JPH02290021A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02290021A
JPH02290021A JP2090488A JP9048890A JPH02290021A JP H02290021 A JPH02290021 A JP H02290021A JP 2090488 A JP2090488 A JP 2090488A JP 9048890 A JP9048890 A JP 9048890A JP H02290021 A JPH02290021 A JP H02290021A
Authority
JP
Japan
Prior art keywords
layer
lacquer layer
gas mixture
plasma
organic lacquer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2090488A
Other languages
Japanese (ja)
Other versions
JPH0359575B2 (en
Inventor
Jozef A M Sanders
ジョセフ・アルフォンス・マリエ・サンダース
Franciscus H M Sanders
フランシスカス・ハベルタス・マリエ・サンダース
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of JPH02290021A publication Critical patent/JPH02290021A/en
Publication of JPH0359575B2 publication Critical patent/JPH0359575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: To selectively remove an organic lacquer layer by bringing the lacquer layer into contact with the non-charged component of plasma, formed by using a gas mixture composed only of CF4 and a specific volume of NO added to the mixture as an oxygen compound. CONSTITUTION: An organic lacquer layer 12 is formed on a conductive layer 11, and the non-coated part of the layer 11 is removed by an ordinary method. Finally, the lacquer layer 12 is removed by bringing the layer 12 into contact with the non-charged component of plasma formed in a gas mixture. The gas mixture composed only of CF4 and 55-75vol% NO added to the mixture as an oxygen compound. Therefore, only the lacquer layer 12 can be removed selectively, because the layer 12 can be etched off about 500 times faster than the polycrystalline silicon conductive layer 11.

Description

【発明の詳細な説明】 本発明はCP.と酸素化合物とを含む気体混合物中に形
成されるプラズマの成分に有機ラッカー層を接触させる
ことによって、基板上に局部的に存在する有機ラッカー
層をエッチングするようになした半導体装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to CP. A method for manufacturing a semiconductor device in which an organic lacquer layer locally present on a substrate is etched by contacting the organic lacquer layer with a component of a plasma formed in a gas mixture containing an oxygen compound and an oxygen compound. .

このラッカー層は例えば通常のトンネル形反応器中でプ
ラズマの非帯電成分とのみならず例えば通常のプレーナ
形反応器中でプラズマの帯電及び非帯電成分の混合物と
接触できる。
This lacquer layer can come into contact not only with uncharged components of the plasma, for example in a conventional tunnel reactor, but also with a mixture of charged and uncharged components of the plasma, for example in a conventional planar reactor.

斯の種の方法は、例えば、基板上に導電トラックを形成
するため基板全体を金属又は多結晶珪素の導電層で被覆
しこの導電層の一部分を有機ラッカー層で覆い、然る後
ラッカー層で覆われていない部分を除去するようになし
た半導体装置の製造に特に好適である。最終的にはこの
有機ラッカー層の除去を前述した種類の方法によって行
なう。
Such methods include, for example, coating the entire substrate with a conductive layer of metal or polycrystalline silicon in order to form conductive tracks on the substrate, covering a portion of this conductive layer with an organic lacquer layer, and subsequently applying the lacquer layer. It is particularly suitable for manufacturing semiconductor devices in which uncovered portions are removed. Finally, this organic lacquer layer is removed by a method of the type described above.

この場合このラッカー層の下側に在る導電層を局部的に
腐蝕する惧れがある。実際にはこの腐蝕を出来るだけ紡
ぐようにするため、有機ラッカー及?導電層をエッチン
グする速度の比すなわち゛エッチング選択性′゜は出来
るたけ大きい方かよい。
In this case, there is a risk that the conductive layer underlying this lacquer layer will be locally corroded. In fact, in order to spin this corrosion as much as possible, organic lacquer and organic lacquer are used. The ratio of etching speeds of the conductive layer, that is, the ``etching selectivity'', should be as large as possible.

米国特許明細書第3867216号はハロゲン化合物と
してCF4を含みかつ酸素化合物として0■を含む気体
混合物中に形成されるプラズマの成分と有機ラッカー層
とを接触させることによってこの層のエッチングを行な
う前述したような方法を明らかにしている。この方法で
はこの有機ラッカーの除去を多結晶珪素の導電層の除去
に対するよりも約100倍速く行なうことか出来る。
U.S. Pat. No. 3,867,216 describes the etching of an organic lacquer layer by bringing it into contact with components of a plasma formed in a gas mixture containing CF4 as a halogen compound and 0 as an oxygen compound. It reveals a method like this. This method allows the removal of this organic lacquer to be approximately 100 times faster than for the removal of polycrystalline silicon conductive layers.

しかし既知の方法では有機ラッカー及び多結晶珪素をエ
ッチングして除去する速度比か制限を受けるという欠点
かあり、そのため、実際には有機ラッカー層の下側に位
置する多結晶珪素の導電層が腐食されてしまう。導電ト
ラックを導電層中に形成する場合には、形成し得る最小
パターンのディテールがこの腐食のため制限されてしま
う。
However, the known method has the drawback of being limited in the rate of etching and removal of organic lacquer and polycrystalline silicon, so that in practice the polycrystalline silicon conductive layer located underneath the organic lacquer layer is corroded. It will be done. When forming conductive tracks in a conductive layer, this corrosion limits the smallest pattern detail that can be formed.

本発明の目的は前述した従来方法の欠点を軽減すること
にあり、この目的を達成するため本発明の方法によれば
、CF4 と酸素化合物とを含む気体混合物中に形成さ
れるプラズマの非帯電成分に有機ラッカー層を接触させ
ることによって、基板上に局部的に存在する有機ラッカ
ー層をエッチングするようになした半導体装置の製造方
法において、前記プラズマが形成される前記気体混合物
が酸素化合物としてNOを55〜75容量%だけ含むよ
うにすることを特徴とする。
The purpose of the present invention is to alleviate the drawbacks of the conventional methods mentioned above, and to achieve this purpose, according to the method of the present invention, a non-charged plasma formed in a gas mixture containing CF4 and an oxygen compound is provided. A method for manufacturing a semiconductor device, characterized in that an organic lacquer layer locally present on a substrate is etched by bringing the organic lacquer layer into contact with a component, wherein the gas mixture in which the plasma is formed contains NO as an oxygen compound. It is characterized by containing only 55 to 75% by volume.

本発明によれば、混合気体中に形成されるプラズマの帯
電成分は有機ラッカーを多結晶珪素の導電層よりも約5
00倍速く除去出来る。
According to the invention, the charged component of the plasma formed in the gas mixture makes the organic lacquer about 50% less than the polycrystalline silicon conductive layer.
It can be removed 00 times faster.

図面につき本発明を説明する。The invention will be explained with reference to the drawings.

第1図〜第5図は基礎材料をN形珪素基板1の形態て利
用し、この基板を通常の方法で約1000nmの厚さを
有しかつフィールド酸化物と称せられるSI02領域2
によって互いに絶縁されたフィールド(第1図)に副分
割するようになした電界効果トランジスタの製造方法の
順次の段階における断面を示す。図面を明確にするため
、図中唯一個のフィールドを示してあるにすぎないが、
実際にはこの種のSi基板は多くの斯様なフィールドを
含んている。
1 to 5, the basic material is utilized in the form of an N-type silicon substrate 1, which is processed in a conventional manner into an SI02 region 2 having a thickness of approximately 1000 nm and referred to as field oxide.
1A and 1B show cross-sections at successive stages of a method for manufacturing a field effect transistor, subdivided into mutually insulated fields (FIG. 1); For clarity, only one field is shown in the diagram.
In reality, this type of Si substrate contains many such fields.

フィールド酸化物2の形成後、基板1に厚さ約10nm
のいわゆるゲー1・酸化物3の薄い層を備え、その後に
ゲート電極として供する導電I・ラックを形成するため
、この組立体を金属又は多結晶珪素の層4及び有機ラッ
カーの層5て被覆する。このラッカー層5はまた電界効
果トランジスタのゲートの位置を画成するために供する
(第2図)。
After the formation of the field oxide 2, the substrate 1 is coated with a thickness of approximately 10 nm.
The assembly is then coated with a layer 4 of metal or polycrystalline silicon and a layer 5 of an organic lacquer in order to form a conductive I-rack which serves as a gate electrode. . This lacquer layer 5 also serves to define the location of the gate of the field effect transistor (FIG. 2).

続いて、このラッカー層5によって被覆されていない多
結晶珪素層4の一部分とその下側に位置する例えば81
02層のようなゲート酸化物の一部分とを除去し、従っ
てSi基板1のこれらの部分中に、B−イオンインプラ
ンテーションによって被覆されていないP形Si領域6
及び7を形成する。これら両領域は後でトランジスタの
ソース及びドレインとして作用する(第3図)。
Subsequently, the part of the polycrystalline silicon layer 4 not covered by this lacquer layer 5 and the part located below it, e.g.
02 layer and thus in these parts of the Si substrate 1 a P-type Si region 6 which is not covered by B- ion implantation is removed.
and 7. Both these regions will later act as the source and drain of the transistor (FIG. 3).

ラッカー層5を除去した後、組立体に既知のようにSi
02の絶縁層8を被覆し、この絶縁層中にフォトラッカ
ーのマスキング層9(第4図)によって通常の方法で窓
10(第5図)を形成し、これら?をP形Si領域6及
び7用の接点窓として用いる。
After removing the lacquer layer 5, the assembly is made of Si
02 and in which a window 10 (FIG. 5) is formed in the usual manner by means of a masking layer 9 of photolacquer (FIG. 4) in this insulating layer. is used as a contact window for P-type Si regions 6 and 7.

これらの窓10の形成後、マスキング層9を通常の方法
で除去し、ソース及びドレイン電極として供する導電I
・ラックを形成するためこの組立体を金属又は多結晶珪
素の導電層11で再び完全に被覆する。導電層の一部分
を通常の如き有機ラッカー層12によって覆い(第5図
)、然る後非被覆部分を通常の方法で除去する。最終的
には有機ラッカー層を気体混合物中に形成されるプラズ
マの非帯電成分と接触させることによってこの有機ラッ
カー層を除去するが、この場合、この気体混合物はハロ
ゲン化合物であるCF4及び酸素化合物を含む。
After the formation of these windows 10, the masking layer 9 is removed in the usual manner and the conductive layers 9 are removed to serve as source and drain electrodes.
- Completely covering the assembly again with a conductive layer 11 of metal or polycrystalline silicon to form a rack. Parts of the conductive layer are covered with a conventional organic lacquer layer 12 (FIG. 5), after which the uncoated parts are removed in a conventional manner. Finally, the organic lacquer layer is removed by contacting it with the uncharged component of a plasma formed in a gas mixture, which contains the halogen compounds CF4 and oxygen compounds. include.

本発明によれば、気体混合物は酸素化合物としてNOを
含み、その結果、有機ラッカーを多結晶珪素よりも約5
00倍早くエッチング除去することが出来る。
According to the invention, the gas mixture contains NO as oxygen compound, so that the organic lacquer is about 5
Etching can be removed 00 times faster.

後に説明する実施例の場合には、直径が約100mmで
Mo又は多結晶珪素で被覆され、厚さが250〜500
nmでしかもSiO■の基板上に設けられているSiデ
ィスクをバレル型のプラズマエッチング反応=6 ?中でエッチングした。この場合、エッチングをしない
部分には1000〜1500nmの厚さの有機ラッカー
を被覆した。基板温度を約125°Cとし、このように
して処理されたディスクをバレル型の反応器中で周波数
13.56 MHz ,電力約150W及びガス流量1
00〜300 sec/minで発生されたエッチング
プラズマと接触させた。
In the case of the embodiment described later, the diameter is about 100 mm, the film is coated with Mo or polycrystalline silicon, and the thickness is 250 to 500 mm.
A barrel-type plasma etching reaction is performed on a Si disk provided on a substrate of SiO■ with a nanometer diameter = 6? It was etched inside. In this case, the parts not to be etched were coated with an organic lacquer with a thickness of 1000-1500 nm. The substrate temperature was approximately 125° C., and the disks thus treated were placed in a barrel-type reactor at a frequency of 13.56 MHz, a power of approximately 150 W, and a gas flow rate of 1
It was brought into contact with an etching plasma generated at a rate of 00 to 300 sec/min.

実施例I 第6図は有機ラッカー(PR)及び多結晶珪素(Si)
が、全圧を60PaとしたCF4及びNOの気体混合物
及び比較のための全圧を60PaとしたCF4及び0■
の気体混合物中に形成されるプラズマの非帯電成分て、
エッチング中にエッチング除去されるエッチング速度R
 (nm/miri)をこれら気体混合物にそれぞれ追
加されるべきNO及び0■の容量%で表わした分量の関
数として示す曲線図である。多結晶珪素のエッチング速
度は実際の値のIO倍で示してある。
Example I Figure 6 shows organic lacquer (PR) and polycrystalline silicon (Si)
However, a gas mixture of CF4 and NO at a total pressure of 60 Pa and a gas mixture of CF4 and NO at a total pressure of 60 Pa for comparison.
The uncharged component of the plasma formed in the gas mixture of
Etching rate R of etching removal during etching
(nm/miri) as a function of the amount, expressed in volume %, of NO and 0 μ to be added to these gas mixtures, respectively. Etching rates for polycrystalline silicon are expressed as IO times the actual value.

この図から、有機ラッカー及び多結晶珪素のエッチング
速度の比すなわち゛′選択性″はCF4/O■混合物(
約70容量%の0■)に対しては100てあり、?F4
/NO混合物(約60容量%のNO)に対しては最大で
約500であることが判った。これかためCF4/02
混合物によって達成出来る選択性は0■の代りにNOを
加えることによって著しく増大する。
From this figure, it can be seen that the ratio of etching rates of organic lacquer and polycrystalline silicon, or ``selectivity'', is the same as that of CF4/O mixture (
There is 100 for approximately 70% by volume (0 ■). F4
A maximum of about 500 was found for the /NO mixture (about 60% NO by volume). This is hard CF4/02
The selectivity achievable with the mixture is significantly increased by adding NO instead of 0.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明による方法を使用して製造され
る半導体装置の一部分を順次の製造工程に対応させて示
した略図的断面図及び第6図はNO及び02を可変量と
して夫々含むCF4/No及び比較用としてCF4/0
■混合物中に形成されるプラズマ成分によってエッチン
グ中に得られる多結晶珪素及び有機ラッカーのエッチン
グ速度を示す曲線図である。 ■・・・基板       2・・・フィールド酸化物
3・・・ゲート酸化物(又はSiO■層)4・・・(金
属又は多結晶珪素)層 5.12・・・ラッカー層  6,7・・・領域8・・
・絶縁層      9・・・マスキング層lO・・・
窓        11・・・導電層−9= L LL 工 匡 L
1 to 5 are schematic cross-sectional views showing a portion of a semiconductor device manufactured using the method according to the present invention corresponding to the sequential manufacturing steps, and FIG. 6 shows NO and 02 in variable amounts. CF4/No including each and CF4/0 for comparison
(2) A curve diagram showing the etching rate of polycrystalline silicon and organic lacquer obtained during etching by the plasma components formed in the mixture. ■... Substrate 2... Field oxide 3... Gate oxide (or SiO ■ layer) 4... (Metal or polycrystalline silicon) layer 5.12... Lacquer layer 6,7...・Area 8...
・Insulating layer 9...Masking layer lO...
Window 11...Conductive layer-9=L LL Work L

Claims (1)

【特許請求の範囲】[Claims] 1、CF_4と酸素化合物とを含む気体混合物中に形成
されるプラズマの非帯電成分に有機ラッカー層を接触さ
せることによって、基板上に局部的に存在する有機ラッ
カー層をエッチングするようになした半導体装置の製造
方法において、前記プラズマが形成される前記気体混合
物が酸素化合物としてNOを55〜75容量%だけ含む
ようにすることを特徴とする半導体装置の製造方法。
1. A semiconductor in which an organic lacquer layer locally present on a substrate is etched by contacting the organic lacquer layer with an uncharged component of a plasma formed in a gas mixture containing CF_4 and an oxygen compound. A method for manufacturing a semiconductor device, characterized in that the gas mixture in which the plasma is formed contains 55 to 75% by volume of NO as an oxygen compound.
JP2090488A 1980-07-11 1990-04-06 Manufacture of semiconductor device Granted JPH02290021A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8004008A NL8004008A (en) 1980-07-11 1980-07-11 METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
NL8004008 1980-07-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56105745A Division JPS5752136A (en) 1980-07-11 1981-07-08 Method of producing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02290021A true JPH02290021A (en) 1990-11-29
JPH0359575B2 JPH0359575B2 (en) 1991-09-11

Family

ID=19835611

Family Applications (2)

Application Number Title Priority Date Filing Date
JP56105745A Granted JPS5752136A (en) 1980-07-11 1981-07-08 Method of producing semiconductor device
JP2090488A Granted JPH02290021A (en) 1980-07-11 1990-04-06 Manufacture of semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP56105745A Granted JPS5752136A (en) 1980-07-11 1981-07-08 Method of producing semiconductor device

Country Status (8)

Country Link
US (1) US4374699A (en)
JP (2) JPS5752136A (en)
CA (1) CA1165902A (en)
DE (1) DE3125052A1 (en)
FR (1) FR2486716B1 (en)
GB (1) GB2081161B (en)
IE (1) IE52045B1 (en)
NL (1) NL8004008A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163826A (en) * 1983-03-08 1984-09-14 Toshiba Corp Dry etching method
US4501061A (en) * 1983-05-31 1985-02-26 Advanced Micro Devices, Inc. Fluorine plasma oxidation of residual sulfur species
US4431477A (en) * 1983-07-05 1984-02-14 Matheson Gas Products, Inc. Plasma etching with nitrous oxide and fluoro compound gas mixture
US4544416A (en) * 1983-08-26 1985-10-01 Texas Instruments Incorporated Passivation of silicon oxide during photoresist burnoff
ES2048158T3 (en) * 1986-06-26 1994-03-16 American Telephone & Telegraph PROCEDURE TO MANUFACTURE INTEGRATED CIRCUIT DEVICES USING A MULTI-LEVEL RESIST STRUCTURE.
US4836887A (en) * 1987-11-23 1989-06-06 International Business Machines Corporation Chlorofluorocarbon additives for enhancing etch rates in fluorinated halocarbon/oxidant plasmas
US4845053A (en) * 1988-01-25 1989-07-04 John Zajac Flame ashing process for stripping photoresist
US4936772A (en) * 1988-01-25 1990-06-26 John Zajac Flame ashing process and apparatus for stripping photoresist
JP2813703B2 (en) * 1992-07-20 1998-10-22 株式会社クボタ Spiral bevel gear manufacturing equipment
US7299805B2 (en) 2002-06-07 2007-11-27 Marctec, Llc Scaffold and method for implanting cells
US20050136666A1 (en) * 2003-12-23 2005-06-23 Tokyo Electron Limited Method and apparatus for etching an organic layer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867216A (en) * 1972-05-12 1975-02-18 Adir Jacob Process and material for manufacturing semiconductor devices
JPS5289540A (en) * 1976-01-21 1977-07-27 Mitsubishi Electric Corp Etching gaseous mixture
JPS5915174B2 (en) * 1976-07-26 1984-04-07 日本電信電話株式会社 How to make a photomask
JPS6019139B2 (en) * 1976-07-26 1985-05-14 三菱電機株式会社 Etching method and mixture gas for plasma etching
JPS53112065A (en) * 1977-03-11 1978-09-30 Toshiba Corp Removing method of high molecular compound
US4260649A (en) * 1979-05-07 1981-04-07 The Perkin-Elmer Corporation Laser induced dissociative chemical gas phase processing of workpieces
NL8004007A (en) * 1980-07-11 1982-02-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JPS5752136A (en) 1982-03-27
IE811530L (en) 1982-01-11
IE52045B1 (en) 1987-05-27
FR2486716A1 (en) 1982-01-15
DE3125052A1 (en) 1982-03-18
US4374699A (en) 1983-02-22
GB2081161B (en) 1984-08-08
GB2081161A (en) 1982-02-17
JPH0359575B2 (en) 1991-09-11
FR2486716B1 (en) 1986-01-24
NL8004008A (en) 1982-02-01
CA1165902A (en) 1984-04-17
DE3125052C2 (en) 1990-06-07
JPH0237091B2 (en) 1990-08-22

Similar Documents

Publication Publication Date Title
JPH0345532B2 (en)
JPS637458B2 (en)
JPH02290021A (en) Manufacture of semiconductor device
JPH0359574B2 (en)
US5567658A (en) Method for minimizing peeling at the surface of spin-on glasses
GB967002A (en) Improvements in or relating to semiconductor devices
US4783238A (en) Planarized insulation isolation
JPH0797578B2 (en) Method for flattening surface of semiconductor device
JPS58101428A (en) Method of etching silicon nitride film
JP2902513B2 (en) Method of forming resist pattern
JPS5585068A (en) Preparation of semiconductor device
JPH1140542A (en) Gaseous mixture for etching polysilicon layer and method and etching polysilicon electrode layer by using it
JPH07135247A (en) Manufacture of semiconductor device
JPH0432228A (en) Dry etching method and manufacture of semiconductor device using it
JPS62274724A (en) Dry etching processor
JPS5559718A (en) Producing method of semiconductor unit
JPS6336575A (en) Manufacture of semiconductor device
JPS61216329A (en) Manufacture of semiconductor device
JPH08186170A (en) Manufacture of semiconductor device
JPH0346327A (en) Dry etching
JPS595631A (en) Mesa type semiconductor device and manufacture thereof
JPS6193629A (en) Manufacture of semiconductor device
JPH0258251A (en) Manufacture of semiconductor device
JPS61214430A (en) Manufacture of semiconductor device
JPH10321597A (en) Treatment method for forming contact hole in semiconductor structure