WO2018016101A1 - Continuous casting mold and method for continuous casting of steel - Google Patents

Continuous casting mold and method for continuous casting of steel Download PDF

Info

Publication number
WO2018016101A1
WO2018016101A1 PCT/JP2017/001146 JP2017001146W WO2018016101A1 WO 2018016101 A1 WO2018016101 A1 WO 2018016101A1 JP 2017001146 W JP2017001146 W JP 2017001146W WO 2018016101 A1 WO2018016101 A1 WO 2018016101A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
conductive metal
continuous casting
metal filling
copper plate
Prior art date
Application number
PCT/JP2017/001146
Other languages
French (fr)
Japanese (ja)
Inventor
直道 岩田
則親 荒牧
鍋島 誠司
三木 祐司
孝平 古米
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016143909A external-priority patent/JP6428721B2/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020197001178A priority Critical patent/KR102245013B1/en
Priority to EP17830623.9A priority patent/EP3488946A4/en
Priority to EP20206258.4A priority patent/EP3795274B1/en
Priority to CN201780044848.6A priority patent/CN109475930B/en
Priority to BR112019000687-7A priority patent/BR112019000687B1/en
Publication of WO2018016101A1 publication Critical patent/WO2018016101A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Definitions

  • the present invention relates to a continuous casting mold capable of continuously casting molten steel while suppressing slab surface cracking due to non-uniform cooling of the solidified shell in the mold, and a continuous casting method of steel using this mold. About.
  • molten steel injected into a mold is cooled by a water-cooled continuous casting mold, and the molten steel is solidified at a contact surface with the mold to generate a solidified shell (also referred to as “solidified layer”).
  • the slab having the solidified shell as an outer shell and the inside as an unsolidified layer is continuously drawn below the mold while being cooled by a water spray or an air / water spray installed on the downstream side of the mold.
  • the slab is solidified to the center of thickness by cooling with water spray or air-water spray, and then cut by a gas cutter or the like to produce a slab of a predetermined length.
  • the thickness of the solidified shell becomes uneven in the casting direction of the slab and in the mold width direction.
  • a stress caused by the shrinkage or deformation of the solidified shell acts on the solidified shell, and in the initial stage of solidification, this stress is concentrated on the thin portion of the solidified shell, and the stress causes cracks on the surface of the solidified shell.
  • This crack expands due to subsequent external stresses such as thermal stress, bending stress due to the roll of a continuous casting machine, and straightening stress, resulting in a large surface crack.
  • a vertical crack is generated in the mold, and a breakout in which the molten steel flows out from the vertical crack may occur. Since the cracks present in the slab become surface defects in the subsequent rolling process, it is necessary to care for the surface of the slab and remove the surface cracks at the stage of the cast slab after casting.
  • ⁇ Uniform solidification in the mold is likely to occur particularly in steels having a carbon content of 0.08 to 0.17% by mass (referred to as medium carbon steels).
  • medium carbon steels steels having a carbon content of 0.08 to 0.17% by mass
  • a peritectic reaction occurs during solidification. It is believed that the inhomogeneous solidification in the mold is caused by transformation stress due to volume shrinkage during transformation from ⁇ iron (ferrite) to ⁇ iron (austenite) by this peritectic reaction. That is, the solidified shell is deformed by the strain caused by the transformation stress, and the solidified shell is separated from the inner wall surface of the mold by this deformation.
  • the portion separated from the inner wall surface of the mold is cooled by the mold, and the thickness of the solidified shell at the portion away from the inner wall surface of the mold (the portion away from the inner wall surface of the mold is referred to as “depression”) is reduced. It is considered that the stress is concentrated on this portion and the surface cracks are generated by reducing the thickness of the solidified shell.
  • Patent Document 1 proposes that mold powder having a composition that is easily crystallized is used to increase the thermal resistance of the mold powder layer to slowly cool the solidified shell. This is a technique of suppressing surface cracking by reducing the stress acting on the solidified shell by slow cooling.
  • the slow cooling effect due to the mold powder has not sufficiently improved the non-uniform solidification, especially in the medium carbon steel in which transformation from ⁇ iron to ⁇ iron occurs due to a slight temperature drop accompanying solidification, The fact is that the occurrence of surface cracks cannot be sufficiently suppressed.
  • Patent Document 2 a vertical groove and a horizontal groove are provided on the inner wall surface of the mold, and mold powder is allowed to flow into the vertical groove and the horizontal groove, thereby slowing down the cooling of the mold and at the same time uniforming in the mold width direction.
  • Techniques for suppressing vertical cracks in slabs have been proposed.
  • the inner wall surface of the mold is worn due to contact with the slab, and the groove provided on the inner wall surface of the mold becomes shallow, the amount of mold powder flowing in decreases and the slow cooling effect is reduced. There is a problem of not persisting.
  • Patent Document 3 a longitudinal groove or a lattice groove parallel to the casting direction, in which the groove width and the groove depth are set according to the viscosity of the mold powder, is provided at the center in the width direction of the inner wall surface of the mold. Without filling with mold powder, a void is formed inside the groove, and air is allowed to flow into the void, thereby slowing down the cooling of the mold and at the same time uniforming in the mold width direction, Techniques for suppressing cracking have been proposed. However, in this case as well, the groove is exposed on the inner wall surface of the mold, and similarly to Patent Document 2, there is a problem that the slow cooling effect is not sustained due to wear of the inner wall surface of the mold. There is also a problem that at the start of casting, molten steel enters the inside of the groove provided on the inner wall surface of the mold and solidifies, so that the solidified shell cannot be pulled out, and a restrictive breakout may occur.
  • Patent Document 4 proposes a mold in which a lattice-shaped groove is provided on the inner wall surface of the mold, and a mold in which the lattice-shaped groove is filled with a different metal (Ni, Cr) or ceramics (BN, AlN, ZrO 2 ).
  • a different metal Ni, Cr
  • ceramics BN, AlN, ZrO 2
  • This technology periodically creates a difference in the amount of heat removal between the groove and the part other than the groove, and disperses the stress of the solidified shell from ⁇ iron to ⁇ iron and heat shrinkage in the low heat removal region. It is a technology that suppresses vertical cracks in slabs.
  • the grooves are in a lattice shape, and in the lattice groove shape, the boundary between the groove on the inner wall surface of the mold and the mold copper plate (made of copper or copper alloy) is a straight line, and the boundary surface is cracked due to the difference in thermal expansion.
  • the boundary surface is cracked due to the difference in thermal expansion.
  • Patent Document 5 discloses a mold in which a vertical groove parallel to the casting direction is provided on the inner wall surface of the mold, and a mold in which the vertical groove is filled with a different metal (Ni, Cr) or ceramics (BN, AlN, ZrO 2 ).
  • a different metal Ni, Cr
  • ceramics BN, AlN, ZrO 2
  • Patent Document 5 by optimizing the mold vibration period according to the slab drawing speed, the oscillation mark formed on the slab works as if a lateral groove was provided. It is said that the same effect of reducing surface cracks is observed.
  • Patent Document 6 a concave groove having a diameter of 2 to 10 mm is provided near the molten steel surface in the mold (hereinafter also referred to as “meniscus”) on the inner wall surface of the mold, and a dissimilar metal (Ni, stainless steel) is provided inside the concave groove. ) Or ceramics (BN, AlN, ZrO 2, etc.) are embedded, and a mold is proposed in which the embedded interval is 5 to 20 mm. Similarly to Patent Documents 4 and 5, this technique is also a technique for reducing the uneven solidification by providing a periodic heat transfer distribution and suppressing vertical cracks in the slab.
  • Patent Document 6 since a drill hole is opened on the surface of the mold copper plate, and the dissimilar metal or ceramic formed into the shape of the drill hole is embedded therein, the contact between the back surface of the embedded dissimilar metal or ceramic and the mold copper plate The state is not constant, and there is a high possibility that a gap is formed at the contact portion. In the case where a gap is formed, the amount of heat removed from each groove portion is greatly changed by the gap, and there arises a problem that cooling of the solidified shell cannot be properly controlled. There is also a problem that the embedded dissimilar metal or ceramic is easily peeled off from the mold copper plate.
  • JP 2005-297001 A JP-A-9-276994 Japanese Patent Laid-Open No. 10-193041 JP-A-1-289542 Japanese Patent Laid-Open No. 2-6037 JP-A-1-170550
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to generate a constraining breakout at the start of casting and to reduce the mold life due to cracks on the surface of the mold copper plate, and at the initial stage of solidification.
  • Slab surface cracks due to non-uniform cooling of solidified shells and slab surface cracks due to non-uniform solidified shell thickness due to transformation from ⁇ iron to ⁇ iron in peritectic reaction It is to provide a continuous casting mold that can be suppressed over a long time, and to provide a continuous casting method of steel using this continuous casting mold.
  • the gist of the present invention for solving the above problems is as follows.
  • a water-cooled continuous casting mold A plurality of concave grooves provided in a range from any position above the meniscus on the inner wall surface of the copper alloy mold copper plate constituting the mold to any position below the meniscus is filled with a low heat conductive metal. Having a low thermal conductivity metal filling formed;
  • the thermal conductivity of the mold copper plate ⁇ c (W / (m ⁇ K)) the relative thermal conductivity of the low thermal conductive metal ⁇ m (W / (m ⁇ K)) is not more than 80%,
  • a continuous casting mold having a thermal resistance ratio R defined by the following formula (1) of 5% or more.
  • R ⁇ (TH) / (1000 ⁇ ⁇ c ) + H / (1000 ⁇ ⁇ m ) ⁇ T / (1000 ⁇ ⁇ c ) ⁇ / ⁇ T / (1000 ⁇ ⁇ c ) ⁇ ⁇ 100 (100) 1)
  • R is a thermal resistance ratio (%) between the low thermal conductive metal filling portion and the mold copper plate
  • T is a distance from the bottom surface of the mold copper plate slit to the mold copper plate surface, which becomes a flow path of the mold cooling water.
  • Mm and H are filling thicknesses (mm) of the low thermal conductive metal.
  • the concave groove is longer than the meniscus by a length L 0 (mm) or more calculated from the following formula (2) from an arbitrary position above the meniscus by the slab drawing speed Vc (m / min).
  • L 0 2 ⁇ Vc ⁇ 1000/60 (2)
  • P is the interval (mm) between the low heat conductive metal filling parts
  • d is the diameter (mm) or the equivalent circle diameter (mm) of the low heat conductive metal filling parts.
  • the continuous casting mold according to any one of [1] to [5] above, wherein a ratio ⁇ ( ⁇ C / A) of C (mm) satisfies the relationship of the following formula (4): 0.07 ⁇ ⁇ ⁇ 0.50 (4) [7]
  • a plating layer of nickel having a thickness of 2.0 mm or less or an alloy containing nickel is formed, and the low thermal conductive metal filling portion is covered with the plating layer.
  • a continuous casting method of steel using the continuous casting mold according to any one of [1] to [9] Medium carbon steel having a carbon content of 0.08 to 0.17% by mass is poured into the mold, and the slab slab having a slab thickness of 200 mm or more is cast at a slab drawing speed of 1.5 m / min or more.
  • the thermal resistance ratio R between the low thermal conductive metal filling portion and the mold copper plate is 5% or more, and the low thermal conductivity metal is filled with the thermal conductivity of 80% or less with respect to the thermal conductivity of the mold copper plate.
  • a plurality of low heat conductive metal filling portions formed in this manner are installed in the width direction and casting direction of the continuous casting mold in the vicinity of the meniscus including the meniscus position.
  • the thermal resistance of the continuous casting mold in the mold width direction and the casting direction in the vicinity of the meniscus periodically increases and decreases, and the heat flux from the solidified shell to the continuous casting mold in the vicinity of the meniscus, that is, in the initial stage of solidification, is periodic. Increase or decrease.
  • FIG. 1 is a schematic side view of a mold long-side copper plate constituting a part of a water-cooled continuous casting mold according to the present embodiment as viewed from the inner wall surface side.
  • FIG. 2 is a cross-sectional view taken along the line X-X ′ of the mold long side copper plate shown in FIG. 1.
  • FIG. 3 is a diagram conceptually showing the thermal resistance at three positions of the long copper plate having a low heat conductive metal filling portion corresponding to the positions of the low heat conductive metal filling portions.
  • FIG. 4 is a schematic view showing an example in which a plating layer for protecting the mold surface is provided on the inner wall surface of the long-side copper plate of the mold.
  • FIG. 1 is a schematic side view of a mold long-side copper plate constituting a part of a water-cooled continuous casting mold according to the present embodiment as viewed from the inner wall surface side.
  • FIG. 2 is a cross-sectional view taken along the line X-X ′ of the mold long side copper plate
  • FIG. 5 is a diagram showing the results of investigating the influence of the thermal conductivity of the low thermal conductive metal filled in the low thermal conductive metal filling portion on the slab surface crack.
  • FIG. 6 is a diagram showing the results of investigating the influence of the thermal resistance ratio R between the low thermal conductive metal filling portion and the mold copper plate on the slab surface crack.
  • FIG. 7 is a diagram showing the results of investigating the influence of the area ratio S of the low thermal conductive metal filling portion and the boundary length ratio ⁇ on the slab surface crack.
  • FIG. 8 is a diagram showing the results of investigating the influence of the diameter d of the low thermal conductive metal filling portion on the slab surface crack.
  • 9 is a schematic side view showing the arrangement of the low thermal conductive metal filling portion in Test No. 40-44.
  • 10 is a schematic view showing the arrangement of the low thermal conductive metal filling portion in the test No. 45.
  • 11 is a schematic view showing the arrangement of the low thermal conductive metal filling portion in Test No. 46.
  • FIG. 1 shows a mold long-side copper plate 1 constituting a part of a water-cooled continuous casting mold according to the present embodiment, wherein a mold long-side copper plate 1 having a low thermal conductive metal filling portion 3 formed on the inner wall surface side. It is the schematic side view seen from the inner wall surface side.
  • FIG. 2 is a cross-sectional view taken along the line X-X ′ of the long copper plate 1 shown in FIG.
  • the continuous casting mold shown in FIG. 1 is an example of a continuous casting mold for casting a slab slab.
  • a water-cooled copper alloy continuous casting mold for a slab slab is configured by combining a pair of copper alloy long mold copper plates and a pair of copper alloy short mold copper plates.
  • FIG. 1 shows the long-side copper plate 1 of the mold.
  • the mold short-side copper plate is also provided with the low thermal conductive metal filling portion 3 on the inner wall surface side, and the description of the mold short-side copper plate is omitted here.
  • the low heat conductive metal filling part 3 does not have to be installed on the short side copper plate of the continuous casting mold for the slab slab.
  • the length of the long side copper plate 1 is longer than the meniscus from a position above the length Q (length Q is an arbitrary value greater than zero) away from the position of the meniscus during steady casting.
  • length Q is an arbitrary value greater than zero
  • a plurality of low heat conductive metal filling portions 3 having a diameter d are installed with the interval between the low heat conductive metal filling portions as P. Yes.
  • meniscus is “molten steel surface in mold”, and its position is not clear during non-casting, but in the normal continuous casting operation of steel, the meniscus position is 50 mm to 200 mm from the upper end of the mold copper plate. An arbitrary position below the degree is set.
  • the meniscus position is a position 50 mm below the upper end of the mold long side copper plate 1 or a position 200 mm below the upper end, the length Q and the length L are described below. What is necessary is just to arrange
  • the low thermal conductive metal filling portion 3 is plated or formed inside a circular groove 2 having a diameter d, which is independently processed on the inner wall surface side of the long-side copper plate 1.
  • a metal having a thermal conductivity ⁇ m of 80% or less with respect to the thermal conductivity ⁇ c of the copper alloy constituting the long-side copper plate 1 is filled (hereinafter referred to as “low thermal conductivity metal”).
  • the groove 2 having a circular opening on the inner wall surface of the mold copper plate is referred to as a “circular groove”.
  • reference numeral 4 in FIG. 2 is a slit serving as a flow path for mold cooling water installed on the back side of the long mold copper plate 1
  • reference numeral 5 is a back plate that is in close contact with the back of the long mold copper sheet 1. It is.
  • FIG. 3 is a diagram conceptually showing the thermal resistance at three positions of the long copper plate 1 having the low thermal conductive metal filling portion 3 corresponding to the position of the low thermal conductive metal filling portion 3. As shown in FIG. 3, the thermal resistance is relatively high at the installation position of the low thermal conductive metal filling portion 3.
  • the heat of the continuous casting mold in the mold width direction and casting direction near the meniscus A distribution in which the resistance increases or decreases periodically is formed. This forms a distribution in which the heat flux from the solidified shell in the vicinity of the meniscus, that is, in the initial stage of solidification, to the continuous casting mold periodically increases and decreases.
  • the comparison between the thermal conductivity ⁇ c of the copper alloy and the thermal conductivity ⁇ m of the low thermal conductive metal is defined by comparing the thermal conductivities at room temperature (about 20 ° C.).
  • the thermal conductivity of the copper alloy and the low thermal conductive metal generally decreases as the temperature increases, but the thermal conductivity ⁇ m of the low thermal conductive metal at room temperature is 80% of the thermal conductivity ⁇ c of the copper alloy at normal temperature.
  • the thermal resistance of the portion where the low thermal conductive metal filling portion 3 is installed and the low thermal conductive metal filling portion 3 are installed. It is possible to make a difference in the thermal resistance of the part that is not present.
  • the thermal resistance of the portion where the low thermal conductive metal filling portion 3 is installed in order to form a distribution in which the heat flux from the solidified shell to the continuous casting mold is periodically increased or decreased, in other words, the thermal resistance of the portion where the low thermal conductive metal filling portion 3 is installed, and the low heat
  • the thermal resistance between the low thermal conductive metal filling part 3 and the mold copper plate defined by the following equation (1)
  • the low heat conductive metal filling portion 3 is installed according to the shape of the casting copper plate so that the ratio R is 5% or more.
  • the thermal resistance ratio R between the low thermal conductive metal filling portion 3 and the mold copper plate is, as shown in the equation (1), from the bottom surface 4a of the slit 4 of the mold copper plate serving as the mold cooling water flow path to the mold copper plate surface.
  • the distance T, the filling thickness H of the low thermal conductive metal in the low thermal conductive metal filling portion 3, the thermal conductivity ⁇ c of the mold copper plate, and the thermal conductivity ⁇ m of the low thermal conductive metal is, as shown in the equation (1), from the bottom surface 4a of the slit 4 of the mold copper plate serving as the mold cooling water flow path to the mold copper plate surface.
  • R ⁇ (TH) / (1000 ⁇ ⁇ c ) + H / (1000 ⁇ ⁇ m ) ⁇ T / (1000 ⁇ ⁇ c ) ⁇ / ⁇ T / (1000 ⁇ ⁇ c ) ⁇ ⁇ 100 (100) 1)
  • R is the thermal resistance ratio (%) between the low thermal conductive metal filling part and the mold copper plate
  • T is the mold copper plate surface from the bottom surface of the mold copper plate slit which becomes the flow path of the mold cooling water.
  • H is the filling thickness (mm) of the low thermal conductivity metal
  • ⁇ c is the thermal conductivity of the mold copper plate (W / (m ⁇ K))
  • ⁇ m is the thermal conductivity of the low thermal conductivity metal (W / (m ⁇ K)).
  • the thermal resistance ratio R is larger than 100%, solidification in the low heat conductive metal filling portion 3 is significantly delayed, and thus uneven solidification is promoted, and surface cracks and breakout of the slab may occur. Therefore, the thermal resistance ratio R is preferably 100% or less.
  • the installation position of the low thermal conductive metal filling portion 3 is a meniscus having a length L 0 or more calculated from the following equation (2) according to the slab drawing speed Vc during steady casting. It is preferable to set it to a lower position. That is shown in FIG. 1, the length L from the meniscus position, it is preferable that the length L 0 or more.
  • L 0 2 ⁇ Vc ⁇ 1000/60 (2)
  • L 0 is the length (mm)
  • Vc is the slab drawing speed (m / min).
  • the length L 0 is related to the time during which the slab after the start of solidification passes through the range where the low heat conductive metal filling portion 3 is installed. It is preferable that the slab stays in the range where the low heat conductive metal filling portion 3 is installed for at least 2 seconds. In order for the slab to be present in the range where the low thermal conductive metal filling portion 3 is installed for at least 2 seconds after the start of solidification, the length L 0 needs to satisfy the formula (2).
  • the effect of the periodic fluctuation of the heat flux by the low thermal conductive metal filling part 3 is obtained.
  • the effect of suppressing the surface cracking of the slab can be enhanced at the time of high speed casting which is sufficiently obtained and the surface crack is likely to occur in the solidified shell, or during the casting of medium carbon steel.
  • the length L is selected from the viewpoint of suppressing the groove processing cost and the plating processing cost or the thermal spraying processing cost on the surface of the mold copper plate for installing the low thermal conductive metal filling portion 3. It is preferably within 5 times 0 .
  • the position of the upper end portion of the low thermal conductive metal filling portion 3 may be any position as long as it is above the meniscus position. Therefore, the length Q shown in FIG. Any value is acceptable.
  • the upper end portion of the low heat conductive metal filling portion 3 is set to the upper position of the meniscus so that the upper end portion of the low heat conductive metal filling portion 3 is always positioned above the meniscus. Is preferably about 10 mm above, and more preferably about 20 mm to 50 mm above the set meniscus at the upper end of the low heat conductive metal filling portion 3.
  • FIG. 1 and FIG. 2 show an example in which the opening shape in the inner wall surface of the long-side copper plate 1 of the low thermal conductive metal filling portion 3 is circular, but the opening shape is not limited to a circle.
  • any shape may be used as long as it does not have a so-called “corner” such as an ellipse and has a shape close to a circle.
  • a shape close to a circle is referred to as a “pseudo circle”.
  • the opening shape of the low thermal conductive metal filling portion 3 is a pseudo circle
  • the concave groove 2 processed on the inner wall surface of the long copper plate 1 for forming the low thermal conductivity metal filling portion 3 is referred to as a “pseudo circular groove”.
  • the pseudo circle is, for example, an ellipse or a shape having no corners such as a rectangle whose corners are circles or ellipses, and may be a petal pattern.
  • the size of the pseudo circle is evaluated by a circle-equivalent diameter obtained from the opening area on the inner wall surface of the pseudo circular long-side copper plate 1.
  • Patent Document 4 and Patent Document 5 are provided with a longitudinal groove or a lattice groove and filled with a low heat conductive metal, the low heat conductivity is reduced at the boundary surface between the low heat conductive metal and copper and the orthogonal portion of the lattice portion.
  • the stress due to the thermal strain difference between the conductive metal and copper concentrates, causing a problem of cracking on the mold copper plate surface.
  • the shape of the low thermal conductive metal filling portion 3 is circular or pseudo-circular. As a result, the boundary surface between the low thermal conductive metal and copper becomes a curved surface, so that the stress is less likely to concentrate on the boundary surface and the advantage that cracks are unlikely to occur on the surface of the mold copper plate is manifested.
  • the diameter d and equivalent circle diameter d of the low thermal conductive metal filling part 3 are preferably 2 to 20 mm.
  • the diameter d and the equivalent circle diameter d of the low heat conductive metal filling portion 3 are preferably 2 to 20 mm.
  • the diameter d and the equivalent circle diameter d of the low heat conductive metal filling portion 3 are set to 20 mm or less, a decrease in heat flux in the low heat conductive metal filling portion 3 is suppressed, that is, solidification in the low heat conductive metal filling portion 3.
  • the delay is suppressed, stress concentration on the solidified shell at that position is prevented, and the occurrence of surface cracks in the solidified shell can be suppressed. That is, when the diameter d and the equivalent circle diameter d exceed 20 mm, surface cracks in the solidified shell tend to increase. Therefore, the diameter d and equivalent circle diameter d of the low thermal conductive metal filling portion 3 should be 20 mm or less. preferable.
  • the equivalent circle diameter d of the pseudo circle is calculated by the following equation (5).
  • the thermal conductivity ⁇ m of the low thermal conductive metal used by filling the circular concave groove and the pseudo circular concave groove needs to be 80% or less with respect to the thermal conductivity ⁇ c of the copper alloy constituting the mold copper plate.
  • a low thermal conductivity metal of 80% or less with respect to the thermal conductivity of the copper alloy the effect of periodic fluctuations in the heat flux due to the low thermal conductivity metal filling portion 3 is sufficient, and surface cracks occur in the slab. Even during easy high-speed casting and medium carbon steel casting, the effect of suppressing the surface cracking of the slab is sufficiently obtained.
  • the low thermal conductive metal used in the continuous casting mold according to this embodiment can be easily filled by plating or thermal spraying, so nickel (Ni, thermal conductivity: 90.5 W / (m ⁇ K) ), Nickel-based alloy, chromium (Cr, thermal conductivity; 67 W / (m ⁇ K)), cobalt (Co, thermal conductivity: 70 W / (m ⁇ K)), and the like are preferable.
  • nickel Ni, thermal conductivity: 90.5 W / (m ⁇ K)
  • Nickel-based alloy chromium (Cr, thermal conductivity; 67 W / (m ⁇ K)
  • cobalt Co, thermal conductivity: 70 W / (m ⁇ K)
  • the numerical value of the thermal conductivity described in this specification is the thermal conductivity at normal temperature (about 20 ° C.).
  • a copper alloy used as a mold copper plate a copper alloy to which chromium or zirconium (Zr) is added in a small amount, which is generally used as a casting mold for continuous casting, may be used.
  • an electromagnetic stirrer that stirs molten steel in the mold has been installed in the continuous casting mold in order to homogenize the solidification in the mold or prevent the inclusion of inclusions in the molten steel in the solidified shell. Is common.
  • a copper alloy with reduced conductivity is used in order to suppress the attenuation of the magnetic field strength from the electromagnetic coil to the molten steel.
  • the copper alloy has a reduced thermal conductivity in accordance with a decrease in its conductivity.
  • a copper alloy mold copper plate having a thermal conductivity of about 1/2 that of pure copper is also used.
  • the difference in thermal conductivity between the mold copper plate and the low thermal conductive metal is small, but by setting the thermal resistance ratio R shown in the above formula (1) to 5% or more, The effect of reducing surface cracks is exhibited.
  • the filling thickness H of the low thermal conductive metal filling portion 3 is preferably 0.5 mm or more. By setting the filling thickness H to 0.5 mm or more, the heat flux in the low heat conductive metal filling portion 3 is sufficiently lowered, and the effect of suppressing the surface cracking of the slab can be obtained.
  • the filling thickness H of the low thermal conductive metal filling portion 3 is preferably set to a diameter d or less and an equivalent circle diameter d or less of the low thermal conduction metal filling portion 3. Since the filling thickness H is equal to or smaller than the diameter d and equivalent circle diameter d of the low thermal conductive metal filling portion 3, the filling of the low thermal conductive metal into the concave groove 2 by the plating process or the thermal spraying process is facilitated, and No gaps or cracks occur between the filled low thermal conductivity metal and the mold copper plate. If gaps or cracks occur between the low thermal conductivity metal and the mold copper plate, the filled low thermal conductivity metal will crack or peel off, resulting in reduced mold life, cracking of the slab, or even a restrictive breakout. It becomes.
  • interval P between low heat conductive metal filling parts is 0.25 times or more of the diameter d of the low heat conductive metal filling part 3, and the equivalent circle diameter d. That is, it is preferable that the interval P between the low thermal conductive metal filling portions satisfies the relationship of the following expression (3) with respect to the diameter d or equivalent circle diameter d of the low thermal conductive metal filling portion 3.
  • P is a space
  • d is a diameter (mm) or a circle equivalent diameter (mm) of a low heat conductive metal filling part.
  • the interval P between the low thermal conductive metal filling portions is the shortest distance between the ends of the adjacent low thermal conductive metal filling portions 3 as shown in FIG.
  • the interval P between the low thermal conductive metal filling portions is sufficiently large, and the heat flux and the copper alloy portion ( The difference from the heat flux of the portion where the low heat conductive metal filling portion 3 is not formed becomes large, and the effect of suppressing the surface cracking of the slab can be obtained.
  • the upper limit value of the interval P between the low thermal conductive metal filling portions may not be determined. However, when the interval P is increased, the area ratio of the low thermal conductive metal filling portion 3 is decreased. It is preferable to do.
  • the arrangement of the low heat conductive metal filling portions 3 is preferably a staggered arrangement as shown in FIG. 1, but is not limited to the staggered arrangement, and any arrangement is acceptable as long as the arrangement satisfies the interval P between the low heat conductive metal filling portions. Good.
  • the sum C (mm) of the boundary lengths of all the low heat conductive metal filling portions 3 and the mold copper plate with respect to the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low heat conductive metal filling portion 3 is formed. It is preferable that the ratio ⁇ ( ⁇ C / A) satisfies the following formula (4).
  • the ratio ⁇ varies depending on the diameter d or equivalent circle diameter d of the low heat conductive metal filling portion 3 and the number of low heat conductive metal filling portions 3.
  • the ratio ⁇ is less than 0.07, the number of the low thermal conductive metal filling portions 3 is small, and the stress caused by volume shrinkage or heat shrinkage during the ⁇ / ⁇ transformation is difficult to be uniformly dispersed throughout the shell. The effect of suppressing cracking on one surface is reduced.
  • the ratio ⁇ is larger than 0.60, the number of the low heat conductive metal filling portions 3 is too large. As a result, the periodic increase / decrease in the heat flux does not reach the target level, and the effect of suppressing the slab surface cracking is achieved. Is reduced. Further, when the ratio ⁇ was larger than 0.60, slab bulging was also observed directly under the mold.
  • the low heat conductive metal filling portion 3 is basically installed on both the long side mold copper plate and the short side mold copper plate of the casting mold for continuous casting.
  • the long side length of the slab is remarkably large, surface cracks tend to occur on the long side of the slab, and even if the low thermal conductive metal filling portion 3 is installed only on the long side mold copper plate, the slab surface cracks An inhibitory effect can be obtained.
  • a plating layer 6 is formed on the inner wall surface of the mold copper plate on which the low thermal conductive metal filling portion 3 is formed for the purpose of preventing wear due to the solidified shell and cracking of the mold surface due to thermal history. It is preferable to provide it.
  • the plating layer 6 is obtained by plating a commonly used nickel or nickel-containing alloy such as a nickel-cobalt alloy (Ni-Co alloy) or a nickel-chromium alloy (Ni-Cr alloy). It is done.
  • the thickness h of the plating layer 6 is preferably 2.0 mm or less.
  • the thickness h of the plating layer 6 By setting the thickness h of the plating layer 6 to 2.0 mm or less, the influence of the plating layer 6 on the heat flux can be reduced, and the effect of the periodic fluctuation of the heat flux by the low heat conductive metal filling portion 3 is sufficient. Can get to.
  • the thickness h of the plating layer 6 is greater than 0.5 times the filling thickness H of the low thermal conductive metal filling portion 3, the formation of a periodic heat flux distribution difference by the low thermal conductive metal filling portion 3 is suppressed. Therefore, the thickness h of the plating layer 6 is preferably 0.5 times or less the filling thickness H of the low thermal conductive metal filling portion 3.
  • the plating layer 6 may have the same thickness from the upper end to the lower end of the mold or may have a different thickness from the upper end to the lower end.
  • FIG. 4 is a schematic view showing an example in which a plating layer for protecting the mold surface is provided on the inner wall surface of the long-side copper plate of the mold.
  • the continuous casting mold configured in this way is particularly continuous casting of slab slabs (thickness: 200 mm or more) of medium carbon steel having a high surface cracking sensitivity and a carbon content of 0.08 to 0.17% by mass. It is preferable to use it.
  • slab slabs thickness: 200 mm or more
  • it is common to reduce the slab drawing speed in order to suppress surface cracking of the slab. Because it is possible to suppress slab surface cracks by using, it is possible to continuously cast slabs with no surface cracks or very few surface cracks even at slab drawing speeds of 1.5 m / min or more. Is done.
  • the plurality of low thermal conductive metal filling portions 3 having the thermal resistance ratio R defined by the equation (1) of 5% or more include the meniscus position. It is installed in the width direction and casting direction of the continuous casting mold near the meniscus.
  • the thermal resistance of the continuous casting mold in the mold width direction and in the casting direction near the meniscus of the continuous casting mold periodically increases and decreases, and the heat flux from the solidified shell to the continuous casting mold in the initial stage of solidification periodically Increase or decrease. Due to the periodic increase / decrease of the heat flux, stress and thermal stress due to ⁇ / ⁇ transformation are reduced, and deformation of the solidified shell caused by these stresses is reduced.
  • the non-uniform heat flux distribution due to the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the amount of individual strains. Is suppressed.
  • the shape of the low heat conductive metal filling part 3 may not be the same. If the diameter d or equivalent circle diameter d of the low heat conductive metal filling portion 3 is in the range of 2 to 20 mm, the low heat conductive metal filling portions 3 having different diameters may be installed in the casting direction or the mold width direction. However, if the diameter d or equivalent circle diameter d of the low heat conductive metal filling portion 3 varies greatly depending on the location, solidification is delayed in a region where the area ratio of the low heat conductive metal filling portion 3 is locally high, and the slab is placed at that position. Since there is a risk of surface cracking, it is preferable to use a single diameter or equivalent circle diameter.
  • the filling thickness of the low thermal conductive metal filling portion 3 installed in the mold width direction or the slab width direction is shown.
  • the H may not be the same, and the filling thickness H may be different in each low heat conductive metal filling portion 3.
  • the filling thickness H of any low thermal conductive metal filling portion 3 is 0.5 mm or more.
  • interval which installs the low heat conductive metal filling part 3 does not need to be the same.
  • the continuous casting mold according to the present embodiment is not limited to a continuous casting mold for a slab slab, but for a bloom slab.
  • the present invention can also be applied to continuous casting molds for billets and billets.
  • the length from the upper end to the lower end of the water-cooled copper alloy continuous casting mold used was 950 mm, and the position of the meniscus (molten steel surface in the mold) during steady casting was set at a position 100 mm below the upper end of the mold.
  • a circular concave groove is processed on the inner surface of the mold copper plate in a range from a position 60 mm below the upper end of the mold to a position below the set meniscus position and a length L (mm) below, and then the circular concave groove is formed by electroplating. Filled with low thermal conductivity metal.
  • pure cobalt thermal conductivity: 70 W / (m ⁇ K)
  • pure chromium thermal conductivity: 67 W / (m ⁇ K)
  • pure copper thermal conductivity: 398 W / (m ⁇ K)
  • the basicity ((mass% CaO) / (mass% SiO 2 )) is 1.0 to 1.5 and the viscosity at 1300 ° C. is 0.05 to 0.20 Pa ⁇ s as the mold powder.
  • the mold powder was used.
  • the state of cracking on the surface of the slab was investigated by dye penetration testing. The number of surface cracks with a length of 2 mm or more detected by penetrant flaw detection was measured, and the value (pieces / m) obtained by dividing the sum by the casting direction length (m) of the slab where surface cracks were investigated It was defined as a crack index, and the occurrence of surface cracks was evaluated using this surface crack index.
  • Table 1 shows the mold construction conditions and slab surface inspection results of tests No. 1 to 26, and Table 2 shows the mold construction conditions and slab surface inspection results of tests No. 27 to 48.
  • the test using the water-cooled copper alloy continuous casting mold within the scope of the present invention is the present invention example, and the scope of the present invention has a low heat conductive metal filling part.
  • a test using a mold for continuous casting made of water-cooled copper alloy which is not satisfied is shown as a comparative example, and a test using a mold for continuous casting made of water-cooled copper alloy which does not have a low heat conductive metal filling part is shown as a conventional example. .
  • Tests Nos. 1 to 8 are tests in which the influence of the thermal conductivity ⁇ m of the filled metal on the slab surface cracking with respect to the thermal conductivity ⁇ c of the mold copper plate was investigated. As shown in the test results of tests No. 1 to No. 8 in FIG. 5, the surface cracking of the slab is suppressed when the thermal conductivity ⁇ m of the filled metal is 80% or less of the thermal conductivity ⁇ c of the mold copper plate. It was confirmed that
  • Test Nos. 9 to 19 are tests in which the influence of the thermal resistance ratio R between the low heat conductive metal filling portion and the mold copper plate on the slab surface crack was examined. As shown in the test results of Test Nos. 9 to 19 in FIG. 6, it was confirmed that the slab surface crack was suppressed when the thermal resistance ratio R was 5% or more. However, it was found that when the thermal resistance ratio R exceeds 100%, the effect of reducing surface cracks is reduced. As shown in Test No. 9, even when the thermal conductivity ⁇ m of the filling metal is in the range of 80% or less of the thermal conductivity ⁇ c of the mold copper plate, the thermal resistance ratio R is not 5% or more. It was confirmed that the effect of suppressing cracking of the slab surface could not be obtained.
  • Test Nos. 20 to 26 are the sum B (mm 2 ) of the areas of all the low thermal conductive metal filling portions with respect to the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low thermal conductive metal filling portions are formed.
  • the ratio of the area ratio S which is the ratio, to the slab surface cracks, and all the low thermal conductive metal filling portions for the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low thermal conductive metal filling portions are formed.
  • Test Nos. 27 to 32 are tests in which the influence of the diameter d of the low thermal conductive metal filling portion on the slab surface crack was investigated. As shown in the test results of Test Nos. 27 to 32 in FIG. 8, it was confirmed that cracking of the slab surface was suppressed when the diameter d of the low thermal conductive metal filling portion was 2 to 20 mm.
  • Test Nos. 33 to 36 are tests in which the influence of the interval P between the low thermal conductive metal filling portions on the slab surface crack was investigated. When the condition of “P ⁇ 0.25 ⁇ d” was satisfied, slab surface cracking was suppressed. When the interval P deviated from the condition of “P ⁇ 0.25 ⁇ d”, a slight surface crack occurred in the slab.
  • Test Nos. 37 to 39 are tests in which the effect on the surface crack of the slab having a length L in the range where the low thermal conductive metal filling portion was arranged was investigated.
  • the length L is larger range for the length L 0 that is calculated by the slab drawing speed Vc, it was confirmed that the cast slab surface cracks is suppressed.
  • Test Nos. 40 to 46 are a series of water-cooled copper alloys in which a plurality of low thermal conductive metal filling portions are connected to the inner wall surfaces of a copper alloy long mold copper plate and a copper alloy short mold copper plate. This is a test using a casting mold, that is, a continuous casting mold made of a water-cooled copper alloy in which each low heat conductive metal filling portion is not independent.
  • Test Nos. 40 to 44 of which, as shown in FIG. 9, three low heat conductive metal filling parts in which three low heat conductive metal filling parts having a diameter of 3 mm are combined. This is a test arranged by changing the interval P between them. Also in the tests No. 40 to 44, the thermal conductivity ⁇ m of the filling metal is 80% or less of the thermal conductivity ⁇ c of the mold copper plate, the thermal resistance ratio R is 5% or more, and the slab drawing speed V When the length L is larger than the length L 0 calculated by c and the diameter d, the interval P, the area ratio S, and the ratio ⁇ satisfy the preferable conditions, the slab surface crack is suppressed. It was confirmed that When the area ratio S or the ratio ⁇ deviated from suitable conditions, a slight surface crack occurred in the slab.
  • Test No. 45 is a test using a water-cooled continuous casting mold in which low heat conductive metal filling portions are connected in the width direction of the mold as shown in FIG. As shown in Fig. 5, the test is performed using a water-cooled continuous casting mold in which all the low heat conductive metal filling parts are connected in the width direction and the casting direction of the mold.
  • FIGS. 10- (A) and 11- (A) are schematic side views of the long side copper plate having a low heat conductive metal filling portion formed on the inner wall surface side, as viewed from the inner wall surface side.
  • B) is a YY ′ cross-sectional view of the mold long-side copper plate shown in FIG. 10- (A)
  • FIG. 11- (B) is a YY view of the mold long-side copper plate shown in FIG. 11- (A). 'Cross section.
  • a low heat conductive metal filling portion having a diameter d: 8 mm, a filling thickness H: 4 mm, and a spacing P: 4 mm is provided in the width direction of the long copper plate and the short copper plate.
  • a low thermal conductive metal filling portion having a diameter d of 4 mm and a filling thickness H of 1 mm is provided. Since the filling thickness H of the 8 mm diameter low heat conductive metal filling portion is larger, the stress caused by volume shrinkage or heat shrinkage during the ⁇ / ⁇ transformation is dispersed in the solidified shell portion in that region, and It is thought that surface cracking has been reduced.
  • test No. 46 all of the low thermal conductive metal filling parts are connected, and solidification is always delayed at the same position of the solidified shell during continuous casting. Therefore, stress and thermal stress due to ⁇ / ⁇ transformation are present at that location. It is thought that the surface cracking occurred and minor surface cracks occurred.
  • Test Nos. 47 and 48 are tests using a conventional continuous casting mold in which a low heat conductive metal filling portion is not installed. In Test Nos. 47 and 48, many slab surface cracks occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

A continuous casting mold having low-thermal-conductivity metal filled parts formed by filling a low-thermal-conductivity metal into a plurality of recessed grooves provided in a range from an arbitrary position above a meniscus to an arbitrary position below the meniscus in an inner wall surface of a copper alloy mold copper plate for configuring a water-cooled continuous casting mold, the thermal conductivity λm (W/(m × K)) of the low-thermal-conductivity metal being 80% or less of the thermal conductivity λc (W/m × K)) of the mold copper plate, and the thermal resistance ratio R defined by equation (1) being 5% or greater. (1): R = [(T-H)/(1000 × λc) + H/(1000 × λm) – T/(1000 × λc)]/[T/(1000 × λc)] × 100. In the formula, R is the thermal resistance ratio (%) of the low-thermal-conductivity metal filled parts and the mold copper plate, T is the distance (mm) from a bottom surface of a slit in the mold copper plate as a flow path for mold cooling water to the surface of the mold copper plate, and H is the filling thickness (mm) of the low-thermal-conductivity metal.

Description

連続鋳造用鋳型及び鋼の連続鋳造方法Continuous casting mold and steel continuous casting method
 本発明は、鋳型内での凝固シェルの不均一冷却に起因する鋳片表面割れを抑制して溶鋼を連続鋳造することのできる連続鋳造用鋳型、及び、この鋳型を使用した鋼の連続鋳造方法に関する。 The present invention relates to a continuous casting mold capable of continuously casting molten steel while suppressing slab surface cracking due to non-uniform cooling of the solidified shell in the mold, and a continuous casting method of steel using this mold. About.
 鋼の連続鋳造では、鋳型内に注入された溶鋼は水冷式連続鋳造用鋳型によって冷却され、鋳型との接触面で溶鋼が凝固して凝固シェル(「凝固層」とも呼ぶ)が生成される。この凝固シェルを外殻とし、内部を未凝固層とする鋳片は、鋳型の下流側に設置された水スプレーや気水スプレーによって冷却されながら鋳型下方に連続的に引き抜かれる。鋳片は、水スプレーや気水スプレーによる冷却によって厚み中心部まで凝固し、その後、ガス切断機などによって切断されて、所定長さの鋳片が製造されている。 In continuous casting of steel, molten steel injected into a mold is cooled by a water-cooled continuous casting mold, and the molten steel is solidified at a contact surface with the mold to generate a solidified shell (also referred to as “solidified layer”). The slab having the solidified shell as an outer shell and the inside as an unsolidified layer is continuously drawn below the mold while being cooled by a water spray or an air / water spray installed on the downstream side of the mold. The slab is solidified to the center of thickness by cooling with water spray or air-water spray, and then cut by a gas cutter or the like to produce a slab of a predetermined length.
 鋳型内における冷却が不均一になると、凝固シェルの厚みが鋳片の鋳造方向及び鋳型幅方向で不均一になる。凝固シェルには、凝固シェルの収縮や変形に起因する応力が作用し、凝固初期においては、この応力が凝固シェルの薄肉部に集中し、この応力によって凝固シェルの表面に割れが発生する。この割れは、その後の熱応力や連続鋳造機のロールによる曲げ応力及び矯正応力などの外力により拡大し、大きな表面割れとなる。凝固シェル厚みの不均一度が大きい場合には、鋳型内での縦割れとなり、この縦割れから溶鋼が流出するブレークアウトが発生する場合もある。鋳片に存在する割れは、次工程の圧延工程で表面欠陥となることから、鋳造後の鋳片の段階において、鋳片の表面を手入れして表面割れを除去することが必要となる。 If the cooling in the mold becomes uneven, the thickness of the solidified shell becomes uneven in the casting direction of the slab and in the mold width direction. A stress caused by the shrinkage or deformation of the solidified shell acts on the solidified shell, and in the initial stage of solidification, this stress is concentrated on the thin portion of the solidified shell, and the stress causes cracks on the surface of the solidified shell. This crack expands due to subsequent external stresses such as thermal stress, bending stress due to the roll of a continuous casting machine, and straightening stress, resulting in a large surface crack. When the non-uniformity of the solidified shell thickness is large, a vertical crack is generated in the mold, and a breakout in which the molten steel flows out from the vertical crack may occur. Since the cracks present in the slab become surface defects in the subsequent rolling process, it is necessary to care for the surface of the slab and remove the surface cracks at the stage of the cast slab after casting.
 鋳型内の不均一凝固は、特に、炭素含有量が0.08~0.17質量%の鋼(中炭素鋼という)で発生しやすい。炭素含有量が0.08~0.17質量%の鋼では、凝固時に包晶反応が起こる。鋳型内の不均一凝固は、この包晶反応によるδ鉄(フェライト)からγ鉄(オーステナイト)への変態時の体積収縮による変態応力に起因すると考えられている。つまり、この変態応力に起因する歪みによって凝固シェルが変形し、この変形によって凝固シェルが鋳型内壁面から離れる。鋳型内壁面から離れた部位は鋳型による冷却が低下し、この鋳型内壁面から離れた部位(この鋳型内壁面から離れた部位を「デプレッション」という)の凝固シェル厚みが薄くなる。凝固シェル厚みが薄くなることで、この部分に上記応力が集中し、表面割れが発生すると考えられている。 不 Uniform solidification in the mold is likely to occur particularly in steels having a carbon content of 0.08 to 0.17% by mass (referred to as medium carbon steels). In a steel having a carbon content of 0.08 to 0.17% by mass, a peritectic reaction occurs during solidification. It is believed that the inhomogeneous solidification in the mold is caused by transformation stress due to volume shrinkage during transformation from δ iron (ferrite) to γ iron (austenite) by this peritectic reaction. That is, the solidified shell is deformed by the strain caused by the transformation stress, and the solidified shell is separated from the inner wall surface of the mold by this deformation. The portion separated from the inner wall surface of the mold is cooled by the mold, and the thickness of the solidified shell at the portion away from the inner wall surface of the mold (the portion away from the inner wall surface of the mold is referred to as “depression”) is reduced. It is considered that the stress is concentrated on this portion and the surface cracks are generated by reducing the thickness of the solidified shell.
 特に、鋳片引き抜き速度を増加した場合には、凝固シェルから鋳型への平均熱流束が増加する(凝固シェルが急速冷却される)のみならず、熱流束の分布が不規則で且つ不均一になることから、鋳片表面割れの発生が増加傾向となる。具体的には、鋳片厚みが200mm以上のスラブ連続鋳造機においては、鋳片引き抜き速度が1.5m/min以上になると表面割れが発生しやすくなる。 In particular, when the slab drawing speed is increased, not only the average heat flux from the solidified shell to the mold increases (the solidified shell is rapidly cooled), but also the heat flux distribution is irregular and non-uniform. Therefore, the occurrence of slab surface cracks tends to increase. Specifically, in a slab continuous casting machine having a slab thickness of 200 mm or more, surface cracks are likely to occur when the slab drawing speed is 1.5 m / min or more.
 そこで、従来、表面割れが発生しやすい鋼種の表面割れ(特に縦割れ)を抑制するために、種々の手段が提案されている。 Therefore, conventionally, various means have been proposed in order to suppress surface cracks (particularly longitudinal cracks) of steel types that are prone to surface cracks.
 例えば、特許文献1には、結晶化しやすい組成のモールドパウダーを使用し、モールドパウダー層の熱抵抗を増大させて凝固シェルを緩冷却することが提案されている。これは、緩冷却によって凝固シェルに作用する応力を低下させて表面割れを抑制するという技術である。しかしながら、モールドパウダーによる緩冷却効果のみでは、不均一凝固を十分に改善するまでには至っておらず、特に凝固に伴う僅かな温度低下でδ鉄からγ鉄への変態が生じる中炭素鋼では、表面割れの発生を十分に抑制できないのが実情である。 For example, Patent Document 1 proposes that mold powder having a composition that is easily crystallized is used to increase the thermal resistance of the mold powder layer to slowly cool the solidified shell. This is a technique of suppressing surface cracking by reducing the stress acting on the solidified shell by slow cooling. However, only the slow cooling effect due to the mold powder has not sufficiently improved the non-uniform solidification, especially in the medium carbon steel in which transformation from δ iron to γ iron occurs due to a slight temperature drop accompanying solidification, The fact is that the occurrence of surface cracks cannot be sufficiently suppressed.
 特許文献2には、鋳型内壁面に縦溝と横溝とを設け、これら縦溝及び横溝の内部にモールドパウダーを流入させ、これにより、鋳型の冷却を緩冷却化すると同時に鋳型幅方向で均一化し、鋳片の縦割れを抑制する技術が提案されている。しかしながら、鋳片との接触によって鋳型内壁面は摩耗し、鋳型内壁面に設けた溝が浅くなると、モールドパウダーの流れ込み量が少なくなって緩冷却効果が低減するという問題、つまり、緩冷却効果が持続しないという問題がある。また、鋳造開始時の空の鋳型空間内への溶鋼注入時に、注入した溶鋼が鋳型内壁面に設けた溝の内部に侵入して凝固し、鋳型銅板と凝固シェルとが固着して、凝固シェルの引き抜きができなくなり、拘束性ブレークアウトの発生する危惧があるという問題もある。 In Patent Document 2, a vertical groove and a horizontal groove are provided on the inner wall surface of the mold, and mold powder is allowed to flow into the vertical groove and the horizontal groove, thereby slowing down the cooling of the mold and at the same time uniforming in the mold width direction. Techniques for suppressing vertical cracks in slabs have been proposed. However, when the inner wall surface of the mold is worn due to contact with the slab, and the groove provided on the inner wall surface of the mold becomes shallow, the amount of mold powder flowing in decreases and the slow cooling effect is reduced. There is a problem of not persisting. In addition, when molten steel is poured into an empty mold space at the start of casting, the injected molten steel penetrates into the groove provided on the inner wall surface of the mold and solidifies, and the mold copper plate and the solidified shell adhere to each other, thereby solidifying the shell. There is also a problem that there is a risk that a constraining breakout may occur due to the inability to withdraw.
 特許文献3には、鋳型内壁面の幅方向中央部に、溝幅及び溝深さをモールドパウダーの粘度に応じて設定した、鋳造方向に平行な縦溝または格子溝を設け、設けた溝をモールドパウダーで充填することなく、溝の内部に空隙部を形成させ、この空隙部に空気を流入させ、これにより、鋳型の冷却を緩冷却化すると同時に鋳型幅方向で均一化し、鋳片の縦割れを抑制する技術が提案されている。しかしながら、この場合も鋳型内壁面に溝が露出しており、特許文献2と同様に、鋳型内壁面の摩耗によって、緩冷却効果が持続しないという問題がある。また、鋳造開始時に溶鋼が鋳型内壁面に設けた溝の内部に侵入して凝固し、凝固シェルの引き抜きができなくなり、拘束性ブレークアウトの発生する危惧があるという問題もある。 In Patent Document 3, a longitudinal groove or a lattice groove parallel to the casting direction, in which the groove width and the groove depth are set according to the viscosity of the mold powder, is provided at the center in the width direction of the inner wall surface of the mold. Without filling with mold powder, a void is formed inside the groove, and air is allowed to flow into the void, thereby slowing down the cooling of the mold and at the same time uniforming in the mold width direction, Techniques for suppressing cracking have been proposed. However, in this case as well, the groove is exposed on the inner wall surface of the mold, and similarly to Patent Document 2, there is a problem that the slow cooling effect is not sustained due to wear of the inner wall surface of the mold. There is also a problem that at the start of casting, molten steel enters the inside of the groove provided on the inner wall surface of the mold and solidifies, so that the solidified shell cannot be pulled out, and a restrictive breakout may occur.
 特許文献4には、鋳型内壁面に格子状の溝を設けた鋳型、及び、前記格子状の溝に異種金属(Ni,Cr)またはセラミックス(BN、AlN、ZrO)を充填した鋳型が提案されている。この技術は、溝部と溝部以外の部分とで抜熱量に差を周期的に生じさせ、凝固シェルのδ鉄からγ鉄への変態や熱収縮による応力を低抜熱の領域に分散させることで、鋳片の縦割れを抑制するという技術である。しかしながら、溝が格子状であり、格子溝形状では、鋳型内壁面の溝部と鋳型銅板(銅製または銅合金製)との境界が直線であり、熱膨張差に起因して境界面に割れが発生し且つ伝播しやすく、鋳型寿命が低下するという問題がある。 Patent Document 4 proposes a mold in which a lattice-shaped groove is provided on the inner wall surface of the mold, and a mold in which the lattice-shaped groove is filled with a different metal (Ni, Cr) or ceramics (BN, AlN, ZrO 2 ). Has been. This technology periodically creates a difference in the amount of heat removal between the groove and the part other than the groove, and disperses the stress of the solidified shell from δ iron to γ iron and heat shrinkage in the low heat removal region. It is a technology that suppresses vertical cracks in slabs. However, the grooves are in a lattice shape, and in the lattice groove shape, the boundary between the groove on the inner wall surface of the mold and the mold copper plate (made of copper or copper alloy) is a straight line, and the boundary surface is cracked due to the difference in thermal expansion. However, there is a problem that it is easy to propagate and the mold life is reduced.
 特許文献5には、鋳型内壁面に鋳造方向と平行な縦溝を設けた鋳型、及び、前記縦溝に異種金属(Ni,Cr)またはセラミックス(BN、AlN、ZrO)を充填した鋳型を用い、鋳片引き抜き速度と鋳型振動周期とを所定の範囲に規定する連続鋳造方法が提案されている。特許文献5によれば、鋳片引き抜き速度に応じて鋳型振動周期を適正化することで、鋳片に形成されるオシレーションマークが横溝を付与したように働き、縦溝のみでも、特許文献4と同様の表面割れ低減効果が認められるとしている。しかしながら、特許文献4と同様に、鋳型内壁面の溝部と鋳型銅板(銅製または銅合金製)との境界が直線であり、熱膨張差に起因して境界面に割れが発生し且つ伝播しやすく、鋳型寿命が低下するという問題がある。 Patent Document 5 discloses a mold in which a vertical groove parallel to the casting direction is provided on the inner wall surface of the mold, and a mold in which the vertical groove is filled with a different metal (Ni, Cr) or ceramics (BN, AlN, ZrO 2 ). There has been proposed a continuous casting method that uses a slab drawing speed and a mold vibration cycle within a predetermined range. According to Patent Document 5, by optimizing the mold vibration period according to the slab drawing speed, the oscillation mark formed on the slab works as if a lateral groove was provided. It is said that the same effect of reducing surface cracks is observed. However, as in Patent Document 4, the boundary between the groove on the inner wall surface of the mold and the mold copper plate (made of copper or copper alloy) is a straight line, and the boundary surface is easily cracked and propagates due to the difference in thermal expansion. There is a problem that the mold life is reduced.
 特許文献6には、鋳型内壁面の鋳型内溶鋼湯面(以下、「メニスカス」とも記す)近傍に、直径2~10mmの凹溝を設け、この凹溝の内部に異種金属(Ni、ステンレス鋼)またはセラミックス(BN、AlN、ZrOなど)を埋め込み、埋め込んだ間隔を5~20mmとする鋳型が提案されている。この技術も、特許文献4、5と同様に、周期的な熱伝達分布を与えて不均一凝固を低減し、鋳片の縦割れを抑制する技術である。しかしながら、特許文献6では、鋳型銅板表面にドリル穴を開口し、そこにドリル穴の形状に成形した異種金属またはセラミックスを埋め込んでいるので、埋め込んだ異種金属またはセラミックスの背面と鋳型銅板との接触状態は一定ではなく、接触部分に間隙が形成される可能性が高い。間隙が形成される場合には、この間隙によって各凹溝部位でその抜熱量が大幅に変化し、凝固シェルの冷却を適正に制御できなくなるという問題が発生する。また、埋め込んだ異種金属またはセラミックスが鋳型銅板から剥離しやすいという問題もある。 In Patent Document 6, a concave groove having a diameter of 2 to 10 mm is provided near the molten steel surface in the mold (hereinafter also referred to as “meniscus”) on the inner wall surface of the mold, and a dissimilar metal (Ni, stainless steel) is provided inside the concave groove. ) Or ceramics (BN, AlN, ZrO 2, etc.) are embedded, and a mold is proposed in which the embedded interval is 5 to 20 mm. Similarly to Patent Documents 4 and 5, this technique is also a technique for reducing the uneven solidification by providing a periodic heat transfer distribution and suppressing vertical cracks in the slab. However, in Patent Document 6, since a drill hole is opened on the surface of the mold copper plate, and the dissimilar metal or ceramic formed into the shape of the drill hole is embedded therein, the contact between the back surface of the embedded dissimilar metal or ceramic and the mold copper plate The state is not constant, and there is a high possibility that a gap is formed at the contact portion. In the case where a gap is formed, the amount of heat removed from each groove portion is greatly changed by the gap, and there arises a problem that cooling of the solidified shell cannot be properly controlled. There is also a problem that the embedded dissimilar metal or ceramic is easily peeled off from the mold copper plate.
特開2005-297001号公報JP 2005-297001 A 特開平9-276994号公報JP-A-9-276994 特開平10-193041号公報Japanese Patent Laid-Open No. 10-193041 特開平1-289542号公報JP-A-1-289542 特開平2-6037号公報Japanese Patent Laid-Open No. 2-6037 特開平1-170550号公報JP-A-1-170550
 本発明は、上記事情に鑑みてなされたもので、その目的とするところは、鋳造開始時での拘束性ブレークアウトの発生及び鋳型銅板表面の割れによる鋳型寿命低下を起こすことなく、凝固初期の凝固シェルの不均一冷却による鋳片表面割れ、及び、包晶反応を伴う中炭素鋼でのδ鉄からγ鉄への変態に起因する凝固シェル厚みの不均一による鋳片表面割れを長期間に亘って抑制できる連続鋳造用鋳型を提供することであり、また、この連続鋳造用鋳型を使用した鋼の連続鋳造方法を提供することである。 The present invention has been made in view of the above circumstances, and the object of the present invention is to generate a constraining breakout at the start of casting and to reduce the mold life due to cracks on the surface of the mold copper plate, and at the initial stage of solidification. Slab surface cracks due to non-uniform cooling of solidified shells and slab surface cracks due to non-uniform solidified shell thickness due to transformation from δ iron to γ iron in peritectic reaction It is to provide a continuous casting mold that can be suppressed over a long time, and to provide a continuous casting method of steel using this continuous casting mold.
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]水冷式の連続鋳造用鋳型であって、
 前記鋳型を構成する銅合金製の鋳型銅板の内壁面のメニスカスよりも上方の任意の位置からメニスカスよりも下方の任意の位置までの範囲に複数設けられた凹溝に低熱伝導金属が充填されて形成される低熱伝導金属充填部を有し、
 前記鋳型銅板の熱伝導率λ(W/(m×K))に対する前記低熱伝導金属の熱伝導率λ(W/(m×K))が80%以下であり、
 下記の(1)式により定義される熱抵抗比Rが5%以上である連続鋳造用鋳型。
R={(T-H)/(1000×λ)+H/(1000×λ)-T/(1000×λ)}/{T/(1000×λ)}×100・・・(1)
 ここで、Rは、前記低熱伝導金属充填部と前記鋳型銅板との熱抵抗比(%)、Tは、鋳型冷却水の流路となる、鋳型銅板のスリットの底面から鋳型銅板表面までの距離(mm)、Hは、低熱伝導金属の充填厚み(mm)である。
[2]前記凹溝は、メニスカスよりも上方の任意の位置から、鋳片引き抜き速度Vc(m/min)によって下記の(2)式で算出される長さL(mm)以上メニスカスよりも下方の任意の位置までの前記鋳型銅板の内壁面の範囲に設けられている上記[1]に記載の連続鋳造用鋳型。
=2×Vc×1000/60・・・(2)
[3]前記連続鋳造用鋳型は、前記低熱伝導金属充填部が設けられた前記鋳型銅板の内壁面の範囲において、周期的な熱抵抗分布または熱流束分布を有する上記[1]または上記[2]に記載の連続鋳造用鋳型。
[4]前記凹部の前記鋳型銅板内壁面における開口形状が円形または擬似円形であり、該円形の直径または該疑似円形の円相当径が2~20mmである上記[1]から上記[3]の何れか一項に記載の連続鋳造用鋳型。
[5]前記低熱伝導金属充填部同士の間隔が、該低熱伝導金属充填部の前記直径または前記円相当径に対して下記の(3)式の関係を満足する上記[4]に記載の連続鋳造用鋳型。
P≧0.25×d・・・(3)
 ここで、Pは、低熱伝導金属充填部同士の間隔(mm)、dは、低熱伝導金属充填部の直径(mm)または円相当径(mm)である。
[6]前記低熱伝導金属充填部が形成された範囲内の前記鋳型銅板内壁面の面積A(mm)に対する、全ての低熱伝導金属充填部の面積の総和B(mm)の比である面積率S(S=(B/A)×100)が10%以上であり、且つ、前記面積A(mm)に対する、全ての低熱伝導金属充填部と前記鋳型銅板との境界長さの総和C(mm)の比ε(ε=C/A)が下記(4)式の関係を満足する上記[1]から上記[5]の何れか一項に記載の連続鋳造用鋳型。
0.07≦ε≦0.50・・・(4)
[7]前記低熱伝導金属充填部がそれぞれ独立して形成されている上記[6]に記載の連続鋳造用鋳型。
[8]前記低熱伝導金属は、鍍金処理または溶射処理によって前記凹溝の内部に充填される上記[1]から上記[7]の何れか一項に記載の連続鋳造用鋳型。
[9]前記鋳型銅板の内壁面には、厚みが2.0mm以下のニッケルまたはニッケルを含有する合金の鍍金層が形成されており、前記低熱伝導金属充填部は前記鍍金層で覆われている上記[1]から上記[8]の何れか一項に記載の連続鋳造用鋳型。
[10]上記[1]から上記[9]の何れか一項に記載の連続鋳造用鋳型を用いる鋼の連続鋳造方法であって、
 炭素含有量が0.08~0.17質量%の中炭素鋼を前記鋳型に注入するともに、鋳片厚みが200mm以上のスラブ鋳片として1.5m/min以上の鋳片引き抜き速度で前記鋳型から前記中炭素鋼を引き抜いて連続鋳造する鋼の連続鋳造方法。
The gist of the present invention for solving the above problems is as follows.
[1] A water-cooled continuous casting mold,
A plurality of concave grooves provided in a range from any position above the meniscus on the inner wall surface of the copper alloy mold copper plate constituting the mold to any position below the meniscus is filled with a low heat conductive metal. Having a low thermal conductivity metal filling formed;
The thermal conductivity of the mold copper plate λ c (W / (m × K)) the relative thermal conductivity of the low thermal conductive metal λ m (W / (m × K)) is not more than 80%,
A continuous casting mold having a thermal resistance ratio R defined by the following formula (1) of 5% or more.
R = {(TH) / (1000 × λ c ) + H / (1000 × λ m ) −T / (1000 × λ c )} / {T / (1000 × λ c )} × 100 (100) 1)
Here, R is a thermal resistance ratio (%) between the low thermal conductive metal filling portion and the mold copper plate, and T is a distance from the bottom surface of the mold copper plate slit to the mold copper plate surface, which becomes a flow path of the mold cooling water. (Mm) and H are filling thicknesses (mm) of the low thermal conductive metal.
[2] The concave groove is longer than the meniscus by a length L 0 (mm) or more calculated from the following formula (2) from an arbitrary position above the meniscus by the slab drawing speed Vc (m / min). The continuous casting mold according to the above [1], provided in the range of the inner wall surface of the mold copper plate up to an arbitrary position below.
L 0 = 2 × Vc × 1000/60 (2)
[3] The above-mentioned [1] or [2], wherein the continuous casting mold has a periodic thermal resistance distribution or a heat flux distribution in a range of an inner wall surface of the mold copper plate provided with the low thermal conductive metal filling portion. ] The casting mold for continuous casting described in the above.
[4] The above-mentioned [1] to [3], wherein the opening shape of the recess in the inner wall surface of the mold copper plate is a circle or a pseudo circle, and the diameter of the circle or the equivalent circle diameter of the pseudo circle is 2 to 20 mm. The continuous casting mold according to any one of the above.
[5] The continuation according to [4], wherein an interval between the low thermal conductive metal filling portions satisfies the relationship of the following expression (3) with respect to the diameter or the equivalent circle diameter of the low thermal conductive metal filling portions. Casting mold.
P ≧ 0.25 × d (3)
Here, P is the interval (mm) between the low heat conductive metal filling parts, and d is the diameter (mm) or the equivalent circle diameter (mm) of the low heat conductive metal filling parts.
[6] The ratio of the total area B (mm 2 ) of all the low thermal conductive metal filling portions to the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low thermal conductive metal filling portions are formed. Total area length S (S = (B / A) × 100) is 10% or more, and the total boundary length between all the low thermal conductive metal filling portions and the mold copper plate with respect to the area A (mm 2 ) The continuous casting mold according to any one of [1] to [5] above, wherein a ratio ε (ε = C / A) of C (mm) satisfies the relationship of the following formula (4):
0.07 ≦ ε ≦ 0.50 (4)
[7] The continuous casting mold according to [6], wherein the low thermal conductive metal filling portions are formed independently.
[8] The continuous casting mold according to any one of [1] to [7], wherein the low heat conductive metal is filled in the concave groove by plating or spraying.
[9] On the inner wall surface of the mold copper plate, a plating layer of nickel having a thickness of 2.0 mm or less or an alloy containing nickel is formed, and the low thermal conductive metal filling portion is covered with the plating layer. The casting mold for continuous casting according to any one of [1] to [8] above.
[10] A continuous casting method of steel using the continuous casting mold according to any one of [1] to [9],
Medium carbon steel having a carbon content of 0.08 to 0.17% by mass is poured into the mold, and the slab slab having a slab thickness of 200 mm or more is cast at a slab drawing speed of 1.5 m / min or more. A continuous casting method of steel in which the medium carbon steel is drawn from the steel and continuously cast.
 本発明では、低熱伝導金属充填部と鋳型銅板との熱抵抗比Rが5%以上であり、鋳型銅板の熱伝導率に対してその熱伝導率を80%以下とする低熱伝導金属が充填されて形成される、複数個の低熱伝導金属充填部を、メニスカス位置を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設置する。これにより、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減して、メニスカス近傍、つまり、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する。この熱流束の周期的な増減により、δ鉄からγ鉄への変態による応力や熱応力が低減し、これらの応力によって生じる凝固シェルの変形が小さくなる。凝固シェルの変形が小さくなることで、凝固シェルの変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなり、凝固シェル表面における割れの発生が抑制される。 In the present invention, the thermal resistance ratio R between the low thermal conductive metal filling portion and the mold copper plate is 5% or more, and the low thermal conductivity metal is filled with the thermal conductivity of 80% or less with respect to the thermal conductivity of the mold copper plate. A plurality of low heat conductive metal filling portions formed in this manner are installed in the width direction and casting direction of the continuous casting mold in the vicinity of the meniscus including the meniscus position. As a result, the thermal resistance of the continuous casting mold in the mold width direction and the casting direction in the vicinity of the meniscus periodically increases and decreases, and the heat flux from the solidified shell to the continuous casting mold in the vicinity of the meniscus, that is, in the initial stage of solidification, is periodic. Increase or decrease. By periodically increasing or decreasing the heat flux, stress and thermal stress due to transformation from δ iron to γ iron are reduced, and deformation of the solidified shell caused by these stresses is reduced. By reducing the deformation of the solidified shell, the non-uniform heat flux distribution due to the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the amount of individual strains. Is suppressed.
図1は、本実施形態に係る水冷式連続鋳造用鋳型の一部を構成する鋳型長辺銅板を内壁面側から見た概略側面図である。FIG. 1 is a schematic side view of a mold long-side copper plate constituting a part of a water-cooled continuous casting mold according to the present embodiment as viewed from the inner wall surface side. 図2は、図1に示す鋳型長辺銅板のX-X’断面図である。FIG. 2 is a cross-sectional view taken along the line X-X ′ of the mold long side copper plate shown in FIG. 1. 図3は、低熱伝導金属充填部を有する鋳型長辺銅板の三箇所の位置における熱抵抗を、低熱伝導金属充填部の位置に対応して概念的に示す図である。FIG. 3 is a diagram conceptually showing the thermal resistance at three positions of the long copper plate having a low heat conductive metal filling portion corresponding to the positions of the low heat conductive metal filling portions. 図4は、鋳型長辺銅板の内壁面に鋳型表面の保護のための鍍金層を設けた例を示す概略図である。FIG. 4 is a schematic view showing an example in which a plating layer for protecting the mold surface is provided on the inner wall surface of the long-side copper plate of the mold. 図5は、低熱伝導金属充填部に充填した低熱伝導金属の熱伝導率の鋳片表面割れに及ぼす影響を調査した結果を示す図である。FIG. 5 is a diagram showing the results of investigating the influence of the thermal conductivity of the low thermal conductive metal filled in the low thermal conductive metal filling portion on the slab surface crack. 図6は、低熱伝導金属充填部と鋳型銅板との熱抵抗比Rの鋳片表面割れに及ぼす影響を調査した結果を示す図である。FIG. 6 is a diagram showing the results of investigating the influence of the thermal resistance ratio R between the low thermal conductive metal filling portion and the mold copper plate on the slab surface crack. 図7は、低熱伝導金属充填部の面積率S、及び、境界長さの比εの鋳片表面割れに及ぼす影響を調査した結果を示す図である。FIG. 7 is a diagram showing the results of investigating the influence of the area ratio S of the low thermal conductive metal filling portion and the boundary length ratio ε on the slab surface crack. 図8は、低熱伝導金属充填部の直径dの鋳片表面割れに及ぼす影響を調査した結果を示す図である。FIG. 8 is a diagram showing the results of investigating the influence of the diameter d of the low thermal conductive metal filling portion on the slab surface crack. 図9は、試験No.40~44における低熱伝導金属充填部の配置を示す概略側面図である。9 is a schematic side view showing the arrangement of the low thermal conductive metal filling portion in Test No. 40-44. 図10は、試験No.45における低熱伝導金属充填部の配置を示す概略図である。10 is a schematic view showing the arrangement of the low thermal conductive metal filling portion in the test No. 45. 図11は、試験No.46における低熱伝導金属充填部の配置を示す概略図である。11 is a schematic view showing the arrangement of the low thermal conductive metal filling portion in Test No. 46.
 以下、発明の実施の形態を通じて本発明を具体的に説明する。図1は、本実施形態に係る水冷式連続鋳造用鋳型の一部を構成する鋳型長辺銅板1であって、内壁面側に低熱伝導金属充填部3が形成された鋳型長辺銅板1を内壁面側から見た概略側面図である。また、図2は、図1に示す鋳型長辺銅板1のX-X’断面図である。 Hereinafter, the present invention will be specifically described through embodiments of the invention. FIG. 1 shows a mold long-side copper plate 1 constituting a part of a water-cooled continuous casting mold according to the present embodiment, wherein a mold long-side copper plate 1 having a low thermal conductive metal filling portion 3 formed on the inner wall surface side. It is the schematic side view seen from the inner wall surface side. FIG. 2 is a cross-sectional view taken along the line X-X ′ of the long copper plate 1 shown in FIG.
 図1に示す連続鋳造用鋳型は、スラブ鋳片を鋳造するための連続鋳造用鋳型の一例である。スラブ鋳片用の水冷式銅合金製連続鋳造用鋳型は、一対の銅合金製の鋳型長辺銅板と一対の銅合金製の鋳型短辺銅板とを組み合わせて構成される。図1は、そのうちの鋳型長辺銅板1を示している。鋳型短辺銅板も鋳型長辺銅板1と同様に、その内壁面側に低熱伝導金属充填部3が形成されるとして、ここでは、鋳型短辺銅板についての説明は省略する。但し、スラブ鋳片においては、スラブ厚みに対してスラブ幅が極めて大きいという形状に起因して、鋳片長辺面側の凝固シェルで応力集中が起こりやすく、鋳片長辺面側で表面割れが発生しやすい。したがって、スラブ鋳片用の連続鋳造用鋳型の鋳型短辺銅板には、低熱伝導金属充填部3を設置しなくてもよい。 The continuous casting mold shown in FIG. 1 is an example of a continuous casting mold for casting a slab slab. A water-cooled copper alloy continuous casting mold for a slab slab is configured by combining a pair of copper alloy long mold copper plates and a pair of copper alloy short mold copper plates. FIG. 1 shows the long-side copper plate 1 of the mold. Similarly to the mold long-side copper plate 1, the mold short-side copper plate is also provided with the low thermal conductive metal filling portion 3 on the inner wall surface side, and the description of the mold short-side copper plate is omitted here. However, in slab slabs, stress concentration is likely to occur in the solidified shell on the long side of the slab due to the shape of the slab width being extremely large relative to the slab thickness, and surface cracks occur on the long side of the slab It's easy to do. Therefore, the low heat conductive metal filling part 3 does not have to be installed on the short side copper plate of the continuous casting mold for the slab slab.
 図1に示すように、鋳型長辺銅板1における定常鋳造時のメニスカスの位置よりも長さQ(長さQは、ゼロより大きい任意の値)離れた上方の位置から、メニスカスよりも長さLだけ下方の位置までの鋳型長辺銅板1の内壁面の範囲には、直径をdとする複数個の低熱伝導金属充填部3が、低熱伝導金属充填部同士の間隔をPとして設置されている。ここで、「メニスカス」とは「鋳型内溶鋼湯面」であり、非鋳造中にはその位置は明確でないが、通常の鋼の連続鋳造操業では、メニスカス位置を鋳型銅板の上端から50mmないし200mm程度下方の任意の位置としている。したがって、メニスカス位置が鋳型長辺銅板1の上端から50mm下方の位置であっても、また、上端から200mm下方の位置であっても、長さQ及び長さLが、以下に説明する本発明の条件を満足するように、低熱伝導金属充填部3を配置すればよい。 As shown in FIG. 1, the length of the long side copper plate 1 is longer than the meniscus from a position above the length Q (length Q is an arbitrary value greater than zero) away from the position of the meniscus during steady casting. In the range of the inner wall surface of the long copper plate 1 up to a position below L, a plurality of low heat conductive metal filling portions 3 having a diameter d are installed with the interval between the low heat conductive metal filling portions as P. Yes. Here, “meniscus” is “molten steel surface in mold”, and its position is not clear during non-casting, but in the normal continuous casting operation of steel, the meniscus position is 50 mm to 200 mm from the upper end of the mold copper plate. An arbitrary position below the degree is set. Therefore, even if the meniscus position is a position 50 mm below the upper end of the mold long side copper plate 1 or a position 200 mm below the upper end, the length Q and the length L are described below. What is necessary is just to arrange | position the low heat conductive metal filling part 3 so that these conditions may be satisfied.
 低熱伝導金属充填部3は、図2に示すように、鋳型長辺銅板1の内壁面側にそれぞれ独立して加工された、直径をdとする円形の凹溝2の内部に、鍍金処理または溶射処理によって、鋳型長辺銅板1を構成する銅合金の熱伝導率λに対してその熱伝導率λが80%以下である金属(以下、「低熱伝導金属」と記す)が充填されて形成されたものである。ここで、鋳型銅板内壁面における開口形状が円形である凹溝2を「円形凹溝」と称する。また、図2における符号4は、鋳型長辺銅板1の背面側に設置された、鋳型冷却水の流路となるスリットであり、符号5は、鋳型長辺銅板1の背面と密着するバックプレートである。 As shown in FIG. 2, the low thermal conductive metal filling portion 3 is plated or formed inside a circular groove 2 having a diameter d, which is independently processed on the inner wall surface side of the long-side copper plate 1. By the thermal spraying treatment, a metal having a thermal conductivity λ m of 80% or less with respect to the thermal conductivity λ c of the copper alloy constituting the long-side copper plate 1 is filled (hereinafter referred to as “low thermal conductivity metal”). Is formed. Here, the groove 2 having a circular opening on the inner wall surface of the mold copper plate is referred to as a “circular groove”. Further, reference numeral 4 in FIG. 2 is a slit serving as a flow path for mold cooling water installed on the back side of the long mold copper plate 1, and reference numeral 5 is a back plate that is in close contact with the back of the long mold copper sheet 1. It is.
 図3は、低熱伝導金属充填部3を有する鋳型長辺銅板1の三箇所の位置における熱抵抗を、低熱伝導金属充填部3の位置に対応して概念的に示す図である。図3に示すように、低熱伝導金属充填部3の設置位置では熱抵抗が相対的に高くなる。 FIG. 3 is a diagram conceptually showing the thermal resistance at three positions of the long copper plate 1 having the low thermal conductive metal filling portion 3 corresponding to the position of the low thermal conductive metal filling portion 3. As shown in FIG. 3, the thermal resistance is relatively high at the installation position of the low thermal conductive metal filling portion 3.
 複数の低熱伝導金属充填部3を、メニスカス位置を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設置することにより、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する分布が形成される。これによって、メニスカス近傍、つまり、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する分布が形成される。 By installing the plurality of low heat conductive metal filling portions 3 in the width direction and casting direction of the continuous casting mold near the meniscus including the meniscus position, the heat of the continuous casting mold in the mold width direction and casting direction near the meniscus A distribution in which the resistance increases or decreases periodically is formed. This forms a distribution in which the heat flux from the solidified shell in the vicinity of the meniscus, that is, in the initial stage of solidification, to the continuous casting mold periodically increases and decreases.
 この熱流束の周期的な増減により、δ鉄からγ鉄への変態(以下「δ/γ変態」と記す)によって凝固シェルに発生する応力や熱応力が低減し、これらの応力によって生じる凝固シェルの変形が小さくなる。凝固シェルの変形が小さくなることで、凝固シェルの変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなる。その結果、凝固シェル表面における表面割れの発生が抑制される。 Due to the periodic increase and decrease of the heat flux, the stress and thermal stress generated in the solidified shell due to the transformation from δ iron to γ iron (hereinafter referred to as “δ / γ transformation”) are reduced, and the solidified shell generated by these stresses The deformation of becomes smaller. By reducing the deformation of the solidified shell, the non-uniform heat flux distribution resulting from the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the amount of individual strain. As a result, the occurrence of surface cracks on the surface of the solidified shell is suppressed.
 尚、銅合金の熱伝導率λと、低熱伝導金属の熱伝導率λとの比較は、常温(約20℃)でのそれぞれの熱伝導率の比較で定義する。銅合金及び低熱伝導金属の熱伝導率は、一般的に、高温になるほど小さくなるが、常温での銅合金の熱伝導率λに対する常温での低熱伝導金属の熱伝導率λが80%以下であれば、連続鋳造用鋳型としての使用温度(200~350℃程度)であっても、低熱伝導金属充填部3を設置した部位の熱抵抗と、低熱伝導金属充填部3を設置していない部位の熱抵抗と、に差を生じさせることができる。 In addition, the comparison between the thermal conductivity λ c of the copper alloy and the thermal conductivity λ m of the low thermal conductive metal is defined by comparing the thermal conductivities at room temperature (about 20 ° C.). The thermal conductivity of the copper alloy and the low thermal conductive metal generally decreases as the temperature increases, but the thermal conductivity λ m of the low thermal conductive metal at room temperature is 80% of the thermal conductivity λ c of the copper alloy at normal temperature. In the following cases, even at the operating temperature (about 200 to 350 ° C.) as a casting mold for continuous casting, the thermal resistance of the portion where the low thermal conductive metal filling portion 3 is installed and the low thermal conductive metal filling portion 3 are installed. It is possible to make a difference in the thermal resistance of the part that is not present.
 本実施形態においては、凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する分布を形成させるために、換言すれば、低熱伝導金属充填部3を設置した部位の熱抵抗と、低熱伝導金属充填部3を設置していない部位の熱抵抗と、に明確な違いを生じさせるために、下記の(1)式によって定義される、低熱伝導金属充填部3と鋳型銅板との熱抵抗比Rが5%以上となるように、鋳型銅板の形状に応じて低熱伝導金属充填部3を設置する。ここで、低熱伝導金属充填部3と鋳型銅板との熱抵抗比Rは、(1)式に示すように、鋳型冷却水の流路となる鋳型銅板のスリット4の底面4aから鋳型銅板表面までの距離Tと、低熱伝導金属充填部3での低熱伝導金属の充填厚みHと、鋳型銅板の熱伝導率λと、低熱伝導金属の熱伝導率λとで定義される。 In this embodiment, in order to form a distribution in which the heat flux from the solidified shell to the continuous casting mold is periodically increased or decreased, in other words, the thermal resistance of the portion where the low thermal conductive metal filling portion 3 is installed, and the low heat In order to make a clear difference in the thermal resistance of the part where the conductive metal filling part 3 is not installed, the thermal resistance between the low thermal conductive metal filling part 3 and the mold copper plate defined by the following equation (1) The low heat conductive metal filling portion 3 is installed according to the shape of the casting copper plate so that the ratio R is 5% or more. Here, the thermal resistance ratio R between the low thermal conductive metal filling portion 3 and the mold copper plate is, as shown in the equation (1), from the bottom surface 4a of the slit 4 of the mold copper plate serving as the mold cooling water flow path to the mold copper plate surface. The distance T, the filling thickness H of the low thermal conductive metal in the low thermal conductive metal filling portion 3, the thermal conductivity λ c of the mold copper plate, and the thermal conductivity λ m of the low thermal conductive metal.
 R={(T-H)/(1000×λ)+H/(1000×λ)-T/(1000×λ)}/{T/(1000×λ)}×100・・・(1)
 但し、(1)式において、Rは、低熱伝導金属充填部と鋳型銅板との熱抵抗比(%)、Tは、鋳型冷却水の流路となる、鋳型銅板のスリットの底面から鋳型銅板表面までの距離(mm)、Hは、低熱伝導金属の充填厚み(mm)、λは、鋳型銅板の熱伝導率(W/(m×K))、λは低熱伝導金属の熱伝導率(W/(m×K))である。
R = {(TH) / (1000 × λ c ) + H / (1000 × λ m ) −T / (1000 × λ c )} / {T / (1000 × λ c )} × 100 (100) 1)
However, in the formula (1), R is the thermal resistance ratio (%) between the low thermal conductive metal filling part and the mold copper plate, and T is the mold copper plate surface from the bottom surface of the mold copper plate slit which becomes the flow path of the mold cooling water. Distance (mm), H is the filling thickness (mm) of the low thermal conductivity metal, λ c is the thermal conductivity of the mold copper plate (W / (m × K)), and λ m is the thermal conductivity of the low thermal conductivity metal (W / (m × K)).
 尚、熱抵抗比Rが100%よりも大きくなると、低熱伝導金属充填部3での凝固が著しく遅れることから、不均一凝固が助長されて、鋳片の表面割れやブレークアウトが発生する可能性があるので、熱抵抗比Rは100%以下とすることが好ましい。 If the thermal resistance ratio R is larger than 100%, solidification in the low heat conductive metal filling portion 3 is significantly delayed, and thus uneven solidification is promoted, and surface cracks and breakout of the slab may occur. Therefore, the thermal resistance ratio R is preferably 100% or less.
 初期凝固への影響を勘案すれば、低熱伝導金属充填部3の設置位置は、定常鋳造時の鋳片引き抜き速度Vcに応じて、下記の(2)式から算出される長さL以上メニスカスよりも下方の位置までとすることが好ましい。つまり、図1に示す、メニスカス位置からの長さLは、長さL以上とすることが好ましい。 Considering the influence on the initial solidification, the installation position of the low thermal conductive metal filling portion 3 is a meniscus having a length L 0 or more calculated from the following equation (2) according to the slab drawing speed Vc during steady casting. It is preferable to set it to a lower position. That is shown in FIG. 1, the length L from the meniscus position, it is preferable that the length L 0 or more.
 L=2×Vc×1000/60・・・(2)
 但し、(2)式において、Lは、長さ(mm)、Vcは、鋳片引き抜き速度(m/min)である。
L 0 = 2 × Vc × 1000/60 (2)
However, in the formula (2), L 0 is the length (mm), and Vc is the slab drawing speed (m / min).
 長さLは、凝固開始した後の鋳片が低熱伝導金属充填部3の設置された範囲を通過する時間に関係しており、鋳片の表面割れを抑制するためには、凝固開始後から少なくとも2秒間は、鋳片が低熱伝導金属充填部3の設置された範囲内に滞在することが好ましい。鋳片が凝固開始後から少なくとも2秒間は低熱伝導金属充填部3の設置された範囲に存在するためには、長さLは(2)式を満たすことが必要となる。 The length L 0 is related to the time during which the slab after the start of solidification passes through the range where the low heat conductive metal filling portion 3 is installed. It is preferable that the slab stays in the range where the low heat conductive metal filling portion 3 is installed for at least 2 seconds. In order for the slab to be present in the range where the low thermal conductive metal filling portion 3 is installed for at least 2 seconds after the start of solidification, the length L 0 needs to satisfy the formula (2).
 凝固開始した後の鋳片が低熱伝導金属充填部3の設置された範囲内に滞在する時間を2秒以上確保することで、低熱伝導金属充填部3による熱流束の周期的な変動の効果が十分に得られ、凝固シェルに表面割れの発生しやすい高速鋳造時や中炭素鋼の鋳造時に、鋳片の表面割れ抑制効果を高めることができる。低熱伝導金属充填部3による熱流束の周期的な変動の効果を安定して得るには、鋳片が低熱伝導金属充填部3の設置された範囲を通過する時間を4秒以上確保することが、より好ましい。一方、長さLに上限を定める必要はないが、低熱伝導金属充填部3を設置するための鋳型銅板表面の凹溝加工費用と鍍金処理費用または溶射処理費用とを抑える観点から、長さLの5倍以内とすることが好ましい。 By securing the time for the cast slab after the start of solidification to stay in the range where the low thermal conductive metal filling part 3 is installed for 2 seconds or more, the effect of the periodic fluctuation of the heat flux by the low thermal conductive metal filling part 3 is obtained. The effect of suppressing the surface cracking of the slab can be enhanced at the time of high speed casting which is sufficiently obtained and the surface crack is likely to occur in the solidified shell, or during the casting of medium carbon steel. In order to stably obtain the effect of periodic fluctuation of the heat flux by the low heat conductive metal filling part 3, it is necessary to secure a time for the slab to pass through the range where the low heat conductive metal filling part 3 is installed for 4 seconds or more. More preferable. On the other hand, although it is not necessary to set an upper limit for the length L, the length L is selected from the viewpoint of suppressing the groove processing cost and the plating processing cost or the thermal spraying processing cost on the surface of the mold copper plate for installing the low thermal conductive metal filling portion 3. It is preferably within 5 times 0 .
 一方、低熱伝導金属充填部3の上端部の位置は、メニスカス位置よりも上方であればどこの位置であっても構わず、したがって、図1に示す長さQは、ゼロを超えた任意の値であればよい。但し、鋳造中にメニスカスは上下方向に変動するので、低熱伝導金属充填部3の上端部が常にメニスカスよりも上方位置となるように、低熱伝導金属充填部3の上端部を設定されるメニスカスよりも10mm程度上方位置とすることが好ましく、更に、低熱伝導金属充填部3の上端部を設定されるメニスカスよりも20mm~50mm程度上方位置とすることがより好ましい。 On the other hand, the position of the upper end portion of the low thermal conductive metal filling portion 3 may be any position as long as it is above the meniscus position. Therefore, the length Q shown in FIG. Any value is acceptable. However, since the meniscus fluctuates in the vertical direction during casting, the upper end portion of the low heat conductive metal filling portion 3 is set to the upper position of the meniscus so that the upper end portion of the low heat conductive metal filling portion 3 is always positioned above the meniscus. Is preferably about 10 mm above, and more preferably about 20 mm to 50 mm above the set meniscus at the upper end of the low heat conductive metal filling portion 3.
 図1及び図2では、低熱伝導金属充填部3の鋳型長辺銅板1の内壁面における開口形状が円形である例を示したが、開口形状は円形に限られない。例えば楕円形のような、所謂「角」を有していない、円形に近い形状であれば、どのような形状であってもよい。以下、円形に近いものを「擬似円形」と称する。低熱伝導金属充填部3の開口形状が擬似円形の場合には、低熱伝導金属充填部3を形成させるために鋳型長辺銅板1の内壁面に加工される凹溝2を「擬似円形凹溝」と称する。擬似円形とは、例えば楕円形や、角部を円や楕円とする長方形などの角部を有していない形状であり、更には、花びら模様のような形状であってもよい。擬似円形の大きさは、擬似円形の鋳型長辺銅板1の内壁面における開口面積から求められる円相当径で評価する。 1 and FIG. 2 show an example in which the opening shape in the inner wall surface of the long-side copper plate 1 of the low thermal conductive metal filling portion 3 is circular, but the opening shape is not limited to a circle. For example, any shape may be used as long as it does not have a so-called “corner” such as an ellipse and has a shape close to a circle. Hereinafter, a shape close to a circle is referred to as a “pseudo circle”. When the opening shape of the low thermal conductive metal filling portion 3 is a pseudo circle, the concave groove 2 processed on the inner wall surface of the long copper plate 1 for forming the low thermal conductivity metal filling portion 3 is referred to as a “pseudo circular groove”. Called. The pseudo circle is, for example, an ellipse or a shape having no corners such as a rectangle whose corners are circles or ellipses, and may be a petal pattern. The size of the pseudo circle is evaluated by a circle-equivalent diameter obtained from the opening area on the inner wall surface of the pseudo circular long-side copper plate 1.
 特許文献4及び特許文献5のように、縦溝或いは格子溝を施し、この溝に低熱伝導金属を充填した場合には、低熱伝導金属と銅との境界面及び格子部の直交部において、低熱伝導金属と銅との熱歪差による応力が集中し、鋳型銅板表面に割れが発生するという問題が起こる。これに対して、本実施形態に係る連続鋳造用鋳型は、低熱伝導金属充填部3の形状を円形または擬似円形にしている。これにより、低熱伝導金属と銅との境界面は曲面状となるので、境界面で応力が集中しにくく、鋳型銅板表面に割れが発生しにくいという利点が発現する。 When Patent Document 4 and Patent Document 5 are provided with a longitudinal groove or a lattice groove and filled with a low heat conductive metal, the low heat conductivity is reduced at the boundary surface between the low heat conductive metal and copper and the orthogonal portion of the lattice portion. The stress due to the thermal strain difference between the conductive metal and copper concentrates, causing a problem of cracking on the mold copper plate surface. In contrast, in the continuous casting mold according to the present embodiment, the shape of the low thermal conductive metal filling portion 3 is circular or pseudo-circular. As a result, the boundary surface between the low thermal conductive metal and copper becomes a curved surface, so that the stress is less likely to concentrate on the boundary surface and the advantage that cracks are unlikely to occur on the surface of the mold copper plate is manifested.
 低熱伝導金属充填部3の直径d及び円相当径dは、2~20mmであることが好ましい。低熱伝導金属充填部3の直径d及び円相当径dを2mm以上とすることで、低熱伝導金属充填部3における熱流束の低下が十分となり、鋳片の表面割れ抑制効果を高めることができる。また、2mm以上とすることで、低熱伝導金属を鍍金処理や溶射処理によって円形または擬似円形の凹溝2の内部に充填することが容易となる。一方、低熱伝導金属充填部3の直径d及び円相当径dを20mm以下とすることで、低熱伝導金属充填部3における熱流束の低下が抑制され、つまり、低熱伝導金属充填部3での凝固遅れが抑制されて、その位置での凝固シェルへの応力集中が防止され、凝固シェルでの表面割れ発生を抑制できる。即ち、直径d及び円相当径dが20mmを超えると凝固シェルでの表面割れが増加する傾向があることから、低熱伝導金属充填部3の直径d及び円相当径dは20mm以下にすることが好ましい。尚、低熱伝導金属充填部3の形状が擬似円形の場合は、この擬似円形の円相当径dは下記の(5)式で算出される。 The diameter d and equivalent circle diameter d of the low thermal conductive metal filling part 3 are preferably 2 to 20 mm. By setting the diameter d and the equivalent circle diameter d of the low heat conductive metal filling portion 3 to 2 mm or more, the heat flux in the low heat conductive metal filling portion 3 is sufficiently lowered, and the effect of suppressing the surface cracking of the slab can be enhanced. Moreover, by setting it as 2 mm or more, it becomes easy to fill the inside of the circular or pseudo-circular concave groove 2 with a low heat conductive metal by a plating process or a thermal spraying process. On the other hand, by setting the diameter d and the equivalent circle diameter d of the low heat conductive metal filling portion 3 to 20 mm or less, a decrease in heat flux in the low heat conductive metal filling portion 3 is suppressed, that is, solidification in the low heat conductive metal filling portion 3. The delay is suppressed, stress concentration on the solidified shell at that position is prevented, and the occurrence of surface cracks in the solidified shell can be suppressed. That is, when the diameter d and the equivalent circle diameter d exceed 20 mm, surface cracks in the solidified shell tend to increase. Therefore, the diameter d and equivalent circle diameter d of the low thermal conductive metal filling portion 3 should be 20 mm or less. preferable. When the shape of the low thermal conductive metal filling portion 3 is a pseudo circle, the equivalent circle diameter d of the pseudo circle is calculated by the following equation (5).
 円相当径=(4×S/π)1/2・・・(5)
 但し、(5)式において、Sは、低熱伝導金属充填部3の鋳型銅板の内壁面における開口面積(mm)である。
Equivalent circle diameter = (4 × S / π) 1/2 (5)
However, in Formula (5), S is an opening area (mm < 2 >) in the inner wall face of the casting copper plate of the low heat conductive metal filling part 3. FIG.
 円形凹溝及び擬似円形凹溝に充填して使用する低熱伝導金属の熱伝導率λは、鋳型銅板を構成する銅合金の熱伝導率λに対して80%以下である必要がある。銅合金の熱伝導率に対して80%以下の低熱伝導金属を使用することで、低熱伝導金属充填部3による熱流束の周期的な変動の効果が十分となり、鋳片に表面割れの発生しやすい高速鋳造時や中炭素鋼の鋳造時においても、鋳片の表面割れ抑制効果が十分に得られる。 The thermal conductivity λ m of the low thermal conductive metal used by filling the circular concave groove and the pseudo circular concave groove needs to be 80% or less with respect to the thermal conductivity λ c of the copper alloy constituting the mold copper plate. By using a low thermal conductivity metal of 80% or less with respect to the thermal conductivity of the copper alloy, the effect of periodic fluctuations in the heat flux due to the low thermal conductivity metal filling portion 3 is sufficient, and surface cracks occur in the slab. Even during easy high-speed casting and medium carbon steel casting, the effect of suppressing the surface cracking of the slab is sufficiently obtained.
 本実施形態に係る連続鋳造用鋳型において使用する低熱伝導金属としては、鍍金処理や溶射処理によって容易に充填することができることから、ニッケル(Ni、熱伝導率;90.5W/(m×K))、ニッケル系合金、クロム(Cr、熱伝導率;67W/(m×K))、コバルト(Co、熱伝導率;70W/(m×K))などが好適である。尚、本明細書に記載する熱伝導率の数値は、常温(約20℃)における熱伝導率である。 The low thermal conductive metal used in the continuous casting mold according to this embodiment can be easily filled by plating or thermal spraying, so nickel (Ni, thermal conductivity: 90.5 W / (m × K) ), Nickel-based alloy, chromium (Cr, thermal conductivity; 67 W / (m × K)), cobalt (Co, thermal conductivity: 70 W / (m × K)), and the like are preferable. In addition, the numerical value of the thermal conductivity described in this specification is the thermal conductivity at normal temperature (about 20 ° C.).
 また、鋳型銅板として使用する銅合金としては、一般的に連続鋳造用鋳型として使用されている、クロムやジルコニウム(Zr)などを微量添加した銅合金を用いればよい。近年では、鋳型内の凝固の均一化または溶鋼中介在物の凝固シェルへの捕捉を防止するために、連続鋳造用鋳型には、鋳型内の溶鋼を攪拌する電磁攪拌装置が設置されていることが一般的である。この場合は、電磁コイルから溶鋼への磁場強度の減衰を抑制するために、導電率を低減した銅合金が用いられている。銅合金は、その導電率の低下に応じて熱伝導率も低減し、したがって、近年では、純銅の1/2前後の熱伝導率の銅合金製の鋳型銅板も使用されている。このような連続鋳造用鋳型では、鋳型銅板と低熱伝導金属との熱伝導率差が小さくなるが、上記の(1)式に示す熱抵抗比Rを5%以上とすることで、鋳片の表面割れ低減効果が発揮される。 Further, as a copper alloy used as a mold copper plate, a copper alloy to which chromium or zirconium (Zr) is added in a small amount, which is generally used as a casting mold for continuous casting, may be used. In recent years, an electromagnetic stirrer that stirs molten steel in the mold has been installed in the continuous casting mold in order to homogenize the solidification in the mold or prevent the inclusion of inclusions in the molten steel in the solidified shell. Is common. In this case, in order to suppress the attenuation of the magnetic field strength from the electromagnetic coil to the molten steel, a copper alloy with reduced conductivity is used. The copper alloy has a reduced thermal conductivity in accordance with a decrease in its conductivity. Therefore, in recent years, a copper alloy mold copper plate having a thermal conductivity of about 1/2 that of pure copper is also used. In such a continuous casting mold, the difference in thermal conductivity between the mold copper plate and the low thermal conductive metal is small, but by setting the thermal resistance ratio R shown in the above formula (1) to 5% or more, The effect of reducing surface cracks is exhibited.
 低熱伝導金属充填部3の充填厚みHは0.5mm以上とすることが好ましい。充填厚みHを0.5mm以上とすることで、低熱伝導金属充填部3における熱流束の低下が十分となり、鋳片の表面割れ抑制効果を得ることができる。 The filling thickness H of the low thermal conductive metal filling portion 3 is preferably 0.5 mm or more. By setting the filling thickness H to 0.5 mm or more, the heat flux in the low heat conductive metal filling portion 3 is sufficiently lowered, and the effect of suppressing the surface cracking of the slab can be obtained.
 また、低熱伝導金属充填部3の充填厚みHは、低熱伝導金属充填部3の直径d以下及び円相当径d以下にすることが好ましい。充填厚みHを低熱伝導金属充填部3の直径d及び円相当径dと同等、またはそれらよりも小さくするので、鍍金処理や溶射処理による凹溝2への低熱伝導金属の充填が容易となり、且つ、充填した低熱伝導金属と鋳型銅板との間に隙間や割れが生じることもない。低熱伝導金属と鋳型銅板との間に隙間や割れが生じた場合には、充填した低熱伝導金属の亀裂や剥離が生じ、鋳型寿命の低下、鋳片の割れ、更には拘束性ブレークアウトの原因となる。 Further, the filling thickness H of the low thermal conductive metal filling portion 3 is preferably set to a diameter d or less and an equivalent circle diameter d or less of the low thermal conduction metal filling portion 3. Since the filling thickness H is equal to or smaller than the diameter d and equivalent circle diameter d of the low thermal conductive metal filling portion 3, the filling of the low thermal conductive metal into the concave groove 2 by the plating process or the thermal spraying process is facilitated, and No gaps or cracks occur between the filled low thermal conductivity metal and the mold copper plate. If gaps or cracks occur between the low thermal conductivity metal and the mold copper plate, the filled low thermal conductivity metal will crack or peel off, resulting in reduced mold life, cracking of the slab, or even a restrictive breakout. It becomes.
 低熱伝導金属充填部同士の間隔Pは、低熱伝導金属充填部3の直径d及び円相当径dの0.25倍以上であることが好ましい。即ち、低熱伝導金属充填部同士の間隔Pは低熱伝導金属充填部3の直径dまたは円相当径dに対して下記の(3)式の関係を満足することが好ましい。 It is preferable that the space | interval P between low heat conductive metal filling parts is 0.25 times or more of the diameter d of the low heat conductive metal filling part 3, and the equivalent circle diameter d. That is, it is preferable that the interval P between the low thermal conductive metal filling portions satisfies the relationship of the following expression (3) with respect to the diameter d or equivalent circle diameter d of the low thermal conductive metal filling portion 3.
 P≧0.25×d・・・(3)
 但し、(3)式において、Pは、低熱伝導金属充填部同士の間隔(mm)、dは、低熱伝導金属充填部の直径(mm)または円相当径(mm)である。
P ≧ 0.25 × d (3)
However, in Formula (3), P is a space | interval (mm) between low heat conductive metal filling parts, and d is a diameter (mm) or a circle equivalent diameter (mm) of a low heat conductive metal filling part.
 ここで、低熱伝導金属充填部同士の間隔Pとは、図1に示すように、隣り合う低熱伝導金属充填部3の端部間の最短距離である。低熱伝導金属充填部同士の間隔Pを「0.25×d」以上とすることで、低熱伝導金属充填部同士の間隔が十分に大きく、低熱伝導金属充填部3における熱流束と銅合金部(低熱伝導金属充填部3が形成されていない部位)の熱流束との差が大きくなり、鋳片の表面割れ抑制効果を得ることができる。低熱伝導金属充填部同士の間隔Pの上限値は、特に定めなくてよいが、間隔Pが大きくなると、低熱伝導金属充填部3の面積率が低下するので、「2.0×d」以下にすることが好ましい。 Here, the interval P between the low thermal conductive metal filling portions is the shortest distance between the ends of the adjacent low thermal conductive metal filling portions 3 as shown in FIG. By setting the interval P between the low thermal conductive metal filling portions to “0.25 × d” or more, the interval between the low thermal conductive metal filling portions is sufficiently large, and the heat flux and the copper alloy portion ( The difference from the heat flux of the portion where the low heat conductive metal filling portion 3 is not formed becomes large, and the effect of suppressing the surface cracking of the slab can be obtained. The upper limit value of the interval P between the low thermal conductive metal filling portions may not be determined. However, when the interval P is increased, the area ratio of the low thermal conductive metal filling portion 3 is decreased. It is preferable to do.
 低熱伝導金属充填部3の配列は、図1に示すような千鳥配列が好ましいが、千鳥配列に限らず、低熱伝導金属充填部同士の上記間隔Pを満たす配列であれば、どのような配列でもよい。 The arrangement of the low heat conductive metal filling portions 3 is preferably a staggered arrangement as shown in FIG. 1, but is not limited to the staggered arrangement, and any arrangement is acceptable as long as the arrangement satisfies the interval P between the low heat conductive metal filling portions. Good.
 低熱伝導金属充填部3が形成された範囲内の鋳型銅板内壁面の面積A(mm)に対する、全ての低熱伝導金属充填部3の面積の総和B(mm)の比である面積率S(S=(B/A)×100)は、10%以上であることが好ましい。面積率Sを10%以上確保することで、熱流束の小さい低熱伝導金属充填部3の占める面積が確保され、低熱伝導金属充填部3と銅合金部とで熱流束差が得られ、鋳片の表面割れ抑制効果を安定して得ることができる。尚、低熱伝導金属充填部3の占める面積率Sの上限は特に定めなくてもよいが、前述したように、低熱伝導金属充填部同士の間隔Pを「0.25×d」以上とすることが好ましいことから、「P=0.25×d」の条件を最大の面積率Sと考えればよい。 Area ratio S which is the ratio of the total area B (mm 2 ) of the areas of all the low thermal conductive metal filling portions 3 to the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low thermal conductive metal filling portions 3 are formed. (S = (B / A) × 100) is preferably 10% or more. By securing the area ratio S of 10% or more, the area occupied by the low heat conduction metal filling portion 3 having a small heat flux is secured, and a heat flux difference is obtained between the low heat conduction metal filling portion 3 and the copper alloy portion. The effect of suppressing surface cracking can be stably obtained. The upper limit of the area ratio S occupied by the low thermal conductive metal filling portion 3 may not be set, but as described above, the interval P between the low thermal conductive metal filling portions is set to “0.25 × d” or more. Therefore, the condition “P = 0.25 × d” may be considered as the maximum area ratio S.
 また、低熱伝導金属充填部3が形成された範囲内の鋳型銅板内壁面の面積A(mm)に対する、全ての低熱伝導金属充填部3と鋳型銅板との境界長さの総和C(mm)の比ε(ε=C/A)は、下記の(4)式を満足することが好ましい。 Further, the sum C (mm) of the boundary lengths of all the low heat conductive metal filling portions 3 and the mold copper plate with respect to the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low heat conductive metal filling portion 3 is formed. It is preferable that the ratio ε (ε = C / A) satisfies the following formula (4).
 0.07≦ε≦0.60・・・(4)
 比εの鋳片表面割れに及ぼす影響を調査した結果、比εが(4)式の範囲外の場合には、表面割れの低減効果が少なかった。比εは、低熱伝導金属充填部3の直径dまたは円相当径d及び低熱伝導金属充填部3の個数に依存して変化する。
0.07 ≦ ε ≦ 0.60 (4)
As a result of investigating the influence of the ratio ε on the slab surface crack, when the ratio ε was outside the range of the formula (4), the effect of reducing the surface crack was small. The ratio ε varies depending on the diameter d or equivalent circle diameter d of the low heat conductive metal filling portion 3 and the number of low heat conductive metal filling portions 3.
 比εが0.07未満のときは、低熱伝導金属充填部3の個数が少なく、δ/γ変態時の体積収縮や熱収縮により生じた応力がシェル全体に均一に分散されにくくなるので、鋳片表面割れの抑制効果が低減する。一方、比εが0.60よりも大きいときは、低熱伝導金属充填部3の個数が多すぎる結果、熱流束の周期的な増減が目的とする水準に達せず、鋳片表面割れの抑制効果が低減する。また、比εが0.60よりも大きい場合には、鋳型直下での鋳片バルジングも認められた。 When the ratio ε is less than 0.07, the number of the low thermal conductive metal filling portions 3 is small, and the stress caused by volume shrinkage or heat shrinkage during the δ / γ transformation is difficult to be uniformly dispersed throughout the shell. The effect of suppressing cracking on one surface is reduced. On the other hand, when the ratio ε is larger than 0.60, the number of the low heat conductive metal filling portions 3 is too large. As a result, the periodic increase / decrease in the heat flux does not reach the target level, and the effect of suppressing the slab surface cracking is achieved. Is reduced. Further, when the ratio ε was larger than 0.60, slab bulging was also observed directly under the mold.
 低熱伝導金属充填部3は、連続鋳造用鋳型の長辺鋳型銅板と短辺鋳型銅板の双方に設置することを基本とするが、スラブ鋳片のように鋳片短辺長さに対して鋳片長辺長さが著しく大きい場合には、鋳片の長辺側に表面割れが発生する傾向があり、低熱伝導金属充填部3を長辺鋳型銅板のみに設置しても、鋳片の表面割れ抑制効果を得ることができる。 The low heat conductive metal filling portion 3 is basically installed on both the long side mold copper plate and the short side mold copper plate of the casting mold for continuous casting. When the long side length of the slab is remarkably large, surface cracks tend to occur on the long side of the slab, and even if the low thermal conductive metal filling portion 3 is installed only on the long side mold copper plate, the slab surface cracks An inhibitory effect can be obtained.
 また、図4に示すように、低熱伝導金属充填部3を形成させた鋳型銅板の内壁面に、凝固シェルによる磨耗や熱履歴による鋳型表面の割れを防止することを目的として、鍍金層6を設けることが好ましい。この鍍金層6は、一般的に用いられるニッケルまたはニッケルを含有する合金、例えば、ニッケル-コバルト合金(Ni-Co合金)やニッケル-クロム合金(Ni-Cr合金)などを鍍金処理することで得られる。鍍金層6の厚みhは2.0mm以下とすることが好ましい。鍍金層6の厚みhを2.0mm以下にすることで、熱流束に及ぼす鍍金層6の影響を少なくすることができ、低熱伝導金属充填部3による熱流束の周期的な変動の効果を十分に得ることができる。但し、鍍金層6の厚みhが低熱伝導金属充填部3の充填厚みHの0.5倍よりも大きくなると、低熱伝導金属充填部3による周期的な熱流束分布の差の形成が抑制されるので、鍍金層6の厚みhは、低熱伝導金属充填部3の充填厚みHの0.5倍以下とすることが好ましい。この条件を満たしている限り、鍍金層6は鋳型上端から下端まで同一の厚みであっても、上端から下端にかけて厚みが異なっていてもよい。図4は、鋳型長辺銅板の内壁面に鋳型表面の保護のための鍍金層を設けた例を示す概略図である。 Further, as shown in FIG. 4, a plating layer 6 is formed on the inner wall surface of the mold copper plate on which the low thermal conductive metal filling portion 3 is formed for the purpose of preventing wear due to the solidified shell and cracking of the mold surface due to thermal history. It is preferable to provide it. The plating layer 6 is obtained by plating a commonly used nickel or nickel-containing alloy such as a nickel-cobalt alloy (Ni-Co alloy) or a nickel-chromium alloy (Ni-Cr alloy). It is done. The thickness h of the plating layer 6 is preferably 2.0 mm or less. By setting the thickness h of the plating layer 6 to 2.0 mm or less, the influence of the plating layer 6 on the heat flux can be reduced, and the effect of the periodic fluctuation of the heat flux by the low heat conductive metal filling portion 3 is sufficient. Can get to. However, when the thickness h of the plating layer 6 is greater than 0.5 times the filling thickness H of the low thermal conductive metal filling portion 3, the formation of a periodic heat flux distribution difference by the low thermal conductive metal filling portion 3 is suppressed. Therefore, the thickness h of the plating layer 6 is preferably 0.5 times or less the filling thickness H of the low thermal conductive metal filling portion 3. As long as this condition is satisfied, the plating layer 6 may have the same thickness from the upper end to the lower end of the mold or may have a different thickness from the upper end to the lower end. FIG. 4 is a schematic view showing an example in which a plating layer for protecting the mold surface is provided on the inner wall surface of the long-side copper plate of the mold.
 このように構成される連続鋳造用鋳型は、特に、表面割れ感受性が高い、炭素含有量が0.08~0.17質量%の中炭素鋼のスラブ鋳片(厚み;200mm以上)を連続鋳造する際に使用することが好ましい。従来、中炭素鋼のスラブ鋳片を連続鋳造する場合は、鋳片の表面割れを抑制するために、鋳片引き抜き速度を低速化することが一般的であるが、上記構成の連続鋳造用鋳型を使用することで鋳片表面割れが抑制できるので、1.5m/min以上の鋳片引き抜き速度であっても、表面割れのない、または表面割れの著しく少ない鋳片を連続鋳造することが実現される。 The continuous casting mold configured in this way is particularly continuous casting of slab slabs (thickness: 200 mm or more) of medium carbon steel having a high surface cracking sensitivity and a carbon content of 0.08 to 0.17% by mass. It is preferable to use it. Conventionally, when continuously casting a slab slab of medium carbon steel, it is common to reduce the slab drawing speed in order to suppress surface cracking of the slab. Because it is possible to suppress slab surface cracks by using, it is possible to continuously cast slabs with no surface cracks or very few surface cracks even at slab drawing speeds of 1.5 m / min or more. Is done.
 以上説明したように、本実施形態に係る連続鋳造用鋳型は、(1)式で定義される熱抵抗比Rが5%以上である複数個の低熱伝導金属充填部3がメニスカス位置を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設置されている。これにより、連続鋳造用鋳型のメニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減し、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する。この熱流束の周期的な増減により、δ/γ変態による応力や熱応力が低減し、これらの応力によって生じる凝固シェルの変形が小さくなる。凝固シェルの変形が小さくなることで、凝固シェルの変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなり、凝固シェル表面における割れの発生が抑制される。 As described above, in the continuous casting mold according to the present embodiment, the plurality of low thermal conductive metal filling portions 3 having the thermal resistance ratio R defined by the equation (1) of 5% or more include the meniscus position. It is installed in the width direction and casting direction of the continuous casting mold near the meniscus. As a result, the thermal resistance of the continuous casting mold in the mold width direction and in the casting direction near the meniscus of the continuous casting mold periodically increases and decreases, and the heat flux from the solidified shell to the continuous casting mold in the initial stage of solidification periodically Increase or decrease. Due to the periodic increase / decrease of the heat flux, stress and thermal stress due to δ / γ transformation are reduced, and deformation of the solidified shell caused by these stresses is reduced. By reducing the deformation of the solidified shell, the non-uniform heat flux distribution due to the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the amount of individual strains. Is suppressed.
 尚、図1では、同一形状の低熱伝導金属充填部3を鋳造方向または鋳型幅方向に設置した例を示したが、低熱伝導金属充填部3の形状は、同一でなくてもよい。低熱伝導金属充填部3の直径dまたは円相当径dが2~20mmの範囲内であれば、直径の異なる低熱伝導金属充填部3を鋳造方向または鋳型幅方向に設置してもよい。但し、低熱伝導金属充填部3の直径dまたは円相当径dが場所によって大幅に異なると、低熱伝導金属充填部3の面積率が局所的に高い領域で凝固が遅れ、その位置で鋳片に表面割れが発生する危惧があるので、単一の直径または円相当径とすることが好ましい。 In addition, in FIG. 1, although the example which installed the low heat conductive metal filling part 3 of the same shape in the casting direction or the mold width direction was shown, the shape of the low heat conductive metal filling part 3 may not be the same. If the diameter d or equivalent circle diameter d of the low heat conductive metal filling portion 3 is in the range of 2 to 20 mm, the low heat conductive metal filling portions 3 having different diameters may be installed in the casting direction or the mold width direction. However, if the diameter d or equivalent circle diameter d of the low heat conductive metal filling portion 3 varies greatly depending on the location, solidification is delayed in a region where the area ratio of the low heat conductive metal filling portion 3 is locally high, and the slab is placed at that position. Since there is a risk of surface cracking, it is preferable to use a single diameter or equivalent circle diameter.
 また、図2では、充填厚みHが同一の低熱伝導金属充填部3を鋳造方向に設置した例を示したが、鋳型幅方向または鋳片幅方向に設置する低熱伝導金属充填部3の充填厚みHは、同一としなくてよく、個々の低熱伝導金属充填部3で充填厚みHが異なっていてもよい。但し、何れの低熱伝導金属充填部3の充填厚みHも0.5mm以上であることが好ましい。 2 shows an example in which the low thermal conductive metal filling portion 3 having the same filling thickness H is installed in the casting direction, the filling thickness of the low thermal conductive metal filling portion 3 installed in the mold width direction or the slab width direction is shown. The H may not be the same, and the filling thickness H may be different in each low heat conductive metal filling portion 3. However, it is preferable that the filling thickness H of any low thermal conductive metal filling portion 3 is 0.5 mm or more.
 更に、図1では、鋳造方向または鋳型幅方向に同一間隔で低熱伝導金属充填部3を設置した例を示したが、低熱伝導金属充填部3を設置する間隔は同一でなくともよい。但し、この場合も、低熱伝導金属充填部同士の間隔Pは(3)式の関係を満足することが好ましい。 Furthermore, although the example which installed the low heat conductive metal filling part 3 by the same space | interval in the casting direction or the mold width direction was shown in FIG. 1, the space | interval which installs the low heat conductive metal filling part 3 does not need to be the same. However, also in this case, it is preferable that the interval P between the low thermal conductive metal filling portions satisfies the relationship of the expression (3).
 また、上記説明はスラブ鋳片用の連続鋳造用鋳型に関して行ったが、本実施形態に係る連続鋳造用鋳型はスラブ鋳片用の連続鋳造用鋳型に限定されるものではなく、ブルーム鋳片用やビレット鋳片用の連続鋳造用鋳型においても上記に沿って適用することができる。 In addition, the above description has been made with respect to a continuous casting mold for a slab slab. However, the continuous casting mold according to the present embodiment is not limited to a continuous casting mold for a slab slab, but for a bloom slab. The present invention can also be applied to continuous casting molds for billets and billets.
 C;0.05~0.25質量%、Si;0.10~0.35質量%、Mn;0.70~1.30質量%、P;0.010~0.030質量%、S;0.002~0.006質量%、Al;0.02~0.05質量%を含有する溶鋼を、銅合金製の鋳型長辺銅板の内壁面及び銅合金製の鋳型短辺銅板の内壁面に、種々の条件で低熱伝導金属充填部が設置された水冷式銅合金製連続鋳造用鋳型を用いて、鋳片長辺幅が1500~2450mm、鋳片短辺厚みが220mmのスラブ鋳片に連続鋳造し、鋳造後の鋳片の表面割れを調査する試験を行った。 C; 0.05 to 0.25% by mass, Si; 0.10 to 0.35% by mass, Mn; 0.70 to 1.30% by mass, P; 0.010 to 0.030% by mass, S; Molten steel containing 0.002 to 0.006% by mass, Al; 0.02 to 0.05% by mass, an inner wall surface of a copper alloy long mold copper plate and an inner wall surface of a copper alloy short mold copper plate In addition, using a water-cooled copper alloy continuous casting mold in which a low heat conductive metal filling portion is installed under various conditions, continuous slab slabs with a slab long side width of 1500 to 2450 mm and a slab short side thickness of 220 mm are used. The test which investigated the surface crack of the cast slab after casting was performed.
 使用した水冷式銅合金製連続鋳造用鋳型の上端から下端までの長さは950mmであり、定常鋳造時のメニスカス(鋳型内溶鋼湯面)の位置は、鋳型上端から100mm下方位置に設定した。鋳型上端から60mm下方の位置から、設定したメニスカス位置から長さL(mm)下方の位置までの範囲の鋳型銅板内壁面に円形凹溝の加工を施し、その後、電気鍍金処理によって円形凹溝に低熱伝導金属を充填させた。電気鍍金処理を施した後、表面研削を行って円形凹溝以外の部位に付着した低熱伝導金属を除去し、再度、電気鍍金処理を施す工程を複数回繰り返して低熱伝導金属を円形凹溝に完全に充填させ、低熱伝導金属充填部を形成した。この場合、低熱伝導金属充填部とその周囲の銅合金部(低熱伝導金属充填部が形成されていない部位)とは段差のない平滑面に形成した。その後、鋳型銅板内壁面の全面にNi-Co合金を鍍金して、鋳型上端での厚み0.2mm、鋳型下端での厚み2.0mmの鍍金層を施工した。 The length from the upper end to the lower end of the water-cooled copper alloy continuous casting mold used was 950 mm, and the position of the meniscus (molten steel surface in the mold) during steady casting was set at a position 100 mm below the upper end of the mold. A circular concave groove is processed on the inner surface of the mold copper plate in a range from a position 60 mm below the upper end of the mold to a position below the set meniscus position and a length L (mm) below, and then the circular concave groove is formed by electroplating. Filled with low thermal conductivity metal. After the electroplating treatment, surface grinding is performed to remove the low heat conductive metal adhering to the portion other than the circular groove, and the process of electroplating is repeated a plurality of times to make the low heat conductive metal into the circular groove. Completely filled to form a low thermal conductive metal filling. In this case, the low thermal conductive metal filling portion and the surrounding copper alloy portion (portions where the low thermal conductive metal filling portion is not formed) were formed on a smooth surface having no step. Thereafter, a Ni—Co alloy was plated on the entire inner wall surface of the mold copper plate, and a plating layer having a thickness of 0.2 mm at the upper end of the mold and a thickness of 2.0 mm at the lower end of the mold was applied.
 鋳型銅板としては、熱伝導率が298.5W/(m×K)及び120.0W/(m×K)である、熱伝導率の異なる2種類の銅合金を用い、充填用の低熱伝導金属(以下、「充填金属」とも記す)としては、純ニッケル(熱伝導率;90.5W/(m×K))、純コバルト(熱伝導率;70W/(m×K))、純クロム(熱伝導率;67W/(m×K))、純銅(熱伝導率;398W/(m×K))を使用した。 As the mold copper plate, two types of copper alloys having different thermal conductivities with thermal conductivities of 298.5 W / (m × K) and 120.0 W / (m × K) are used, and a low thermal conductive metal for filling (Hereinafter also referred to as “filling metal”) include pure nickel (thermal conductivity: 90.5 W / (m × K)), pure cobalt (thermal conductivity: 70 W / (m × K)), pure chromium ( Thermal conductivity: 67 W / (m × K)) and pure copper (thermal conductivity: 398 W / (m × K)) were used.
 連続鋳造操業においては、モールドパウダーとして、塩基度((質量%CaO)/(質量%SiO))が1.0~1.5で、1300℃における粘度が0.05~0.20Pa・sのモールドパウダーを使用した。連続鋳造終了後、鋳片表面の割れ発生状況を染色浸透探傷検査によって調査した。浸透探傷検査によって検出した2mm以上の長さの表面割れの個数を測定し、その総和を、表面割れを調査した鋳片の鋳造方向長さ(m)で除した値(個/m)を表面割れ指数として定義し、この表面割れ指数を用いて表面割れの発生状況を評価した。 In the continuous casting operation, the basicity ((mass% CaO) / (mass% SiO 2 )) is 1.0 to 1.5 and the viscosity at 1300 ° C. is 0.05 to 0.20 Pa · s as the mold powder. The mold powder was used. After continuous casting was completed, the state of cracking on the surface of the slab was investigated by dye penetration testing. The number of surface cracks with a length of 2 mm or more detected by penetrant flaw detection was measured, and the value (pieces / m) obtained by dividing the sum by the casting direction length (m) of the slab where surface cracks were investigated It was defined as a crack index, and the occurrence of surface cracks was evaluated using this surface crack index.
 表1に、試験No.1~26の鋳型施工条件及び鋳片表面検査結果を示し、また、表2に、試験No.27~48の鋳型施工条件及び鋳片表面検査結果を示す。尚、表1及び表2の備考欄には、本発明の範囲内の水冷式銅合金製連続鋳造用鋳型を使用した試験を本発明例、低熱伝導金属充填部を有するものの本発明の範囲を満足しない水冷式銅合金製連続鋳造用鋳型を使用した試験を比較例、低熱伝導金属充填部を有していない水冷式銅合金製連続鋳造用鋳型を使用した試験を従来例と表示している。 Table 1 shows the mold construction conditions and slab surface inspection results of tests No. 1 to 26, and Table 2 shows the mold construction conditions and slab surface inspection results of tests No. 27 to 48. In addition, in the remarks column of Table 1 and Table 2, the test using the water-cooled copper alloy continuous casting mold within the scope of the present invention is the present invention example, and the scope of the present invention has a low heat conductive metal filling part. A test using a mold for continuous casting made of water-cooled copper alloy which is not satisfied is shown as a comparative example, and a test using a mold for continuous casting made of water-cooled copper alloy which does not have a low heat conductive metal filling part is shown as a conventional example. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試験No.1~8は、鋳型銅板の熱伝導率λに対する充填金属の熱伝導率λの鋳片表面割れに及ぼす影響を調査した試験である。図5に、試験No.1~8の試験結果を示すように、充填金属の熱伝導率λが鋳型銅板の熱伝導率λの80%以下の範囲で、鋳片の表面割れが抑制されることが確認できた。 Tests Nos. 1 to 8 are tests in which the influence of the thermal conductivity λ m of the filled metal on the slab surface cracking with respect to the thermal conductivity λ c of the mold copper plate was investigated. As shown in the test results of tests No. 1 to No. 8 in FIG. 5, the surface cracking of the slab is suppressed when the thermal conductivity λ m of the filled metal is 80% or less of the thermal conductivity λ c of the mold copper plate. It was confirmed that
 試験No.9~19は、低熱伝導金属充填部と鋳型銅板との熱抵抗比Rの鋳片表面割れに及ぼす影響を調査した試験である。図6に、試験No.9~19の試験結果を示すように、熱抵抗比Rが5%以上の範囲で、鋳片表面割れが抑制されることが確認できた。但し、熱抵抗比Rが100%を超えると、表面割れの低減効果が小さくなることがわかった。尚、試験No.9に示すように、充填金属の熱伝導率λが鋳型銅板の熱伝導率λの80%以下の範囲であっても、熱抵抗比Rが5%以上でない場合には、鋳片表面割れの抑制効果は得られないことが確認できた。 Test Nos. 9 to 19 are tests in which the influence of the thermal resistance ratio R between the low heat conductive metal filling portion and the mold copper plate on the slab surface crack was examined. As shown in the test results of Test Nos. 9 to 19 in FIG. 6, it was confirmed that the slab surface crack was suppressed when the thermal resistance ratio R was 5% or more. However, it was found that when the thermal resistance ratio R exceeds 100%, the effect of reducing surface cracks is reduced. As shown in Test No. 9, even when the thermal conductivity λ m of the filling metal is in the range of 80% or less of the thermal conductivity λ c of the mold copper plate, the thermal resistance ratio R is not 5% or more. It was confirmed that the effect of suppressing cracking of the slab surface could not be obtained.
 試験No.20~26は、低熱伝導金属充填部が形成された範囲内の鋳型銅板内壁面の面積A(mm)に対する、全ての低熱伝導金属充填部の面積の総和B(mm)の比である面積率Sの鋳片表面割れに及ぼす影響、及び、低熱伝導金属充填部が形成された範囲内の鋳型銅板内壁面の面積A(mm)に対する、全ての低熱伝導金属充填部と鋳型銅板との境界長さの総和C(mm)の比εの鋳片表面割れに及ぼす影響を調査した試験である。図7に、試験No.20~26の試験結果を示すように、面積率Sが10%以上であり、且つ、比εが0.07~0.60の範囲においては、鋳片表面割れが抑制された。面積率Sが10%以上である条件、または、比εが0.07~0.60の範囲である条件を外れた場合には、鋳片に軽微な表面割れが発生した。 Test Nos. 20 to 26 are the sum B (mm 2 ) of the areas of all the low thermal conductive metal filling portions with respect to the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low thermal conductive metal filling portions are formed. The ratio of the area ratio S, which is the ratio, to the slab surface cracks, and all the low thermal conductive metal filling portions for the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low thermal conductive metal filling portions are formed This is a test for investigating the influence of the ratio C of the total boundary length C (mm) with the mold copper plate on the slab surface crack. As shown in the test results of Test Nos. 20 to 26 in FIG. 7, when the area ratio S is 10% or more and the ratio ε is in the range of 0.07 to 0.60, slab surface cracks are observed. Suppressed. When the area ratio S was 10% or more, or when the ratio ε was outside the range of 0.07 to 0.60, slight surface cracks occurred in the slab.
 試験No.27~32は、低熱伝導金属充填部の直径dの鋳片表面割れに及ぼす影響を調査した試験である。図8に、試験No.27~32の試験結果を示すように、低熱伝導金属充填部の直径dが2~20mmの範囲において、鋳片表面割れが抑制されることが確認できた。 Test Nos. 27 to 32 are tests in which the influence of the diameter d of the low thermal conductive metal filling portion on the slab surface crack was investigated. As shown in the test results of Test Nos. 27 to 32 in FIG. 8, it was confirmed that cracking of the slab surface was suppressed when the diameter d of the low thermal conductive metal filling portion was 2 to 20 mm.
 試験No.33~36は、低熱伝導金属充填部同士の間隔Pの鋳片表面割れに及ぼす影響を調査した試験である。「P≧0.25×d」の条件を満足する場合には、鋳片表面割れが抑制された。間隔Pが「P≧0.25×d」の条件を外れた場合には、鋳片に軽微な表面割れが発生した。 Test Nos. 33 to 36 are tests in which the influence of the interval P between the low thermal conductive metal filling portions on the slab surface crack was investigated. When the condition of “P ≧ 0.25 × d” was satisfied, slab surface cracking was suppressed. When the interval P deviated from the condition of “P ≧ 0.25 × d”, a slight surface crack occurred in the slab.
 試験No.37~39は、低熱伝導金属充填部を配置した範囲の長さLの鋳片表面割れに及ぼす影響を調査した試験である。鋳片引き抜き速度Vcによって算出される長さLに対して長さLが大きい範囲で、鋳片表面割れが抑制されることが確認できた。 Test Nos. 37 to 39 are tests in which the effect on the surface crack of the slab having a length L in the range where the low thermal conductive metal filling portion was arranged was investigated. The length L is larger range for the length L 0 that is calculated by the slab drawing speed Vc, it was confirmed that the cast slab surface cracks is suppressed.
 試験No.40~46は、銅合金製の鋳型長辺銅板及び銅合金製の鋳型短辺銅板の内壁面に、複数個の低熱伝導金属充填部が繋がって配置された水冷式銅合金製連続鋳造用鋳型、つまり、それぞれの低熱伝導金属充填部が独立していない水冷式銅合金製連続鋳造用鋳型を用いた試験である。 Test Nos. 40 to 46 are a series of water-cooled copper alloys in which a plurality of low thermal conductive metal filling portions are connected to the inner wall surfaces of a copper alloy long mold copper plate and a copper alloy short mold copper plate. This is a test using a casting mold, that is, a continuous casting mold made of a water-cooled copper alloy in which each low heat conductive metal filling portion is not independent.
 このうちの試験No.40~44は、図9に示すように、直径3mmの低熱伝導金属充填部を3個組み合わせた形状の低熱伝導金属充填部を、組み合わせた3個の低熱伝導金属充填部同士間の間隔Pを変化させて配置した試験である。試験No.40~44の場合も、充填金属の熱伝導率λが鋳型銅板の熱伝導率λの80%以下であり、熱抵抗比Rが5%以上であり、鋳片引き抜き速度Vによって算出される長さLに対して長さLが大きく、且つ、直径d、間隔P、面積率S、比εが好適な条件を満足する場合には、鋳片表面割れが抑制されることが確認できた。面積率S、または比εが、好適な条件を外れた場合には、鋳片に軽微な表面割れが発生した。 Test Nos. 40 to 44, of which, as shown in FIG. 9, three low heat conductive metal filling parts in which three low heat conductive metal filling parts having a diameter of 3 mm are combined. This is a test arranged by changing the interval P between them. Also in the tests No. 40 to 44, the thermal conductivity λ m of the filling metal is 80% or less of the thermal conductivity λ c of the mold copper plate, the thermal resistance ratio R is 5% or more, and the slab drawing speed V When the length L is larger than the length L 0 calculated by c and the diameter d, the interval P, the area ratio S, and the ratio ε satisfy the preferable conditions, the slab surface crack is suppressed. It was confirmed that When the area ratio S or the ratio ε deviated from suitable conditions, a slight surface crack occurred in the slab.
 試験No.45は、図10に示すように、鋳型の幅方向で低熱伝導金属充填部が繋がって配置された水冷式連続鋳造用鋳型を用いた試験であり、試験No.46は、図11に示すように、鋳型の幅方向及び鋳造方向で全ての低熱伝導金属充填部が繋がって配置された水冷式連続鋳造用鋳型を用いた試験である。尚、図10-(A)及び図11-(A)は、内壁面側に低熱伝導金属充填部が形成された鋳型長辺銅板を内壁面側から見た概略側面図で、図10-(B)は、図10-(A)に示す鋳型長辺銅板のY-Y’断面図であり、図11-(B)は、図11-(A)に示す鋳型長辺銅板のY-Y’断面図である。 Test No. 45 is a test using a water-cooled continuous casting mold in which low heat conductive metal filling portions are connected in the width direction of the mold as shown in FIG. As shown in Fig. 5, the test is performed using a water-cooled continuous casting mold in which all the low heat conductive metal filling parts are connected in the width direction and the casting direction of the mold. FIGS. 10- (A) and 11- (A) are schematic side views of the long side copper plate having a low heat conductive metal filling portion formed on the inner wall surface side, as viewed from the inner wall surface side. B) is a YY ′ cross-sectional view of the mold long-side copper plate shown in FIG. 10- (A), and FIG. 11- (B) is a YY view of the mold long-side copper plate shown in FIG. 11- (A). 'Cross section.
 試験No.45は、鋳型長辺銅板及び鋳型短辺銅板の幅方向に、直径d;8mm、充填厚みH;4mm、間隔P;4mmの低熱伝導金属充填部を設け、この低熱伝導金属充填部の間に、直径d;4mm、充填厚みH;1mmの低熱伝導金属充填部を設けた場合である。直径8mmの低熱伝導金属充填部の方が、充填厚みHが大きいために、その領域の凝固シェル部にδ/γ変態時の体積収縮や熱収縮により生じた応力が分散されて、鋳片の表面割れが低減したと考えられる。 In Test No. 45, a low heat conductive metal filling portion having a diameter d: 8 mm, a filling thickness H: 4 mm, and a spacing P: 4 mm is provided in the width direction of the long copper plate and the short copper plate. In this case, a low thermal conductive metal filling portion having a diameter d of 4 mm and a filling thickness H of 1 mm is provided. Since the filling thickness H of the 8 mm diameter low heat conductive metal filling portion is larger, the stress caused by volume shrinkage or heat shrinkage during the δ / γ transformation is dispersed in the solidified shell portion in that region, and It is thought that surface cracking has been reduced.
 一方、試験No.46は、全ての低熱伝導金属充填部が繋がっており、連続鋳造時に凝固シェルの常に同じ位置で凝固が遅れ、そのために、その箇所にδ/γ変態による応力や熱応力が集中し、軽微な表面割れが発生したものと考えられる。 On the other hand, in test No. 46, all of the low thermal conductive metal filling parts are connected, and solidification is always delayed at the same position of the solidified shell during continuous casting. Therefore, stress and thermal stress due to δ / γ transformation are present at that location. It is thought that the surface cracking occurred and minor surface cracks occurred.
 試験No.47、48は、低熱伝導金属充填部が設置されていない従来の連続鋳造用鋳型を用いた試験である。試験No.47、48では、多数の鋳片表面割れが発生した。 Test Nos. 47 and 48 are tests using a conventional continuous casting mold in which a low heat conductive metal filling portion is not installed. In Test Nos. 47 and 48, many slab surface cracks occurred.
 1 鋳型長辺銅板
 2 凹溝
 3 低熱伝導金属充填部
 4 スリット
 5 バックプレート
 6 鍍金層
DESCRIPTION OF SYMBOLS 1 Mold long side copper plate 2 Concave groove 3 Low heat conductive metal filling part 4 Slit 5 Back plate 6 Sheet metal layer

Claims (10)

  1.  水冷式の連続鋳造用鋳型であって、
     前記鋳型を構成する銅合金製の鋳型銅板の内壁面のメニスカスよりも上方の任意の位置からメニスカスよりも下方の任意の位置までの範囲に複数設けられた凹溝に低熱伝導金属が充填されて形成される低熱伝導金属充填部を有し、
     前記鋳型銅板の熱伝導率λ(W/(m×K))に対する前記低熱伝導金属の熱伝導率λ(W/(m×K))が80%以下であり、
     下記の(1)式により定義される熱抵抗比Rが5%以上である連続鋳造用鋳型。
     R={(T-H)/(1000×λ)+H/(1000×λ)-T/(1000×λ)}/{T/(1000×λ)}×100・・・(1)
     ここで、Rは、前記低熱伝導金属充填部と前記鋳型銅板との熱抵抗比(%)、
     Tは、鋳型冷却水の流路となる、鋳型銅板のスリットの底面から鋳型銅板表面までの距離(mm)、
     Hは、低熱伝導金属の充填厚み(mm)である。
    A water-cooled continuous casting mold,
    A plurality of concave grooves provided in a range from any position above the meniscus on the inner wall surface of the copper alloy mold copper plate constituting the mold to any position below the meniscus is filled with a low heat conductive metal. Having a low thermal conductivity metal filling formed;
    The thermal conductivity of the mold copper plate λ c (W / (m × K)) the relative thermal conductivity of the low thermal conductive metal λ m (W / (m × K)) is not more than 80%,
    A continuous casting mold having a thermal resistance ratio R defined by the following formula (1) of 5% or more.
    R = {(TH) / (1000 × λ c ) + H / (1000 × λ m ) −T / (1000 × λ c )} / {T / (1000 × λ c )} × 100 (100) 1)
    Here, R is a thermal resistance ratio (%) between the low thermal conductive metal filling portion and the mold copper plate,
    T is the distance (mm) from the bottom of the slit of the mold copper plate to the mold copper plate surface, which becomes the flow path of the mold cooling water,
    H is the filling thickness (mm) of the low thermal conductive metal.
  2.  前記凹溝は、メニスカスよりも上方の任意の位置から、鋳片引き抜き速度Vc(m/min)によって下記の(2)式で算出される長さL(mm)以上メニスカスよりも下方の任意の位置までの前記鋳型銅板の内壁面の範囲に設けられている請求項1に記載の連続鋳造用鋳型。
     L=2×Vc×1000/60・・・(2)
    The concave groove is an arbitrary length below the meniscus by a length L 0 (mm) or more calculated from the following formula (2) from an arbitrary position above the meniscus by the slab drawing speed Vc (m / min). The continuous casting mold according to claim 1, wherein the casting mold is provided in a range of an inner wall surface of the mold copper plate up to the position.
    L 0 = 2 × Vc × 1000/60 (2)
  3.  前記連続鋳造用鋳型は、前記低熱伝導金属充填部が設けられた前記鋳型銅板の内壁面の範囲において、周期的な熱抵抗分布または熱流束分布を有する請求項1または請求項2に記載の連続鋳造用鋳型。 The continuous casting mold according to claim 1 or 2, wherein the continuous casting mold has a periodic thermal resistance distribution or heat flux distribution in a range of an inner wall surface of the mold copper plate provided with the low thermal conductive metal filling portion. Casting mold.
  4.  前記凹部の前記鋳型銅板内壁面における開口形状が円形または擬似円形であり、
     該円形の直径または該疑似円形の円相当径が2~20mmである請求項1から請求項3の何れか一項に記載の連続鋳造用鋳型。
    The opening shape in the inner wall surface of the mold copper plate of the recess is circular or pseudo-circular,
    The continuous casting mold according to any one of claims 1 to 3, wherein the circular diameter or the equivalent circular diameter of the pseudo-circle is 2 to 20 mm.
  5.  前記低熱伝導金属充填部同士の間隔が、該低熱伝導金属充填部の前記直径または前記円相当径に対して下記の(3)式の関係を満足する請求項4に記載の連続鋳造用鋳型。
     P≧0.25×d・・・(3)
     ここで、Pは、低熱伝導金属充填部同士の間隔(mm)、
     dは、低熱伝導金属充填部の直径(mm)または円相当径(mm)である。
    5. The continuous casting mold according to claim 4, wherein an interval between the low heat conductive metal filling portions satisfies a relationship of the following expression (3) with respect to the diameter or the equivalent circle diameter of the low heat conductive metal filling portions.
    P ≧ 0.25 × d (3)
    Here, P is the interval (mm) between the low thermal conductive metal filling parts,
    d is the diameter (mm) or equivalent circle diameter (mm) of the low thermal conductive metal filling portion.
  6.  前記低熱伝導金属充填部が形成された範囲内の前記鋳型銅板内壁面の面積A(mm)に対する、全ての低熱伝導金属充填部の面積の総和B(mm)の比である面積率S(S=(B/A)×100)が10%以上であり、
     且つ、前記面積A(mm)に対する、全ての低熱伝導金属充填部と前記鋳型銅板との境界長さの総和C(mm)の比ε(ε=C/A)が下記(4)式の関係を満足する請求項1から請求項5の何れか一項に記載の連続鋳造用鋳型。
     0.07≦ε≦0.50・・・(4)
    Area ratio S which is the ratio of the total area B (mm 2 ) of the areas of all the low thermal conductive metal filling portions to the area A (mm 2 ) of the inner wall surface of the mold copper plate within the range where the low thermal conductive metal filling portions are formed. (S = (B / A) × 100) is 10% or more,
    In addition, the ratio ε (ε = C / A) of the sum C (mm) of the boundary lengths of all the low heat conductive metal filling portions and the mold copper plate with respect to the area A (mm 2 ) is expressed by the following formula (4). The continuous casting mold according to any one of claims 1 to 5, which satisfies the relationship.
    0.07 ≦ ε ≦ 0.50 (4)
  7.  前記低熱伝導金属充填部がそれぞれ独立して形成されている請求項6に記載の連続鋳造用鋳型。 The continuous casting mold according to claim 6, wherein each of the low thermal conductive metal filling portions is formed independently.
  8.  前記低熱伝導金属は、鍍金処理または溶射処理によって前記凹溝の内部に充填される請求項1から請求項7の何れか一項に記載の連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 7, wherein the low thermal conductive metal is filled in the concave groove by a plating process or a thermal spraying process.
  9.  前記鋳型銅板の内壁面には、厚みが2.0mm以下のニッケルまたはニッケルを含有する合金の鍍金層が形成されており、
     前記低熱伝導金属充填部は前記鍍金層で覆われている請求項1から請求項8の何れか一項に記載の連続鋳造用鋳型。
    On the inner wall surface of the mold copper plate, a plating layer of nickel having a thickness of 2.0 mm or less or an alloy containing nickel is formed,
    The continuous casting mold according to any one of claims 1 to 8, wherein the low thermal conductive metal filling portion is covered with the plating layer.
  10.  請求項1から請求項9の何れか一項に記載の連続鋳造用鋳型を用いる鋼の連続鋳造方法であって、
     炭素含有量が0.08~0.17質量%の中炭素鋼を前記鋳型に注入するともに、
     鋳片厚みが200mm以上のスラブ鋳片として1.5m/min以上の鋳片引き抜き速度で前記鋳型から前記中炭素鋼を引き抜いて連続鋳造する鋼の連続鋳造方法。
    A steel continuous casting method using the continuous casting mold according to any one of claims 1 to 9,
    While injecting medium carbon steel having a carbon content of 0.08 to 0.17 mass% into the mold,
    A steel continuous casting method in which the medium carbon steel is drawn from the mold at a casting speed of 1.5 m / min or more and continuously cast as a slab casting having a thickness of 200 mm or more.
PCT/JP2017/001146 2015-07-22 2017-01-16 Continuous casting mold and method for continuous casting of steel WO2018016101A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197001178A KR102245013B1 (en) 2015-07-22 2017-01-16 Continuous casting method of molds and steels for continuous casting
EP17830623.9A EP3488946A4 (en) 2015-07-22 2017-01-16 Continuous casting mold and method for continuous casting of steel
EP20206258.4A EP3795274B1 (en) 2015-07-22 2017-01-16 Continuous casting mold and method for continuous casting of steel
CN201780044848.6A CN109475930B (en) 2015-07-22 2017-01-16 Continuous casting mold and method for continuous casting of steel
BR112019000687-7A BR112019000687B1 (en) 2015-07-22 2017-01-16 CONTINUOUS CASTING MOLD AND METHOD FOR CONTINUOUS STEEL CASTING

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015144535 2015-07-22
JP2016-143909 2016-07-22
JP2016143909A JP6428721B2 (en) 2015-07-22 2016-07-22 Continuous casting mold and steel continuous casting method

Publications (1)

Publication Number Publication Date
WO2018016101A1 true WO2018016101A1 (en) 2018-01-25

Family

ID=67296275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001146 WO2018016101A1 (en) 2015-07-22 2017-01-16 Continuous casting mold and method for continuous casting of steel

Country Status (5)

Country Link
EP (2) EP3488946A4 (en)
KR (1) KR102245013B1 (en)
CN (1) CN109475930B (en)
TW (1) TWI630962B (en)
WO (1) WO2018016101A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079971A1 (en) * 2019-10-24 2021-04-29 Jfeスチール株式会社 Method for manufacturing continuous casting mold
RU2788426C1 (en) * 2019-10-24 2023-01-19 ДжФЕ СТИЛ КОРПОРЕЙШН Method for manufacturing a mold for continuous casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055799A1 (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Continuous steel casting method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170550A (en) 1987-12-24 1989-07-05 Nkk Corp Mold for continuously casting steel
JPH01289542A (en) 1987-12-29 1989-11-21 Nkk Corp Casting mold for continuous casting of steel
JPH026037A (en) 1988-06-27 1990-01-10 Nkk Corp Method for continuously casting steel
JPH09276994A (en) 1996-04-22 1997-10-28 Nippon Steel Corp Mold for continuous casting
JPH10193041A (en) 1997-01-07 1998-07-28 Nippon Steel Corp Mold for continuously casting molten steel
JP2005297001A (en) 2004-04-12 2005-10-27 Kobe Steel Ltd Continuous casting method for steel
WO2014002409A1 (en) * 2012-06-27 2014-01-03 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
JP2015107522A (en) * 2013-10-22 2015-06-11 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024162A (en) * 1994-12-28 2000-02-15 Nippon Steel Corporation Continuous casting method for billet
JPH1029043A (en) * 1996-07-15 1998-02-03 Nkk Corp Continuous casting method for steel, and mold therefor
JP2001105102A (en) * 1999-10-14 2001-04-17 Kawasaki Steel Corp Mold for continuous casting and continuous casting method
CN1201885C (en) * 2002-06-18 2005-05-18 鞍山科技大学 Crytallizer for inner wall of continuous casting coated groove
CN202291314U (en) * 2011-10-26 2012-07-04 中冶南方工程技术有限公司 H-shaped beam blank continuous casting crystallizer
CN103317109B (en) * 2012-03-19 2016-02-24 宝山钢铁股份有限公司 A kind of method weakening the heat transfer of continuous cast mold bight
CN203091693U (en) * 2013-02-19 2013-07-31 钢铁研究总院 Combined crystallizer copper plate with longitudinal groove
JP5992851B2 (en) * 2013-03-26 2016-09-14 Jfeスチール株式会社 Continuous casting mold and method for producing the continuous casting mold
JP6003851B2 (en) * 2013-09-06 2016-10-05 Jfeスチール株式会社 Continuous casting mold and steel continuous casting method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170550A (en) 1987-12-24 1989-07-05 Nkk Corp Mold for continuously casting steel
JPH01289542A (en) 1987-12-29 1989-11-21 Nkk Corp Casting mold for continuous casting of steel
JPH026037A (en) 1988-06-27 1990-01-10 Nkk Corp Method for continuously casting steel
JPH09276994A (en) 1996-04-22 1997-10-28 Nippon Steel Corp Mold for continuous casting
JPH10193041A (en) 1997-01-07 1998-07-28 Nippon Steel Corp Mold for continuously casting molten steel
JP2005297001A (en) 2004-04-12 2005-10-27 Kobe Steel Ltd Continuous casting method for steel
WO2014002409A1 (en) * 2012-06-27 2014-01-03 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
JP2015107522A (en) * 2013-10-22 2015-06-11 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3488946A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079971A1 (en) * 2019-10-24 2021-04-29 Jfeスチール株式会社 Method for manufacturing continuous casting mold
KR20220062373A (en) * 2019-10-24 2022-05-16 제이에프이 스틸 가부시키가이샤 Method for manufacturing a mold for continuous casting
RU2788426C1 (en) * 2019-10-24 2023-01-19 ДжФЕ СТИЛ КОРПОРЕЙШН Method for manufacturing a mold for continuous casting
JP7425944B2 (en) 2019-10-24 2024-02-01 Jfeスチール株式会社 Manufacturing method of continuous casting mold
KR102647466B1 (en) * 2019-10-24 2024-03-13 제이에프이 스틸 가부시키가이샤 Method for manufacturing molds for continuous casting

Also Published As

Publication number Publication date
EP3488946A1 (en) 2019-05-29
KR102245013B1 (en) 2021-04-26
KR20190017978A (en) 2019-02-20
TWI630962B (en) 2018-08-01
CN109475930B (en) 2021-07-13
CN109475930A (en) 2019-03-15
EP3795274B1 (en) 2022-08-03
EP3488946A4 (en) 2019-07-03
TW201803664A (en) 2018-02-01
EP3795274A1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP5692451B2 (en) Continuous casting mold and steel continuous casting method
JP6439762B2 (en) Steel continuous casting method
JP6256627B2 (en) Continuous casting mold and steel continuous casting method
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP6003851B2 (en) Continuous casting mold and steel continuous casting method
WO2018016101A1 (en) Continuous casting mold and method for continuous casting of steel
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
JP5962733B2 (en) Steel continuous casting method
JP6947737B2 (en) Continuous steel casting method
JP6787359B2 (en) Continuous steel casting method
JP6365604B2 (en) Steel continuous casting method
JP6402750B2 (en) Steel continuous casting method
WO2018056322A1 (en) Continuous steel casting method
JP6740924B2 (en) Continuous casting mold and steel continuous casting method
JP6394831B2 (en) Continuous casting mold and steel continuous casting method
JP2020121329A (en) Mold and method for steel continuous casting
WO2020095932A1 (en) Mold for continuous steel casting and continuous steel casting method
JP2020075282A (en) Mold and method for steel continuous casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001178

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019000687

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830623

Country of ref document: EP

Effective date: 20190222

ENP Entry into the national phase

Ref document number: 112019000687

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190114