JPH01289542A - Casting mold for continuous casting of steel - Google Patents

Casting mold for continuous casting of steel

Info

Publication number
JPH01289542A
JPH01289542A JP33686987A JP33686987A JPH01289542A JP H01289542 A JPH01289542 A JP H01289542A JP 33686987 A JP33686987 A JP 33686987A JP 33686987 A JP33686987 A JP 33686987A JP H01289542 A JPH01289542 A JP H01289542A
Authority
JP
Japan
Prior art keywords
solidified shell
grooves
mold
solidification
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33686987A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
洋 村上
Mikio Suzuki
幹雄 鈴木
Toru Kitagawa
北川 融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33686987A priority Critical patent/JPH01289542A/en
Publication of JPH01289542A publication Critical patent/JPH01289542A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent nonuniform solidification and to improve productivity by providing grating grooves having a specific shape and spacing on a casting mold surface near meniscus and packing different metals or ceramics into the grooves down to the depth of the prescribed conditions. CONSTITUTION:The grating-shaped grooves 2 having 0.5-1.0mm depth and 0.5-1.00mm width are provided to the casting mold surface near the meniscus of a molten steel in the casting mold and the spacing between the grooves is specified to a 5-10mm range. The different metals consisting of Ni and Cr or the ceramics such as BN, AlN and ZrO2 are packed at need into the grooves down to the depth at which the thermal resistance ratio (h) expressed by equation I attains >=1.5. Since the grooves 2 are disposed near the meniscus part, the formation of hexagonal rugged patterns on the immersion side of the solidified shell in the initial period of solidification and the formation of the ruggedness on the molten steel side is prevented from the initial period of solidification. The nonuniform solidification of the molten steel is thereby prevented and, therefore, the high-speed casting is enabled and the productivity is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素含有量0.10〜0.15%の亜包晶凝
固する鋼種の初期の凝固シェル縦割れを防止するための
鋼の連続鋳造用鋳型に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a method for preventing longitudinal cracking of the solidified shell in the initial stage of subperitectic solidifying steel with a carbon content of 0.10 to 0.15%. Concerning continuous casting molds.

[従来の技術] 近年、鉄鋼を製造するには垂直もしくは湾曲型の連続鋳
造機を使用した連続鋳造工程が不可欠となっている。こ
のような連続鋳造法によってブルームやビレット等の鋳
片を製造しようとすると、鋳片表面に縦割れや横割れが
発生することがある。第17図は従来の鋳型銅板を用い
て鋳造した時の、スラブの炭素含有量と表面割れ指数と
の関係を示すグラフ図である。この図から明らかなよう
に、炭素含有量が0.10−0.15%の亜包晶凝固す
る鋼種で表面割れが多く発生している。この理由は上記
の炭素含有量の鋼種が凝固する際− り−δ+し一包晶反応(δ+L→γ) →δ+γ→γ という変態過程を経る。このうちδ相は体心立方(bc
c)、γ相は面心立方(fee)の結晶構造を有し、δ
−γの変態時にはこの結晶構造差に起因した体積収縮が
起こり大きな変態応力が発生する。
[Prior Art] In recent years, a continuous casting process using a vertical or curved continuous casting machine has become essential for producing steel. When attempting to manufacture slabs such as blooms and billets using such a continuous casting method, vertical cracks and horizontal cracks may occur on the surface of the slab. FIG. 17 is a graph showing the relationship between the carbon content of a slab and the surface crack index when the slab is cast using a conventional copper plate mold. As is clear from this figure, many surface cracks occur in steel types that undergo subperitectic solidification with a carbon content of 0.10-0.15%. The reason for this is that when a steel type with the above carbon content solidifies, it undergoes a transformation process of - δ + peritectic reaction (δ + L → γ) → δ + γ → γ. Among these, the δ phase is body-centered cubic (bc
c), the γ phase has a face-centered cubic (fee) crystal structure, and the δ
During the −γ transformation, volumetric contraction occurs due to this difference in crystal structure, generating large transformation stress.

又、このδ→γの包晶反応時には液相が消滅していくた
め収縮による歪を吸収してくれるものがなく、凝固シェ
ルそのものが不均一な凝固形態をとり、上記応力が凝固
シェルの薄い部分にかかつて割れが発生すると考えられ
る。従来は上記の鋼種の表面割れを防止するにはモール
ドパウダーをtrial and errorにより割
れ感受性の低いものに変えて鋳造したり、鋳型抜熱を落
として低速鋳造を行うことにより表面割れ防止を図って
いた。
In addition, during this peritectic reaction of δ→γ, the liquid phase disappears, so there is nothing to absorb the strain caused by contraction, and the solidified shell itself assumes a non-uniform solidification form, and the above stress is applied to the thin solidified shell. It is thought that cracks may occur in some parts. Conventionally, in order to prevent surface cracking of the steel types mentioned above, the mold powder was changed to one with lower cracking susceptibility through trial and error before casting, or the heat removed from the mold was reduced to perform low-speed casting. Ta.

[発明が解決しようとする問題点] しかしながら表面割れ発生を防止するための、モールド
パウダーの最適化は多くの鋳造条件をすべて満足させる
モールドパウダーを選び出すことが困難で、時間と費用
が莫大にかかる。又、鋳型抜熱を落として低速鋳造を行
うと、直送圧延の圧延機と同期させるのが困難となって
、熱間直送圧延やホットチャージ圧延ができなくなり鉄
鋼製造プロセスの省力化や省エネルギーの障害となると
同時に、製品の歩留も低下するという問題があった。
[Problems to be solved by the invention] However, in order to prevent surface cracking, it is difficult to select a mold powder that satisfies all of the many casting conditions, and it takes a huge amount of time and money. . In addition, when low-speed casting is performed by reducing heat removal from the mold, it becomes difficult to synchronize with the rolling mill for direct rolling, making it impossible to perform hot direct rolling or hot charge rolling, which impedes labor and energy conservation in the steel manufacturing process. At the same time, there was a problem in that the yield of the product also decreased.

この発明はかかる事情に鑑みてなされたものであって炭
素含有量0.10〜0.15%の亜包晶凝固する鋼種の
初期の凝固シェル縦割れを防止し、鋳片表面欠陥を防止
するための連続鋳造用鋳型を提供することを目的として
いる。
This invention has been made in view of the above circumstances, and is intended to prevent vertical cracking of the solidified shell in the initial stage of a subperitectic solidifying steel with a carbon content of 0.10 to 0.15%, and to prevent surface defects in the slab. The purpose is to provide a continuous casting mold for.

[問題点を解決するための手段] この発明の鋼の連続鋳造用鋳型は、鋳型内溶鋼のメニス
カス近傍の鋳型表面に、深さ0.5〜1.0mm、幅O
15〜1.0mmの格子状の清を設け、前記格子状の溝
の間隔を5〜10mmとしたことを特徴とする。
[Means for Solving the Problems] The mold for continuous casting of steel of the present invention has a depth of 0.5 to 1.0 mm and a width of O on the mold surface near the meniscus of molten steel in the mold.
It is characterized in that a lattice-like groove of 15 to 1.0 mm is provided, and the interval between the lattice-like grooves is 5 to 10 mm.

[作用] この発明に係わる鋼の連続鋳造用鋳型では、鋳型の表面
に格子状の溝を設けることにより、溝部分とそうでない
部分とで冷却の強弱がつき弱冷部である溝部分では初期
の凝固シェルの凝固がわずかに遅れる。このため一定間
隔毎に液相が残り、この液相部が収縮時の歪を吸収して
初期の凝固シェルの曲がりを抑え、局部的に鋳型と凝固
シェルが離れることがない、従って抜熱が均一となり、
凝固シェル厚が均一に成長する0本発明の鋳型を用いる
ことによって、初期の凝固シェル厚みが極めて均一に形
成するため、凝固収縮やδ→γ変態時の変態応力が発生
しても局所的な凝固シェル厚の薄い部分がないため、−
点に応力が気中することがない、格子状の溝の形状を深
さ0.5〜1.0mm、幅0.5〜1.0mmとし、溝
を5〜10mm間隔の格子状に配置した理由は、これ以
外のでは凝固シェル厚の不均一度が大きくなるからであ
る。
[Function] In the mold for continuous casting of steel according to the present invention, by providing a lattice-like groove on the surface of the mold, the strength of cooling is varied between the grooved portion and the other portion, and the initial cooling rate is lowered in the grooved portion which is the weakly cooled portion. The solidification of the solidified shell is slightly delayed. For this reason, a liquid phase remains at regular intervals, and this liquid phase absorbs the strain caused by contraction, suppressing the initial bending of the solidified shell, and preventing the mold from separating from the solidified shell locally.Therefore, heat is removed. becomes uniform,
Solidified shell thickness grows uniformly 0 By using the mold of the present invention, the initial solidified shell thickness is extremely uniform, so even if solidification shrinkage or transformation stress occurs during δ→γ transformation, localized Since there is no thin part of the solidified shell, −
The grid-like grooves are 0.5 to 1.0 mm deep and 0.5 to 1.0 mm wide, and the grooves are arranged in a grid pattern at intervals of 5 to 10 mm, so that no stress is applied to the points. The reason is that in other cases, the non-uniformity of the solidified shell thickness becomes large.

[実施例] 以下、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

亜包晶凝固する鋼種では初期凝固シェルが形成すると熱
歪とδ→γ変態による変態応力により凝固シェルが曲げ
られ、局部的に凝固シェルと鋳型壁との間に空隙が形成
され、これによって局部的に凝固シェル厚が不均一に成
長する。ここで本発明者らは本発明に至るまでの過程に
おいて、表面割れは凝固シェル厚の薄いところで発生し
ており、不均一凝固を防ぐことが表面割れを防止できる
という知見を得た。
In steel types that undergo subperitectic solidification, when an initial solidified shell is formed, the solidified shell is bent by thermal strain and transformation stress due to δ→γ transformation, and a void is locally formed between the solidified shell and the mold wall, which causes local As a result, the solidified shell thickness grows non-uniformly. In the process leading up to the present invention, the present inventors have found that surface cracks occur where the thickness of the solidified shell is thin, and that surface cracks can be prevented by preventing uneven solidification.

この知見に基づいて、凝固シェル厚の不均一性の原因を
調査するため、10100mmX360の浸漬体く水冷
した平板=浸漬体の冷却水は90J / m i n 
)をl 00Kgの溶解炉直上がらエアーシリンダーを
用いて溶鋼中に浸漬させ、一定時間保持し、凝固シェル
の凹凸度(凝固シェル不均−度Δd/IIで表す、Δd
:隣り合う凹凸の厚み差d凸−d凹、(:隣り合う凹凸
間の距離)を調べな。第6図は凝固シェル不均一度を測
定する方法を示す図である。即ち溶鋼中に浸漬させ、−
定時間保持した浸漬体の表面に生成した凝固シェル]]
を浸漬体より剥離して、平板Fに置き隣り合う凹凸間の
凝固シェル11厚くここでは凸はd2凹はd+ 、dt
 )と隣り合う凹凸間の距離<1>を測定し、隣り合う
凹凸間の凝固シェル11厚の差(例えばΔd=d2−c
ll)と隣り合う凹凸間の距離(例えばQ+)との比(
Δd/i)の積分値を測定個数で割った値を平均凝固シ
ェル不均一度とした9 平均凝固シゴル不均−度一 実験条件としては溶鋼中の炭素含有量と浸漬体の表面性
状とを変更した。溶鋼中の炭素含有量は0.01〜0.
50%の範囲で変化させた。
Based on this knowledge, in order to investigate the cause of the non-uniformity of the solidified shell thickness, a water-cooled flat plate of 10100 mm x 360 mm = cooling water of the immersed body was 90 J/min.
) is immersed in molten steel using an air cylinder directly above a melting furnace of l 00 kg, and held for a certain period of time, and the unevenness of the solidified shell (expressed as solidified shell non-uniformity Δd/II, Δd
: Check the thickness difference between adjacent asperities, d protrusion - d concavity, (: distance between adjacent asperities). FIG. 6 is a diagram showing a method for measuring solidified shell non-uniformity. That is, immersed in molten steel, -
Solidified shell formed on the surface of the immersed body for a certain period of time]]
The solidified shell 11 is peeled off from the immersion body and placed on a flat plate F, and the thickness of the solidified shell 11 between adjacent asperities is d2.
) and the distance <1> between adjacent asperities, and calculate the difference in the thickness of the solidified shell 11 between adjacent asperities (for example, Δd=d2−c
The ratio (
The value obtained by dividing the integral value of Δd/i) by the number of pieces measured was taken as the average solidification shell heterogeneity.9 Average solidification shell heterogeneity - The experimental conditions were the carbon content in the molten steel and the surface texture of the immersed body. changed. The carbon content in molten steel is 0.01 to 0.
It was varied within a range of 50%.

この時Si:0.20%、Mn:0.60%。At this time, Si: 0.20%, Mn: 0.60%.

P:0.015%、S:0.010%。P: 0.015%, S: 0.010%.

5OQA、+2:0.10〜0.30%でほぼ一定に保
った。
5OQA, +2: was kept almost constant at 0.10-0.30%.

第7図は溶鋼中の炭素含有量と平均凝固シェル不均一度
の関係を示すグラフ図である。平板の銅製の浸漬体(厚
みは10mm)を用いて、8〜9秒間浸漬した後銅製の
浸漬体を引き上げて銅製の浸漬体の表面に形成した凝固
シェルの平均′a、(l111シ工ル不均一度を測定し
た。直線部は平均凝固シェル不均一度のバラツキを示し
、Φ印はその乎均値を示す。
FIG. 7 is a graph showing the relationship between the carbon content in molten steel and the average degree of solidification shell heterogeneity. Using a flat copper immersion body (thickness: 10 mm), after immersing it for 8 to 9 seconds, the copper immersion body was pulled up and the solidified shell formed on the surface of the copper immersion body was average ′a, (l111 shell The degree of non-uniformity was measured. The straight line portion indicates the variation in the average solidified shell non-uniformity, and the Φ symbol indicates the average value.

この図から明らかなように同一凝固時間では溶鋼中の炭
素含有量が0.10−0.15%(7) E 1ffl
の時には平均凝固シェル不均一度は大きく、凹凸の激し
い凝固シェルが形成していることを示している。上記溶
鋼中の炭素含有量が0.10−0.15%の範囲の鋼種
では特徴的に初期凝1司シェル表面(浸漬体側の表面)
に亀甲状の凹凸模様が観察される。この亀甲状の凹凸模
様は中央部が高く周辺が溝状に凹んでいる。また、炭素
含有量が0.15以上の過包晶凝固する鋼種では0.1
0〜0,15%の亜包晶凝固する鋼種と同様、δ→γ変
態するにもかかわらす凝固シェル表面浸漬体側に亀甲状
の凹凸模様が観察されない。
As is clear from this figure, at the same solidification time, the carbon content in molten steel is 0.10-0.15% (7) E 1ffl
When , the average degree of nonuniformity of the solidified shell is large, indicating that a solidified shell with severe irregularities is formed. In the above-mentioned steel types with a carbon content in the range of 0.10-0.15%, the initial solidification shell surface (surface on the immersion body side) is characteristically
A tortoiseshell-like uneven pattern is observed. This tortoise-shell-like uneven pattern has a high center and groove-like depressions around the periphery. In addition, for steel types that undergo hyperperitectic solidification with a carbon content of 0.15 or more, 0.1
Similar to steel types that undergo subperitectic solidification of 0 to 0.15%, no tortoiseshell-like uneven pattern is observed on the surface of the solidified shell on the side of the immersed body despite the δ→γ transformation.

これは 過包晶凝固する鋼種ではδ−γ変態の際にも液
相が残っているためであり、δ→γ変態の際の大きな変
態応力を液相部分で吸収できるためである。
This is because in steel types that undergo hyperperitectic solidification, the liquid phase remains even during the δ-γ transformation, and the large transformation stress during the δ→γ transformation can be absorbed by the liquid phase.

第8図は、凝固時間と初期凝固シェル溶鋼側の凹凸の大
きさ(隣り合う凹−口開の距M = m m )及び初
期凝固シェル浸漬体側く亀甲状)凹凸の大きさく円相当
径−m rn )の関係を示すグラフ図である。浸漬体
は第7図と同一のものを使用した。
Figure 8 shows the solidification time, the size of the unevenness on the molten steel side of the initial solidified shell (distance between adjacent depressions and openings M = mm), and the size of the unevenness (circular equivalent diameter) It is a graph figure showing the relationship of mrn). The same immersion body as in FIG. 7 was used.

・印のシェル浸漬体側の凹凸の大きさく凝固シェル浸漬
体側の亀甲状凹凸模様の凹−口開の距離−pP)は凝固
初期にできたまま時間に対して変化しないが、0印の凝
固シェル溶鋼側の凹凸の大きさく凝固シェル溶鋼側の凸
−5間の距離=iv)は凝固が進むにつれて大きくなっ
ている。
・The size of the unevenness on the side of the shell immersed body (marked) (distance between opening and opening of the tortoiseshell pattern on the side of the solidified shell immersed body - pP) remains formed at the early stage of solidification and does not change over time, but for the solidified shell marked 0 The size of the unevenness on the molten steel side (distance between the protrusions -5 on the solidified shell molten steel side = iv) increases as solidification progresses.

第9図は浸漬体に緻密な縦溝を入れたときの凝固時間と
凝固シェル側の亀甲状凹凸模様の大きさく円相当径=m
m )の関係を示すグラフ図である。
Figure 9 shows the solidification time when fine vertical grooves are made in the immersed body and the size of the tortoise-concave pattern on the solidified shell side, equivalent circle diameter = m
It is a graph figure showing the relationship of (m).

溝の種類は銅の平板、銅の縦1A、fIの縦溝Bの3種
類で、縦溝Aは浸漬体12の表面に錨の講13を付け、
講13の深さは0.5mm、幅Lt0.5mm、渭13
の間隔は0.7mmである3縦?11Bは清13の深さ
が0.5mrn、幅が05mm、渭13の間隔が1.0
mmである。この図かられかるように凝固シェル浸漬体
側の亀甲模様の大きさは浸漬体12の表面に緻密な7I
I 13を入れた場合には、溝を入れない平板の時と変
わらず約10〜15mmの大きさであった。これらの知
見から炭素含有量0.10〜0.15%の亜包晶凝固す
る鋼種で(51初期凝因シェルが形成の際に熱歪とδ→
γ変懇による変態応力により凝固ジ、rルが曲げられ、
局部的に凝固シェルと鋳型壁と、))間に空隙が生じる
。これが亀甲状凹凸模様となって凝固シェル浸漬体側表
面に観察され、この凹凸模様は一旦形成されるとその後
ずっと残る。この空隙のために凝固シェルの抜熱の低下
と凝固シェル不均一成長がおこる。従って、上記鋼種の
凝固シェル不均一を抑えるには、初期凝固の際の凝固シ
ェル表面浸漬体側の亀甲状の凹凸模様を形成させないか
、あるいは限りなく小さくし、浸漬体12の表面と凝固
シェルの間に空隙を形成させないようにすれば良い。但
し、第9図に示したように溝13の間隔が0.7mmと
か1.0mmの緻密な縦溝を浸漬体12に付けても凝固
シェル浸漬体側表面の亀甲状凹凸模様の大きさは変わら
ない。そこで本発明者等は亀甲状凹凸模様よりも小さい
範囲で不均一抜熱させるように、銅製の浸漬体表面の溝
を格子状に付は実験を試みた。第10図は浸漬時間と平
均凝固シェル不均一度の関係を示すグラフ図である。こ
の図で、・印は、厚みが8mm、冷却水量が90il/
minの銅の平板の浸漬体で、O印は銅板の表面に格子
状の渭を付けした浸漬体で、清の深さは0.5mm、幅
は0.5mm、格子状の間隔は5mmである。直線部は
平均凝固シェル不均一度のバラツキを示す。
There are three types of grooves: copper flat plate, copper vertical groove 1A, and fI vertical groove B. The vertical groove A has an anchor groove 13 on the surface of the immersion body 12,
The depth of Ko 13 is 0.5 mm, the width Lt 0.5 mm, and the width of 13
The distance between the two is 0.7mm.3 vertically? In 11B, the depth of clear 13 is 0.5 mrn, the width is 05 mm, and the distance between western 13 is 1.0
It is mm. As can be seen from this figure, the size of the hexagonal pattern on the side of the solidified shell immersed body is 7I, which is dense on the surface of the immersed body 12.
When I13 was inserted, the size was about 10 to 15 mm, the same as when the flat plate was not grooved. From these findings, in steel types that undergo subperitectic solidification with a carbon content of 0.10 to 0.15% (51), the initial coagulation shell undergoes thermal strain and δ→
Due to the transformation stress caused by γ deformation, the solidification ji and r ru are bent,
A void is formed locally between the solidified shell and the mold wall. This becomes a tortoise-like uneven pattern that is observed on the surface of the solidified shell immersed body, and once this uneven pattern is formed, it remains for a long time. These voids cause a decrease in heat removal from the solidified shell and non-uniform growth of the solidified shell. Therefore, in order to suppress the non-uniformity of the solidified shell of the above-mentioned steel types, the tortoise-shell-like uneven pattern on the surface of the solidified shell on the immersed body side during initial solidification should not be formed, or be minimized, and the surface of the immersed body 12 and the solidified shell should be formed as small as possible. It is sufficient to avoid forming a void between them. However, as shown in FIG. 9, even if dense vertical grooves with grooves 13 of 0.7 mm or 1.0 mm are formed on the immersed body 12, the size of the tortoiseshell pattern on the surface of the solidified shell immersed body will not change. do not have. Therefore, the present inventors attempted an experiment in which grooves were formed on the surface of the copper immersion body in a lattice pattern in order to cause non-uniform heat removal in a range smaller than the tortoiseshell pattern. FIG. 10 is a graph showing the relationship between immersion time and average solidified shell non-uniformity. In this figure, the mark indicates that the thickness is 8mm and the amount of cooling water is 90il/
The O mark is a dipping body of a copper flat plate of min. be. The straight line indicates the variation in the average solidified shell heterogeneity.

この図から明らかなように、銅板の表面に格子状の溝を
付けた浸漬体の方が、銅平板の浸漬体より平均凝固シェ
ル不均一度は小さくなり、バラツキも小さい、又、第1
1図は凝固シェル厚と浸漬体の浸漬時間の関係を示すグ
ラフ図である。○印は銅平板の浸漬体で、・印は銅板の
表面に格子状の溝付けした浸漬体で、溝の深さは0.5
mm、幅は0.5mm、格子状の間隔は5mmである。
As is clear from this figure, the average solidified shell non-uniformity of the immersed body with grid-like grooves formed on the surface of the copper plate is smaller than that of the immersed body of the flat copper plate, and the variation is also smaller.
FIG. 1 is a graph showing the relationship between the solidified shell thickness and the immersion time of the immersed body. The ○ symbol is a dipped copper flat plate, and the ・ symbol is a dipped body with grid-like grooves on the surface of the copper plate, and the depth of the grooves is 0.5.
mm, the width is 0.5 mm, and the grid-like interval is 5 mm.

ム印は銅板の表面に格子溝の溝を付けした浸漬体で、溝
の深さは0.5mm、幅は0.5mm、格子溝の間隔は
10mmである。この図から明らがなように、格子溝が
あることによって緩冷却となり凝固シェル厚が薄くなる
ことはない、従って、格子溝を入れた鋳型を用いること
によって凝固シェル厚の不均一度が小さくなるため、上
記鋼種の表面割れは低減でき、緩冷却ではないため鋳造
速度を下げる必要もないので、熱間直送圧延ができる。
The Mu mark is an immersion body in which lattice grooves are formed on the surface of a copper plate, and the depth of the grooves is 0.5 mm, the width is 0.5 mm, and the interval between the lattice grooves is 10 mm. As is clear from this figure, the presence of lattice grooves causes slow cooling and does not cause the solidified shell thickness to become thinner. Therefore, by using a mold with lattice grooves, the non-uniformity of the solidified shell thickness is reduced. Therefore, surface cracking of the above-mentioned steel types can be reduced, and there is no need to lower the casting speed since slow cooling is not performed, so hot direct rolling can be performed.

次に、表面割れ低減のための格子溝の最適条件を調査し
た。
Next, we investigated the optimal conditions for lattice grooves to reduce surface cracks.

(1)格子溝の間隔の影響 第12図は格子溝の間隔と平均凝固シェル不均一度の関
係を示すグラフ図である。浸漬体の浸漬時間は8〜9秒
で、溝の深さは0.5mm、幅は0.5mmで、格子溝
の間隔は0〜30mm(0,5,10,15,30mm
)である、この図から明らかなように、格子溝の間隔は
第9図に示す銅の平板でできた亀甲模様の凹凸間より小
さくすることにより、平均凝固シェル不均一度の改善に
大きな効果を発揮する。逆にあまり小さすぎると加工も
複雑になり、全体的な抜熱も低下し緩冷却となって、熱
間直送圧延に必要な鋳造速度を確保できないため、5〜
10mmの溝間隔が最適である。
(1) Effect of lattice groove spacing FIG. 12 is a graph showing the relationship between lattice groove spacing and average solidified shell non-uniformity. The immersion time of the immersed body is 8-9 seconds, the depth of the groove is 0.5 mm, the width is 0.5 mm, and the interval of the lattice groove is 0-30 mm (0, 5, 10, 15, 30 mm).
), as is clear from this figure, by making the spacing between the lattice grooves smaller than the unevenness of the tortoise-shell pattern made of flat copper plates shown in Fig. 9, there is a large effect on improving the average solidified shell non-uniformity. demonstrate. On the other hand, if it is too small, the processing will be complicated, the overall heat removal will be reduced, and the cooling will be slow, making it impossible to secure the casting speed necessary for hot direct rolling.
A groove spacing of 10 mm is optimal.

(2)格子溝の形状の影響 第13図は格子溝の形状と平均凝固シェル不均一度の関
係を示すグラフ図である。浸漬体の浸漬時間は8〜9秒
で、溝の深さは0.5mm。
(2) Effect of the shape of the lattice grooves FIG. 13 is a graph showing the relationship between the shape of the lattice grooves and the average solidified shell non-uniformity. The immersion time of the immersion body was 8 to 9 seconds, and the depth of the groove was 0.5 mm.

1.0mm、1.5mm、幅は0.5mm。1.0mm, 1.5mm, width 0.5mm.

1.0mm、1.5mmで、格子溝の間隔は5mmであ
る。格子溝の断面形状は、第13図に示すようにV型、
U型、角型の3種類である。
1.0 mm and 1.5 mm, and the interval between the grating grooves is 5 mm. The cross-sectional shape of the grating groove is V-shaped as shown in FIG.
There are three types: U-shaped and square-shaped.

この図から明らかなように、溝の深さが1.5mm、幅
が1.5mmの場合は平均凝固シェル不均一度は0.1
以上であり、又、溶鋼の差し込みが認められた。溝の深
さは1.0mm以下、幅は1.0mm以下の場合は、格
子溝の断面形状にかかわらず、どれも平均凝固シェル不
均一度は改善されている。
As is clear from this figure, when the groove depth is 1.5 mm and the width is 1.5 mm, the average solidified shell nonuniformity is 0.1
In addition, insertion of molten steel was confirmed. When the depth of the groove is 1.0 mm or less and the width is 1.0 mm or less, the average solidified shell non-uniformity is improved regardless of the cross-sectional shape of the lattice groove.

(3) 711内部の異物質埋め込みの影響次に、溝の
中に熱伝導率の異なる物質を埋め込んだ時の、平均凝固
シェル不均一度を調査した。
(3) Effect of embedding foreign materials inside 711 Next, we investigated the average solidification shell non-uniformity when materials with different thermal conductivities were embedded in the grooves.

ここで、胴部分と溝部分での局部的な熱抵抗値の比をh
とし、浸漬体の不拘−抜熟度として評価した。第14図
は浸漬体の不拘−抜熟度を示す説明図である。
Here, the ratio of local thermal resistance values in the body part and the groove part is h
It was evaluated as the degree of unripeness of the immersed body. FIG. 14 is an explanatory diagram showing the degree of unrestricted ripening of the immersed body.

浸漬体12の銅平板部の熱抵抗R3,は、Rc、= d
 、、/λ6u d cu:浸漬体の銅平板部の厚み(m)λc、:浸漬
体の銅平板部の熱伝導率 (Kcal/m−Hr−’C) 一方、銅と熱伝導率の異なる物質6を埋め込んだ溝部分
の熱抵抗R0は、 R,=d0.′/λeu+dc/λ。
The thermal resistance R3 of the copper flat plate portion of the immersed body 12 is Rc, = d
,,/λ6u d cu: Thickness (m) of the copper flat plate part of the immersed body λc,: Thermal conductivity of the copper flat plate part of the immersed body (Kcal/m-Hr-'C) On the other hand, The thermal resistance R0 of the groove portion filled with the substance 6 is R,=d0. '/λeu+dc/λ.

dcu′:溝の底部から冷却水面までの厚み(m) do  :溝の深さ(m> λC:埋め込み物質の熱伝導率 (Kcal/+−Hr−’C) これから熱抵抗比りは、h=R,/Rcuとした。dcu': Thickness from the bottom of the groove to the cooling water surface (m) do: depth of groove (m> λC: thermal conductivity of embedded material (Kcal/+-Hr-'C) From this, the thermal resistance ratio was set as h=R,/Rcu.

第15図は各種熱伝導率の異なる埋め込み物質と平均凝
固シェル不均一度の関係を示すグラフ図である。実験条
件は清の深さは0.5mm、幅は0.5mm、格子の幅
が5mm、形状がV型で、熱抵抗比りは1.5、埋め込
み物質6は金属(Ni、Cr)−セラミック(BN、Z
r02)、浸漬体の浸漬時間は8〜9秒とした。この図
から明らかなように、埋め込み物質6は金属(Ni。
FIG. 15 is a graph showing the relationship between various embedded materials having different thermal conductivities and the average solidified shell non-uniformity. The experimental conditions were as follows: depth of grid was 0.5 mm, width was 0.5 mm, width of grid was 5 mm, shape was V-shaped, thermal resistance ratio was 1.5, embedded material 6 was metal (Ni, Cr) - Ceramic (BN, Z
r02), the immersion time of the immersed body was 8 to 9 seconds. As is clear from this figure, the buried material 6 is metal (Ni.

Cr)、セラミック(BN、Zr02)とも、平均凝固
シェル不均一度に及ぼす影響は改善されており、埋め込
み物質6による差はなかった。又、溝のみと溝部に異種
物質を埋め込んだものでは、平均凝固シェル不均一度に
は差はなかった。第16図は熱抵抗比りと平均凝固シェ
ル不均一度の関係を示すグラフ図である。実験条件は清
の深さが0.5mm、幅が0.5mm、格子の間隔が5
mm、形状はV型で、埋め込み物質はNi金属、浸漬体
の浸漬時間は8〜9秒とした。この図から明らかなよう
に、熱抵抗比りが1.5以上の場合は平均凝固シェル不
均一度は改善される。ここで熱抵抗比りを1,5以上に
保つためには、10mmの銅板にN1を埋め込んだ場合
、その深さを1.8mm以上確保する必要がある。
Both Cr) and ceramics (BN, Zr02) had improved effects on the average solidified shell non-uniformity, and there was no difference depending on the embedding material 6. Furthermore, there was no difference in the average solidified shell nonuniformity between the grooves alone and the grooves filled with a different material. FIG. 16 is a graph showing the relationship between the thermal resistance ratio and the average solidified shell non-uniformity. The experimental conditions were: the depth of the grid was 0.5 mm, the width was 0.5 mm, and the grid spacing was 5 mm.
mm, the shape was V-shaped, the embedded material was Ni metal, and the immersion time of the immersion body was 8 to 9 seconds. As is clear from this figure, when the thermal resistance ratio is 1.5 or more, the average solidified shell non-uniformity is improved. In order to maintain the thermal resistance ratio at 1.5 or more, when N1 is embedded in a 10 mm copper plate, it is necessary to ensure a depth of 1.8 mm or more.

(4)格子溝の範囲 前述したように不均一凝固を防止するためには、凝固シ
ェル浸漬体側表面に発生する亀甲状凹凸模様を形成させ
ないことが必要である。これは第8図に示すように凝固
初期に凝固シェル浸漬体側に亀甲状凹凸模様が形成し、
この大きさは凝固シェル成長とともに変化しない、これ
に対して、溶鋼側の凹凸は凝固初期は凝固シェル表面浸
漬体側亀甲状凹凸模様に対応した大きさで、凝固シェル
成長とともにその間隔は大きくなる。従って、溶鋼側の
凹凸は浸漬体側の凹凸模様さえできなければ凝固初期か
ら生成せず、均一な凝固シェル成長となる。つまり凝固
初期に浸漬体側の凹凸模様の形成さえ防げば、その後は
不均一成長は完全に防止される。
(4) Range of lattice grooves As mentioned above, in order to prevent uneven solidification, it is necessary to prevent the formation of the tortoise-concave pattern that occurs on the surface of the immersed solidified shell. This is because, as shown in Figure 8, a hexagonal pattern is formed on the side of the solidified shell immersed body during the initial stage of solidification.
This size does not change as the solidified shell grows. On the other hand, the unevenness on the molten steel side has a size corresponding to the hexagonal uneven pattern on the surface of the solidified shell on the immersed body side at the initial stage of solidification, and the interval between them increases as the solidified shell grows. Therefore, the unevenness on the molten steel side will not be generated from the initial stage of solidification unless the uneven pattern on the immersed body side is formed, resulting in uniform solidified shell growth. In other words, if the formation of uneven patterns on the immersed body side is prevented at the initial stage of solidification, non-uniform growth can be completely prevented thereafter.

従って、凹凸を抑えるためには格子溝の範囲は、凝固初
期のメニスカス直下のみ必要で、メニスカスより60m
mまでの範囲でよいが、溶鋼湯面の変動を考慮して実際
には鋳型上面から300mm付近までの範囲が良い。
Therefore, in order to suppress unevenness, the range of the lattice grooves needs to be only directly below the meniscus at the initial stage of solidification, and the range is 60 m from the meniscus.
The range may be up to 300 mm, but considering fluctuations in the molten steel level, the range is actually up to about 300 mm from the upper surface of the mold.

第1図はこの発明の実施例に係わる鋳型上部の模式図で
、<a>は正面図で、(b)は(a>のA−A断面図で
ある。1は鋳型、2は溝、3は冷却水用スリットで、渭
2は格子状に配置されている。4は鋳型の溶鋼面で、5
は鋳型の冷却面で、この部分に冷却水用スリットが配置
されているので、鋳型1が冷却される。
Fig. 1 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention, <a> is a front view, and (b) is a sectional view taken along line A-A in (a>. 1 is a mold, 2 is a groove, 3 is the slit for cooling water, and the slits 2 are arranged in a grid pattern. 4 is the molten steel surface of the mold, and 5 is the slit for cooling water.
is the cooling surface of the mold, and since the cooling water slit is arranged in this part, the mold 1 is cooled.

(実施例1) 第2図はこの発明の一実施例に係わる鋳型上部の模式図
で、(a)は正面図で、(b)は(a)のA−A断面図
、(c)は(b)の溝部の拡大図である。第2図に示す
ように鋳型1の溶鋼表面4側の上端から50〜300m
mで、幅中央より1000mmづつ幅方向に2000m
mの長さの範囲に、深さ0.5mm、幅0.5mmのV
型の溝2を10mm間隔の格子状に配置した鋳型1を使
用した。
(Example 1) Fig. 2 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention, (a) is a front view, (b) is a sectional view taken along line AA in (a), and (c) is a It is an enlarged view of the groove part of (b). As shown in Figure 2, 50 to 300 m from the upper end of the molten steel surface 4 side of the mold 1.
m, 2000m in the width direction from the center of the width by 1000mm
V with a depth of 0.5 mm and a width of 0.5 mm in a length range of m
A mold 1 was used in which grooves 2 of the mold were arranged in a lattice shape at intervals of 10 mm.

この鋳型で実際に、炭素含有量0.10〜0.15%の
鋼種を鋳造した。第3図はこの発明の一実施例に係わる
スラブ表面割れ指数と鋳造速度の関係を示すグラフ図で
ある。・印は従来法で、0印はこの発明の一実施例であ
る。この図から明らかなように、この実施例は従来法に
比較してスラブ表面割れ指数は改善されており、高速鋳
造時(1,5m/min以上)でもスラブ表面割れ指数
は改善されている。
A steel type with a carbon content of 0.10 to 0.15% was actually cast using this mold. FIG. 3 is a graph showing the relationship between slab surface cracking index and casting speed according to an embodiment of the present invention.・The symbol indicates the conventional method, and the symbol 0 indicates an embodiment of the present invention. As is clear from this figure, in this example, the slab surface cracking index is improved compared to the conventional method, and the slab surface cracking index is improved even during high-speed casting (1.5 m/min or more).

(実施例2) 第4図はこの発明の他の実施例に係わる鋳型上部の模式
図で、(a>は正面図で、(b)は< a、 )のA−
A断面図、(c)は(b)の溝部の拡大図である。第4
図に示すように鋳型1の溶鋼表面4側の上端から50〜
300mmで、幅中央より1. OOOm mづつ幅方
向に2000mmの長さの範囲に、深さ3.5mm、幅
0.5mmの角型の渭2を10mm間隔の格子状に配置
し、その溝2の中に異種金属6としてNt金金属使用し
た。Ni金属の深さは熱抵抗比が、1.5になるように
、19mmの銅製鋳型1の表面から3.5mmとした。
(Example 2) Fig. 4 is a schematic diagram of the upper part of the mold according to another example of the present invention, where (a> is a front view and (b) is A- of <a, ).
A sectional view, (c) is an enlarged view of the groove part in (b). Fourth
As shown in the figure, from the upper end of the molten steel surface 4 side of the mold 1,
300mm, 1. Square grooves 2 with a depth of 3.5 mm and a width of 0.5 mm are arranged in a lattice shape with an interval of 10 mm in a length range of 2000 mm in the width direction by m each, and dissimilar metals 6 are placed in the grooves 2. Nt gold metal was used. The depth of the Ni metal was set to 3.5 mm from the surface of the 19 mm copper mold 1 so that the thermal resistance ratio was 1.5.

鋳型1は鋳込み方向に長さ950mm、幅2320mm
、厚さ40 rrt mで冷却水用スリット3の深さは
21mmであるに の鋳型で実際に、炭素含有量0.10〜0.15%の鋼
種を鋳造した6第5図はこの発明の他の実施例に係わる
スラブ表面割れ指数と鋳造速度の関係を示すグラフ図で
ある。・印は従来法で、○印はこの発明の他の実施例で
ある。この図から明らかなように、この実施例は従来法
に比較してスラブ表面割れ指数は改善されており、高速
鋳造時(1,”im/min以上)でもスラブ表面割れ
指数は改善されている。この結果直送圧延が可能となり
、生産性も向上した、 [発明の効果コ この発明は以上のように構成されているので、1)溶鋼
中の炭素含有量が0.10〜0.15%の亜包晶凝固す
る鋼種の不均一凝固を改善することができる。
Mold 1 has a length of 950 mm and a width of 2320 mm in the casting direction.
A steel type with a carbon content of 0.10 to 0.15% was actually cast using a mold with a thickness of 40 rrt m and a depth of the cooling water slit 3 of 21 mm.6 Figure 5 shows the mold of this invention. FIG. 7 is a graph showing the relationship between slab surface cracking index and casting speed according to another example. - The mark indicates the conventional method, and the mark ○ indicates another embodiment of the present invention. As is clear from this figure, the slab surface cracking index in this example is improved compared to the conventional method, and the slab surface cracking index is improved even during high-speed casting (1,"im/min or higher). As a result, direct rolling became possible and productivity improved. [Effects of the Invention] Since this invention is constructed as described above, 1) the carbon content in the molten steel is 0.10 to 0.15%; It is possible to improve uneven solidification of steel types that undergo subperitectic solidification.

2〉上記鋼種の高速鋳造が可能となり、スラブ表面欠陥
も改善された。
2> High-speed casting of the above steel types has become possible, and slab surface defects have been improved.

3)その結果直送圧延が可能となり、生産性が向上しな
3) As a result, direct rolling becomes possible, improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係わる鋳型上部の模式図、
第2図はこの発明の一実施例に係わる鋳型上部の模式図
、第3図はこの発明の一実施例に係わるスラブ表面割れ
指数と鋳造速度の関係を示すグラフ図、第4図はこの発
明の他の実施例に係わる鋳型上部の模式図、第5図はこ
の発明の他の実施例に係わるスラブ表面割れ指数と鋳造
速度の関係を示すグラフ図5第6図は凝固シェル不均一
度を測定する方法を示す図、第7図は溶鋼中の炭素含有
量と平均凝固シェル不均一度の関係を示すグラフ図、第
8図は凝固時間と亀甲状凹凸の大きさの関係を示すグラ
フ図、第9図は溝の種類と亀甲模様の大きさの関係を示
すグラフ図、第10図は浸漬時間と平均凝固シェル不均
一度の関係を示すグラフ図、第11図は凝固シェル厚と
浸漬体の浸漬時間の関係を示すグラフ図、第12図は格
子溝の間隔と平均凝固シェル不均一度の関係を示すグラ
フ図、第13図は格子溝の形状と平均凝固シェル不均一
度の関係を示すグラフ図、第14図は浸漬体の不拘−抜
熱度を示す説明図、第15図は各種熱伝導率の異なる埋
め込み物質と平均凝固シェル不均一度の関係を示すグラ
フ図、第16図は熱抵抗比りと平均凝固シェル不均一度
の関係を示すグラフ図、第17図は従来の鋳型銅板の炭
素含有量と表面割れ指数との関係を示すグラフ図である
。 1・・・鋳型、2・・・溝、3・・・冷却水用スリット
、4・・・鋳型の溶鋼面、5・・・鋳型の冷却面、6・
・・異種金属。
FIG. 1 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention;
Figure 2 is a schematic diagram of the upper part of the mold according to an embodiment of the present invention, Figure 3 is a graph showing the relationship between slab surface crack index and casting speed according to an embodiment of the present invention, and Figure 4 is a diagram of the invention. FIG. 5 is a graph showing the relationship between slab surface cracking index and casting speed according to another embodiment of the present invention. FIG. 6 is a graph showing the solidified shell non-uniformity. A diagram showing the measurement method, Figure 7 is a graph showing the relationship between the carbon content in molten steel and the average degree of solidification shell heterogeneity, and Figure 8 is a graph showing the relationship between solidification time and the size of hexagonal irregularities. , Figure 9 is a graph showing the relationship between groove type and hexagonal pattern size, Figure 10 is a graph showing the relationship between immersion time and average solidified shell non-uniformity, and Figure 11 is a graph showing the relationship between solidified shell thickness and immersion. Figure 12 is a graph showing the relationship between the immersion time of the body, Figure 12 is a graph showing the relationship between the spacing of the lattice grooves and the average solidified shell heterogeneity, and Figure 13 is the relationship between the shape of the lattice grooves and the average solidified shell heterogeneity. FIG. 14 is an explanatory diagram showing the degree of unrestricted heat removal of the immersed body. FIG. 15 is a graph diagram showing the relationship between various embedded materials with different thermal conductivities and the average solidified shell heterogeneity. FIG. 16 17 is a graph showing the relationship between the thermal resistance ratio and the average solidified shell non-uniformity, and FIG. 17 is a graph showing the relationship between the carbon content and surface cracking index of a conventional molded copper plate. DESCRIPTION OF SYMBOLS 1... Mold, 2... Groove, 3... Slit for cooling water, 4... Molten steel surface of the mold, 5... Cooling surface of the mold, 6...
...Dissimilar metals.

Claims (2)

【特許請求の範囲】[Claims] (1)銅製の連続鋳造用鋳型において、鋳型内溶鋼のメ
ニスカス近傍の鋳型表面に、深さ0.5〜1.0mm、
幅0.5〜1.0mmの格子状の溝を設け、前記格子状
の溝の間隔を5〜10mmとしたことを特徴とする鋼の
連続鋳造用鋳型。
(1) In a continuous casting mold made of copper, a depth of 0.5 to 1.0 mm is placed on the mold surface near the meniscus of the molten steel in the mold.
A mold for continuous casting of steel, characterized in that lattice-shaped grooves with a width of 0.5 to 1.0 mm are provided, and the intervals between the lattice-shaped grooves are 5 to 10 mm.
(2)格子状の溝内に異種金属(Ni、Cr)、もしく
はセラミック(BN、AlN、ZrO_2)を熱抵抗比
が1.5以上となる深さまで充填したことを特徴とする
特許請求の範囲第1項に記載の鋼の連続鋳造用鋳型。 但し熱抵抗比:h=R_O/R_C_U R_C_U:銅板部の熱抵抗=D_C_U/λ_C_U
R_C:異種物質埋め込み部の熱抵抗 =D_C_U′/λ_C_U+D_C/λ_Cここで D_C_U:鋳型の銅板の厚み(m) λ_C_U:銅板の熱伝導率(Kcal/m・Hr・℃
) D_C_U:異種物質埋め込み部の底部から冷却水面ま
での厚み(m) D_C:異種物質埋め込み部での埋め込み厚み(m) λ_C:異種物質の熱伝導率(Kcal/m・Hr・℃
(2) A claim characterized in that the lattice-shaped grooves are filled with dissimilar metals (Ni, Cr) or ceramics (BN, AlN, ZrO_2) to a depth such that the thermal resistance ratio is 1.5 or more. A mold for continuous casting of steel according to item 1. However, thermal resistance ratio: h = R_O/R_C_U R_C_U: Thermal resistance of copper plate = D_C_U/λ_C_U
R_C: Thermal resistance of the dissimilar material embedded part = D_C_U'/λ_C_U+D_C/λ_C where D_C_U: Thickness of the copper plate of the mold (m) λ_C_U: Thermal conductivity of the copper plate (Kcal/m・Hr・℃)
) D_C_U: Thickness from the bottom of the dissimilar material embedded part to the cooling water surface (m) D_C: Embedded thickness of the dissimilar material embedded part (m) λ_C: Thermal conductivity of the dissimilar material (Kcal/m・Hr・℃)
)
JP33686987A 1987-12-29 1987-12-29 Casting mold for continuous casting of steel Pending JPH01289542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33686987A JPH01289542A (en) 1987-12-29 1987-12-29 Casting mold for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33686987A JPH01289542A (en) 1987-12-29 1987-12-29 Casting mold for continuous casting of steel

Publications (1)

Publication Number Publication Date
JPH01289542A true JPH01289542A (en) 1989-11-21

Family

ID=18303400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33686987A Pending JPH01289542A (en) 1987-12-29 1987-12-29 Casting mold for continuous casting of steel

Country Status (1)

Country Link
JP (1) JPH01289542A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658440A3 (en) * 1990-02-22 1991-08-23 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal, such as steel
FR2747059A1 (en) * 1996-04-05 1997-10-10 Ugine Savoie Sa CONTINUOUS CASTING PROCESS FOR METALS AND LINGOTIERE FOR ITS IMPLEMENTATION
US6024162A (en) * 1994-12-28 2000-02-15 Nippon Steel Corporation Continuous casting method for billet
WO2014002409A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
JP2014188521A (en) * 2013-03-26 2014-10-06 Jfe Steel Corp Mold for continuous casting and manufacturing method of mold for continuous casting
JP2017024078A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Continuous casting mold and continuous casting method for steel
JP2017039165A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel
WO2018016101A1 (en) 2015-07-22 2018-01-25 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
WO2018074406A1 (en) 2016-10-19 2018-04-26 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658440A3 (en) * 1990-02-22 1991-08-23 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal, such as steel
US6024162A (en) * 1994-12-28 2000-02-15 Nippon Steel Corporation Continuous casting method for billet
US6112805A (en) * 1994-12-28 2000-09-05 Nippon Steel Corporation Continuous casting mold for billet
FR2747059A1 (en) * 1996-04-05 1997-10-10 Ugine Savoie Sa CONTINUOUS CASTING PROCESS FOR METALS AND LINGOTIERE FOR ITS IMPLEMENTATION
WO1997037794A1 (en) * 1996-04-05 1997-10-16 Ugine Savoie Continuous casting method for metals and ingot mould for implementing same
WO2014002409A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
KR20150009985A (en) 2012-06-27 2015-01-27 제이에프이 스틸 가부시키가이샤 Continuous casting mold and method for continuous casting of steel
EP2839901A4 (en) * 2012-06-27 2015-06-03 Jfe Steel Corp Continuous casting mold and method for continuous casting of steel
US10792729B2 (en) 2012-06-27 2020-10-06 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel
JP2014188521A (en) * 2013-03-26 2014-10-06 Jfe Steel Corp Mold for continuous casting and manufacturing method of mold for continuous casting
CN109475930A (en) * 2015-07-22 2019-03-15 杰富意钢铁株式会社 The continuous casing of continuous casting mold and steel
WO2018016101A1 (en) 2015-07-22 2018-01-25 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
TWI630962B (en) * 2015-07-22 2018-08-01 Jfe鋼鐵股份有限公司 Continuous casting mold and steel continuous casting method
KR20190017978A (en) 2015-07-22 2019-02-20 제이에프이 스틸 가부시키가이샤 Continuous casting method for continuous casting molds and steel
JP2017024078A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Continuous casting mold and continuous casting method for steel
EP3795274A1 (en) 2015-07-22 2021-03-24 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel
JP2017039165A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel
WO2018074406A1 (en) 2016-10-19 2018-04-26 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
KR20190043633A (en) 2016-10-19 2019-04-26 제이에프이 스틸 가부시키가이샤 Continuous casting method for continuous casting molds and steel
US11020794B2 (en) 2016-10-19 2021-06-01 Jfe Steel Corporation Continuous casting mold and method for continuously casting steel

Similar Documents

Publication Publication Date Title
CA1320333C (en) Cooling drum for continuous-casting machines for manufacturing thin metallic strip
TW201625365A (en) Continuous casting mold and method for continuous casting of steel
US4549599A (en) Preventing mold and casting cracking in high rate directional solidification processes
JPH01170550A (en) Mold for continuously casting steel
JP4099062B2 (en) Treatment of molten metal by moving electrical discharge
JPH01289542A (en) Casting mold for continuous casting of steel
JPH026037A (en) Method for continuously casting steel
US2564723A (en) Apparatus for the continuous casting of metal slab
JPS6040649A (en) Method and device for preventing sinking of longitudinal band in product of continuous casting machine
JPH0220645A (en) Mold for continuously casting steel
JPH026038A (en) Mold for continuously casting steel
JPS58103941A (en) Production of metallic material having specular surface
JPS5847255B2 (en) Steel ingot making method
JPS6192756A (en) Continuous casting method of preventing surface cracking of ingot and casting mold
JP2950152B2 (en) Continuous casting mold for slab
JPS609553A (en) Stopping down type continuous casting machine
KR910001175B1 (en) Method and apparatus for direct casting of crysalline strip in non-oxidizing atmoshphere
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JP2001518394A (en) Tubular mold for continuous casting mold, especially for continuous casting of peritectic steel
JPH02104445A (en) Mold for continuously casting steel and continuous casting method
KR100447466B1 (en) Continuous casting method for metals and ingot mould for implementing same
JPH0994634A (en) Water cooling mold for continuous casting
JP2024035081A (en) Continuous casting mold
JPH0270357A (en) Mold for continuous casting for steel
JP5691949B2 (en) Continuous casting method for large-section slabs