JP2004318721A - Autonomous travel vehicle - Google Patents

Autonomous travel vehicle Download PDF

Info

Publication number
JP2004318721A
JP2004318721A JP2003114701A JP2003114701A JP2004318721A JP 2004318721 A JP2004318721 A JP 2004318721A JP 2003114701 A JP2003114701 A JP 2003114701A JP 2003114701 A JP2003114701 A JP 2003114701A JP 2004318721 A JP2004318721 A JP 2004318721A
Authority
JP
Japan
Prior art keywords
distance
traveling
measured
slip
predetermined time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003114701A
Other languages
Japanese (ja)
Inventor
Hitoshi Iizaka
仁志 飯坂
Takashi Tomiyama
隆志 冨山
Masahito Sano
雅仁 佐野
Kazunori Murakami
和則 村上
Osamu Tsuchiya
修 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2003114701A priority Critical patent/JP2004318721A/en
Publication of JP2004318721A publication Critical patent/JP2004318721A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correct a difference in travel distance without using map information. <P>SOLUTION: A robot main body 1 is travelled straight forward in a separation state by a fixed distance after measuring a distance from a wall 40 by left side ranging sensors 3-3, 3-4. When the main body 1 is positioned at a place A, the distance m from a wall 41 in a front part is measured by a front ranging sensor 3-1. The travel distance is measured based on the outputs of encoders 10a, 10b. When the robot main body reaches a place B after a prescribed time t passes, the distance n from the front wall is measured by the front ranging sensor. The travel distance is measured from the output of the encoder. A slide detecting means compares the travel distance from the place A to the place B with the amount of change (m-n) of the measured distance per prescribed time t, so as to determine presence of the slide, based on the difference. When the slide is determined, the amount of the change (m-n) of the measured distance is defined as an actual travel distance, so that a travel distance per prescribed time measured by an encoder, based on the change amount, is corrected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自律走行する自律走行車に関する。
【0002】
【従来の技術】
例えば、自律走行しつつ作業を行う自律走行ロボットは、予め地図情報を記憶しておき、この地図情報を参照して走行経路を探索し、走行経路距離を算出した後、探索された走行経路に沿って走行を開始する。そして、前方あるいは後方に壁があることを検出すると、当該壁の位置座標および出発位置の位置座標を読み出して所定の演算を行い、出発位置から当該壁までの距離Mを算出する。一方、ロボットから当該壁に向けて超音波を発射し、その反射波を受信することでロボットと壁との距離Lを計測する。また、ロボットが走行した距離Sをエンコーダ出力から求める。そして、M−(L+S)によって、位置座標から算出した距離Mと、エンコーダと超音波を使用して計測した距離(L+S)との誤差ΔMを求め、この誤差をエンコーダによる累積測距誤差として走行距離を(S+ΔM)に補正するものが知られている。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平3−22108号公報(第5頁左下欄〜第6頁左上欄等)
【0004】
【発明が解決しようとする課題】
上述した特許文献1は、予め地図情報をメモリに記憶しておき、この地図情報の位置座標から距離Mを算出している。しかし、予め地図情報を作成してメモリに記憶するものでは、手間かが掛かりコスト的にも高価になる問題があった。このため、地図情報を使用しないことも考えられるが、この特許文献1の場合は地図情報が無ければ走行経路に沿った走行距離を参照することはできないので、距離Mを求めることはできない。従って、走行距離を補正することができないという問題があった。
そこで本発明は、地図情報を使用せずに走行距離の誤差補正ができる自律走行車を提供する。
【0005】
【課題を解決するための手段】
本発明は、走行車本体に設けた走行用車輪を回転駆動する駆動手段と、走行車本体の走行方向前方又は後方にある物体までの距離を計測する、例えば超音波センサを使用した測距手段と、駆動手段を制御して走行車本体を走行制御する走行制御手段と、走行用車輪の回転数から走行距離を計測する、例えばエンコーダを使用した走行距離計測手段と、この走行距離計測手段が計測した所定時間当たりの走行距離と測距手段が計測した所定時間当たりの計測距離の変化量とを比較し滑りの有無を検知する滑り検知手段と、この滑り検知手段が滑り有りを検知すると、測距手段により計測した所定時間当たりの計測距離の変化量に基づいて所定時間当たりの走行距離を補正する走行距離補正手段とを備えたものである。
【0006】
【発明の実施の形態】
以下、本発明の一実施の形態を、図面を参照して説明する。なお、この実施の形態は、本発明を、清掃作業を行う自律走行ロボットに適用したものについて述べる。
【0007】
図1及び図2は自律走行ロボットの構成を示す図で、下部が略円形状で上部が略半球形状になっているロボット本体1の下端部に、その外周面に沿って障害物との接触を検知し、また、接触時の衝撃を和らげるバンパー2を取り付けている。そして、前記バンパー2上にロボット本体と周囲の物体との距離を計測する測距手段として、例えば、超音波センサからなる多数の測距センサ3を所定の間隔をあけて配置している。
【0008】
前記ロボット本体1の内部には、クリーナモータ4とこのモータ4で回転するファン5とこのファン5の回転により底部に設けた吸込口6から塵を吸込んで集める集塵室7とからなるクリーナ機構が収納されている。
【0009】
また、前記ロボット本体1の底部略中央の左右にそれぞれ走行用車輪8a、8bを取り付け、この各車輪8a,8bをそれぞれ駆動手段である左走行モータ9a、右走行モータ9bで回転駆動するようにしている。そして、前記各車輪8a,8bの回転をそれぞれ左右のロータリーエンコーダ(以下、単にエンコーダと称する。)10a、10bで検出するようにしている。前記左右のエンコーダ10a,10bは後述する走行距離計測手段に使用されるものである。
【0010】
前記ロボット本体1の底部後端中央には回転自在で方向が左右に自由に旋回する旋回輪11が取り付けられている。また、前記ロボット本体1内には、CPU、ROM、RAM等の制御回路部品を組み込んだ回路基板12及び各部に電源を供給するバッテリ13が収納されている。
【0011】
前記バンパー2に配置されている各測距センサ3についてさらに詳しく説明すると、図3に示すように、図中矢印で示す走行方向に対して、先端中央に前方測距センサ3−1を配置し、後端中央に後方測距センサ3−2を配置し、左端に1対の左側方測距センサ3−3、3−4、右端に1対の右側方測距センサ3−5、3−6、左斜め前に左斜め前方測距センサ3−7、右斜め前に右斜め前方測距センサ3−8をそれぞれ配置している。
【0012】
前記前方測距センサ3−1はロボット本体1が走行する前方にある障害物や壁などの物体までの距離を計測し、前記後方測距センサ3−2はロボット本体1が走行する方向とは反対の後方にある障害物や壁などの物体までの距離を計測し、左側方測距センサ3−3、3−4はロボット本体1が走行する方向の左側にある障害物や壁などの物体までの距離を計測し、右側方測距センサ3−5、3−6はロボット本体1が走行する方向の右側にある障害物や壁などの物体までの距離を計測し、左斜め前方測距センサ3−7はロボット本体1が走行する方向の左斜め前方にある障害物や壁などの物体までの距離を計測し、右斜め前方測距センサ3−8はロボット本体1が走行する方向の右斜め前方にある障害物や壁などの物体までの距離を計測するようになっている。
【0013】
図4は制御部のハード構成を示すブロック図で、21は制御部本体を構成するCPU、22はこのCPU21が各部を制御するプログラムが格納されたROM、23はデータを演算するためのメモリや一時記憶用バッファメモリ等、各種メモリを設けたRAMである。また、24は、前記各測距センサ3−1〜3−8、前記クリーナモータ4を回転制御するモータ制御部25、左右の走行モータ9a,9bを回転制御するモータ制御部26及び前記左右のエンコーダ10a,10bに対して信号の入出力制御を行うI/Oポートである。前記CPU21と、ROM22、RAM23及びI/Oポート24とはバスライン27を介して電気的に接続されている。
【0014】
図5は、前記CPU21、ROM22、RAM23、I/Oポート24の複合体から構成される制御部30を機能的に示したブロック図で、このロボットは、機能的には、前記モータ制御部26を制御して前記各走行モータ9a,9bを回転駆動し、ロボット本体1を走行制御する走行制御手段31と、前記各エンコーダ10a,10bの出力から得られる各走行用車輪8a,8bの回転数から走行距離を計測する走行距離計測手段32と、この走行距離計測手段32が計測した所定時間当たりの走行距離と、前記前方測距センサ3−1が計測した前方にある障害物や壁などの物体までの距離の、所定時間当たりの計測距離の変化量とを比較し滑りの有無を検知する滑り検知手段33と、この滑り検知手段33が滑り有りを検知すると、前記前方測距センサ3−1により計測した所定時間当たりの計測距離の変化量に基づいて所定時間当たりの走行距離を補正する走行距離補正手段34とからなる。
【0015】
このような構成において、ロボット本体1を走行させる場合は、走行制御手段31によりモータ制御部26を制御し、モータ制御部26により各走行モータ9a,9bを回転駆動する。そして、各走行モータ9a,9bはそれぞれ走行用車輪8a,8bを回転駆動する。
【0016】
図6に示すように、ロボット本体1を、左側方測距センサ3−3、3−4によって物体、例えば左側の壁40からの距離を計測しつつその壁40から一定の距離を保った状態で走行制御手段31により前方に真っ直ぐ走行させ、ロボット本体1がA位置にあるとき前方測距センサ3−1によって前方の壁41との距離mを計測する。そして、計測した距離mをRAM23に格納する。また、このとき走行距離計測手段32により、各エンコーダ10a,10bの出力から、走行を開始してからの走行距離を計測しRAM23に格納する。
【0017】
続いて、所定時間tが経過してロボット本体1がB位置に到達すると、再度前方測距センサ3−1によって前方の壁41との距離nを計測する。そして、計測した距離nをRAM23に格納する。また、このとき走行距離計測手段32により、各エンコーダ10a,10bの出力から、走行を開始してからの走行距離を計測しRAM23に格納する。
【0018】
続いて、滑り検知手段33は、走行距離計測手段32が計測した位置Aから位置Bまでの走行距離と、前方測距センサ3−1が計測した所定時間t当たりの計測距離の変化量(m−n)を比較する。そして、エンコーダ10a,10bを使用して測定した走行距離と計測距離の変化量(m−n)との差を求め、その差の絶対値が予め設定された閾値よりも大きいと滑りが有ったと判定し、閾値以下であれば滑りが無かったと判定する。
【0019】
例えば、ロボット本体1が床に敷かれた絨毯の上を走行したとき、溝や毛の方向によって走行用車輪8a,8bが滑る。この滑りによって、ロボット本体1の新興方向が変わる場合は、すぐに走行制御手段31が壁40から一定の距離を保って直進するように制御する。しかし、走行用車輪8a,8bの滑りによって、エンコーダ10a,10bで測定した走行距離は、実際の走行距離よりも長くなったり、短くなったりする。
【0020】
そこで、滑り検知手段33が滑り有りを検知すると、走行距離補正手段34は、前方測距センサ3−1により計測した所定時間当たりの計測距離の変化量(m−n)を実際の走行距離と見なし、その変化量(m−n)に基づいてエンコーダ10a,10bで測定した所定時間当たりの走行距離を補正する。
【0021】
このように、地図情報を使用せずに走行距離の誤差補正ができる。そして、補正された走行距離情報は、例えば、ロボット本体1の走行経路をメモリ上の地図に記憶する際に、地図上におけるロボット本体1の現在位置を特定するために利用される。
【0022】
なお、ここでは走行方向の前方に壁41があったので、前方測距センサ3−1によってその壁41との距離を計測し変化量(m−n)を求めたが、後方に壁が有る場合は後方測距センサ3−2によってその壁との距離を計測し変化量(m−n)を求めるようにしてもよい、
次に、本発明の、他の実施の形態を、図面を参照して述べる。
なお、ロボット本体1の構成は基本的には前述した実施の形態と同一である。異なる点は、前述した実施の形態が1回毎に滑りを検知して走行距離を補正したのに対し、ここでは滑りを検知している間は補正を行わず、滑り無しを検知した時に滑りを検知していた区間の走行距離をまとめて補正するようになっている。
【0023】
図7に示すように、領域42に例えば絨毯が敷かれており、この領域41をロボット本体1が左側方測距センサ3−3、3−4によって左壁40から一定の距離を保った状態でその左壁40に沿って直進し、途中、何回か滑り検知を繰り返す。すなわち、ロボット本体1が所定時間tにおいて移動区間aを走行しA位置に到達すると、前方測距センサ3−1によって前方の壁41との距離m1を計測し、エンコーダ10a,10bを使用して測定した走行距離と比較して滑りの有無を判定する。ここでは滑り無しを判定する。
【0024】
続いて、ロボット本体1は絨毯が敷かれている領域42を走行するようになる。そして、所定時間tにおいて移動区間bを走行してB位置に到達すると、前方測距センサ3−1によって前方の壁41との距離m2を計測し、エンコーダ10a,10bを使用して測定した走行距離と計測距離の変化量(m2−m1)とから滑りの有無を判定する。ここでは滑り有りを判定することになる。
【0025】
続いて、所定時間tにおいて移動区間cを走行してC位置に到達すると、前方測距センサ3−1によって前方の壁41との距離m3を計測し、エンコーダ10a,10bを使用して測定した走行距離と計測距離の変化量(m3−m2)とから滑りの有無を判定する。ここでも滑り有りを判定することになる。
【0026】
続いて、所定時間tにおいて移動区間dを走行してD位置に到達すると、前方測距センサ3−1によって前方の壁41との距離m4を計測し、エンコーダ10a,10bを使用して測定した走行距離と計測距離の変化量(m4−m3)とから滑りの有無を判定する。ここでも滑り有りを判定する。
【0027】
続いて、所定時間tにおいて移動区間eを走行してE位置に到達すると、前方測距センサ3−1によって前方の壁41との距離m5を計測し、エンコーダ10a,10bを使用して測定した走行距離と計測距離の変化量(m5−m4)とから滑りの有無を判定する。ここでは滑り無しを判定することになる。
【0028】
このようにして連続した滑り有りの判定が終了すると、走行距離補正手段34は、前方測距センサ3−1により計測した各計測距離の変化量の合計{(m2−m1)+(m3−m2)+(m4−m3)}を領域42の全区間fにおける実際の走行距離と見なし、その走行距離に基づいてエンコーダ10a,10bで測定した全区間fの走行距離を補正する。
【0029】
このようにしても地図情報を使用せずに走行距離の誤差補正ができる。しかも、滑りを検知していた区間の走行距離をまとめて補正するので、補正する回数が少なくなり、補正処理を簡略化できる。
【0030】
なお、前述した各実施の形態においては、左側方測距センサ3−3、3−4によって左側の壁40からの距離を計測しつつその壁40から一定の距離を保った状態でロボット本体1を直進させるようにしたが必ずしもこれに限定するものではない。例えば、図8に示すように、ジャイロセンサなどの方向計測手段28を設け、側方測距センサに代わってこの方向計測手段28を使用してロボット本体1を直進制御するようにしてもよい。
なお、本発明は、上記各実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。
【0031】
【発明の効果】
以上詳述したように本発明によれば、地図情報を使用せずに走行距離の誤差補正ができる自律走行車を提供できる。
【図面の簡単な説明】
【図1】本発明の、一実施の形態に係る自律走行ロボットの構成を示す正面図。
【図2】同実施の形態に係る自律走行ロボットの構成を示す一部切欠した側面図。
【図3】同実施の形態に係る自律走行ロボットの測距センサの配置状態を示す概略平面図。
【図4】同実施の形態に係る自律走行ロボットの制御部のハード構成を示すブロック図。
【図5】同実施の形態に係る自律走行ロボットの制御部の機能ブロック図。
【図6】同実施の形態における走行距離補正制御を説明するための図。
【図7】本発明の、他の実施の形態における走行距離補正制御を説明するための図。
【図8】本発明の、他の実施の形態における制御部の機能ブロック図。
【符号の説明】
1…ロボット本体、3…測距センサ、8a,8b…走行用車輪、9a,9b…走行モータ、10a,10b…ロータリーエンコーダ、26…モータ制御部、31…走行制御手段、32…走行距離計測手段、33…滑り検知手段、34…走行距離補正手段。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an autonomous vehicle that autonomously travels.
[0002]
[Prior art]
For example, an autonomous traveling robot that performs work while traveling autonomously stores map information in advance, searches for a traveling route with reference to this map information, calculates a traveling route distance, and adds Start running along. When it is detected that there is a wall in front or behind, the position coordinates of the wall and the position coordinates of the departure position are read out, a predetermined calculation is performed, and the distance M from the departure position to the wall is calculated. On the other hand, the robot emits ultrasonic waves toward the wall and receives the reflected waves to measure the distance L between the robot and the wall. Further, the distance S traveled by the robot is obtained from the encoder output. Then, an error ΔM between the distance M calculated from the position coordinates and the distance (L + S) measured using the encoder and the ultrasonic wave is obtained from M− (L + S), and this error is calculated as the accumulated distance measurement error by the encoder. A device that corrects the distance to (S + ΔM) is known. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-3-22108 (page 5, lower left column to page 6, upper left column, etc.)
[0004]
[Problems to be solved by the invention]
In Patent Document 1 described above, map information is stored in a memory in advance, and a distance M is calculated from the position coordinates of the map information. However, when map information is created in advance and stored in a memory, there is a problem in that it is troublesome and costly. For this reason, it is conceivable that map information is not used. However, in the case of Patent Document 1, the distance M along the travel route cannot be referred to without the map information, so that the distance M cannot be obtained. Therefore, there is a problem that the traveling distance cannot be corrected.
Therefore, the present invention provides an autonomous traveling vehicle that can correct a traveling distance error without using map information.
[0005]
[Means for Solving the Problems]
The present invention relates to a driving unit that rotationally drives a traveling wheel provided on a traveling vehicle body, and a distance measuring unit that measures a distance to an object located in front or behind a traveling direction of the traveling vehicle body, for example, using an ultrasonic sensor. A traveling control means for controlling the driving means to control the traveling of the traveling vehicle body, a traveling distance measuring means for measuring a traveling distance from the number of rotations of the traveling wheels, for example, an encoder, and a traveling distance measuring means. Slip detecting means for detecting the presence or absence of slip by comparing the measured travel distance per predetermined time and the change amount of the measured distance per predetermined time measured by the distance measuring means, and when the slip detecting means detects the presence of slip, A travel distance correcting means for correcting the travel distance per predetermined time based on the amount of change in the measured distance per predetermined time measured by the distance measuring means.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In this embodiment, an embodiment in which the present invention is applied to an autonomous mobile robot that performs a cleaning operation will be described.
[0007]
FIGS. 1 and 2 show the configuration of an autonomous mobile robot, in which a lower end of a robot body 1 having a substantially circular lower part and a substantially hemispherical upper part contacts an obstacle along an outer peripheral surface thereof. Is detected, and a bumper 2 for reducing the shock at the time of contact is attached. As the distance measuring means for measuring the distance between the robot body and the surrounding objects on the bumper 2, for example, a large number of distance measuring sensors 3 composed of ultrasonic sensors are arranged at predetermined intervals.
[0008]
Inside the robot main body 1, a cleaner mechanism including a cleaner motor 4, a fan 5 rotated by the motor 4, and a dust collection chamber 7 that sucks and collects dust from a suction port 6 provided at the bottom by the rotation of the fan 5. Is stored.
[0009]
Further, running wheels 8a and 8b are attached to the left and right of the bottom center of the robot main body 1, respectively, and the wheels 8a and 8b are driven to rotate by a left running motor 9a and a right running motor 9b as driving means, respectively. ing. The rotation of the wheels 8a and 8b is detected by left and right rotary encoders (hereinafter simply referred to as encoders) 10a and 10b, respectively. The left and right encoders 10a and 10b are used for running distance measuring means described later.
[0010]
At the center of the rear end of the bottom of the robot main body 1, a turning wheel 11 which is rotatable and turns freely in the left and right directions is attached. The robot body 1 houses a circuit board 12 incorporating control circuit components such as a CPU, a ROM, and a RAM, and a battery 13 for supplying power to each unit.
[0011]
The distance measuring sensors 3 arranged on the bumper 2 will be described in more detail. As shown in FIG. 3, a front distance measuring sensor 3-1 is arranged at the center of the front end in the running direction indicated by the arrow in the figure. A rear distance measuring sensor 3-2 is disposed at the center of the rear end, and a pair of left distance measuring sensors 3-3 and 3-4 are provided at the left end, and a pair of right distance measuring sensors 3-5 and 3-5 are provided at the right end. 6. A left-diagonally forward distance measuring sensor 3-7 is disposed diagonally forward left, and a right-diagonally forward distance measuring sensor 3-8 is disposed diagonally forward right.
[0012]
The forward distance measuring sensor 3-1 measures the distance to an object such as an obstacle or a wall in front of which the robot body 1 travels, and the rear distance measuring sensor 3-2 determines the direction in which the robot body 1 travels. The distance to an object such as an obstacle or a wall behind is measured, and the left-side distance measuring sensors 3-3 and 3-4 measure an object such as an obstacle or a wall on the left side in the traveling direction of the robot body 1. The right distance measuring sensors 3-5 and 3-6 measure the distance to an object such as an obstacle or a wall on the right side in the direction in which the robot body 1 travels, and the left oblique forward distance measuring is performed. The sensor 3-7 measures the distance to an object such as an obstacle or a wall that is diagonally forward left of the direction in which the robot main body 1 travels, and the right diagonal forward distance measuring sensor 3-8 measures the distance in the direction in which the robot main body 1 travels. Measures the distance to an object such as an obstacle or wall in the diagonally forward right It has become the jar.
[0013]
FIG. 4 is a block diagram showing the hardware configuration of the control unit. Reference numeral 21 denotes a CPU constituting the control unit main body, 22 denotes a ROM in which a program for controlling each unit by the CPU 21 is stored, and 23 denotes a memory for calculating data. This is a RAM provided with various memories such as a buffer memory for temporary storage. 24, a motor control unit 25 for controlling the rotation of each of the distance measuring sensors 3-1 to 3-8, the cleaner motor 4, a motor control unit 26 for controlling the rotation of the left and right traveling motors 9a and 9b, and the left and right This is an I / O port for controlling input / output of signals to / from the encoders 10a and 10b. The CPU 21, the ROM 22, the RAM 23, and the I / O port 24 are electrically connected via a bus line 27.
[0014]
FIG. 5 is a block diagram functionally showing a control unit 30 composed of a complex of the CPU 21, the ROM 22, the RAM 23, and the I / O port 24. To drive the traveling motors 9a and 9b to rotate and control the traveling of the robot body 1, and the rotational speeds of the traveling wheels 8a and 8b obtained from the outputs of the encoders 10a and 10b. Distance measuring means 32 for measuring the traveling distance from the vehicle, the traveling distance per predetermined time measured by the traveling distance measuring means 32, and obstacles and walls in front measured by the forward distance measuring sensor 3-1. A slip detecting means 33 for detecting the presence or absence of slip by comparing a change amount of the distance to the object with a measured distance per predetermined time, and when the slip detecting means 33 detects the presence of slip, Square on the basis of a change amount of the measurement distance per predetermined measured time by the distance measuring sensor 3-1 consisting Mileage correction means 34 for correcting the travel distance per a predetermined time.
[0015]
In such a configuration, when the robot body 1 travels, the travel control means 31 controls the motor control unit 26, and the motor control unit 26 drives the traveling motors 9a and 9b to rotate. Then, the traveling motors 9a and 9b rotate the traveling wheels 8a and 8b, respectively.
[0016]
As shown in FIG. 6, the robot main body 1 is kept at a certain distance from the wall 40 while measuring the distance from the object, for example, the left wall 40, by the left distance measuring sensors 3-3 and 3-4. Then, the robot travels straight ahead by the travel control means 31. When the robot body 1 is at the position A, the distance m to the front wall 41 is measured by the front distance measuring sensor 3-1. Then, the measured distance m is stored in the RAM 23. At this time, the running distance is measured by the running distance measuring means 32 from the outputs of the encoders 10a and 10b, and is stored in the RAM 23.
[0017]
Subsequently, when the predetermined time t has elapsed and the robot body 1 reaches the position B, the distance n to the front wall 41 is measured again by the front distance measuring sensor 3-1. Then, the measured distance n is stored in the RAM 23. At this time, the running distance is measured by the running distance measuring means 32 from the outputs of the encoders 10a and 10b, and is stored in the RAM 23.
[0018]
Subsequently, the slip detection unit 33 calculates the change amount (m) of the travel distance from the position A to the position B measured by the travel distance measurement unit 32 and the measurement distance per predetermined time t measured by the front distance measurement sensor 3-1. -N). Then, the difference between the travel distance measured by using the encoders 10a and 10b and the change amount (m−n) of the measured distance is obtained. If the absolute value of the difference is larger than a preset threshold value, slippage occurs. It is determined that there is no slip if it is less than the threshold.
[0019]
For example, when the robot body 1 travels on a carpet laid on the floor, the traveling wheels 8a and 8b slide depending on the direction of the grooves and hairs. When the emerging direction of the robot main body 1 changes due to the slip, the traveling control means 31 immediately controls the vehicle to travel straight while keeping a certain distance from the wall 40. However, the running distance measured by the encoders 10a and 10b becomes longer or shorter than the actual running distance due to the sliding of the running wheels 8a and 8b.
[0020]
Therefore, when the slip detecting means 33 detects the presence of a slip, the traveling distance correcting means 34 calculates the change amount (m-n) of the measured distance per predetermined time measured by the front distance measuring sensor 3-1 as the actual traveling distance. Considering this, the travel distance per predetermined time measured by the encoders 10a and 10b is corrected based on the amount of change (mn).
[0021]
As described above, it is possible to correct the error of the traveling distance without using the map information. Then, the corrected travel distance information is used to specify the current position of the robot main body 1 on the map, for example, when the travel route of the robot main body 1 is stored in a map on a memory.
[0022]
Here, since the wall 41 was in front of the traveling direction, the distance to the wall 41 was measured by the front distance measuring sensor 3-1 to determine the amount of change (mn), but there was a wall behind. In this case, the distance to the wall may be measured by the rear distance measuring sensor 3-2 to obtain the amount of change (mn).
Next, another embodiment of the present invention will be described with reference to the drawings.
The configuration of the robot main body 1 is basically the same as that of the above-described embodiment. The difference is that the above-described embodiment detects slippage each time and corrects the travel distance, whereas here, no correction is performed while slippage is detected, and slippage is detected when no slippage is detected. The travel distance of the section in which was detected is corrected collectively.
[0023]
As shown in FIG. 7, for example, a carpet is laid in the area 42, and the robot body 1 maintains this area 41 at a fixed distance from the left wall 40 by the left distance measuring sensors 3-3 and 3-4. Then, the vehicle travels straight along the left wall 40, and repeats slip detection several times in the middle. That is, when the robot body 1 travels in the moving section a at the predetermined time t and reaches the position A, the distance m1 to the front wall 41 is measured by the front distance measuring sensor 3-1 and the encoder 10a, 10b is used to measure the distance m1. The presence or absence of slip is determined by comparing the measured travel distance. Here, no slip is determined.
[0024]
Subsequently, the robot body 1 travels in the area 42 on which the carpet is laid. When the vehicle travels in the moving section b at the predetermined time t and reaches the position B, the distance m2 to the front wall 41 is measured by the front distance measuring sensor 3-1 and the traveling is measured using the encoders 10a and 10b. The presence or absence of slip is determined from the distance and the change amount (m2-m1) of the measured distance. Here, it is determined that there is a slip.
[0025]
Subsequently, when the vehicle travels in the moving section c at the predetermined time t and reaches the position C, the distance m3 to the front wall 41 is measured by the front distance measuring sensor 3-1 and measured using the encoders 10a and 10b. The presence or absence of a slip is determined from the traveling distance and the change amount (m3-m2) of the measured distance. Here also, it is determined that there is slippage.
[0026]
Subsequently, when the vehicle travels in the moving section d at the predetermined time t and reaches the position D, the distance m4 to the front wall 41 is measured by the front distance measuring sensor 3-1 and is measured using the encoders 10a and 10b. The presence or absence of a slip is determined from the travel distance and the change amount (m4-m3) of the measured distance. Here, it is determined that there is slippage.
[0027]
Subsequently, when the vehicle travels in the moving section e at the predetermined time t and reaches the position E, the distance m5 to the front wall 41 is measured by the front distance measuring sensor 3-1 and measured using the encoders 10a and 10b. The presence or absence of a slip is determined from the travel distance and the change amount (m5-m4) of the measured distance. Here, no slip is determined.
[0028]
When the determination of the presence of the continuous slip is completed in this way, the traveling distance correction unit 34 calculates the sum of the change amounts of the respective measurement distances measured by the front distance measurement sensor 3-1 {(m2−m1) + (m3−m2). ) + (M4-m3)} is regarded as the actual traveling distance in the entire section f of the area 42, and the traveling distance of the entire section f measured by the encoders 10a and 10b is corrected based on the traveling distance.
[0029]
Even in this case, it is possible to correct the error of the traveling distance without using the map information. In addition, since the traveling distances of the sections where slippage has been detected are corrected collectively, the number of corrections is reduced, and the correction process can be simplified.
[0030]
In each of the above-described embodiments, the robot main body 1 is measured while measuring the distance from the left wall 40 by the left distance measuring sensors 3-3 and 3-4 and maintaining a constant distance from the wall 40. , But is not necessarily limited to this. For example, as shown in FIG. 8, a direction measuring unit 28 such as a gyro sensor may be provided, and the robot main body 1 may be controlled to go straight using the direction measuring unit 28 instead of the side distance measuring sensor.
The present invention is not limited to the above embodiments as they are, and can be embodied by modifying the constituent elements in the implementation stage without departing from the scope of the invention.
[0031]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to provide an autonomous traveling vehicle capable of correcting a traveling distance error without using map information.
[Brief description of the drawings]
FIG. 1 is a front view showing a configuration of an autonomous mobile robot according to an embodiment of the present invention.
FIG. 2 is a partially cutaway side view showing the configuration of the autonomous mobile robot according to the embodiment.
FIG. 3 is a schematic plan view showing an arrangement state of a distance measuring sensor of the autonomous mobile robot according to the embodiment.
FIG. 4 is a block diagram showing a hardware configuration of a control unit of the autonomous mobile robot according to the embodiment.
FIG. 5 is a functional block diagram of a control unit of the autonomous mobile robot according to the embodiment.
FIG. 6 is a diagram for explaining travel distance correction control in the embodiment.
FIG. 7 is a diagram for explaining travel distance correction control according to another embodiment of the present invention.
FIG. 8 is a functional block diagram of a control unit according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Robot main body, 3 ... Distance measuring sensor, 8a, 8b ... Running wheel, 9a, 9b ... Running motor, 10a, 10b ... Rotary encoder, 26 ... Motor control unit, 31 ... Running control means, 32 ... Running distance measurement Means, 33: slip detection means, 34: travel distance correction means.

Claims (4)

走行車本体に設けた走行用車輪を回転駆動する駆動手段と、前記走行車本体の走行方向前方又は後方にある物体までの距離を計測する測距手段と、前記駆動手段を制御して前記走行車本体を走行制御する走行制御手段と、前記走行用車輪の回転数から走行距離を計測する走行距離計測手段と、この走行距離計測手段が計測した所定時間当たりの走行距離と前記測距手段が計測した所定時間当たりの計測距離の変化量とを比較し滑りの有無を検知する滑り検知手段と、この滑り検知手段が滑り有りを検知すると、前記測距手段により計測した所定時間当たりの計測距離の変化量に基づいて所定時間当たりの走行距離を補正する走行距離補正手段とを備えたことを特徴とする自律走行車。A driving means for rotating driving wheels provided on the traveling vehicle body, a distance measuring means for measuring a distance to an object located in front of or behind the traveling direction of the traveling vehicle body, and controlling the driving means to perform the traveling. Traveling control means for controlling traveling of the vehicle body, traveling distance measuring means for measuring the traveling distance from the number of revolutions of the traveling wheels, traveling distance per predetermined time measured by the traveling distance measuring means, and the distance measuring means A slip detecting means for detecting the presence or absence of slip by comparing the amount of change in the measured distance measured per predetermined time, and a measuring distance per predetermined time measured by the distance measuring means when the slip detecting means detects the presence of slip. An autonomous traveling vehicle comprising traveling distance correction means for correcting a traveling distance per a predetermined time based on a change amount of the vehicle. 走行車本体に設けた走行用車輪を回転駆動する駆動手段と、前記走行車本体の走行方向前方又は後方にある物体までの距離を計測する第1の測距手段と、前記走行車本体の走行方向左方又は右方にある物体までの距離を計測する第2の測距手段と、この第2の測距手段による計測値に基づいて左方又は右方の物体との距離を一定に保ちつつ、前記駆動手段を制御して前記走行車本体を走行制御する走行制御手段と、前記走行用車輪の回転数から走行距離を計測する走行距離計測手段と、この走行距離計測手段が計測した所定時間当たりの走行距離と前記第1の測距手段が計測した所定時間当たりの計測距離の変化量とを比較し滑りの有無を検知する滑り検知手段と、この滑り検知手段が滑り有りを検知すると、前記第1の測距手段により計測した所定時間当たりの計測距離の変化量に基づいて所定時間当たりの走行距離を補正する走行距離補正手段とを備えたことを特徴とする自律走行車。Driving means for rotating driving wheels provided on the traveling vehicle body, first distance measuring means for measuring a distance to an object located forward or rearward in the traveling direction of the traveling vehicle body, and traveling of the traveling vehicle body A second distance measuring means for measuring a distance to an object located on the left or right side in the direction, and keeping a constant distance between the left or right object based on a value measured by the second distance measuring means. A traveling control means for controlling the driving means to control the traveling of the traveling vehicle body; a traveling distance measuring means for measuring a traveling distance from the number of revolutions of the traveling wheels; and a predetermined distance measured by the traveling distance measuring means. A slip detecting means for comparing the distance traveled per hour with the amount of change in the measured distance per predetermined time measured by the first distance measuring means to detect the presence or absence of slip; Measured by the first distance measuring means Autonomous vehicle, characterized in that a travel distance correction means for correcting the travel distance per a predetermined time based on the amount of change in distance measured per predetermined time. 走行車本体に設けた走行用車輪を回転駆動する駆動手段と、前記走行車本体の走行方向前方又は後方にある物体までの距離を計測する測距手段と、前記走行車本体の走行方向を計測する方向計測手段と、この方向計測手段による計測に基づいて前記駆動手段を制御し、前記走行車本体を所定の方向に直進走行制御する走行制御手段と、前記走行用車輪の回転数から走行距離を計測する走行距離計測手段と、この走行距離計測手段が計測した所定時間当たりの走行距離と前記測距手段が計測した所定時間当たりの計測距離の変化量とを比較し滑りの有無を検知する滑り検知手段と、この滑り検知手段が滑り有りを検知すると、前記測距手段により計測した所定時間当たりの計測距離の変化量に基づいて所定時間当たりの走行距離を補正する走行距離補正手段とを備えたことを特徴とする自律走行車。Driving means for rotating driving wheels provided on the traveling vehicle body, distance measuring means for measuring a distance to an object in front or behind the traveling direction of the traveling vehicle body, and measuring the traveling direction of the traveling vehicle body Direction measuring means, a driving control means for controlling the driving means based on the measurement by the direction measuring means, and a straight traveling control of the traveling vehicle body in a predetermined direction, and a traveling distance based on a rotation speed of the traveling wheel. Distance measuring means for measuring the distance, and comparing the distance traveled per predetermined time measured by the distance measuring means with the amount of change in the measured distance per predetermined time measured by the distance measuring means to detect the presence or absence of slippage. A slip detecting means, and a run for correcting a running distance per predetermined time based on an amount of change in a measured distance per predetermined time measured by the distance measuring means when the slip detecting means detects the presence of slip. Autonomous vehicle, characterized in that a release correcting means. 走行距離補正手段は、滑り検知手段が滑り有りを検知し続けると、その滑り有りを検知し続けている期間における計測距離の変化量に基づいてその期間における走行距離を補正することを特徴とする請求項2又は3記載の自律走行車。The running distance correction means, when the slip detecting means continues to detect the presence of slip, corrects the running distance in the period based on the amount of change in the measured distance during the period of continuously detecting the presence of slip. The autonomous vehicle according to claim 2.
JP2003114701A 2003-04-18 2003-04-18 Autonomous travel vehicle Pending JP2004318721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114701A JP2004318721A (en) 2003-04-18 2003-04-18 Autonomous travel vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114701A JP2004318721A (en) 2003-04-18 2003-04-18 Autonomous travel vehicle

Publications (1)

Publication Number Publication Date
JP2004318721A true JP2004318721A (en) 2004-11-11

Family

ID=33474197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114701A Pending JP2004318721A (en) 2003-04-18 2003-04-18 Autonomous travel vehicle

Country Status (1)

Country Link
JP (1) JP2004318721A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215860A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Autonomous traveling device
KR100843096B1 (en) 2006-12-21 2008-07-02 삼성전자주식회사 Apparatus and method for distinguishing the movement state of moving robot
KR101457148B1 (en) * 2008-05-21 2014-10-31 삼성전자 주식회사 Apparatus for localizing moving robot and method the same
EP3026520A2 (en) 2014-11-28 2016-06-01 Murata Machinery, Ltd. Moving amount estimating apparatus, autonomous mobile body, and moving amount estimating method
JP2017521755A (en) * 2014-07-10 2017-08-03 アクチエボラゲット エレクトロルックス Method for detecting measurement error in robot-type cleaning device
CN108983762A (en) * 2017-06-02 2018-12-11 北京京东尚科信息技术有限公司 Control method, device and the automated guided vehicle of automated guided vehicle
WO2021020932A3 (en) * 2019-07-31 2021-03-25 엘지전자 주식회사 Mobile robot and control method therefor
CN113440049A (en) * 2020-03-25 2021-09-28 尚科宁家(中国)科技有限公司 Cleaning robot and control method thereof
RU2789696C1 (en) * 2019-07-31 2023-02-07 ЭлДжи ЭЛЕКТРОНИКС ИНК. A mobile robot and its control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215860A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Autonomous traveling device
KR100843096B1 (en) 2006-12-21 2008-07-02 삼성전자주식회사 Apparatus and method for distinguishing the movement state of moving robot
KR101457148B1 (en) * 2008-05-21 2014-10-31 삼성전자 주식회사 Apparatus for localizing moving robot and method the same
JP2017521755A (en) * 2014-07-10 2017-08-03 アクチエボラゲット エレクトロルックス Method for detecting measurement error in robot-type cleaning device
EP3026520A2 (en) 2014-11-28 2016-06-01 Murata Machinery, Ltd. Moving amount estimating apparatus, autonomous mobile body, and moving amount estimating method
US9802619B2 (en) 2014-11-28 2017-10-31 Murata Machinery, Ltd. Moving amount estimating apparatus, autonomous mobile body, and moving amount estimating method
CN108983762A (en) * 2017-06-02 2018-12-11 北京京东尚科信息技术有限公司 Control method, device and the automated guided vehicle of automated guided vehicle
WO2021020932A3 (en) * 2019-07-31 2021-03-25 엘지전자 주식회사 Mobile robot and control method therefor
RU2789696C1 (en) * 2019-07-31 2023-02-07 ЭлДжи ЭЛЕКТРОНИКС ИНК. A mobile robot and its control method
US11625039B2 (en) 2019-07-31 2023-04-11 Lg Electronics Inc. Moving robot and control method thereof
CN113440049A (en) * 2020-03-25 2021-09-28 尚科宁家(中国)科技有限公司 Cleaning robot and control method thereof

Similar Documents

Publication Publication Date Title
JP4165965B2 (en) Autonomous work vehicle
EP1368715B1 (en) Method and device for determining position of an autonomous apparatus
US20060080802A1 (en) Self-propelled cleaner charging-type travel system and charging-type travel system
US20060235585A1 (en) Self-guided cleaning robot
KR20060050129A (en) Cleaner
JP2007209392A (en) Self-traveling type vacuum cleaner
JPH0582603B2 (en)
JP2006268499A (en) Running device and self-propelled vacuum cleaner
JP2005222226A (en) Autonomous traveling robot cleaner
JP2004318721A (en) Autonomous travel vehicle
JP2007011798A (en) Autonomous traveling body
JP3076648B2 (en) Self-propelled vacuum cleaner
JP2005346477A (en) Autonomous travelling body
JP4197606B2 (en) Autonomous robot
JP2609890B2 (en) Self-propelled work vehicle
JP2006172108A (en) Self-propelled vacuum cleaner
JP2609891B2 (en) Self-propelled work vehicle
JP3632618B2 (en) Mobile work robot
JP3794340B2 (en) Omni-directional cart
KR100963755B1 (en) A sensing and countermoving method for restrictive condition of automatic vacuum cleaner
JP2517240B2 (en) Unmanned vehicle
JP2004139266A (en) Autonomous traveling robot
JP3036863B2 (en) Traveling robot
JP3922126B2 (en) Carpet eye detection device and mobile robot using the same
JP4583070B2 (en) Self-propelled vacuum cleaner