JPH02172889A - Cylinder for vapor growth - Google Patents

Cylinder for vapor growth

Info

Publication number
JPH02172889A
JPH02172889A JP32624688A JP32624688A JPH02172889A JP H02172889 A JPH02172889 A JP H02172889A JP 32624688 A JP32624688 A JP 32624688A JP 32624688 A JP32624688 A JP 32624688A JP H02172889 A JPH02172889 A JP H02172889A
Authority
JP
Japan
Prior art keywords
cylinder
filter
org
metal compd
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32624688A
Other languages
Japanese (ja)
Inventor
Toru Imori
徹 伊森
Takayuki Ninomiya
二宮 貴之
Koichi Nakamura
中村 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP32624688A priority Critical patent/JPH02172889A/en
Publication of JPH02172889A publication Critical patent/JPH02172889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To supply a uniform and specified quantity of a solid raw material of an org. metal compd. to a vapor growth device over a long period of time by providing a porous filter in the lower part in a cylinder and forming an org. metal compd. packed chamber in the upper part thereof and a vacant chamber in the lower part thereof. CONSTITUTION:The porous filter 2 is provided in the lower part of the cylinder 1 and the org. metal compd. 4 packed chamber 3 is provided in the upper part thereof. The vacant chamber 5 is formed in the lower part of the filter 2. A carrier gas is introduced from a pipe 7 and is brought into contact with the org. metal compd. 4 to gasity and carry the org. metal compd. The gas is supplied through the filter 2, the vacant chamber 5 and the pipe 6 into the vapor growth device. The carrier gas is otherwise introduced from the pipe 6 and is brought into contact with the org. metal compd. 4 via the empty chamber 5 and the filter 2 to carry the org. metal compd. 4. This gas is supplied through the pipe 7 into the vapor growth device. The thin single crystal film having the uniform compsn. is produced in this way.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、M OCV D (Metalorgani
c Chemic−al Vapor Deposit
ion)やM OM B E (Matalorga−
nic Mo1ecular Beats Epita
xy)等の方法により、基板上に金属又はその化合物を
気相成長させ、全屈薄膜あるいは化合物半導体膜等を形
成させるための気相成長装置へ原料を供給するために用
いられる気相成長用シリンダーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to MOCV D (Metalorgan
c Chemical-al Vapor Deposit
ion) and MOMBE (Matalorga-
nic Mo1ecular Beats Epita
For vapor phase growth, which is used to supply raw materials to a vapor phase growth apparatus for vapor phase growth of a metal or its compound on a substrate to form a fully refracted thin film or a compound semiconductor film, etc., using methods such as xy). Concerning cylinders.

[従来の技術] 化合物半導体膜や金属膜等を形成するためのエピタキシ
ャル成長法として、界面の急峻性、量産性に優れる気相
成長法が広く採用されている。MOCVD法は有機金属
化合物をガスとして送り、高温下にウェハー上でこのガ
スを分解或いは反応させ、ウェハー上にこの金属或いは
化合物の単結晶薄膜を成長させるものである。
[Prior Art] As an epitaxial growth method for forming compound semiconductor films, metal films, etc., a vapor phase growth method is widely used because of its excellent interface steepness and mass productivity. The MOCVD method is a method in which an organometallic compound is sent as a gas, and this gas is decomposed or reacted on a wafer at a high temperature to grow a single crystal thin film of the metal or compound on the wafer.

またMOMBE法は、有機金属化合物の分子ビームを送
り、高真空下で前述と同様に単結晶薄膜を成長させるも
のである。このような方法においては、原料を分解、反
応部に供給する必要があり、一般に常温付近で適当な蒸
気圧を有する有機金属化合物が用いられている。
In the MOMBE method, a molecular beam of an organometallic compound is sent to grow a single crystal thin film under high vacuum in the same manner as described above. In such a method, it is necessary to decompose the raw material and supply it to the reaction section, and generally an organometallic compound having an appropriate vapor pressure at around room temperature is used.

ところで、この有機金属化合物は、もっばら常温で液体
のものが用いられ、このための供給装置として、シリン
ダー内にデツプチューブを挿入し、その先端下部に1〜
100μのポーラスな分散器を取付けたもの(特開昭6
2−83400号公報)が提案されている。
By the way, this organometallic compound is usually liquid at room temperature, and as a supply device for this purpose, a dip tube is inserted into the cylinder, and 1 to
Equipped with a 100μ porous disperser (Japanese Patent Application Laid-Open No.
2-83400) has been proposed.

しかし、有機金属化合物のなかにはトリメチルインジウ
ムやシクロペンタジェニルマグネシウム等のように、使
用温度で固体状態を呈するものもある。この場合は、上
記方法では、分散器の周りの固体のみがガス化して空洞
化し、有機金属のガスが均等に排出せず1組成の均等な
単結晶薄膜が成長しなかった。これを改善するために、
シリンダー下部の内径をシリンダー上部の内径より狭め
、この狭径部の上に傾斜部を設けた装置(特開昭63−
11598号公報)が提案されている。
However, some organometallic compounds, such as trimethylindium and cyclopentadienylmagnesium, exhibit a solid state at the operating temperature. In this case, in the above method, only the solid around the disperser was gasified and formed into a cavity, and the organometallic gas was not evenly discharged, so that a uniform single crystal thin film of one composition could not be grown. To improve this,
A device in which the inner diameter of the lower part of the cylinder is narrower than the inner diameter of the upper part of the cylinder, and a sloped part is provided above this narrow diameter part (Japanese Patent Application Laid-Open No. 63-1998)
11598) has been proposed.

しかしながら、上記方法も、供給開始直後は均一な組成
の有機金属ガスが排出されるものの。
However, even in the above method, an organometallic gas having a uniform composition is discharged immediately after the start of supply.

時間が経過するにつれて、デツプチューブの周りに空洞
が生じ、有機金属ガスが均一に排出しないようになり、
組成の均等な単結晶薄膜を得ることは困難であった。
Over time, cavities form around the dip tube, preventing the organometallic gas from discharging evenly.
It has been difficult to obtain single crystal thin films with uniform composition.

[発明が解決しようとする課題] 本発明は、上記の問題を解決するためのもので1本発明
の目的は、気相成長装置へ長期に亘って、均一で一定量
の原料を供給することができ、従って組成の均等な単結
晶薄膜を得ることができる気相成長用シリンダーを提供
することにある。
[Problems to be Solved by the Invention] The present invention is intended to solve the above problems.1 The purpose of the present invention is to supply a uniform and constant amount of raw material to a vapor phase growth apparatus over a long period of time. The object of the present invention is to provide a cylinder for vapor phase growth that can obtain a monocrystalline thin film with a uniform composition.

[課題を解決するための手段] 本発明の気相成長用シリンダーは、使用温度で固体状を
呈する有機金属化合物を気相成長装置へ供給する気相成
長用シリンダーにおいて、シリンダー内の下方部に多孔
質のフィルターを設け、当該フィルターの上部に有機金
属化合物の充填室を形成するとともに、当該フィルター
の下部に空室を形成したことから構成されるものである
[Means for Solving the Problems] The cylinder for vapor phase growth of the present invention is a cylinder for vapor phase growth that supplies an organometallic compound that is solid at the operating temperature to a vapor phase growth apparatus. It is constructed by providing a porous filter, forming a chamber filled with an organometallic compound in the upper part of the filter, and forming a cavity in the lower part of the filter.

[作 用コ 本発明は、シリンダー内のフィルターの上部に有機金属
化合物を充填し、当該フィルターの下部からキャリアー
ガスを供給する場合は、有機金属化合物の底部に一様に
圧力負荷がかかり、大きな気道、空洞ができず、当該固
体をほぼ理想的な流動状態とすることができ、また逆に
、シリンダー上部からキャリヤーガスを供給する場合は
、有機金属化合物全体に一様に圧力負荷がかかり、大き
な気道、空洞ができず、ともに、当該有機金属化合物が
無くなるまで気固の平衡状態を保つことができ、これに
より、均一で一定量の原料を反応部に供給することがで
き、組成の均等な単結晶薄膜を得ることができる。
[Function] In the present invention, when an organometallic compound is filled in the upper part of a filter in a cylinder and a carrier gas is supplied from the lower part of the filter, a pressure load is uniformly applied to the bottom of the organometallic compound, and a large Airways and cavities are not formed, and the solid can be kept in an almost ideal fluid state. Conversely, when a carrier gas is supplied from the top of the cylinder, a pressure load is uniformly applied to the entire organometallic compound. Large airways and cavities are not formed, and a gas-solid equilibrium state can be maintained until the organometallic compound is exhausted. This allows a uniform and fixed amount of raw material to be supplied to the reaction section, and the composition is evenly distributed. A single crystal thin film can be obtained.

[実施例] 次に、本発明の気相成長用シリンダーの好ましい態様に
ついて第1図に基づいて説明する。
[Example] Next, a preferred embodiment of the cylinder for vapor phase growth of the present invention will be described based on FIG. 1.

第1図において、1はシリンダーで、このシリンダー1
の下方部に、フィルター2が設けである。このフィルタ
ー2の位置は、有機金属化合物の一回の充填量を考慮し
て、すなわち気相成長装置の能力等を考慮して、適宜選
定される。
In Figure 1, 1 is a cylinder, and this cylinder 1
A filter 2 is provided at the lower part of the unit. The position of this filter 2 is appropriately selected in consideration of the amount of the organometallic compound filled at one time, that is, in consideration of the capacity of the vapor phase growth apparatus.

このフィルター2の上部が有機金属化合物の充填室3を
形成し、この中に有機金属化合物4が充填される。尚、
シリンダー1としては金属製やガラス製等を用いること
ができるが、有機金属化合物がシックスナイン以上の高
純度のものが用いられ、また気相成長反応にはアルシン
やホスフィン等のガスが併用されることを考えれば、ス
テンレス製のシリンダーを用いることが好ましい。また
、フィルター2は、多孔質のものであればよく、特には
有機金属化合物の固体が、そのまま透過しないものが好
ましく、固体有機金属化合物の粒度を考慮して、その目
開き度を適宜選定すると良い。一般には、1〜100μ
の範囲で選定すれば充分である。また、このフィルター
2の材質としては、ステンレス。
The upper part of this filter 2 forms an organometallic compound filling chamber 3, into which an organometallic compound 4 is filled. still,
The cylinder 1 can be made of metal, glass, etc., but a high purity organometallic compound of six nines or higher is used, and a gas such as arsine or phosphine is used in the vapor phase growth reaction. Considering this, it is preferable to use a stainless steel cylinder. In addition, the filter 2 may be porous, and is preferably one that does not allow the solid organometallic compound to pass through as it is.The opening degree of the filter 2 may be appropriately selected in consideration of the particle size of the solid organometallic compound. good. Generally 1~100μ
It is sufficient to select within the range of . Additionally, the material of this filter 2 is stainless steel.

ガラス等の焼結体等を用いると良い。It is preferable to use a sintered body such as glass.

一方、フィルター2の下部には、空室5が形成され、管
6を介してキャリヤーが供給される場合、この空室5に
おいて所定の圧力を付与するようにし、フィルター2上
に充填された有機金属化合物の底面全体に渡って、均一
に圧力がかかるようにすることが好ましい。この空室5
の大きさは、フィルター2の目開き度、すなわち圧力損
失の程度に応じて、適宜決定される。
On the other hand, a cavity 5 is formed in the lower part of the filter 2, and when a carrier is supplied through a pipe 6, a predetermined pressure is applied in this cavity 5, and the organic material filled on the filter 2 is It is preferable to apply pressure uniformly over the entire bottom surface of the metal compound. This vacant room 5
The size of the filter 2 is appropriately determined depending on the degree of opening of the filter 2, that is, the degree of pressure loss.

圧力損失が小さい場合は大きく、大きい場合は小さくす
ると良い。
If the pressure loss is small, it is better to increase it, and if it is large, it is better to decrease it.

また、このシリンダー1には、充填室3に連通する管7
及び空室5に連通する管6が、それぞれ取付けられ、こ
の管の各々にバルブ8.9が取付けである。尚、本図に
おいては、管6は、シリンダーlの側面下部に取付けで
あるが、シリンダー1の上部より充填室3及びフィルタ
ー2を貫通して空室5に連通ずるように取付けても良い
ことは言うまでもない。
The cylinder 1 also has a pipe 7 communicating with the filling chamber 3.
and a tube 6 communicating with the cavity 5, each of which is fitted with a valve 8.9. In this figure, the pipe 6 is attached to the lower side of the cylinder 1, but it may be attached so that it passes through the filling chamber 3 and the filter 2 from the upper part of the cylinder 1 and communicates with the empty chamber 5. Needless to say.

以上のような気相成長用シリンダー1においては、キャ
リヤーガスをシリンダーの上部から供給することもでき
、また逆に、下部から供給することもできる。一般に、
キャリヤーガスの量が多い場合は下部から、少ない場合
は、上部から供給する方が、安定した流量を確保できる
傾向にある。キャリヤーガスを上部から供給する場合は
、管7からキャリヤーガスが入り、有機金屑化合物4と
接触して、当該有機金属をガス化させて同伴し、フィル
ター2、空室5を介して管6を通って、分解、反応部(
図示せず)へ供給される。この場合、流量はバルブ8で
調節される。また、逆に、キャリヤーガスを下部から供
給する場合は、管6からキャリヤーガスが入り、空室5
、フィルター2を介して有機金属化合物4と接触して当
該有機金属を同伴し、管7を通って、分解1反応部へ供
給される。この場合、バルブ9で流量が調節される。尚
、キャリヤーガスとしては、水素、ヘリウム、アルゴン
、窒素等の不活性ガスを用いることができる。
In the vapor phase growth cylinder 1 as described above, the carrier gas can be supplied from the upper part of the cylinder, or conversely, it can also be supplied from the lower part. in general,
If the amount of carrier gas is large, supplying it from the bottom tends to ensure a stable flow rate, and if it is small, supplying it from the top tends to ensure a stable flow rate. When the carrier gas is supplied from above, the carrier gas enters from the pipe 7, contacts the organic metal scrap compound 4, gasifies the organic metal, and passes through the filter 2 and the cavity 5 to the pipe 6. through the decomposition and reaction section (
(not shown). In this case, the flow rate is regulated by valve 8. Conversely, when the carrier gas is supplied from the bottom, the carrier gas enters from the pipe 6 and the empty space 5
, comes into contact with the organometallic compound 4 through the filter 2, entraining the organometallic compound, and is supplied to the decomposition 1 reaction section through the pipe 7. In this case, the flow rate is adjusted by valve 9. Incidentally, as the carrier gas, an inert gas such as hydrogen, helium, argon, nitrogen, etc. can be used.

去J1吐 第1図に示したようなシリンダーを用いて実験した。シ
リンダー本体は、円筒状で、内径4cra、高さ14c
mで、底部から3cmの位置にステンレス製の焼結フィ
ルター2〔ニュプロ(NUPRO)社製、目開き度7μ
〕を取付けた。
The experiment was conducted using a cylinder as shown in Figure 1. The cylinder body is cylindrical, with an inner diameter of 4cra and a height of 14cm.
m, and placed a stainless steel sintered filter 2 [manufactured by NUPRO, opening degree 7μ] at a position 3cm from the bottom.
] was installed.

このフィルター2の上部に、平均粒径100μのトリメ
チルインジウム30gを充填し、シリンダー上部の管7
より窒素ガスを300cc/ll1inの流量で供給し
、管6から排出されるガスを、キシレンとエチルアルコ
ールの混合溶媒50ccに吹き込み、20時間間隔で採
取した。得られた溶液に2ccの水を添加し、乾固後、
インジウム量を測定し、シリンダーから排出されたイン
ジウム量の変動を求めた。この結果を第2図に示した。
The upper part of this filter 2 is filled with 30g of trimethylindium with an average particle size of 100μ, and the tube 7 at the upper part of the cylinder is
Nitrogen gas was supplied at a flow rate of 300 cc/11 in, and the gas discharged from tube 6 was blown into 50 cc of a mixed solvent of xylene and ethyl alcohol, and collected at 20 hour intervals. 2 cc of water was added to the obtained solution, and after drying,
The amount of indium was measured and the fluctuation in the amount of indium discharged from the cylinder was determined. The results are shown in FIG.

この結果から明らかなように、充填されたトリメチルイ
ンジウムの量が減少していっても、排出されるインジウ
ム量にほとんど変動がないことが分かる。
As is clear from this result, even if the amount of filled trimethylindium decreases, there is almost no change in the amount of indium discharged.

[発明の効果] 本発明の気相成長用シリンダーは、気相成長装置へ長期
に亘って、均一で一定量の原料を供給することができ、
このため組成の均等な単結晶薄膜を得ることができると
いう格別の効果を奏するものである。
[Effects of the Invention] The cylinder for vapor phase growth of the present invention can supply a uniform and constant amount of raw material to the vapor phase growth apparatus over a long period of time,
Therefore, it is possible to obtain a single crystal thin film having a uniform composition, which is a special effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の好ましい態様を示す気相成長用シリ
ンダーの概略図である。 1・・・・・・シリンダー 2・・・・・・フィルター
3・・・・・・充填室、5・・・・・・空室第2図は、
実験例の結果を示すグラフで、縦軸はトリメチルインジ
ウムの排出量を、横軸はトリメチルインジウムの充填量
に対するトリメチルインジウムの排出量の割合(%)を
示す。
FIG. 1 is a schematic diagram of a cylinder for vapor phase growth showing a preferred embodiment of the present invention. 1...Cylinder 2...Filter 3...Filling chamber, 5...Empty chamber Figure 2 shows:
In the graph showing the results of the experimental example, the vertical axis shows the amount of trimethylindium discharged, and the horizontal axis shows the ratio (%) of the amount of trimethylindium discharged to the amount of trimethylindium filled.

Claims (1)

【特許請求の範囲】[Claims] 使用温度で固体状を呈する有機金属化合物を気相成長装
置へ供給する気相成長用シリンダーにおいて、シリンダ
ー内の下方部に多孔質のフィルターを設け、当該フィル
ターの上部に有機金属化合物の充填室を形成するととも
に、当該フィルターの下部に空室を形成したことを特徴
とする気相成長用シリンダー。
In a cylinder for vapor phase growth that supplies an organometallic compound that is solid at the operating temperature to a vapor phase growth apparatus, a porous filter is provided in the lower part of the cylinder, and a chamber filled with the organometallic compound is provided in the upper part of the filter. A cylinder for vapor phase growth, characterized in that a hollow chamber is formed at the bottom of the filter.
JP32624688A 1988-12-26 1988-12-26 Cylinder for vapor growth Pending JPH02172889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32624688A JPH02172889A (en) 1988-12-26 1988-12-26 Cylinder for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32624688A JPH02172889A (en) 1988-12-26 1988-12-26 Cylinder for vapor growth

Publications (1)

Publication Number Publication Date
JPH02172889A true JPH02172889A (en) 1990-07-04

Family

ID=18185628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32624688A Pending JPH02172889A (en) 1988-12-26 1988-12-26 Cylinder for vapor growth

Country Status (1)

Country Link
JP (1) JPH02172889A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083777A (en) * 2000-05-31 2002-03-22 Shipley Co Llc Bubbler
JP2007046084A (en) * 2005-08-08 2007-02-22 Lintec Co Ltd Vaporizer, and liquid vaporizing-feeding device using the same
US20120266967A1 (en) * 2009-11-02 2012-10-25 Sigma-Aldrich Co. Llc Evaporator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083777A (en) * 2000-05-31 2002-03-22 Shipley Co Llc Bubbler
JP2007046084A (en) * 2005-08-08 2007-02-22 Lintec Co Ltd Vaporizer, and liquid vaporizing-feeding device using the same
US20120266967A1 (en) * 2009-11-02 2012-10-25 Sigma-Aldrich Co. Llc Evaporator
JP2013509736A (en) * 2009-11-02 2013-03-14 シグマ−アルドリッチ・カンパニー、エルエルシー Evaporator
US9297071B2 (en) * 2009-11-02 2016-03-29 Sigma-Aldrich Co. Llc Solid precursor delivery assemblies and related methods
TWI550127B (en) * 2009-11-02 2016-09-21 辛格瑪艾瑞契公司 Solid precursor delivery assemblies and related methods

Similar Documents

Publication Publication Date Title
JPH0269389A (en) Formation of saturated vapor of solid organometallic compound in vapor growth method
CN1800446B (en) Delivery device
JP4789126B2 (en) Equipment for providing vaporized organometallic compounds to chemical vapor deposition systems
US8092604B2 (en) Solid organometallic compound-filled container and filling method thereof
EP2418300B1 (en) Delivery device and method of use thereof
US20060037540A1 (en) Delivery system
EP1079001B1 (en) Dual fritted bubbler
KR20070112732A (en) Delivery device
CA2051554A1 (en) Thin film deposition method
WO1993003196A1 (en) Method for deposition of a metal
EP0323145A1 (en) Equipment and method for supply of organic metal compound
US4734999A (en) Cylinder for metal organic chemical vapor deposition
JPH02172889A (en) Cylinder for vapor growth
KR101029894B1 (en) Container and method for filling solid organometallic compound
JPH0726364Y2 (en) Solid material feeder for vapor phase growth equipment
JPH05117864A (en) Cvd device
KR100927456B1 (en) Filling container for solid organometallic compound and filling method thereof
JPS57152132A (en) Chemical vapor growing method
JPH0989732A (en) Method and device for generating gas and vapor-phase growing device using device thereof
JPH0226017A (en) Method of producing saturated vapor of organometal compound in organometallic vapor growth
JPH04367587A (en) Liquid phase growth and apparatus therefor
US20080121182A1 (en) Apparatus of supplying organometallic compound
JPS5812827Y2 (en) Saturator for vapor phase growth
JPH03131018A (en) Supply of solid organic metal material and container for supply
JPH06151311A (en) Solid organic metal compound supply equipment in organic metal vapor growth method