US3793476A - Insulated conductor with a strippable layer - Google Patents

Insulated conductor with a strippable layer Download PDF

Info

Publication number
US3793476A
US3793476A US00336146A US3793476DA US3793476A US 3793476 A US3793476 A US 3793476A US 00336146 A US00336146 A US 00336146A US 3793476D A US3793476D A US 3793476DA US 3793476 A US3793476 A US 3793476A
Authority
US
United States
Prior art keywords
weight
parts
ethylene
propylene
admixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00336146A
Inventor
T Misiura
J Vostovich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vulkor Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3793476A publication Critical patent/US3793476A/en
Assigned to VULKOR, INCORPORATED, A CORP. OF MA reassignment VULKOR, INCORPORATED, A CORP. OF MA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GENERAL ELECTRIC COMPANY, A CORP. OF NY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/187Sheaths comprising extruded non-metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/2486Intermediate layer is discontinuous or differential with outer strippable or release layer

Definitions

  • ABSTRACT A composite of polymeric materials which are adheringly joined to each other and which can be easily and cleanly separated by stripping apart with a low pulling force whereupon the contacting surfaces of their interface separate cleanly without retention of any residue from the other, and which comprises the combination of a body of ethylene polymer adjoined to a body of an elastomeric blend of polymers comprising ethylenepropylene rubber admixed with a chlorine containing rubber.
  • the combination of materials is especially advantageous when used in wire and cable constructions as a composite of an electrical insulation and an overlying strippable semiconductive layer.
  • a common typeof construction for electrical wires or cables designed for medium to high voltage applications, for example about to 35 KV, as well as other classes of electrical service, comprises combinations of one or more insulating layers and semiconductive layers.
  • the metallic conductor may be provided with an organic polymeric insulation such as crosslinked polyethylene, and an overlying body of semiconducting material comprising an organic polymeric composition which has been rendered electroconductive by the inclusion therein of electrical conductivity imparting agents or fillers such as carbon black.
  • these cable constructions may vary in certain elements, and often include an intermediate component disposed between the metallic conductor and the primary body of dielectric insulation such as a layer of separating tape or inner layer of semiconductive material, or are enclosed within protective covering sheaths, all such cable constructions conventionally include therein at least a body of primary insulation surrounding the conductor with an overlying body of semiconducting material in physical contact with the insulation.
  • this arrangement of a layer of insulation with a superimposed layer of semiconductive material thereover incurs certain handicaps.
  • U.S. Pat. No. 3,677,849 deals with this problem of intermediate void spaces at the interface of the insulation and semiconductive material by applying a heat treatment to the assembled product to induce a shrinkage of the semiconductive material tightly about the insulation.
  • U.S. Pat. No. 3,259,688 proposes a different solution to this problem comprising a distinctive construction and an irradiation treatment.
  • the insulation layer and overlying semiconductive layer for electrical cable can be formed concurrently about the wire or 'metal conductor by means of a continuous simultaneous extrusion process with one extruder, or these layers are formed in sequence employing tandem extruders, and both layers are thereafter cured at the same time in a single operation and unit to minimize manufacturing steps and apparatus.
  • the simultaneous curing of both layers together, or even the curing of only one layer alone while it is in a contiguous arrangement with the other can result in the apparent formation of crosslinking bonds bridging across the interface between the adjoining surfaces of each phase.
  • This invention comprises a combination of specific organic polymeric materials, and a composite costruction formed therewith wherein two phases or bodies are adheringly united with each other at their abuttingsurfaces to provide a substantially continuous and secure union of their contacting surfaces extending over their common interface and thereby effectively obviating the occurrence of intermediate void spaces, while at the same time providing an interface union between the phases which is easily separated with a relatively small pulling force whereupon the components part with clean surfaces each free of any residue from the other.
  • the invention includes the combination of a first body of ethylene polymer with a second body composed of an elastomeric blend of a minor portion of ethylene-propylene rubbers admixed with a major portion of a chlorine containing elastomer comprising polychloroprene rubber (neoprene), or chlorosulfonated polyethylene rubber (Hypalon).
  • compositions and their attributes of this combination are uniquely suitable and advantageous for use in the construction of electrical wires and cables in the function of a composite insulation of ethylene polymer with an easily and cleanly strippable semiconductive material superimposed over the insulation when the polymeric material comprising the said elastomeric blends is rendered suitably electroconductive by appropriately filling with a typical electrical conductivity imparting agent or filler such as carbon black dispersed therethrough, or some other electrically conductive particulate material such as silicon carbide, iron, aluminum, etc., in such amounts so as to impart the desired degree of conductivity.
  • a typical electrical conductivity imparting agent or filler such as carbon black dispersed therethrough, or some other electrically conductive particulate material such as silicon carbide, iron, aluminum, etc., in such amounts so as to impart the desired degree of conductivity.
  • FIG. 1 comprises a perspective view of a portion of an insulated conductor having a semiconductive shield thereon;
  • FIG. 2 comprises a cross-sectional view of the insulation and overlying semiconductive layer about a portion of metallic conductor.
  • the invention specifically consists of a novel combination of given polymeric materials, or combined bodies composed thereof, which provide unique interfacial characteristics when their contiguous surfaces are adheringly joined together by curing the polymeric material of at least one of the combined bodies.
  • Polymeric materials of the invention comprise for the one phase, a body or unit of ethylene polymer, and for the other phase of the composite, a body'or unit of an elastomeric blend consisting of about 20 to 45 parts by blends for electrical insulating materials for wire and cable are disclosed in theabove'mentioned U.S. Pats.
  • preferably preferablyconsists of about to 45 parts by weight of ethylene-propylene copolymer or terpolymer rubber substantially homogeneously admixed or blended with about 55 to 75 parts by weight of polychloroprene, or alternatively about 25 to 40 parts by weight of the ethylene propylene copolymer or terpolymer rubber substantially homogeneously admixed or blended with about 60 to 75 parts by weight of chlorosulfonated polyethylene.
  • the terpolymers of ethylene-propylene include commercially available rubbers produced by I the copolymerization of ethylene and propylene toweight of ethylene-propylene copolymer or terpolymer rubbers admixed with about to 80 parts by weight of a chlorine containing elastomer of either polychloroprene rubber or chlorosulfonated polyethylene rubber. Accordingly for the purposes of this disclosure and claims, the term copolymers of ethylene and propylene includes terpolymers of such monomers.
  • the ethylene polymer of one phase of the combined polymeric bodies includes polyethylene, a common and extensively used electrical insulation material for wire and cable, which is cross-link cured to a thermoset state in keeping with the requirements of the invention. Also included are similar compolymers of ethylene and other polymerizable materials, and blends of such polymers and copolymers which are at least predominately composed of ethylene and are known in the art to provide effective cross-link curable electrical insulations. For example, copolymers of ethylene and vinyl acetate and similar copolymers wherein the ethylene content is a majority of more than 50 percent by weight, and preferably at least about 75 percent by-weight of ethylene content.
  • the terpolymers of ethylene-propylene with dienes give greater latitude in the available curing systems in relation to the copolymers of only ethylene and propylene.
  • the copolymers require a free radical curing mechanism as provided by a peroxide compound, whereas the terpolymers with this additional unsaturated radicals can also be cured with a conventional sulfur-accelerator curing system, as well as with a peroxide free radical system.
  • the elastomeric blends can be easily rendered electroconductive to any appropriate degree desired by the filling or inclusion therethrough of a suitable amount of an electrical conductivity imparting agent such as about 15 to parts of carbon black or metal particles by weight of the polymeric ingredients according to conventional practices.
  • the elastomeric blend When aptly rendered electroconductive with a suitable amount of a conductive material, dispersed therethrough, the elastomeric blend can fulfill the required electrical functions of a semiconducting material in electrical cable, and when combined with an ethylene polymer insulation and cured inaccordance with this invention, it pro vides the unique interfacial properties which effectively eliminate the occurrence of intermediate void spaces between the interface surfaces of insulation and semiconductive materials and also enables an easy and clean separation of the semiconductive material from the insulation.
  • each phase of the combination of this invention both ethylene polymers and the elastomeric blends
  • a peroxide forming free radical according to conven' tional practices such as described in US. Pats. Nos. 2,888,424 and 3,079,370, and subsequent relevant prior art.
  • other curing systems or means known to the art or prescribed by the polymer manufacturers or suppliers can be applied, such as the use of sulfur based system with terpolymers of ethylene and propylene.
  • a tertiary peroxide such as a dicumyl peroxide
  • ther the ethylene polymer or the elastomeric blends undergoes curing while the surface thereof is in intimate physical contact with the surface of the other polymeric body or phase whereby the curing mechanism of one phase can effect the apparent cross-linking bonds bridging the surfaces to adheringly unite the contacting surfaces of the interface.
  • the most expedient manufacturing systems such as the sequential or tandem extrusion of the dual layers of ethylene polymer and overlying elastomeric blends upon the wire core followed by simultaneous curing of both phases, together, would incur the preferred curing of each polymeric phase or material of the combination at the same time to achieve the optimum effects thereof.
  • FIG. 1 a typical cable of medium to high voltage capacity of the type to which this inventionis especially applicable and advantageous, is shown in perspective in FIG. 1, and a short portion of such a cable is also shown with the insulation and semiconductive layer in longitudinal cross section about the con- .ductor in FIG. 2.
  • the overall cable product 10 primarilytcomprises a metallic conductor 12, a relatively thick first body of insulation 14 surrounding the conductor, and overlying the insulation is a second body or layer of semiconductive material 16.
  • Other components can be included in the cable structure following known designs, for example separating paper or tape, or a semiconductive layer located between the metallic conductor 12 and the primary insulation 14, such as shown in the aforementioned Pats. Nos.
  • the following comprise specific examples of suitable and preferred polymeric materials for the application of this invention in the construction of high voltage cable comprising a body of polyethylene insulation combined with an overlying body of semiconductive material of a polymeric carrier or matrix comprising an elastomeric blend filled with particulate conductive material.
  • the ethylene polymer composition comprising the insulation, or one phase or polymeric body of the combination of this invention, consisted of the following typical commercial insulating formula:
  • EXAMPLE A Percent Parts by by weight weight weight Polyethylene, low density R-4 Sinclair Koppers Company 62.70 100.00 Calcined Clay Whitetex Clay 31.04 50.00 Titanium Dioxide pigment Titanox RA-NC 3.10 5.00 Antioxidant Monsanto Flectol-H, polytrimethyldihydroquinoline 1.09 1.75
  • ingredients were compounded in a suitable mixer, a roll mill, until substantially homogeneously dispersed.
  • all ingredients except for the perioxide were first admixed at elevated temperatures of about 250F, or within a range of about 200 to 300F, to flux to polymer and expedite the mixing. Thereafter the mix was cooled to below the decomposition temperature of the particular peroxide curing agent, in this case down to below about 220F, whereupon the peroxide curing agent was added and dispersed through the mix. The compound was then ready for forming to a given shape and curing by the application of heat.
  • the following comprises examples of the elastomeric blends comprising ethylene-propylene rubber admixed with chlorine containing elastomers consisting of polychloroprene, which as a body or layer in combination with a body or layer of an ethylene polymer, produces the unique interface characteristics of this invention.
  • the elastomeric blends were filled with an electrically conductive carbon black so as to perform as a semiconductive material in an electrical cable in combination with a polyethylene insulation of the above formulation.
  • Example 6 illustrates a ratio of 35 parts by weight of the ethylene-propylene terpolymer to 65 parts of chlorosulfonated polyethylene
  • Example 7 is a ratio of 30 parts of ethylenepropylene terpolymer to 70 parts of chlorosulfonated polyethylene.
  • the chlorosulfonated polyethylene rubber was a typical commercial Hypalon rubber designated 408, with a chlorine content of about 35 percent by weight and a sulfur content of about 1 percent by weight.
  • Hypalon or other chlorosulfonated rubber containing from about to 43 percent by weight of chlorine about 1 to 2 percent by weight of sulfur are suitable.
  • the peeling or stripping characteristic for the separation of the layer of semiconductive material from the underlying polyethylene insulation for each specimen was next evaluated.
  • the pulling force required to strip a one-half inch wide section of the 0.035 inch thick semiconductive material from the insulation substraturn was measured as 7.3 pounds for the formulation of Example 6 and 6.3 pounds for Example 7.
  • the separation in each case was clean and free of any residue.
  • An easily and cleanly strippable composite of cured polymeric materials comprising a body of an ethylene polymer with a surface adhering joined to a contacting surface of a body comprising an elastomeric blend of about .20 to parts by weight of a rubbery polymer of ethylene-propylene admixed with about to 80 parts by weight of at least one chlorine containing elastomer selected from the group consisting of polychloroprene and chlorosulfonated polyethylene, said contacting surfaces of polymeric materials being adheringly joined to each other by means of at least one of said polymeric materials having been cured while the said surfaces of each of the bodies are in adjoining physical contact with each other.
  • An insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of cured ethylene polymer with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of about 20 to 45 parts by weight of rubbery polymers of ethylene-propylene admixed with about 55 to 80 parts by weight of at least one chlorine containing elastomers selected from the group consisting of polychloroprene and chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconductive body being adheringly joined to each other by means of at least one of said polymeric materials having been cured while the said surfaces of each of the bodies are in adjoining physical contact with each other. ..1-.Q.'!J ⁇ gjg m li9 FL 3LFPl l electrically conductive filler dispersed therethrough.
  • elastomeric blend comprises about 25 to 45 parts by weight of a rubbery polymer of ethylenepropylene admixed with about 55 to 75 parts by weight of polychloroprene.
  • elastomeric blend comprises about 30 to 40 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 60 to parts by weight of polychloroprene.
  • elastomeric blend comprises about 25 to 40 parts by weight of a rubbery polymer of ethylene-propylene admixed with about 60 to parts by weight of chlorosulfonated polyethylene.
  • elastomeric blend comprises about 30 to 35 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 60 to 75 parts by weight of chlorosul- 22x30 I UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,793,476 Dated March 4, 1974 Inventor(s) Thaddeus D. Misiura and Joseph E. Vostovich It is certified that error appears in the above'identif'ied-patent and that said Letters Patent are hereby corrected as shown below:

Abstract

A composite of polymeric materials which are adheringly joined to each other and which can be easily and cleanly separated by stripping apart with a low pulling force whereupon the contacting surfaces of their interface separate cleanly without retention of any residue from the other, and which comprises the combination of a body of ethylene polymer adjoined to a body of an elastomeric blend of polymers comprising ethylene-propylene rubber admixed with a chlorine containing rubber. The combination of materials is especially advantageous when used in wire and cable constructions as a composite of an electrical insulation and an overlying strippable semiconductive layer.

Description

United States Patent 11 1 Misiura et al.
[ Feb. 19, 1974 Hook; Joseph Edward Vostovich, Bridgeport, both of Conn.
[73] Assignee: General Electric Company, New
, York, NY.
[22] Filed: Feb. 26, 1973 [21] Appl. No.: 336,146
52 us. c1. 174/102 sc, 161/188, 161/253, 161/254, 161 406, 174/120 R, 174/120 sc,
51 1m. (:1. H0lb 7/18 [58] Field 61 Search 161/253, 254, 188,406; 174/102 sc, 120 so, 120 SR [56] References Cited UNITED STATES PATENTS 3,646,248 2/1972 Ling l74/l02 SC X 3,653,423 4/1972 Paddock l6l/253 X Primary ExaminerE. A. Goldberg Attorney, Agent, or Firm-R. G. Schlamp; F. L. Naukauser Simkins; P. L.
[57] ABSTRACT A composite of polymeric materials which are adheringly joined to each other and which can be easily and cleanly separated by stripping apart with a low pulling force whereupon the contacting surfaces of their interface separate cleanly without retention of any residue from the other, and which comprises the combination of a body of ethylene polymer adjoined to a body of an elastomeric blend of polymers comprising ethylenepropylene rubber admixed with a chlorine containing rubber. The combination of materials is especially advantageous when used in wire and cable constructions as a composite of an electrical insulation and an overlying strippable semiconductive layer.
12 Claims, 2 Drawing Figures PAIENIEB Q FIG. 1
FIG.2
INSULATED CONDUCTOR WITH A STRIPIABLE LAYER BACKGROUND OF THE INVENTION A common typeof construction for electrical wires or cables designed for medium to high voltage applications, for example about to 35 KV, as well as other classes of electrical service, comprises combinations of one or more insulating layers and semiconductive layers. In a typical cable structure, for instance, the metallic conductor may be provided with an organic polymeric insulation such as crosslinked polyethylene, and an overlying body of semiconducting material comprising an organic polymeric composition which has been rendered electroconductive by the inclusion therein of electrical conductivity imparting agents or fillers such as carbon black. Although these cable constructions may vary in certain elements, and often include an intermediate component disposed between the metallic conductor and the primary body of dielectric insulation such as a layer of separating tape or inner layer of semiconductive material, or are enclosed within protective covering sheaths, all such cable constructions conventionally include therein at least a body of primary insulation surrounding the conductor with an overlying body of semiconducting material in physical contact with the insulation. However, this arrangement of a layer of insulation with a superimposed layer of semiconductive material thereover incurs certain handicaps.
For example, to prevent the occurrence of ionization or corona formation resulting from internal voids or pockets within the cable construction and consequent ultimate breakdown of the insulation, it is necessary to eliminate the presence or possible occurrence-of any free space or voids within or resulting from the interface between the adjoining surfaces of the body of the insulation and the body of semiconducting material. U.S. Pat. No. 3,677,849 deals with this problem of intermediate void spaces at the interface of the insulation and semiconductive material by applying a heat treatment to the assembled product to induce a shrinkage of the semiconductive material tightly about the insulation. U.S. Pat. No. 3,259,688 proposes a different solution to this problem comprising a distinctive construction and an irradiation treatment.
Further, the insulation layer and overlying semiconductive layer for electrical cable can be formed concurrently about the wire or 'metal conductor by means of a continuous simultaneous extrusion process with one extruder, or these layers are formed in sequence employing tandem extruders, and both layers are thereafter cured at the same time in a single operation and unit to minimize manufacturing steps and apparatus. However, the simultaneous curing of both layers together, or even the curing of only one layer alone while it is in a contiguous arrangement with the other, can result in the apparent formation of crosslinking bonds bridging across the interface between the adjoining surfaces of each phase. The occurence of such crosslinking bonds bridging the interface between the surfaces of said phagreat force, and, upon being peeled off, the semiconductive material is prone to leave a substantial residue of its mass firmly adhering to the other surface or insulation. As is known in the art, it is necessary when splicing and treating cable ends that the semiconductive material be cleanly stripped or completely removed from the terminal section of the cable end without any damage or material loss to the underlying surface of the insulation, whereby the separation can require an appreciable amount of added labor time and costs when the semiconductive material is difiicult to remove by stripping and/or a residue thereof is retained tenaciously adhering to the surface of the insulation. The difficulties of this aspect of such cable constructions are the subject of U.S. Pat. No. 3,684,821.
SUMMARY OF THE INVENTION This invention comprises a combination of specific organic polymeric materials, and a composite costruction formed therewith wherein two phases or bodies are adheringly united with each other at their abuttingsurfaces to provide a substantially continuous and secure union of their contacting surfaces extending over their common interface and thereby effectively obviating the occurrence of intermediate void spaces, while at the same time providing an interface union between the phases which is easily separated with a relatively small pulling force whereupon the components part with clean surfaces each free of any residue from the other.
The invention includes the combination of a first body of ethylene polymer with a second body composed of an elastomeric blend of a minor portion of ethylene-propylene rubbers admixed with a major portion of a chlorine containing elastomer comprising polychloroprene rubber (neoprene), or chlorosulfonated polyethylene rubber (Hypalon). The compositions and their attributes of this combination are uniquely suitable and advantageous for use in the construction of electrical wires and cables in the function of a composite insulation of ethylene polymer with an easily and cleanly strippable semiconductive material superimposed over the insulation when the polymeric material comprising the said elastomeric blends is rendered suitably electroconductive by appropriately filling with a typical electrical conductivity imparting agent or filler such as carbon black dispersed therethrough, or some other electrically conductive particulate material such as silicon carbide, iron, aluminum, etc., in such amounts so as to impart the desired degree of conductivity.
OBJECTS OF THE INVENTION It is a primary object of this invention to provide polymeric materials that can be joined in a contiguous relationship with their interfacial surfaces adheringly united together so as to eliminate the presence or any occurrence of intermediate void spaces therebetween, and which thereafter can be separated by the application of a low pulling force with the interfacial surfaces of the bodies cleaving cleanly and free of any adhering residual material.
It is also a primary object of this invention to provide electrical conductors or wire with coverings including a combination of bodies or organic polymeric materials comprising a first layer of insulation with a surface thereof adheringly joined to a surface of a second layer which may be of any suitable thickness down to less than about one millimeter, and wherein the second layer of the polymeric material is easily and cleanly strippable from the first layer of insulation with low peeling effort of preferably of about 2 to 16 pounds pulling force per one half inch wide strip of material,
leaving the separated surface of each layer intact, and clean and free of any residue.
It is an additional and specific object of this invention to provide an electrical wire or cable having a multilayered covering about a metallic conductor comprising a combination of cured polymeric materials consisting of an insulation and an overlying semiconductive shield which is free of intermediate voids or-spaces at' the interface of said materials, and wherein the material consisting of the semiconductive shield comprising a polymeric carrier or matrix for particulate conductive filler material dispersed therethrough can be peeled or stripped off the underlying insulation with little effort or pull and it separates or parts cleanly from the surface of the insulation leaving it intact and without adhering material.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 comprises a perspective view of a portion of an insulated conductor having a semiconductive shield thereon; and, I
FIG. 2 comprises a cross-sectional view of the insulation and overlying semiconductive layer about a portion of metallic conductor.
DESCRIPTION OF A PREFERRED EMBODIMENT This invention is hereinafter described in relation to its principal field of application and utility, the construction of electrical wire and cable, although other areas of application are contemplated.
. The invention specifically consists of a novel combination of given polymeric materials, or combined bodies composed thereof, which provide unique interfacial characteristics when their contiguous surfaces are adheringly joined together by curing the polymeric material of at least one of the combined bodies. Polymeric materials of the invention comprise for the one phase, a body or unit of ethylene polymer, and for the other phase of the composite, a body'or unit of an elastomeric blend consisting of about 20 to 45 parts by blends for electrical insulating materials for wire and cable are disclosed in theabove'mentioned U.S. Pats.
Nos. 3,259,688 and 3,684,821, and other prior art publications.
The particular elastomeric blends comprising the second phase, which when joined with the ethylene polymer phase together produce the distinctive interfacial characteristics and functions of this invention,
preferablyconsists of about to 45 parts by weight of ethylene-propylene copolymer or terpolymer rubber substantially homogeneously admixed or blended with about 55 to 75 parts by weight of polychloroprene, or alternatively about 25 to 40 parts by weight of the ethylene propylene copolymer or terpolymer rubber substantially homogeneously admixed or blended with about 60 to 75 parts by weight of chlorosulfonated polyethylene. The terpolymers of ethylene-propylene include commercially available rubbers produced by I the copolymerization of ethylene and propylene toweight of ethylene-propylene copolymer or terpolymer rubbers admixed with about to 80 parts by weight of a chlorine containing elastomer of either polychloroprene rubber or chlorosulfonated polyethylene rubber. Accordingly for the purposes of this disclosure and claims, the term copolymers of ethylene and propylene includes terpolymers of such monomers.
The ethylene polymer of one phase of the combined polymeric bodies includes polyethylene, a common and extensively used electrical insulation material for wire and cable, which is cross-link cured to a thermoset state in keeping with the requirements of the invention. Also included are similar compolymers of ethylene and other polymerizable materials, and blends of such polymers and copolymers which are at least predominately composed of ethylene and are known in the art to provide effective cross-link curable electrical insulations. For example, copolymers of ethylene and vinyl acetate and similar copolymers wherein the ethylene content is a majority of more than 50 percent by weight, and preferably at least about 75 percent by-weight of ethylene content. The latter class of copolymers of ethylene and gether with minor proportioned dienes such as ethylidiene norbornene, and dicyclopentadiene and 1, 4 hexadiene. The terpolymers of ethylene-propylene with dienes, as is well known in the art, give greater latitude in the available curing systems in relation to the copolymers of only ethylene and propylene. Specifically, the copolymers require a free radical curing mechanism as provided by a peroxide compound, whereas the terpolymers with this additional unsaturated radicals can also be cured with a conventional sulfur-accelerator curing system, as well as with a peroxide free radical system.
For service in electrical applications such as a semiconductive component in cable for medium to high voltage service, the elastomeric blends can be easily rendered electroconductive to any appropriate degree desired by the filling or inclusion therethrough of a suitable amount of an electrical conductivity imparting agent such as about 15 to parts of carbon black or metal particles by weight of the polymeric ingredients according to conventional practices. When aptly rendered electroconductive with a suitable amount of a conductive material, dispersed therethrough, the elastomeric blend can fulfill the required electrical functions of a semiconducting material in electrical cable, and when combined with an ethylene polymer insulation and cured inaccordance with this invention, it pro vides the unique interfacial properties which effectively eliminate the occurrence of intermediate void spaces between the interface surfaces of insulation and semiconductive materials and also enables an easy and clean separation of the semiconductive material from the insulation.
The organic polymeric materials of each phase of the combination of this invention, both ethylene polymers and the elastomeric blends, are typically cured to a substantially thermoset condition by cross-linking with a peroxide forming free radical according to conven' tional practices such as described in US. Pats. Nos. 2,888,424 and 3,079,370, and subsequent relevant prior art. However, other curing systems or means known to the art or prescribed by the polymer manufacturers or suppliers can be applied, such as the use of sulfur based system with terpolymers of ethylene and propylene. In the preferred peroxide induced crosslinking curing system comprising the use of a tertiary peroxide such as a dicumyl peroxide, it is only required that at least one of the polymeric bodies or phases, ei-
ther the ethylene polymer or the elastomeric blends, undergoes curing while the surface thereof is in intimate physical contact with the surface of the other polymeric body or phase whereby the curing mechanism of one phase can effect the apparent cross-linking bonds bridging the surfaces to adheringly unite the contacting surfaces of the interface. However, as a practical matter the most expedient manufacturing systems such as the sequential or tandem extrusion of the dual layers of ethylene polymer and overlying elastomeric blends upon the wire core followed by simultaneous curing of both phases, together, would incur the preferred curing of each polymeric phase or material of the combination at the same time to achieve the optimum effects thereof.
Referring to the drawing, a typical cable of medium to high voltage capacity of the type to which this inventionis especially applicable and advantageous, is shown in perspective in FIG. 1, and a short portion of such a cable is also shown with the insulation and semiconductive layer in longitudinal cross section about the con- .ductor in FIG. 2. The overall cable product 10, primarilytcomprises a metallic conductor 12, a relatively thick first body of insulation 14 surrounding the conductor, and overlying the insulation is a second body or layer of semiconductive material 16. Other components can be included in the cable structure following known designs, for example separating paper or tape, or a semiconductive layer located between the metallic conductor 12 and the primary insulation 14, such as shown in the aforementioned Pats. Nos. 3,259,688 and 3,684,821, and the means of this invention apply thereto with its attendant advantages whenever the insulation abuts the semiconductive component as is conventional in medium to high voltage capacity cables. Upon curing at least one component of the superimposed combination, either the body of ethylene polymer insulation 14 or the body of the filled semiconductive material 16, and preferably both together, the insulation and semiconductive material covering the insulation become adheringly joined to each other producing a united interface 18 of unique attributes which eliminates intermediate voids, and upon the application of a small pulling force of only a few pounds the surfaces at the interface separate cleanly leaving each surface free of adherents from the other.
The following comprise specific examples of suitable and preferred polymeric materials for the application of this invention in the construction of high voltage cable comprising a body of polyethylene insulation combined with an overlying body of semiconductive material of a polymeric carrier or matrix comprising an elastomeric blend filled with particulate conductive material.
The ethylene polymer composition comprising the insulation, or one phase or polymeric body of the combination of this invention, consisted of the following typical commercial insulating formula:
EXAMPLE A Percent Parts by by weight weight Polyethylene, low density R-4 Sinclair Koppers Company 62.70 100.00 Calcined Clay Whitetex Clay 31.04 50.00 Titanium Dioxide pigment Titanox RA-NC 3.10 5.00 Antioxidant Monsanto Flectol-H, polytrimethyldihydroquinoline 1.09 1.75
Vinyl silane 0.93 1.50 Curing agent Hercules Di Cup T, di-a-cumyl peroxide 1.77 2.85
These ingredients were compounded in a suitable mixer, a roll mill, until substantially homogeneously dispersed. However pursuant to conventional practices, all ingredients except for the perioxide were first admixed at elevated temperatures of about 250F, or within a range of about 200 to 300F, to flux to polymer and expedite the mixing. Thereafter the mix was cooled to below the decomposition temperature of the particular peroxide curing agent, in this case down to below about 220F, whereupon the peroxide curing agent was added and dispersed through the mix. The compound was then ready for forming to a given shape and curing by the application of heat.
The following comprises examples of the elastomeric blends comprising ethylene-propylene rubber admixed with chlorine containing elastomers consisting of polychloroprene, which as a body or layer in combination with a body or layer of an ethylene polymer, produces the unique interface characteristics of this invention. In these examples the elastomeric blends were filled with an electrically conductive carbon black so as to perform as a semiconductive material in an electrical cable in combination with a polyethylene insulation of the above formulation.
EXAMPLES l V In the following examples, samples composed of the polyethylene composition given in Example A, and a sample of each elastomeric blend formulation given in Examples 1, 2 and 5 hereinafter, were individually sheeted on a hot mill, and a warm strip, measuring about 0.060 to 0.075 inch thickness, of the polyethylene composition was combined with a similar warm strip of each one of the formulations of Examples 1, 2 and 5 of about the same thickness. All three of the thus formed combined strip specimens comprising composite Examples A-l, A-2 and A-5 were each individually molded as composite slabs in a press and cured at 310F for about 45 minutes to simulate a sequential extrusion molding of one warm layer upon the other followed by a simultaneous curing.
Upon cooling each specimen to room temperature and conditioning each at ambient conditions for approximately 16 hours, a 4 inch long and one-half inch wide section of each composite cured specimen was tested in a Scott tester for strippability, and the pulling force in pounds required to separate the adhering layers of each specimen is given in the following table for Examples 1 V.
The formulations of elastomeric blends given in Examples 3 and 4, were respectively extruded in a thickness of about 0.030 inch over an uncured polyethylene insulation of the composition of Example A which had been formed with an extruder around a core of a No. 10 AWG wire conductorin a thickness of about 0.150 inch. Each of said wire specimens of the composits of polyethylene and elastomeric blends were then cured with steam at a temperature of about 406F for a dwell period of about 2 minutes. After cooling and conditioning at room temperature the pull required for stripping or separating the layer of each sample of polymer composite and its parting characteristics were determined. The pulling force to strip a one-half inch wide section of each of the elastomeric blends of the formulation given in Examples 3 and 4 from the adhesively joined polyethylene composition of Example A is also given in the following Table for Examples 1 5. Also each of the specimens were found to separate clean and free of sxrssiqusc. o
EXAMPLES I. II III IV V Ingredients, parts by weight:
Polychloroprene-Du Pont Neoprene W-Ml 100. 7-"). 00 70.00 60. 00 50.00 Ethylene propylene terpolymer-Du Pont Nordel 1635 25.00 30. 00 40.00 50.00 Conducting carbon black- Vulcan XC-72 45.00 45. 00 45. 00 45.00 45. 00 Antloxidant-Octamine P.
a reaction product 01 diphenylamine and diisobutylene 2. 00 2. 00 2. 00 2. 00 2. 00 Antiozonant-Akrofiex AZ,
hindered dlaryl pphenylenedlamlne 2.00 2 2. 00 Calcined magnesia- Maglite 1).... 4.00 4.00 4.00 4.00 4.00 Steario acid 0.50 0. 50 0.50 0.50 0. 50. Aromatic type 011 790 10.00 10. 00 Polyethylene processing aid, low mol. wt. AC017A. 2.00 2.00 2.00 2.00 2.00 Microcrystalline wax- Sunoco Antl-Chek 2.00 2.00 2.00 2.00 2. 00 Zinc oxide 5.00 5.00 5.00 5.00 5.00 Sulfur 1.00 1.00 1.00 1.00 1.00 Tetrameth lthiuram monosu1tlde onex 0.50 0.50 0.50 0. 50 0. 5O Diorthotolylguanldine- DO'IG 1.00 1.00 1.00 1.00 1.00 Tetramethylthiourea NA-lOl 0.40 0.40 0.40 0.40 0.40
Approximate force needed to strip cured composition from cured polyethylene composition of Example A, lbs 0.4 1.0 2.5 2.85 (s) Would not strip.
The following comprise examples of the elastomeric blends comprising ethylene-propylene rubber copolymers admixed with a chlorine containing elastomer consisting of chlorosulfonated polyethylene, which as a body or layer in combination with a body or layer of ethylene polymer, also produces the unique interface characteristic of the invention. Example 6 illustrates a ratio of 35 parts by weight of the ethylene-propylene terpolymer to 65 parts of chlorosulfonated polyethylene, and Example 7 is a ratio of 30 parts of ethylenepropylene terpolymer to 70 parts of chlorosulfonated polyethylene. The chlorosulfonated polyethylene rubber was a typical commercial Hypalon rubber designated 408, with a chlorine content of about 35 percent by weight and a sulfur content of about 1 percent by weight. However, Hypalon or other chlorosulfonated rubber containing from about to 43 percent by weight of chlorine about 1 to 2 percent by weight of sulfur are suitable.
EXAMPLES V1 Vll Percent Parts Percent Parts by by weight weight chlorosulfonated polyethylene du Pont Hypalon 405 34.35 65 37.0 70 Ethylene propylene terpolymer du Pom Nordel 1320 18.5 35 15.85 30 Conductive carbon black Vulcan XC-72 23.8 45 23.8 45 Hydrocarbon oil Circosol 4240 oil 8.99 17 8.99 17 Fumed litharge TLD-9O (90% fumed litharge dispersed in EPDM) 10.58 20 10.58 20 The semiconductive materials comprising the filled elastomeric blends of the formulation of Examples 6 and were each sequentially extruded, at a rate of about 15 feet per minute, over a polyethylene insulation of the composition of Example A which has been extrusion molded about a No. 2 AWG bare wire having a thin layer (0.006 inch) of semiconductive tape thereabout. The extrusion of the insulation and semiconductive material of each example were carried out in two sequential passes through an extruding apparatus with the polyethylene insulation first formed in a thickness of about 0.160 inch about the tape covered wire core followed by the extrusion of the overlying layer of semiconductive material in a thickness of about 0.035 inch. The polymeric composite of each specimen was then simultaneously cured with steam at a temperature of about 406F (approximately 250 psig) for a dwell period of about 2 minutes. 1
The peeling or stripping characteristic for the separation of the layer of semiconductive material from the underlying polyethylene insulation for each specimen was next evaluated. The pulling force required to strip a one-half inch wide section of the 0.035 inch thick semiconductive material from the insulation substraturn was measured as 7.3 pounds for the formulation of Example 6 and 6.3 pounds for Example 7. The separation in each case was clean and free of any residue.
What we claim as new and desire to secure by Letters Patent of the United States is:
1. An easily and cleanly strippable composite of cured polymeric materials comprising a body of an ethylene polymer with a surface adhering joined to a contacting surface of a body comprising an elastomeric blend of about .20 to parts by weight of a rubbery polymer of ethylene-propylene admixed with about to 80 parts by weight of at least one chlorine containing elastomer selected from the group consisting of polychloroprene and chlorosulfonated polyethylene, said contacting surfaces of polymeric materials being adheringly joined to each other by means of at least one of said polymeric materials having been cured while the said surfaces of each of the bodies are in adjoining physical contact with each other.
2. The easily and cleanly strippable composite of cured polymeric materials of claim 1, wherein said elastomeric blend comprises about 25 to 45 parts by weight of a rubbery polymer of ethylene-propylene admixed with about 55 to 75 parts by weight of polychloroprene.
3. The easily and cleanly strippable composite of cured polymeric materials of claim 1, wherein said elastomeric blend comprises about 30 to 40 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about to parts by weight of polychloroprene.
4. The easily and cleanly strippable composite of cured polymeric materials of clairn l, wherein saidelastomeric blend comprises about 25 to 40 parts by weight of rubbery polymers of ethylene-propylene admixed with about 60 to 75 parts by weight of chlorosulfonated polyethylene.
5. The easily and cleanly strippable composite of cured polymeric materials of claim 1, wherein said elastomeric blend comprises about 30 to 35 parts by weight of rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 65 to 70 parts by weight of chlorosulfonated polyethylene.
6. An insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of cured ethylene polymer with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of about 20 to 45 parts by weight of rubbery polymers of ethylene-propylene admixed with about 55 to 80 parts by weight of at least one chlorine containing elastomers selected from the group consisting of polychloroprene and chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconductive body being adheringly joined to each other by means of at least one of said polymeric materials having been cured while the said surfaces of each of the bodies are in adjoining physical contact with each other. ..1-.Q.'!J}gjg m li9 FL 3LFPl l electrically conductive filler dispersed therethrough.
8; The insulated metallic electrical conductor of claim 7, wherein the said electrically conductive filler is present in an amount of about 15 to 75 percent by weight of the elastomeric blend.
9. The insulated electrical conductor of claim 6, wherein said elastomeric blend comprises about 25 to 45 parts by weight of a rubbery polymer of ethylenepropylene admixed with about 55 to 75 parts by weight of polychloroprene.
10. The insulated metallic electrical conductor of claim' 6, wherein said elastomeric blend comprises about 30 to 40 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 60 to parts by weight of polychloroprene.
11. The insulated metallic electrical conductor of claim 6, wherein said elastomeric blend comprises about 25 to 40 parts by weight of a rubbery polymer of ethylene-propylene admixed with about 60 to parts by weight of chlorosulfonated polyethylene.
12. The insulated metallic electrical conductor of claim 6, wherein said elastomeric blend comprises about 30 to 35 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 60 to 75 parts by weight of chlorosul- 22x30 I UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,793,476 Dated March 4, 1974 Inventor(s) Thaddeus D. Misiura and Joseph E. Vostovich It is certified that error appears in the above'identif'ied-patent and that said Letters Patent are hereby corrected as shown below:
I F Column 2 line 61, before "organic", "or" should be of I I I v Column 4, line 14, before "propylene" insert a hyphen Column 8, claim l, before "joined" "adhering" should be line 3, adheringly Signed and sealed this mm day .of June 197E.
Atteat:
EDWARD M.FLETCHER, JR. k n c MARSHALL 1mm Attasting Officer C Commissioner of Patents 2 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Dated March 4, 1974 Patent No. 3,793,476
Inventor(s) Thaddeus D. Misiura and Jose h E. Vostoirich It is certified that error appears in the above-identifiedpatentand that said Letters Patent are hereby corrected as shown below:
Column 2 line 61, before "organic", "or" should be of Column 4, line 14, before "propylene" insert a hyphen Column 8, claim 1, before "joined" "adhering" should be line 3, '7 adheringly 7 Signed and sealed this hth day of June 19714..
( A Attveat:
c. MARSHALL DANN EDWARD M.FIETCHER, JR. Atteating Officer Commissioner of Patents

Claims (11)

  1. 2. The easily and cleanly strippable composite of cured polymeric materials of claim 1, wherein said elastomeric blend comprises about 25 to 45 parts by weight of a rubbery polymer of ethylene-propylene admixed with about 55 to 75 parts by weight of polychloroprene.
  2. 3. The easily and cleanly strippable composite of cured polymeric materials of claim 1, wherein said elastomeric blend comprises about 30 to 40 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 60 to 70 parts by weight of polychloroprene.
  3. 4. The easily and cleanly strippable composite of cured polymeric materials of claim 1, wherein said elastomeric blend comprises about 25 to 40 parts by weight of rubbery polymers of ethylene-propylene admixed with about 60 to 75 parts by weight of chlorosulfonated polyethylene.
  4. 5. The easily and cleanly strippable composite of cured polymeric materials of claim 1, wherein said elastomeric blend comprises about 30 to 35 parts by weight of rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 65 to 70 parts by weight of chlorosulfonated polyethylene.
  5. 6. An insuLated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of cured ethylene polymer with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of about 20 to 45 parts by weight of rubbery polymers of ethylene-propylene admixed with about 55 to 80 parts by weight of at least one chlorine containing elastomers selected from the group consisting of polychloroprene and chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconductive body being adheringly joined to each other by means of at least one of said polymeric materials having been cured while the said surfaces of each of the bodies are in adjoining physical contact with each other.
  6. 7. The insulating metallic electrical conductor of claim 6, wherein the said elastomeric blend contains an electrically conductive filler dispersed therethrough.
  7. 8. The insulated metallic electrical conductor of claim 7, wherein the said electrically conductive filler is present in an amount of about 15 to 75 percent by weight of the elastomeric blend.
  8. 9. The insulated electrical conductor of claim 6, wherein said elastomeric blend comprises about 25 to 45 parts by weight of a rubbery polymer of ethylene-propylene admixed with about 55 to 75 parts by weight of polychloroprene.
  9. 10. The insulated metallic electrical conductor of claim 6, wherein said elastomeric blend comprises about 30 to 40 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 60 to 70 parts by weight of polychloroprene.
  10. 11. The insulated metallic electrical conductor of claim 6, wherein said elastomeric blend comprises about 25 to 40 parts by weight of a rubbery polymer of ethylene-propylene admixed with about 60 to 75 parts by weight of chlorosulfonated polyethylene.
  11. 12. The insulated metallic electrical conductor of claim 6, wherein said elastomeric blend comprises about 30 to 35 parts by weight of a rubbery polymer of ethylene-propylene substantially homogeneously admixed with about 60 to 75 parts by weight of chlorosulfonated polyethylene.
US00336146A 1973-02-26 1973-02-26 Insulated conductor with a strippable layer Expired - Lifetime US3793476A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33614673A 1973-02-26 1973-02-26

Publications (1)

Publication Number Publication Date
US3793476A true US3793476A (en) 1974-02-19

Family

ID=23314780

Family Applications (1)

Application Number Title Priority Date Filing Date
US00336146A Expired - Lifetime US3793476A (en) 1973-02-26 1973-02-26 Insulated conductor with a strippable layer

Country Status (10)

Country Link
US (1) US3793476A (en)
JP (1) JPS5024378A (en)
CA (1) CA1013217A (en)
CH (1) CH601018A5 (en)
DE (1) DE2405012A1 (en)
ES (1) ES423611A1 (en)
FR (1) FR2219004B1 (en)
GB (1) GB1450465A (en)
IT (1) IT1007611B (en)
NL (1) NL7401748A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2219004A1 (en) * 1973-02-26 1974-09-20 Gen Electric
US3909507A (en) * 1973-12-06 1975-09-30 Gen Electric Electrical conductors with strippable polymeric materials
US3925597A (en) * 1974-05-09 1975-12-09 Gen Electric Electrical conductors with strippable insulation and method of making the same
US3962517A (en) * 1974-06-12 1976-06-08 Bicc Limited Electric cables
JPS51132484A (en) * 1975-05-14 1976-11-17 Furukawa Electric Co Ltd:The Semiconductive composed material for power cable
US4002820A (en) * 1974-05-03 1977-01-11 Canada Wire And Cable Limited Power cable having an extensible ground check conductor
US4029830A (en) * 1974-05-04 1977-06-14 The Fujikura Cable Works, Ltd. Method of manufacturing insulated electric power cables
US4051298A (en) * 1974-05-09 1977-09-27 General Electric Company Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof
US4061703A (en) * 1974-05-16 1977-12-06 General Electric Company Method of patching voids in a semi-conductive component of insulated electric cable, and compound therefor
US4075421A (en) * 1975-12-23 1978-02-21 General Electric Company Direct current cable with resistivity graded insulation, and a method of transmitting direct current electrical energy
US4170575A (en) * 1974-05-16 1979-10-09 General Electric Company Compound for patching voids in a semi-conductive component of insulated electric cable
US4317001A (en) * 1979-02-23 1982-02-23 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
US4384944A (en) * 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
US4449098A (en) * 1980-03-19 1984-05-15 Osaka Gas Company Limited Arrangement for detecting the location of an electrically insulative continuous item positioned underground
US4503284A (en) * 1983-11-09 1985-03-05 Essex Group, Inc. RF Suppressing magnet wire
US4545927A (en) * 1982-07-29 1985-10-08 Phillips Petroleum Company Conductive (hard) rubber compositions
US4642202A (en) * 1982-07-29 1987-02-10 Phillips Petroleum Company Conductive (hard) rubber compositions
FR2831703A1 (en) * 2001-10-25 2003-05-02 Sagem ENERGY OR COMMUNICATION CABLE ADAPTED TO BE UNDERGROUND

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2513576A1 (en) * 1975-03-27 1976-10-07 Kabel & Lackdrahtfab Gmbh HIGH VOLTAGE CABLE
FR2552839B3 (en) * 1983-10-03 1985-12-20 Joly Luc ANNULAR SEAL WITH V-PROFILE
GB9501774D0 (en) * 1995-01-31 1995-03-22 Reddiplex Ltd Method of extruding two or more materials
DE102004026541A1 (en) * 2004-05-27 2005-12-22 Schunk Kohlenstofftechnik Gmbh Arrangement for guiding a laminated carbon brush
DE102005034584B4 (en) * 2005-07-25 2007-09-20 Schunk Kohlenstoff-Technik Gmbh Carbon brush assembly
GB2436395A (en) * 2006-03-24 2007-09-26 Tyco Electronics A heat resistant cable
JP2009297119A (en) * 2008-06-11 2009-12-24 Adachi Kogyo:Kk Nail fairing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646248A (en) * 1971-02-22 1972-02-29 Anaconda Wire & Cable Co Electric cable
US3653423A (en) * 1970-05-13 1972-04-04 Uniroyal Inc Bonding epdm to butadiene rubbers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793476A (en) * 1973-02-26 1974-02-19 Gen Electric Insulated conductor with a strippable layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653423A (en) * 1970-05-13 1972-04-04 Uniroyal Inc Bonding epdm to butadiene rubbers
US3646248A (en) * 1971-02-22 1972-02-29 Anaconda Wire & Cable Co Electric cable

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2219004A1 (en) * 1973-02-26 1974-09-20 Gen Electric
US3909507A (en) * 1973-12-06 1975-09-30 Gen Electric Electrical conductors with strippable polymeric materials
US4002820A (en) * 1974-05-03 1977-01-11 Canada Wire And Cable Limited Power cable having an extensible ground check conductor
US4029830A (en) * 1974-05-04 1977-06-14 The Fujikura Cable Works, Ltd. Method of manufacturing insulated electric power cables
US3925597A (en) * 1974-05-09 1975-12-09 Gen Electric Electrical conductors with strippable insulation and method of making the same
US4051298A (en) * 1974-05-09 1977-09-27 General Electric Company Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof
US4170575A (en) * 1974-05-16 1979-10-09 General Electric Company Compound for patching voids in a semi-conductive component of insulated electric cable
US4061703A (en) * 1974-05-16 1977-12-06 General Electric Company Method of patching voids in a semi-conductive component of insulated electric cable, and compound therefor
US3962517A (en) * 1974-06-12 1976-06-08 Bicc Limited Electric cables
JPS5515056B2 (en) * 1975-05-14 1980-04-21
JPS51132484A (en) * 1975-05-14 1976-11-17 Furukawa Electric Co Ltd:The Semiconductive composed material for power cable
US4075421A (en) * 1975-12-23 1978-02-21 General Electric Company Direct current cable with resistivity graded insulation, and a method of transmitting direct current electrical energy
US4317001A (en) * 1979-02-23 1982-02-23 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
US4449098A (en) * 1980-03-19 1984-05-15 Osaka Gas Company Limited Arrangement for detecting the location of an electrically insulative continuous item positioned underground
US4384944A (en) * 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
US4545927A (en) * 1982-07-29 1985-10-08 Phillips Petroleum Company Conductive (hard) rubber compositions
US4642202A (en) * 1982-07-29 1987-02-10 Phillips Petroleum Company Conductive (hard) rubber compositions
US4503284A (en) * 1983-11-09 1985-03-05 Essex Group, Inc. RF Suppressing magnet wire
FR2831703A1 (en) * 2001-10-25 2003-05-02 Sagem ENERGY OR COMMUNICATION CABLE ADAPTED TO BE UNDERGROUND
EP1308968A1 (en) * 2001-10-25 2003-05-07 Sagem SA Power or communication cable suitable to be buried

Also Published As

Publication number Publication date
FR2219004A1 (en) 1974-09-20
NL7401748A (en) 1974-08-28
FR2219004B1 (en) 1978-11-10
GB1450465A (en) 1976-09-22
IT1007611B (en) 1976-10-30
CA1013217A (en) 1977-07-05
DE2405012A1 (en) 1974-08-29
ES423611A1 (en) 1976-11-01
JPS5024378A (en) 1975-03-15
CH601018A5 (en) 1978-06-30

Similar Documents

Publication Publication Date Title
US3793476A (en) Insulated conductor with a strippable layer
US3909507A (en) Electrical conductors with strippable polymeric materials
US4361723A (en) Insulated high voltage cables
US3684821A (en) High voltage insulated electric cable having outer semiconductive layer
KR930002947B1 (en) Strippable laminate
US3096210A (en) Insulated conductors and method of making same
US3433891A (en) Graded insulated cable
US3792192A (en) Electrical cable
CA2524252C (en) Improved strippable cable shield compositions
EP0420271A1 (en) Insulated electrical conductors
US3573210A (en) Electric insulating composition containing an organic semiconducting material
US4469539A (en) Process for continuous production of a multilayer electric cable
IL186992A (en) Strippable cable shield compositions
US4246142A (en) Vulcanizable semi-conductive compositions
US3925597A (en) Electrical conductors with strippable insulation and method of making the same
US4469538A (en) Process for continuous production of a multilayer electric cable and materials therefor
US4400580A (en) Process for producing crosslinked polyethylene insulated cable
US3787255A (en) Insulated cable with sheath of controlled peel strength and method
US4051298A (en) Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof
US3962517A (en) Electric cables
JPH10283851A (en) Direct current power cable and its connection part
US5108657A (en) Strippable, silane-curable, semiconducting mixture, in particular for electrical cables, and a method of implementing said mixture
US3527874A (en) Crosslinked polyethylene oil filled high voltage powered cable
JPH04106B2 (en)
JP3777958B2 (en) Cross-linked polyethylene insulated power cable suitable for recycling

Legal Events

Date Code Title Description
AS Assignment

Owner name: VULKOR, INCORPORATED, A CORP. OF MA, MASSACHUSETT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY, A CORP. OF NY;REEL/FRAME:004835/0028

Effective date: 19871222

Owner name: VULKOR, INCORPORATED, 950 BROADWAY, LOWELL, MA 018

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GENERAL ELECTRIC COMPANY, A CORP. OF NY;REEL/FRAME:004835/0028

Effective date: 19871222