer,
Ethylene-vinyl acetate polymer (EvA), ethylene-
Examples include ethyl acrylate copolymer (EEA) and the like, and Dcp, t-butyl peroxide, etc. can be used as a crosslinking peroxide to be blended with these polyolefins.

本発明においては、ケーブルの導体接続部上にこのよう
なポリオレフィン組成物からなる紡錘状の絶縁補強体を
成形するが、成形は通常以下の方法によって行われる。
In the present invention, a spindle-shaped insulating reinforcement made of such a polyolefin composition is molded on the conductor connection portion of a cable, and the molding is usually performed by the following method.

すなわち、両側のケーブル絶縁体に跨がってケーブルの
導体接続部上に被嵌された所定形状の金型内に、前述の
架橋可能なポリオレフィン組成物を押出し充填する方法
や、あるいは前記ポリオレフィン組成物をテープ状に成
形してなる絶縁テープを、ケーブルの導体接続部上に巻
回する方法等を採ることができる。
That is, a method in which the above-mentioned crosslinkable polyolefin composition is extruded and filled into a mold having a predetermined shape that is fitted over the conductor connection portion of the cable across the cable insulators on both sides; A method may be adopted in which an insulating tape formed by forming a material into a tape shape is wound around the conductor connection portion of the cable.

次いでこのようにして成形された絶縁補強体を、架橋用
過酸化物が分解する温度(170〜200℃)に加熱し
て、前記ポリオレフィン組成物を完全に架橋した後、そ
のままさらに数時間から10数時間加熱を継続すること
によって、過酸化物の分解残渣をほぼ完全に分解すると
ともに、こうして生成した水等の最終的な分解生成物お
よび前記分解残渣の残りを、全て絶縁補強体の外側へ排
出させる。
The insulating reinforcing body thus formed is then heated to a temperature at which the crosslinking peroxide decomposes (170 to 200°C) to completely crosslink the polyolefin composition, and then heated for several hours to 10 minutes. By continuing heating for several hours, the decomposition residue of peroxide is almost completely decomposed, and the final decomposition products such as water and the remainder of the decomposition residue thus generated are all transferred to the outside of the insulation reinforcement. Let it drain.

ここで架橋終了後の加熱工程における加熱時間は、特に
限定されないが、過酸化物の分解残渣が完全に分解され
、かつ最終的な分解生成物等が、絶縁補強体の外側へ完
全に放散され排出除去されるのに充分な時間であること
が望ましい。
Here, the heating time in the heating step after the completion of crosslinking is not particularly limited, but it is necessary to ensure that the decomposition residue of peroxide is completely decomposed and the final decomposition products etc. are completely dissipated to the outside of the insulation reinforcement. It is desirable that the time is sufficient for the liquid to be drained and removed.

(作用) 本発明の架橋ポリオレフィン絶縁ケーブルのモールド接
続部の形成方法においては、ケーブル導体接続部上に成
形され加熱架橋されたポリオレフィンからなる絶縁補強
体が、架橋終了後にそのままさらに加熱を継続され同じ
温度に保持されるので、絶縁補強体内に残留した過酸化
物の分解残渣が完全に分解されると同時に、こうして最
終的に生成された水等の分解生成物が、絶縁補強体外へ
完全に排出除去される。
(Function) In the method for forming a molded connection part of a crosslinked polyolefin insulated cable of the present invention, the insulation reinforcing body made of polyolefin that has been molded onto the cable conductor connection part and crosslinked by heating is further heated as it is after the completion of crosslinking. Since the temperature is maintained, the peroxide decomposition residue remaining inside the insulation reinforcement is completely decomposed, and at the same time, the decomposition products such as water that are finally generated are completely discharged outside the insulation reinforcement. removed.

したがって通電使用中に、絶縁補強体中の水分量が増加
することがなく、水トリーなどの発生に起因する経時的
な絶縁性能の低下が生じることがない。
Therefore, during energized use, the amount of water in the insulation reinforcing body does not increase, and the insulation performance does not deteriorate over time due to occurrence of water tree or the like.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例 まず第1図に示すように、端部を突き合わせて配置した
一対のCvケーブル1の露出した導体2上に、常法によ
って導体接続スリーブ3を圧着し、導体接続部を形成し
た。
EXAMPLE First, as shown in FIG. 1, a conductor connection sleeve 3 was crimped by a conventional method onto the exposed conductor 2 of a pair of Cv cables 1 whose ends were butted together to form a conductor connection part.

次いで上記導体接続部上に、両側のCVケーブル1の絶
縁体4に跨がって、紡錘状のキャビティを有する金型5
を被嵌した後、この金型内5に以下に示すポリエチレン
組成物6を押出し充填した。
Next, a mold 5 having a spindle-shaped cavity is placed over the conductor connection portion, spanning the insulators 4 of the CV cable 1 on both sides.
After fitting, a polyethylene composition 6 shown below was extruded and filled into the mold 5.

すなわち、メルトインデックス 3.2、密度0.92
2の低密度ポリエチレン(日本ユニカー(株)製、商品
名NUL9205)に、DCPl、8重量%と老化防止
剤0o18重量%とを配合したポリエチレン組成物を、
押出機によって加熱溶融させこれを金型5のキャビティ
内に押出し充填した。
That is, melt index 3.2, density 0.92
A polyethylene composition containing 8% by weight of DCPl and 0 to 18% by weight of an anti-aging agent was added to the low-density polyethylene of No. 2 (manufactured by Nippon Unicar Co., Ltd., trade name NUL9205).
The mixture was heated and melted using an extruder, and then extruded and filled into the cavity of the mold 5.

次いで第2図に示すように、金型5全体を200℃(±
20℃)の温度に8〜13時間加熱し、金型5内のポリ
エチレン組成物6を完全に架橋した後、さらにそのまま
この温度に4〜15時間保持し、DCPの分解残渣であ
るクミルアルコールを再び分解するとともに、こうして
最終的に生成した水等の分解生成物とさらに残ったクミ
ルアルコールを、完全に外部へ放散させ排出させた。
Next, as shown in FIG. 2, the entire mold 5 is heated to 200°C (±
20° C.) for 8 to 13 hours to completely crosslink the polyethylene composition 6 in the mold 5, and then kept at this temperature for 4 to 15 hours to remove cumyl alcohol, which is a decomposition residue of DCP. was decomposed again, and the finally produced decomposition products such as water and the remaining cumyl alcohol were completely diffused and discharged to the outside.

こうして形成されたCvケーブルのモールド絶縁補強体
中の水分量を、常法に拠って1llJ定したところ、極
めて小さい値が得られた。
When the moisture content in the molded insulation reinforcement of the Cv cable thus formed was determined to be 111J using a conventional method, an extremely small value was obtained.

またこの絶縁補強体について、以下に示す加速試験を行
い水トリーの発生数を測定したところ、はとんど見られ
なかった。
Furthermore, when this insulation reinforcement was subjected to the following accelerated test and the number of water trees generated was measured, almost no water trees were observed.

すなわち、絶縁補強体試料の下面に銀ペイントを塗布す
るとともに、上面に食塩水を入れた塩化ビニル管を配置
した後、これらの間に長時間高周波電圧を印加した。そ
の後試料を取出し、In厚にスライスした小片中の水ト
リーの数を顕微鏡で調べたところ、全く水トリーが認め
られなかった。
That is, after applying silver paint to the lower surface of the insulation reinforcement sample and placing a vinyl chloride pipe filled with saline on the upper surface, a high-frequency voltage was applied between them for a long time. Thereafter, the sample was taken out and the number of water trees in the small piece sliced into In thickness was examined under a microscope, and no water trees were observed.

[発明の効果] 以上説明したように本発明の形成方法によれば、架橋用
過酸化物の分解残渣や分解生成物である水の残留がなく
、絶縁特性の良好な架橋ポリオレフィン絶縁ケーブルの
モールド接続部が得られる。
[Effects of the Invention] As explained above, according to the forming method of the present invention, there is no decomposition residue of crosslinking peroxide or residual water which is a decomposition product, and a mold for a crosslinked polyolefin insulated cable with good insulation properties can be formed. A connection is obtained.

また本発明によって形成されたモールド接続部は、通電
使用中に水分量の増加が生じることがなく水トリーの発
生がないので、長期にわたって高い絶縁性能が維持され
る。
Further, the molded connection portion formed according to the present invention does not increase the moisture content during use with electricity and does not generate water trees, so high insulation performance is maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のCvケーブルのモールド
接続部の形成方法を説明するための断面図、第2図は、
実施例における金型加熱温度の経時変化を示すグラフで
ある。 1・・・Cvケーブル 2・・・ケーブル導体 4・・・ケーブル絶縁体 5・・・金型 6・・・ポリエチレン組成物 第1 = 第2図
FIG. 1 is a cross-sectional view for explaining a method of forming a molded connection part of a Cv cable according to an embodiment of the present invention, and FIG.
It is a graph showing a change in mold heating temperature over time in an example. 1... Cv cable 2... Cable conductor 4... Cable insulator 5... Mold 6... Polyethylene composition 1st = Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)ケーブルの導体接続部上に両側のケーブル絶縁体
に跨がって、架橋用過酸化物が配合された架橋可能なポ
リオレフィン組成物からなる紡錘状の絶縁補強体を成形
し、次いで前記絶縁補強体を加熱して架橋した後、前記
絶縁補強体中の前記架橋用過酸化物の分解残渣がさらに
完全に分解され、かつその分解生成物が外部へ排出され
るに充分な時間のあいだ、そのまま加熱を継続すること
を特徴とする架橋ポリオレフィン絶縁ケーブルのモール
ド接続部の形成方法。
(1) A spindle-shaped insulation reinforcement made of a crosslinkable polyolefin composition containing a crosslinking peroxide is formed on the conductor connection portion of the cable, spanning the cable insulators on both sides, and then After heating and crosslinking the insulation reinforcement, for a sufficient period of time for the decomposition residue of the crosslinking peroxide in the insulation reinforcement to be further completely decomposed and for the decomposition products to be discharged to the outside. , a method for forming a mold connection part of a crosslinked polyolefin insulated cable, characterized by continuing heating as it is.
JP1129565A 1989-05-23 1989-05-23 Formation method of mould connection for bridging polyolefine insulating cable Pending JPH02309580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1129565A JPH02309580A (en) 1989-05-23 1989-05-23 Formation method of mould connection for bridging polyolefine insulating cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1129565A JPH02309580A (en) 1989-05-23 1989-05-23 Formation method of mould connection for bridging polyolefine insulating cable

Publications (1)

Publication Number Publication Date
JPH02309580A true JPH02309580A (en) 1990-12-25

Family

ID=15012629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1129565A Pending JPH02309580A (en) 1989-05-23 1989-05-23 Formation method of mould connection for bridging polyolefine insulating cable

Country Status (1)

Country Link
JP (1) JPH02309580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039703A (en) * 2010-08-05 2012-02-23 Viscas Corp Bridge method of reinforcement insulation layers and bridge device of reinforcement insulation layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039703A (en) * 2010-08-05 2012-02-23 Viscas Corp Bridge method of reinforcement insulation layers and bridge device of reinforcement insulation layers

Similar Documents

Publication Publication Date Title
KR930002947B1 (en) Strippable laminate
US4150193A (en) Insulated electrical conductors
US3793476A (en) Insulated conductor with a strippable layer
CN108780676B (en) Flexible vulcanized joint between two power cables and method for producing said joint
US3909507A (en) Electrical conductors with strippable polymeric materials
JPH04212208A (en) Rubber-plastics insulated power cable, its connecting part, and manufacture thereof
US3719769A (en) Insulated electric cable having an external semiconductive layer
US3876462A (en) Insulated cable with layer of controlled peel strength
KR101824309B1 (en) Method in the manufacturing of an insulated electric high voltage dc termination or joint
US3787255A (en) Insulated cable with sheath of controlled peel strength and method
JPH02309580A (en) Formation method of mould connection for bridging polyolefine insulating cable
US4051298A (en) Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof
JPS5846802B2 (en) power cable
EP1148518B1 (en) A process for producing cross-linked polyethylene coated conducting wires
CA1047135A (en) Medium and high voltage electric cable with readily peelable outer screen
JPH08111121A (en) Electric insulating composition and electric wire/cable
JP2000228813A (en) Connecting method for power cable
JPH10269855A (en) Crosslinking polyethylene insulating wire or cable
JP2000294037A (en) Electric insulation composition and wire/cable
JPH0554203B2 (en)
JPH01258311A (en) Rubber-plastic insulated power cable
JPH06295621A (en) Electric insulation composite and electric wire/cable
JPH03276515A (en) Water-tree resisting electric wire and cable
JPH04155708A (en) Electric wire/cable
JPH03101082A (en) Insulation structure in joint portion of power cable