JPH01207803A - Self-traveling working vehicle - Google Patents

Self-traveling working vehicle

Info

Publication number
JPH01207803A
JPH01207803A JP63033275A JP3327588A JPH01207803A JP H01207803 A JPH01207803 A JP H01207803A JP 63033275 A JP63033275 A JP 63033275A JP 3327588 A JP3327588 A JP 3327588A JP H01207803 A JPH01207803 A JP H01207803A
Authority
JP
Japan
Prior art keywords
work vehicle
distance
self
working vehicle
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63033275A
Other languages
Japanese (ja)
Other versions
JP2609890B2 (en
Inventor
Yoshinari Yamagami
山上 嘉也
Fumio Yasutomi
文夫 安富
Daizo Takaoka
大造 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63033275A priority Critical patent/JP2609890B2/en
Publication of JPH01207803A publication Critical patent/JPH01207803A/en
Application granted granted Critical
Publication of JP2609890B2 publication Critical patent/JP2609890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To correct the position of a working vehicle and to prevent the generation of an unworking area by providing plural ultrasonic sensors to the working vehicle main body and executing distance instrumentation with a circumferential wall through a detecting part, a waveform shaping circuit, a timer, an arithmetic part, etc. CONSTITUTION:In a working vehicle main body 1, the two of ultrasonic sensors 10-17 are provided on the four faces in total of the front face, the rear face and both side faces, respectively, the respective sensors emit a sound wave, and a distance to a wall is counted by the reflection. That is, the signal of the transmitting and receiving timing of the sound wave is given to a timer 26 through a detecting part 24, a waveform shaping circuit 25, an interface 22, a time for which a reflecting sound wave returns is counted with the timer 26. Then, the distance to the wall is counted and is inputted to an arithmetic part 27 and a memory part 28, a reference face is searched and calculated based on the map information of a working area and the present position of the working vehicle stored to the memory part 28 in advance, and the working vehicle decides a direction to execute distance instrumentation independently. Thus, the position of the working vehicle is corrected by the control of a control part 7, and the generation of an unworking area can be prevented.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は、作業車本体に設けたセンサが作業する領域内
に想定された走行経路からの該作業車の位置ずれを検知
するとともに、その検知結果に基いて位置補正をしなが
ら該走行経路上を走行し自動的に作業する自立型作業車
に関する。
DETAILED DESCRIPTION OF THE INVENTION A) Industrial Application Field The present invention detects the positional deviation of the working vehicle from the travel route assumed within the working area by a sensor provided on the working vehicle body, and The present invention relates to a self-supporting work vehicle that travels on the travel route and automatically performs work while correcting the position based on the detection results.

口)従来の技術 近年、所定の作業領域内を走行しながら種々の作業を行
う作業車について、種々考えられている。
BACKGROUND OF THE INVENTION In recent years, various ideas have been developed regarding work vehicles that perform various tasks while traveling within a predetermined work area.

たとえは、センサ技術(1984−4月号第52〜56
頁)に記きれている床面清掃ロボットや特願昭61−3
04432号の自立型作業車がある。これらの作業車で
はまず壁に沿って内部を一周して部屋の形状と広さを認
識した後、前進・反転をくり返して作業を行っている。
An example is Sensor Technology (April 1984 Issue Nos. 52-56)
The floor cleaning robot described in page) and the patent application 1986-3
There is a self-supporting work vehicle numbered 04432. These work vehicles first circle the interior along the walls to get an idea of the shape and size of the room, and then move forward and reverse repeatedly to complete the work.

これらの作業車は、前進を開始するときに走行プj向に
対する位置姿勢の補正を行っておらず前進走行中に姿勢
補正を行っ−Cいるため前進を開始する時点で設定され
た前進の方向に対する方向のずれ及び走行経路に対する
位置のずれがある場合には設定された前進方向に戻るの
に時間おくれが発生しこれによって未作業領域が発生す
ることがあった。
These work vehicles do not correct the position and orientation with respect to the direction of travel when they start moving forward, but correct the attitude while moving forward, so the direction of forward movement that was set at the time they start moving forward is corrected. If there is a deviation in direction and position relative to the traveling route, there may be a time delay in returning to the set forward direction, resulting in an unworked area.

ハ)発明が解決しようとする課題 本発明は、かかる点を鑑みて発明されたものにして、作
業車に搭載されたセンサによって前記開始時に位置及び
姿勢の検出、きらには位置及び姿勢補正ができる構成及
び制御方法を提供しようとするものである。
C) Problems to be Solved by the Invention The present invention has been invented in view of the above points, and detects the position and orientation at the start using a sensor mounted on the work vehicle, and also performs position and orientation correction. The purpose is to provide a configuration and control method that can be used.

二)課題を解決するだめの手段 本発明では、複数の距離セ〕・すによる周囲壁面との距
離tt $++結果に基いて作業車の位置及O姿幼を検
出する。また、こうして検出された情報と走行経路情報
を比較するととで作業車0)位置及び姿勢を補正するよ
うにしている。
2) Means for Solving the Problems In the present invention, the position and orientation of the working vehicle are detected based on the distance tt$++ result from the surrounding wall surface determined by a plurality of distances. Further, by comparing the information detected in this way with the traveling route information, the position and posture of the work vehicle 0) are corrected.

ホ)作用 作業車の位置及び姿勢が作業開始前に正確に検出されて
補正きれ、未作業領域が発生1−ると云う問題は無くな
る。
E) Effect The position and orientation of the work vehicle can be accurately detected and corrected before the start of work, eliminating the problem of unworked areas.

へ)実施例 第1図は本発明自走式作業車の原理模型図である。この
図面において、作業車本体(1)は、その駆動輪(2)
(3)を個別に駆動q′る一対のモータ(4)(5)、
作業手段(6)、及びこれらを制御する制御手段(7)
等を有しでいる。また、作業手段り16)としては、例
えは清掃装置が用いられ、吸込口、集塵ファン及びその
モータを具備している。
f) Embodiment FIG. 1 is a schematic diagram of the principle of the self-propelled working vehicle of the present invention. In this drawing, the work vehicle main body (1) has its driving wheels (2)
A pair of motors (4) and (5) that individually drive (3),
Working means (6) and control means (7) for controlling these
etc. are available. Further, as the working means 16), for example, a cleaning device is used, and is equipped with a suction port, a dust collection fan, and its motor.

(8)(9)は本体を支持剪るキャスタで、特にキャス
タ(9)は回転自在に設けられている。さらに、作業車
本体(1)はその前面・後面・両側面・の計4面に各々
2個つつの超音波センサ(10)〜(17)を備え、ま
た各駆動輪(2><3>にはその回転量を計数するだめ
のエンコーダ(18)(19)を備えている。
(8) and (9) are casters for supporting and shearing the main body, and in particular, the caster (9) is provided so as to be freely rotatable. Furthermore, the work vehicle body (1) is equipped with two ultrasonic sensors (10) to (17) on each of its front, rear, and both side surfaces, and each drive wheel (2><3> are equipped with encoders (18) and (19) for counting the amount of rotation.

センサ(10〉〜(17)、エンコーダ(18)(19
)と制御手段〈7)の関係を示丈ブロック図を第2図に
示す。この図面において、各エンコーダ(18)(19
)(7)出力は検出部(20)で検出されている。その
検出出力は波形整形回路(21)で波形整形された後、
インターフェイス(22)を介してカウンタ(23)に
入力きれ、このカウンタにて単位時間当りの出力パルス
数が計数きれる。作業領域の環境を検知するための超音
波センサ(10)〜(17)は音波を発して、その音波
が反射l、てもどってきた時を検知するようになっ−C
いて、この音波の発信タイミング、受信タイミングの信
号が検出部(24)、波形整形回路(25)、インター
フェイス(22)を介してタイマ(26)に与えられ、
この反射音波が返ってくるまでの時間がこのタイマ(2
6)で計られ、壁までの距離が計数される。そして、計
数きれた値は演算部(27)、=5= メモリ部(28)に入力きれる。また、上記メモリ部(
28)には作業中の作業領域形状情報〈地図情報)や走
行経路情報が記憶きれている。
Sensors (10> to (17), encoders (18) (19)
) and the control means (7) are shown in a block diagram in FIG. 2. In this drawing, each encoder (18) (19)
) (7) The output is detected by the detection section (20). After the detection output is waveform-shaped by the waveform shaping circuit (21),
The pulses can be input to a counter (23) via an interface (22), and this counter can count the number of output pulses per unit time. The ultrasonic sensors (10) to (17) for detecting the environment of the work area emit sound waves and detect when the sound waves are reflected back.-C
Then, the signals of the transmission timing and reception timing of this sound wave are given to the timer (26) via the detection section (24), the waveform shaping circuit (25), and the interface (22).
This timer (2
6) and the distance to the wall is counted. Then, the counted value can be input to the calculation section (27), =5= memory section (28). In addition, the memory section (
28) is filled with information on the shape of the work area (map information) and traveling route information.

次に作業車本体の動作を第3図のような障害物(30)
や凹凸のある壁(31)を鳴した作業領域(29)を作
業する場合について説明する。作業車く1)には、予め
作業領域の大きさ、障害物(30)の位置、大きき、各
々の壁が平たんか凹凸があるか、経路データ等が与えら
れていて、この情報に基いて姿勢・位置のずれを動作開
始前又は方向転換後の各直進走行前に補正する。第3図
の状況では、右側方には障害物があり、超音波センサ(
12)での壁までの距離測定が不可能であり、前方には
凹凸のある壁(31)がありこの壁までの距離測定は不
正確になるので基準面とはなり得ない。このように作業
車の走行経路情報に従った現在位置(x、y)とメモリ
部(28)内に記憶された作業領域の地図情報とから基
準面となり得るフラットな壁の中で最も近い壁を演算部
(27)で探索・演算して作業車は自立的に距離測定す
る方向を決定する。第3図では、基準面となり得る壁は
左側方と後方であり、この内、距離が近い方の後方の側
面までの距離を夫々超音波センサ(16)(17)によ
り測定する。この時のセ/す(16)(17)による壁
までの距離測定値を各々、12+、R2とすると作業車
の姿勢のすれθ。は、Oo =tan−’(+2+−+
22/d)である。ここでdは、超音波センサ(16)
(17)の間隔である。そして姿勢のずれθ。たけ、制
御手段(7)により左右の車輪(2)(3)を駆動して
補正する。姿勢の補正後、作業車の前後方向の位置の補
止を行うが、前後方の中で基準となり得る壁で最も近い
壁(第3図では後方)との距離を測定し、経路情報内の
現在位置と実際の位置のずれy。を同様に制御手段によ
り車輪で駆動して補正する。
Next, the operation of the work vehicle itself is controlled by obstacles (30) as shown in Figure 3.
A case will be described in which a work area (29) with a wall (31) and an uneven wall (31) is worked on. The work vehicle 1) is given in advance information such as the size of the work area, the position and size of obstacles (30), whether each wall is flat or uneven, route data, etc. The system corrects deviations in posture and position before the start of operation or before each straight run after a change in direction. In the situation shown in Figure 3, there is an obstacle on the right side, and the ultrasonic sensor (
It is impossible to measure the distance to the wall at step 12), and since there is an uneven wall (31) in front of the wall (31), the distance to this wall will be inaccurate and cannot be used as a reference surface. In this way, from the current position (x, y) according to the travel route information of the work vehicle and the map information of the work area stored in the memory unit (28), the closest wall among the flat walls that can be used as a reference plane is determined. is searched and calculated by the calculation unit (27), and the work vehicle independently determines the direction in which to measure the distance. In FIG. 3, the walls that can serve as reference planes are the left side and the rear side, and the distances to the rear side of the one that is closer are measured by ultrasonic sensors (16) and (17), respectively. If the measured distances to the wall by C/S (16) and (17) at this time are respectively 12+ and R2, then the deviation in the posture of the work vehicle is θ. is Oo = tan-'(+2+-+
22/d). Here d is the ultrasonic sensor (16)
(17). and posture deviation θ. Then, the control means (7) drives the left and right wheels (2) and (3) to make the correction. After correcting the posture, the longitudinal position of the work vehicle is corrected by measuring the distance to the nearest wall (rear in Figure 3) that can serve as a reference between the front and rear. Discrepancy y between the current position and the actual position. Similarly, the control means drives the wheels and corrects them.

以上のように姿勢・位置の補正を行い、その後再度姿勢
θ。を算出しその角度を前進走行の基準姿勢としてメモ
リ部〈28〉内に保持して直進走行を開始する。
After correcting the posture and position as described above, the posture θ is adjusted again. is calculated and held in the memory unit <28> as a reference posture for forward travel, and straight travel is started.

こうした作業車の位置及び姿勢の補正は作業車が停止し
て方向転換をするときに必ず行うが、ファー ラットな基準面が見つからない場合は姿勢あるいは位置
の補正が省略される。このような作業車の動作を第4図
の流れ図に示す。
Such correction of the position and attitude of the work vehicle is always performed when the work vehicle stops and changes direction, but if a furlat reference plane cannot be found, the correction of the attitude or position is omitted. The operation of such a work vehicle is shown in the flowchart of FIG.

尚、作業領域の地図情報を使わず、作業車の各側面に設
けた各々2個の超音波センナ(12)〜(17〉からの
出力を用いて基準面決定の判断をするととも可能である
。また、地図情報や作業領域情報はメモリ部(28)に
記憶したがこれはメモリカード等に記憶させ演算部(2
7〉に連なった情報読取手段に着脱自在としても良い。
It is also possible to determine the reference surface by using the outputs from two ultrasonic sensors (12) to (17) installed on each side of the work vehicle, without using the map information of the work area. In addition, although map information and work area information are stored in the memory section (28), they are stored in a memory card or the like and then transferred to the calculation section (28).
7> may be detachably attached to the information reading means.

次にヒ記第4図の直進走行動作に関しで第5図のような
作業領域を走行する場合についての動作を説明する。作
業車本体く1〉が図中の点線で示す経路を走行する前に
、予め与えられた作業領域の地図情報および走行経路情
報から判断して走行の基準面を決定する。第5図のよう
にまず3区域では、右側方に障害物があることが地図情
報からもわかるため、左側方を基準面としてこれを距離
センサ(超音波センサ)により距離ぷII定してこの距
離が一定になるよう補正走行する。次に5区域では、左
側方に複数の障害物があることが地図情報からもわかる
ため、右側方を基準面としてこれを距離センサ(超音波
センサ)により距離測定して補正走行する。なお、両側
面とも基準面となり得る時は、距離の近い方を基準面と
する。次にC区域では右側方は凹凸のある壁で左側方は
障害物があり、いづれの面も基準面とはなり得ない。こ
の場合は駆動輪(2)(3)の回転角を検知するエンコ
ーダ(18)(19>の左右の出力差と直進動作直前の
基準姿勢θ。により作業車の姿勢onを随時算出してお
り、この値を用いて姿勢による補正走行を行う。
Next, regarding the straight traveling operation shown in FIG. 4, the operation when traveling in a work area as shown in FIG. 5 will be explained. Before the work vehicle body 1> travels along the route indicated by the dotted line in the figure, a reference plane for travel is determined based on map information of the work area and travel route information given in advance. As shown in Figure 5, in the 3rd area, it can be seen from the map information that there is an obstacle on the right side, so the left side is used as a reference plane and the distance PII is determined using the distance sensor (ultrasonic sensor). Make corrections to keep the distance constant. Next, in area 5, since it can be seen from the map information that there are a plurality of obstacles on the left side, the vehicle uses the right side as a reference plane and measures the distance using a distance sensor (ultrasonic sensor) to perform corrective driving. Note that when both sides can serve as a reference plane, the one that is closer in distance is used as the reference plane. Next, in area C, there is an uneven wall on the right side and an obstacle on the left side, so neither surface can serve as a reference surface. In this case, the attitude of the work vehicle is calculated at any time based on the difference in output between the left and right encoders (18) (19>) that detect the rotation angle of the drive wheels (2) and (3), and the reference attitude θ just before straight movement. , this value is used to perform posture-based correction driving.

なお、各々a、b、c区域の距離測定方向の変化点は、
作業領域の地図情報と回転角検出器(エンコーダ)から
算出した作業車の直進距離を照合して認識する。こうし
た直進走行動作の流れ図を第6図に示す。
Note that the points of change in the distance measurement direction in areas a, b, and c are as follows:
Recognizes the work area by comparing the map information with the straight-line distance of the work vehicle calculated from the rotation angle detector (encoder). A flowchart of such a straight traveling operation is shown in FIG.

第7図は直進走行動作の他の実施例を示すための作業領
域の模式図であって、第8図の流れ図とともに走行動作
を説明する。この場合は、作業車本体(1)が第7図中
の点線で示す経路に走行中左右の内近い方の側面、例え
は左側面を超音波セ〉すで?Jtllす、センサの出力
により(Ill TJ+]からの距離を例えは一定のf
aに保って走行するように補正制御される(第7図中a
区域)。また、側面の壁が基準となり得ない時や左側一
方に障害物等があり超音波センサの出力がばらつき、基
準値となり得ない場合は、左右の車輪(3)(2)に対
応するエンコーダ(19)(18)の出力差から作業車
の姿勢onを以下のように随時算出しており、この値を
用いて姿勢による補正走行を行う。(第7図中、5区域
)dθに=(△Lk−△Rk)/T on= θ。+pdθk k=1 こごで△Lk・△Rkは左右各々の車輪の単位時間当た
りの進行距離、Tはトレンド(車輪間の距離)、d(1
11は単位時間当りの姿勢変化量、θ0は直進走行前の
姿勢、onは現在の姿勢である。
FIG. 7 is a schematic diagram of a working area to show another embodiment of the straight running operation, and the running operation will be explained together with the flowchart of FIG. 8. In this case, while the work vehicle body (1) is traveling along the path shown by the dotted line in Figure 7, the closest side of the left or right side, for example the left side, is subjected to ultrasonic waves. For example, the distance from (Ill TJ+) is determined by the output of the sensor at a constant f
Correction control is performed so that the vehicle runs while maintaining the position a (a in Fig. 7).
area). In addition, if the side wall cannot serve as a reference or there is an obstacle on one side of the left side and the output of the ultrasonic sensor varies and cannot serve as a reference value, use the encoders corresponding to the left and right wheels (3) and (2). 19) From the output difference in (18), the attitude on of the work vehicle is calculated at any time as shown below, and this value is used to perform corrected driving based on the attitude. (Area 5 in Figure 7) dθ = (ΔLk - ΔRk)/T on = θ. +pdθk k=1 Here, △Lk and △Rk are the travel distance per unit time of each wheel on the left and right, T is the trend (distance between wheels), and d (1
11 is the amount of attitude change per unit time, θ0 is the attitude before straight running, and on is the current attitude.

次に超音波センサの出力が大きく変化した後(図中に示
す/i a −1bに変化した後)その出力ρbが一定
間隔以上継続した時は、当初の側方の壁までの距離の基
準p!aを書き換え、新たな基準pbをメモリ部(28
)に保持して超音波センサ出力がこの値になるよう、補
正走行を行う(第7図中C区域)。
Next, after the output of the ultrasonic sensor changes significantly (after changing to /i a -1b shown in the figure), when the output ρb continues for a certain interval or more, the original distance to the side wall is determined. p! Rewrite a and set the new standard pb to the memory section (28
) and perform correction driving so that the ultrasonic sensor output becomes this value (area C in Fig. 7).

なお、図中のa、b、c区域の各々の走行は、上に述へ
たように主として超音波センサの出力により判断し工基
準を変える方法を示したが、これは予め与えられた作業
領域の地図情報と走行経路情報と、作業車の現在位置か
ら判断して基準を変える方法を採用しても良い。
Note that, as mentioned above, we have shown a method for determining the movement of each of areas a, b, and c in the figure mainly based on the output of the ultrasonic sensor and changing the work standard. A method may be adopted in which the reference is changed based on the map information of the area, the driving route information, and the current position of the work vehicle.

ト〉 発明の効果 以上述へた如く、本発明自走式作業車は、複数の距離セ
ンサによる周囲壁面との距離計U、lI結果に基いて作
業車の位置及び姿勢を検出するので、姿勢検出が正確に
行える。またこうして検出された情報と走行経路情報を
比較することで、走行開始聞出に作業車の位置及び姿勢
を補正しているので、作業車が走行経路から大きくずれ
て未作業領域が発生すると云う問題はなくなる。
G> Effects of the Invention As mentioned above, the self-propelled working vehicle of the present invention detects the position and posture of the working vehicle based on the distance meter U and II results with the surrounding wall surface using a plurality of distance sensors. Detection can be performed accurately. Also, by comparing the information detected in this way with the travel route information, the position and posture of the work vehicle are corrected at the start of travel, so it is possible for the work vehicle to deviate significantly from the travel route, resulting in an unworked area. The problem will go away.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明自走式作業車を上面から見たときの構成
模式図、第2図は本発明自走式作業車の走行制御機構を
示すブロック図、第3図、第5図、第7図は作業領域の
模式図、第4図、第6図は本発明自走式作業車の動作を
示す7ス(れ図、第8図はオ゛発明自走式作業車の他の
動作例を示す流れ図である。 (1)・・・作業車本体、(2)(3>・・・駆動輪、
(4)(5)・・・モータ、(6)・・・作業手段、(
7)・・・制御手段、(8)(9)・・・キャスタ、(
10)〜(17)・・・超音波センナ、(18019>
・・・エンコーダ、(20)(24)・・・検出部、(
21)(25>・・・波形整形回路、(23)・・・カ
ウンタ、(26)・・・り(マ、(27)・・・演算部
、(28)・・・メモリ部、(29)・・・作業領域、
(30〉・・・障害物、(31)・・・壁。 d[願人 三洋電機株式会社 代理人 弁理−1−西野東嗣(外1名)味 区 七つ 昧 派
Fig. 1 is a schematic configuration diagram of the self-propelled working vehicle of the present invention when viewed from above, Fig. 2 is a block diagram showing the travel control mechanism of the self-propelled working vehicle of the present invention, Fig. 3, Fig. 5, FIG. 7 is a schematic diagram of the working area, FIGS. 4 and 6 are 7-step diagrams showing the operation of the self-propelled working vehicle of the present invention, and FIG. 8 is a schematic diagram of the self-propelled working vehicle of the present invention. It is a flowchart showing an example of operation. (1)... Work vehicle body, (2) (3>... Drive wheel,
(4) (5)...Motor, (6)...Working means, (
7)...control means, (8)(9)...casters, (
10) to (17)...Ultrasonic senna, (18019>
... Encoder, (20) (24) ... Detection section, (
21) (25>... Waveform shaping circuit, (23)... Counter, (26)... Ri(ma), (27)... Arithmetic unit, (28)... Memory unit, (29 )...Work area,
(30〉...Obstacle, (31)...Wall. d [Applicant: Sanyo Electric Co., Ltd. Attorney, Patent Attorney - 1 - Toji Nishino (1 other person) Ajiku Shichitsumai faction

Claims (1)

【特許請求の範囲】 1)室内を自走しながら所定の作業を行う自走式作業車
において、作業車本体側面に設けられた複数の距離セン
サと、作業領域の地図情報および走行経路情報を保持す
る情報保持手段と、作業車本体が走行するための制御手
段と、上記複数の距離センサによる周囲壁面との距離計
測結果に基いて作業車の位置及び姿勢を検出する検出手
段と、を有して成る自走式作業車。 2)室内を自走しながら種々の作業を行う自走式作業車
において、作業領域の地図情報および走行経路情報を保
持する情報保持手段と、作業車本体の走行制御を行う制
御手段と、作業車の位置及び姿勢を検出する検出手段と
、この検出手段で検出された作業車の位置及び姿勢を上
記情報保持手段内の走行経路情報と比較して作業車位置
及び姿勢を補正することを特徴とした自走式作業車。 3)特許請求の範囲第1項記載の自走式作業車において
、上記距離センサによる距離計測の基準となる壁面とし
て作業車の最も近接した壁面を選択することを特徴とし
た自走式作業車。 4)特許請求の範囲第1項記載の自走式作業車において
、上記距離センサによる距離計測の基準となる壁面とし
て、平坦な壁面形状のものを上記地図情報から選択する
ことを特徴とした自走式作業車。
[Scope of Claims] 1) A self-propelled work vehicle that performs predetermined work while traveling indoors, a plurality of distance sensors provided on the side of the work vehicle body, map information of the work area, and travel route information. The vehicle has an information holding means for holding information, a control means for causing the work vehicle main body to travel, and a detection means for detecting the position and orientation of the work vehicle based on the results of distance measurement with the surrounding wall surface by the plurality of distance sensors. A self-propelled work vehicle. 2) In a self-propelled work vehicle that performs various tasks while self-propelled indoors, an information holding means that holds map information of the work area and traveling route information, a control means that controls the travel of the work vehicle itself, A detection means for detecting the position and orientation of the vehicle, and a position and orientation of the work vehicle detected by the detection means are compared with traveling route information in the information holding means to correct the position and orientation of the work vehicle. A self-propelled work vehicle. 3) The self-propelled working vehicle according to claim 1, characterized in that the wall surface closest to the working vehicle is selected as the wall surface serving as a reference for distance measurement by the distance sensor. . 4) The self-propelled working vehicle according to claim 1, wherein a flat wall shape is selected from the map information as a reference wall for distance measurement by the distance sensor. Traveling work vehicle.
JP63033275A 1988-02-16 1988-02-16 Self-propelled work vehicle Expired - Fee Related JP2609890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63033275A JP2609890B2 (en) 1988-02-16 1988-02-16 Self-propelled work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63033275A JP2609890B2 (en) 1988-02-16 1988-02-16 Self-propelled work vehicle

Publications (2)

Publication Number Publication Date
JPH01207803A true JPH01207803A (en) 1989-08-21
JP2609890B2 JP2609890B2 (en) 1997-05-14

Family

ID=12381982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63033275A Expired - Fee Related JP2609890B2 (en) 1988-02-16 1988-02-16 Self-propelled work vehicle

Country Status (1)

Country Link
JP (1) JP2609890B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286747A (en) * 1995-04-14 1996-11-01 Minolta Co Ltd Auton0mous running vehicle
JP2002215236A (en) * 2001-01-22 2002-07-31 Komatsu Ltd Controller for travel of unmanned vehicle
CN110252546A (en) * 2019-06-28 2019-09-20 深圳市赤壁工程科技有限公司 A kind of bridge floor paint finishing and method
CN112639647A (en) * 2018-08-28 2021-04-09 灵动科技(北京)有限公司 Autonomous vehicle management system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178373A (en) * 1984-02-25 1985-09-12 Agency Of Ind Science & Technol Detection of obstacle in moving body
JPS62276611A (en) * 1986-05-24 1987-12-01 Toyota Central Res & Dev Lab Inc Reference plane deciding device
JPS644814A (en) * 1987-06-27 1989-01-10 Shinko Electric Co Ltd Self-standing type unmanned vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178373A (en) * 1984-02-25 1985-09-12 Agency Of Ind Science & Technol Detection of obstacle in moving body
JPS62276611A (en) * 1986-05-24 1987-12-01 Toyota Central Res & Dev Lab Inc Reference plane deciding device
JPS644814A (en) * 1987-06-27 1989-01-10 Shinko Electric Co Ltd Self-standing type unmanned vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286747A (en) * 1995-04-14 1996-11-01 Minolta Co Ltd Auton0mous running vehicle
JP2002215236A (en) * 2001-01-22 2002-07-31 Komatsu Ltd Controller for travel of unmanned vehicle
CN112639647A (en) * 2018-08-28 2021-04-09 灵动科技(北京)有限公司 Autonomous vehicle management system and method
CN110252546A (en) * 2019-06-28 2019-09-20 深圳市赤壁工程科技有限公司 A kind of bridge floor paint finishing and method

Also Published As

Publication number Publication date
JP2609890B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
EP1368715B1 (en) Method and device for determining position of an autonomous apparatus
JP3217281B2 (en) Robot environment recognition apparatus and control method thereof
US6124694A (en) Wide area navigation for a robot scrubber
JP2002333920A (en) Movement controller for traveling object for work
JPH078271B2 (en) Self-propelled vacuum cleaner
JP2006113952A (en) Charging type travel system
JPH10105233A (en) Autonomous traveling vehicle
JPH01207803A (en) Self-traveling working vehicle
KR20070116418A (en) Robot and method of drawing indoor map
JP2010262461A (en) Mobile object
JP3227710B2 (en) Mobile work robot
JPH01207804A (en) Self-traveling working vehicle
JP2004318721A (en) Autonomous travel vehicle
JP2000039918A (en) Moving robot
JP2609891B2 (en) Self-propelled work vehicle
JPH0683443A (en) Loading position travel system for unmanned dump truck
JPS59121406A (en) Controller of mobile robot
JPH0643933A (en) Attitude controller for moving vehicle
JP3794340B2 (en) Omni-directional cart
JPS6347806A (en) Unmanned running vehicle
JP2862562B2 (en) Traveling course and condition input device for moving objects
JPS59121405A (en) Controller of mobile robot
JPS60178373A (en) Detection of obstacle in moving body
KR0161044B1 (en) Control system and method of mobile robot
JP2602064B2 (en) Travel position control device for self-propelled vehicles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees