JP7110128B2 - Method for removing mercury in smoke washing wastewater - Google Patents

Method for removing mercury in smoke washing wastewater Download PDF

Info

Publication number
JP7110128B2
JP7110128B2 JP2019008369A JP2019008369A JP7110128B2 JP 7110128 B2 JP7110128 B2 JP 7110128B2 JP 2019008369 A JP2019008369 A JP 2019008369A JP 2019008369 A JP2019008369 A JP 2019008369A JP 7110128 B2 JP7110128 B2 JP 7110128B2
Authority
JP
Japan
Prior art keywords
mercury
zinc oxide
washing wastewater
crude zinc
smoke washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019008369A
Other languages
Japanese (ja)
Other versions
JP2020116501A (en
Inventor
宏人 吉岡
真充 荒木
祐樹 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2019008369A priority Critical patent/JP7110128B2/en
Publication of JP2020116501A publication Critical patent/JP2020116501A/en
Application granted granted Critical
Publication of JP7110128B2 publication Critical patent/JP7110128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treating Waste Gases (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、洗煙排水中の水銀を除去する方法に関する。 The present invention relates to a method for removing mercury in smoke washing wastewater.

近年、人の健康や環境保護等を目的とした「水銀に関する水俣条約」の発効に伴い大気汚染防止法が改正される等、水銀の大気排出を規制する動きが高まっている。大気汚染防止法では、非鉄金属(銅、鉛、亜鉛及び工業金)製造施設や廃棄物焼却設備等の水銀排出施設における水銀の排出基準が定められている。したがって、かかる水銀排出施設では、当該基準を満たすべく、製錬工程や焙焼工程、焼却工程等で発生する排ガスに含まれる水銀を除去することが求められる。 In recent years, there has been a growing movement to regulate atmospheric emissions of mercury, including revisions to the Air Pollution Control Law following the entry into force of the Minamata Convention on Mercury, which aims to protect human health and the environment. The Air Pollution Control Law stipulates mercury emission standards for non-ferrous metal (copper, lead, zinc and industrial gold) manufacturing facilities, waste incineration facilities and other facilities that emit mercury. Therefore, such mercury-emitting facilities are required to remove mercury contained in the exhaust gas generated in the smelting process, the roasting process, the incineration process, and the like, in order to meet the standards.

この点、湿式スクラバーを用いて排ガスを洗浄することで、水銀を除去する手法が知られている。湿式スクラバーでは、洗浄塔内を循環する水と排ガスを接触させることにより、排ガスに含まれる水銀や硫黄酸化物(SOx)等の有害物質を水中に回収している。しかしながら、今度は排ガスを洗浄した後の排水である洗煙排水に含まれる水銀を除去することが望まれる。 In this regard, a method of removing mercury by cleaning exhaust gas using a wet scrubber is known. In the wet scrubber, toxic substances such as mercury and sulfur oxides (SOx) contained in the exhaust gas are recovered in the water by bringing the exhaust gas into contact with water circulating in the scrubber. However, this time, it is desired to remove the mercury contained in the smoke washing waste water, which is the waste water after cleaning the exhaust gas.

ここで、キレート剤や活性炭等を用いて排水中の水銀を吸着除去する方法が提案されている。例えば、特許文献1(特開2015-128754号公報)には、排ガス中の硫黄酸化物の除去に用いられた脱硫排水にキレート剤を添加することにより、水銀を固定化する手法が開示されている。 Here, a method has been proposed to adsorb and remove mercury in wastewater using a chelating agent, activated carbon, or the like. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2015-128754) discloses a technique for immobilizing mercury by adding a chelating agent to desulfurization effluent used to remove sulfur oxides in exhaust gas. there is

ところで、亜鉛のリサイクルに関して、電炉ダスト等の廃棄物を加熱還元揮発する等して粗酸化亜鉛を作製し、得られた粗酸化亜鉛から金属亜鉛を回収することが一般的に行われている。例えば、特許文献2(特許第3727232号公報)には、酸化亜鉛及び酸化鉄を含有する原料の加熱還元を行い、生成した金属亜鉛蒸気の再酸化によって生じた粗酸化亜鉛と、生成した金属鉄含有物とをそれぞれ回収し、これらを混合及び加熱することで生成した金属亜鉛蒸気を凝縮して金属亜鉛を回収する手法が開示されている。 By the way, regarding the recycling of zinc, it is common to prepare crude zinc oxide by heating, reducing and volatilizing waste such as electric furnace dust, and recovering metallic zinc from the obtained crude zinc oxide. For example, in Patent Document 2 (Japanese Patent No. 3727232), a raw material containing zinc oxide and iron oxide is heated and reduced, and crude zinc oxide produced by reoxidation of the produced metallic zinc vapor and metallic iron produced A technique is disclosed in which the contents are respectively collected, mixed and heated to condense metallic zinc vapor produced, and metallic zinc is collected.

特開2015-128754号公報JP 2015-128754 A 特許第3727232号公報Japanese Patent No. 3727232

しかしながら、特許文献1に開示されるようなキレート剤、及び活性炭は高価であるため、洗煙排水中の水銀除去に要するコストが高くなる。 However, since the chelating agent and activated carbon disclosed in Patent Document 1 are expensive, the cost required to remove mercury from the smoke washing wastewater is high.

本発明者らは、今般、亜鉛含有廃材由来の粗酸化亜鉛を吸着剤として利用することで、洗煙排水中の水銀を簡便かつ安価に除去できるとの知見を得た。 The present inventors have recently found that mercury in smoke washing wastewater can be easily and inexpensively removed by using crude zinc oxide derived from zinc-containing waste materials as an adsorbent.

したがって、本発明の目的は、洗煙排水中の水銀を簡便かつ安価に除去することが可能な方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for removing mercury from smoke washing wastewater simply and inexpensively.

本発明の一態様によれば、洗煙排水中の水銀を除去する方法であって、
亜鉛含有廃材の加熱還元揮発を経て得られた粗酸化亜鉛と、水銀を含む洗煙排水とを用意する工程と、
前記洗煙排水を前記粗酸化亜鉛と混合させて、前記洗煙排水中の水銀を前記粗酸化亜鉛に吸着させて除去する工程と、
を含む、方法が提供される。
According to one aspect of the present invention, a method for removing mercury in smoke washing wastewater, comprising:
a step of preparing crude zinc oxide obtained through heat-reduction volatilization of zinc-containing waste material and smoke washing wastewater containing mercury;
a step of mixing the smoke washing wastewater with the crude zinc oxide to remove mercury in the smoke washing wastewater by adsorption to the crude zinc oxide;
A method is provided, comprising:

例1で粗酸化亜鉛の作製に用いた廃棄物処理装置の概略図である。1 is a schematic diagram of a waste treatment apparatus used to produce crude zinc oxide in Example 1. FIG.

本発明による洗煙排水中の水銀を除去する方法は、亜鉛含有廃材の加熱還元揮発を経て得られた粗酸化亜鉛と、水銀を含む洗煙排水とを用意する工程と、洗煙排水を粗酸化亜鉛と混合させて、洗煙排水中の水銀を粗酸化亜鉛に吸着させて除去する工程とを含む。 The method for removing mercury in smoke washing wastewater according to the present invention comprises the steps of preparing crude zinc oxide obtained through thermal reduction volatilization of zinc-containing waste materials and mercury-containing smoke washing wastewater; and a step of removing mercury in the flue scrubbing wastewater by mixing it with zinc oxide to cause the crude zinc oxide to adsorb and remove mercury.

以下、本発明の方法を(1)粗酸化亜鉛の用意、(2)洗煙排水の用意、(3)粗酸化亜鉛及び洗煙排水の混合、及び(4)所望により行われる粗酸化亜鉛中の水銀の分離、の各操作に分けて順に説明する。 Hereinafter, the method of the present invention will be described as follows: (1) preparation of crude zinc oxide, (2) preparation of smoke washing wastewater, (3) mixing of crude zinc oxide and smoke washing wastewater, and (4) optionally in crude zinc oxide Each operation of separation of mercury will be explained in order.

(1)粗酸化亜鉛の用意
本発明の方法に用いられる粗酸化亜鉛は、亜鉛含有廃材の加熱還元揮発を経て得られたものである。すなわち、亜鉛含有廃材をコークスや石炭等の還元剤とともに加熱することで、亜鉛含有廃材中の亜鉛酸化物等が還元揮発され、その後還元揮発した金属分を酸化、冷却ないし捕集することにより粗酸化亜鉛を得ることができる。このような粗酸化亜鉛は、亜鉛製錬用の亜鉛精鉱代替原料として亜鉛製錬業界で広く製造及び使用される低純度の酸化亜鉛であり、それ故、安価に入手可能なものである。粗酸化亜鉛は、粗酸化亜鉛の全重量に対して、典型的にはZnを40重量%以上80重量%以下含むものであり、より典型的には50重量%以上75%重量以下、さらに典型的には60重量%以上70重量%以下含む。したがって、粗酸化亜鉛は、上記範囲内の量のZnを含み、残部が亜鉛含有廃材由来の不可避不純物であるものということができる。亜鉛含有廃材は、亜鉛及び/又は亜鉛化合物を含む廃材である。亜鉛含有廃材は、亜鉛リサイクル用の原料であるのが好ましく、亜鉛リサイクル用原料の例としては、溶融飛灰、製鋼煙灰、汚泥、焼却飛灰、廃乾電池、製錬残渣等が挙げられる。亜鉛含有廃材には、亜鉛以外の金属分(例えば鉛や銅等)が含まれていてもよい。また、亜鉛含有廃材には、典型的に不可避不純物として水銀が含まれる。
(1) Preparation of Crude Zinc Oxide Crude zinc oxide used in the method of the present invention is obtained through thermal reduction volatilization of zinc-containing waste materials. That is, by heating the zinc-containing waste material together with a reducing agent such as coke or coal, zinc oxide and the like in the zinc-containing waste material are reduced and volatilized. Zinc oxide can be obtained. Such crude zinc oxide is a low purity zinc oxide that is widely produced and used in the zinc smelting industry as a zinc concentrate replacement raw material for zinc smelting and is therefore inexpensively available. Crude zinc oxide typically contains Zn in an amount of 40% by weight or more and 80% by weight or less, more typically 50% by weight or more and 75% by weight or less, and even more typically Specifically, it contains 60% by weight or more and 70% by weight or less. Therefore, it can be said that crude zinc oxide contains Zn in an amount within the above range, and the remainder is unavoidable impurities derived from zinc-containing waste materials. Zinc-containing waste is waste containing zinc and/or zinc compounds. The zinc-containing waste material is preferably a raw material for zinc recycling. Examples of raw materials for zinc recycling include molten fly ash, steelmaking flue ash, sludge, incineration fly ash, waste dry batteries, smelting residue, and the like. The zinc-containing waste material may contain metal components other than zinc (for example, lead, copper, etc.). Also, zinc-containing waste typically contains mercury as an unavoidable impurity.

亜鉛含有廃材の加熱還元揮発は、粗酸化亜鉛を作製可能な公知の設備を用いて行えばよく、特に限定されない。例えば、溶鉱炉、ロータリーキルン等の設備を好ましく用いることができる。加熱還元揮発を行う温度は1000℃以上1500℃以下が好ましく、より好ましくは1100℃以上1400℃以下、さらに好ましくは1150℃以上1350℃以下である。こうすることで、亜鉛含有廃材の還元揮発をより確実に行うことが可能となる。 The heat reduction volatilization of the zinc-containing waste material may be performed using known equipment capable of producing crude zinc oxide, and is not particularly limited. For example, facilities such as a blast furnace and a rotary kiln can be preferably used. The temperature at which the heat reduction volatilization is performed is preferably 1000° C. or higher and 1500° C. or lower, more preferably 1100° C. or higher and 1400° C. or lower, and still more preferably 1150° C. or higher and 1350° C. or lower. By doing so, it becomes possible to reduce and volatilize the zinc-containing waste material more reliably.

加熱還元揮発を行う前に、亜鉛含有廃材に対して前処理を施してもよく、そのような前処理の例としては、製団処理が挙げられる。製団処理とは、亜鉛含有廃材を、珪石や酸化鉄等のフラックスや、石炭等の還元剤、パルプ廃液等のバインダー等とともに混合、乾燥及び粉砕し、その後製団機等を用いて圧縮成型することで団鉱を作製する処理である。亜鉛含有廃材を団鉱の形で加熱処理することで、安定した操業が可能となる。なお、亜鉛含有廃材が溶融飛灰を含む場合には、当該溶融飛灰に対して公知の手法で脱ハロゲン処理を施してもよい。 Prior to thermal reduction volatilization, the zinc-containing waste material may be pretreated, and an example of such a pretreatment is a flocculation treatment. Fulfilling involves mixing zinc-containing waste materials with fluxes such as silica stone and iron oxide, reducing agents such as coal, binders such as pulp waste liquid, etc., followed by drying and pulverizing, followed by compression molding using a framing machine. It is a process to create briquettes by Stable operation becomes possible by heat-treating zinc-containing waste materials in the form of briquettes. When the zinc-containing waste material contains molten fly ash, the molten fly ash may be dehalogenated by a known method.

亜鉛含有廃材は加熱及び還元により溶融して、スラグ、マット及びメタルの三相に分離する。このうち、亜鉛含有廃材中の亜鉛は主にメタル中に存在しており、当該メタルは高温雰囲気中で揮発する。そして、加熱によって揮発したメタルは、その金属分の殆どが冷却時に酸化されて、酸化亜鉛、及び存在する場合にはその他の金属酸化物(例えば酸化鉛や塩化鉛等)を含む固形分となる。したがって、この固形分を捕集することにより粗酸化亜鉛を得ることができる。捕集方法の好ましい例としては、フィルタリング、電気集塵、サイクロン、重力沈降、湿式スクラバー等が挙げられる。なお、亜鉛含有廃材に水銀が含まれる場合、その一部は粗酸化亜鉛中に含まれるが、残りは粗酸化亜鉛を捕集除去した後の排ガスに含まれる。 The zinc-containing waste material is melted by heating and reduction and separated into three phases: slag, matte and metal. Among them, the zinc in the zinc-containing waste material is mainly present in the metal, and the metal volatilizes in a high-temperature atmosphere. Most of the metal volatilized by heating is oxidized during cooling to become a solid content containing zinc oxide and, if present, other metal oxides (such as lead oxide and lead chloride). . Therefore, crude zinc oxide can be obtained by collecting this solid content. Preferred examples of collection methods include filtering, electrostatic precipitator, cyclone, gravity sedimentation, wet scrubber, and the like. When the zinc-containing waste material contains mercury, part of it is contained in the crude zinc oxide, but the rest is contained in the exhaust gas after collecting and removing the crude zinc oxide.

こうして得られた粗酸化亜鉛には通常、塩素やフッ素等のハロゲン類が含まれているため、工業用水等を用いて湿式洗浄による脱ハロゲン処理を行うのが一般的である。この点、本発明では、洗煙排水を粗酸化亜鉛と混合させるため、粗酸化亜鉛中の塩素類を洗煙排水で除去することが可能となる。このように、本発明によれば、洗煙排水中の水銀を除去できるのみならず、粗酸化亜鉛の脱ハロゲン処理をも同時に行うことが可能となる。したがって、本発明で用意する粗酸化亜鉛は、脱ハロゲン処理を経ていないものであることができる。換言すれば、本発明に用いる粗酸化亜鉛は、ハロゲンを含むことができ、例えば塩素を含みうる。 Since the crude zinc oxide thus obtained usually contains halogens such as chlorine and fluorine, it is generally subjected to dehalogenation treatment by wet cleaning using industrial water or the like. In this respect, in the present invention, the smoke washing waste water is mixed with the crude zinc oxide, so that the chlorines in the crude zinc oxide can be removed by the smoke washing waste water. Thus, according to the present invention, it is possible not only to remove mercury in the smoke washing wastewater, but also to dehalogenate crude zinc oxide at the same time. Therefore, the crude zinc oxide prepared in the present invention can be one that has not undergone dehalogenation. In other words, the crude zinc oxide used in the present invention may contain halogens, for example chlorine.

(2)洗煙排水の用意
本発明の方法に用いられる洗煙排水は、除去対象である水銀を含むものであれば特に限定されない。この洗煙排水は、典型的には、水銀を含む排ガスの洗浄に用いられた洗浄液である。排ガスの洗浄方法は特に限定されず、公知の手法を採用可能である。例えば、湿式スクラバー等の排煙脱硫設備を用いて排ガスの洗浄により得られた洗煙排水を用いることができる。具体的には、循環水(洗浄液)と排ガスとを接触させることにより、排ガス中に含まれる水銀を循環水中に回収し、当該循環水を排出ないし採取して洗煙排水とすればよい。洗煙排水に含まれる水銀濃度は、特に限定されるものではないが、典型的には0.001mg/L以上100mg/L以下、より典型的には0.01mg/L以上10mg/L以下、さらに典型的には0.1mg/L以上1mg/L以下である。
(2) Preparation of smoke washing wastewater The smoke washing wastewater used in the method of the present invention is not particularly limited as long as it contains mercury to be removed. This smoke washing wastewater is typically a cleaning liquid used for cleaning exhaust gas containing mercury. A method for cleaning the exhaust gas is not particularly limited, and a known method can be adopted. For example, a flue gas desulfurization facility such as a wet scrubber can be used to wash the flue gas, which is obtained by washing the flue gas. Specifically, by bringing the circulating water (cleaning liquid) into contact with the exhaust gas, the mercury contained in the exhaust gas is recovered in the circulating water, and the circulating water is discharged or collected to be used as smoke washing wastewater. The concentration of mercury contained in the smoke washing wastewater is not particularly limited, but is typically 0.001 mg/L or more and 100 mg/L or less, more typically 0.01 mg/L or more and 10 mg/L or less, More typically, it is 0.1 mg/L or more and 1 mg/L or less.

有利なことに、洗煙排水として、粗酸化亜鉛の製造プロセスで生じた排ガスの洗浄に用いられた洗浄液を用いることができる。したがって、洗煙排水は、亜鉛含有廃材の加熱還元揮発を経た粗酸化亜鉛を捕集除去した後の排ガスの洗浄に使用された洗浄液であるのが好ましい。すなわち、亜鉛含有廃材(例えば溶融飛灰)には、典型的に水銀が含まれているため、粗酸化亜鉛の製造プロセスで発生する排ガスにも典型的に水銀が含まれる。この点、粗酸化亜鉛を捕集除去した後の排ガスの洗浄に使用された洗浄液に対して、例えば同プロセス中で捕集した粗酸化亜鉛をその場で混合することにより、洗浄液中の水銀を粗酸化亜鉛に吸着させることができるため、極めて効率良く水銀の回収を行うことが可能となる。洗浄液は酸化剤を含むのが好ましく、そのような酸化剤の好ましい例としては、次亜塩素酸ナトリウム、酸素、オゾン、過酸化水素、ハロゲン分子(例えばフッ素、塩素、臭素又はヨウ素)、次亜ハロゲン酸塩、亜ハロゲン酸塩、ハロゲン酸塩、過ハロゲン酸塩、過マンガン酸塩、二クロム酸塩、クロム酸塩及びこれらの組合せ等が挙げられ、特に好ましくは次亜塩素酸ナトリウムである。ここで、排ガス中に含まれる水銀は、水溶性の2価水銀及び非水溶性の0価水銀の二つの形態で存在すると考えられる。この点、洗浄液が酸化剤を含むことで、0価水銀を酸化させて水溶性の2価水銀とすることができ、より多くの水銀を洗浄液に吸収させることができる。その結果、洗煙排水中の水銀濃度が高まり、より多くの水銀を粗酸化亜鉛に吸着させることが可能となる。もっとも、洗煙排水は、粗酸化亜鉛の製造とは無関係のプロセスで生じた排ガスの洗浄に用いられた洗浄液であってもよいのはいうまでもない。 Advantageously, the cleaning liquid used for cleaning the exhaust gas generated in the crude zinc oxide production process can be used as the fume scrubbing wastewater. Therefore, the smoke washing wastewater is preferably the washing liquid used for washing the exhaust gas after collecting and removing the crude zinc oxide from the zinc-containing waste material which has undergone heating, reduction and volatilization. That is, since zinc-containing waste materials (for example, molten fly ash) typically contain mercury, the exhaust gas generated in the crude zinc oxide production process typically also contains mercury. In this regard, mercury in the cleaning solution can be removed by mixing the crude zinc oxide collected in the same process with the cleaning solution used for cleaning the exhaust gas after collecting and removing the crude zinc oxide. Since it can be adsorbed on crude zinc oxide, it is possible to recover mercury very efficiently. The cleaning liquid preferably contains an oxidizing agent, and preferred examples of such oxidizing agents include sodium hypochlorite, oxygen, ozone, hydrogen peroxide, halogen molecules (e.g. fluorine, chlorine, bromine or iodine), hypochlorite. Halogenates, halites, halides, perhalogenates, permanganates, dichromates, chromates and combinations thereof, and sodium hypochlorite is particularly preferred. . Here, the mercury contained in the exhaust gas is considered to exist in two forms of water-soluble divalent mercury and water-insoluble zero-valent mercury. In this regard, when the cleaning liquid contains an oxidizing agent, the zero-valent mercury can be oxidized into water-soluble divalent mercury, and more mercury can be absorbed into the cleaning liquid. As a result, the concentration of mercury in the smoke washing wastewater increases, and more mercury can be adsorbed onto the crude zinc oxide. Needless to say, the smoke washing wastewater may be a washing liquid used for washing exhaust gas generated in a process unrelated to the production of crude zinc oxide.

(3)粗酸化亜鉛及び洗煙排水の混合
洗煙排水を粗酸化亜鉛と混合させて、洗煙排水中の水銀を粗酸化亜鉛に吸着させて除去する。混合手法は特に限定されず、市販の攪拌機等を用いて公知の手法で行えばよい。混合時間は特に限定されないが、好ましくは1分間以上24時間以下、より好ましくは10分間以上12時間以下、さらに好ましくは30分間以上6時間以下である。粗酸化亜鉛の添加量は、スラリー濃度として50g/L以上400g/L以下であるのが好ましく、より好ましくは100g/L以上300g/L以下、さらに好ましくは150g/L以上200g/L以下である。この添加量は、予想される洗煙排水中の水銀濃度に応じて、適宜変更してもよい。なお、混合時のpHは6以上13以下であるのが好ましく、より好ましくは7以上12以下、さらに好ましくは8以上11以下である。pH調整に用いる薬剤は苛性ソーダなどが利用できる。
(3) Mixing Crude Zinc Oxide and Smoke Washing Wastewater Smoke washing wastewater is mixed with crude zinc oxide, and mercury in the smoke washing wastewater is absorbed by the crude zinc oxide and removed. The mixing method is not particularly limited, and a known method using a commercially available stirrer or the like may be used. The mixing time is not particularly limited, but is preferably 1 minute or longer and 24 hours or shorter, more preferably 10 minutes or longer and 12 hours or shorter, and still more preferably 30 minutes or longer and 6 hours or shorter. The amount of crude zinc oxide added is preferably 50 g/L or more and 400 g/L or less, more preferably 100 g/L or more and 300 g/L or less, and still more preferably 150 g/L or more and 200 g/L or less as a slurry concentration. . The amount to be added may be appropriately changed according to the expected mercury concentration in the smoke washing wastewater. The pH during mixing is preferably 6 or more and 13 or less, more preferably 7 or more and 12 or less, and still more preferably 8 or more and 11 or less. Caustic soda or the like can be used as a chemical used for pH adjustment.

本発明の方法では、洗煙排水を粗酸化亜鉛と混合させるという極めて簡便な手法により、洗煙排水中に存在する水銀を粗酸化亜鉛に効果的に吸着させることができる。この点、従来から提案されていた、キレート剤や活性炭等を用いて洗煙排水中の水銀を除去する方法は、高価なキレート剤や活性炭等を用意する必要があるため、水銀除去に要するコストを低く抑えることが困難であった。一方、本発明の方法に用いる粗酸化亜鉛は、廃棄物から有価資源である亜鉛をリサイクルする過程等において得られるものであり、一般的にキレート剤及び活性炭と比較して極めて安価に入手することができる。このように、本発明によれば、亜鉛含有廃材由来の粗酸化亜鉛を吸着剤として利用することで、洗煙排水中の水銀を簡便かつ安価に除去することが可能となる。 In the method of the present invention, mercury present in smoke washing waste water can be effectively adsorbed onto crude zinc oxide by a very simple technique of mixing smoke washing waste water with crude zinc oxide. In this respect, conventionally proposed methods of removing mercury from smoke washing wastewater using chelating agents, activated carbon, etc., require the preparation of expensive chelating agents, activated carbon, etc., which is costly to remove mercury. was difficult to keep low. On the other hand, crude zinc oxide used in the method of the present invention is obtained in the process of recycling zinc, which is a valuable resource, from waste, and is generally available at extremely low cost compared to chelating agents and activated carbon. can be done. As described above, according to the present invention, by using crude zinc oxide derived from zinc-containing waste materials as an adsorbent, it is possible to easily and inexpensively remove mercury from smoke washing wastewater.

(4)粗酸化亜鉛中の水銀の分離
所望により、水銀が吸着された粗酸化亜鉛を加熱して水銀を揮発分離してもよい。この加熱は、例えば既設の亜鉛製錬所の設備を利用して行うことが可能である。加熱処理温度は700℃以上1500℃以下が好ましく、より好ましくは800℃以上1300℃以下、さらに好ましくは900℃以上1200℃以下である。加熱処理を行う設備は特に限定されるものではないが、好ましい例としては乾式亜鉛製錬所等で用いられる焼結炉等が挙げられる。このような設備で水銀が吸着された粗酸化亜鉛を加熱処理することにより、水銀を揮発させて分離しつつ、当該粗酸化亜鉛を製錬原料として供することができる。揮発した水銀の回収は、水銀を冷却及び凝縮することにより行ってもよく、水銀を濃硫酸等の溶液に溶解させることにより行ってもよい。これらの回収操作は、いずれも既設の亜鉛製錬所等の設備を利用して行うことが可能である。このように、本発明の方法を用いることで、既設の設備を活用して水銀を安価に処理することができる。
(4) Separation of Mercury in Crude Zinc Oxide If desired, the mercury-adsorbed crude zinc oxide may be heated to volatilize and separate mercury. This heating can be carried out, for example, using existing zinc smelter facilities. The heat treatment temperature is preferably 700° C. or higher and 1500° C. or lower, more preferably 800° C. or higher and 1300° C. or lower, and still more preferably 900° C. or higher and 1200° C. or lower. Equipment for the heat treatment is not particularly limited, but a preferred example is a sintering furnace used in a dry zinc smelter or the like. By heat-treating crude zinc oxide with mercury adsorbed thereon in such equipment, the crude zinc oxide can be supplied as a raw material for smelting while volatilizing and separating mercury. The volatilized mercury may be recovered by cooling and condensing the mercury, or by dissolving the mercury in a solution such as concentrated sulfuric acid. All of these recovering operations can be performed using existing facilities such as zinc smelters. Thus, by using the method of the present invention, it is possible to treat mercury at a low cost by utilizing existing facilities.

本発明を以下の例によってさらに具体的に説明する。 The invention is further illustrated by the following examples.

例1:粗酸化亜鉛を用いた洗煙排水処理
水銀を含む洗煙排水と粗酸化亜鉛とを混合させて、水銀の吸着の有無を確認した。具体的には以下のとおりである。
Example 1 : Treatment of smoke washing wastewater using crude zinc oxide Smoke washing wastewater containing mercury and crude zinc oxide were mixed to confirm the presence or absence of adsorption of mercury. Specifically, it is as follows.

(1)粗酸化亜鉛の作製
製鋼煙灰及び溶融飛灰(予め脱塩素処理を施したもの)を含む亜鉛含有廃材を用意した。この亜鉛含有廃材と、フラックス(珪石及び酸化鉄)と、還元剤(石炭)とを混合した。得られた混合物を乾燥及び粉砕した後、製団機で圧縮成型して団鉱とした。この団鉱には原料由来の水銀が不可避不純物として含まれる。作製した団鉱に対して、図1に示される廃棄物処理装置10を用いて加熱還元揮発を含む処理を行った。廃棄物処理装置10は、溶鉱炉12と、ボイラー14と、冷却塔16と、バグフィルター18と、ファン20と、脱硫塔22と、煙突24とを備える。まず、団鉱を溶鉱炉12に装入した。溶鉱炉12を団鉱装入後に加熱して、溶鉱炉12が備える羽口から予熱した空気、酸素及び/又は酸素富化空気を吹き込むことで1200℃以上の高温として、団鉱の溶融状態を維持するための反応ゾーンを形成した。溶鉱炉12に装入された団鉱は反応ゾーンで溶融し、鉄、シリコン及びカルシウムの酸化物を主体とするスラグと、銅の硫化物を含むマットと、反応ゾーンでの還元により生成される亜鉛及び鉛を主体とするメタルとに相分離した。スラグ及びマットを溶鉱炉12底部に存在する排出口から連続的に抜き出す一方、メタルを構成する亜鉛及び鉛を溶鉱炉12の高温雰囲気により揮発させ、その後反応ゾーン上部にある酸化ゾーンで酸化させてそれぞれ酸化亜鉛及び酸化鉛とし、排ガスとともに溶鉱炉12から排出させた。この際、団鉱に含まれる水銀も同様に揮発して排ガスとともに溶鉱炉12から排出された。溶鉱炉12から排出された排ガスをボイラー14に送り込んで廃熱回収した後、冷却塔16でダイオキシン類の再合成を防止するため水を噴霧して200℃以下に急冷した。急冷された排ガスをバグフィルター18に通すことで、酸化亜鉛や酸化鉛等の固形分をろ過捕集した。このバグフィルター18でろ過捕集された酸化亜鉛や酸化鉛等の固形分を粗酸化亜鉛として採取した。粗酸化亜鉛中の水銀濃度を、水銀測定装置(日本インスツルメンツ株式会社製、MA-3000)を用いて加熱気化原子吸光法により測定したところ、3mg/kgであった。
(1) Preparation of Crude Zinc Oxide A zinc-containing waste material containing steelmaking flue ash and molten fly ash (dechlorinated in advance) was prepared. This zinc-containing waste material, flux (silica and iron oxide), and reducing agent (coal) were mixed. The resulting mixture was dried and pulverized, and then compression-molded with a briquette machine to obtain briquettes. Mercury derived from raw materials is contained in this briquette as an unavoidable impurity. The produced briquette was subjected to treatment including heat reduction volatilization using the waste treatment apparatus 10 shown in FIG. The waste treatment system 10 includes a blast furnace 12 , a boiler 14 , a cooling tower 16 , a bag filter 18 , a fan 20 , a desulfurization tower 22 and a chimney 24 . First, briquettes were charged into the blast furnace 12 . The blast furnace 12 is heated after the briquette is charged, and preheated air, oxygen and/or oxygen-enriched air is blown through the tuyeres provided in the blast furnace 12 to maintain a high temperature of 1200° C. or higher to maintain the molten state of the briquette. formed a reaction zone for The briquettes charged into the blast furnace 12 are melted in the reaction zone to produce slag mainly composed of oxides of iron, silicon and calcium, matte containing copper sulfides and zinc produced by reduction in the reaction zone. and a metal mainly composed of lead. While the slag and matte are continuously extracted from the outlet located at the bottom of the blast furnace 12, the zinc and lead that constitute the metal are volatilized by the high-temperature atmosphere of the blast furnace 12 and then oxidized in the oxidation zone above the reaction zone. Zinc and lead oxide were discharged from the blast furnace 12 together with the exhaust gas. At this time, the mercury contained in the briquettes was similarly volatilized and discharged from the blast furnace 12 together with the exhaust gas. After the exhaust gas discharged from the blast furnace 12 is sent to the boiler 14 to recover waste heat, it is rapidly cooled to 200° C. or less by spraying water in the cooling tower 16 to prevent the resynthesis of dioxins. By passing the quenched exhaust gas through the bag filter 18, solids such as zinc oxide and lead oxide were filtered and collected. Solids such as zinc oxide and lead oxide filtered and collected by the bag filter 18 were collected as crude zinc oxide. The concentration of mercury in the crude zinc oxide was 3 mg/kg when measured by the vaporization atomic absorption method using a mercury measuring device (manufactured by Nippon Instruments Co., Ltd., MA-3000).

固形分が捕集除去された後の排ガスを、ファン20を経て脱硫塔22に送り込んで洗浄液(苛性ソーダ含有水溶液)で水洗した。こうして排ガス中の水銀を洗浄液に回収した後、水銀が除去された排ガスを煙突24から排出させた。 The exhaust gas from which the solid matter has been collected and removed is fed through the fan 20 into the desulfurization tower 22 and washed with a washing liquid (aqueous solution containing caustic soda). After the mercury in the flue gas was thus recovered in the cleaning liquid, the flue gas from which the mercury had been removed was discharged from the chimney 24 .

(2)洗煙排水の用意
上記(1)において、脱硫塔22で排ガスの水洗に用いられた洗浄液を採取し、洗煙排水とした。この洗煙排水の水銀濃度を、水銀測定装置(日本インスツルメンツ株式会社製、MA-3000)を用いて還元気化原子吸光法により測定したところ、0.32mg/Lであった。
(2) Preparation of smoke-washing wastewater In the above (1), the cleaning liquid used for washing the exhaust gas in the desulfurization tower 22 was collected and used as smoke-washing wastewater. The mercury concentration of this smoke washing wastewater was measured by reduction vaporization atomic absorption spectrometry using a mercury measuring device (manufactured by Nippon Instruments Co., Ltd., MA-3000) and found to be 0.32 mg/L.

(3)洗煙排水処理試験
洗煙排水200mLをビーカーに取り、そこに粗酸化亜鉛20gを添加し、十分に混合してスラリーとした。このスラリーを30分間攪拌した後、濾紙で濾過して、濾液と粗酸化亜鉛とに固液分離した。水銀測定装置(日本インスツルメンツ株式会社製、MA-3000)を用いて、濾液中の水銀濃度を還元気化原子吸光法により、濾過後の粗酸化亜鉛中の水銀濃度を加熱気化原子吸光法によりそれぞれ測定したところ、表1に示されるとおりであった。
(3) Smoke-washing wastewater treatment test 200 mL of smoke-washing wastewater was taken in a beaker, and 20 g of crude zinc oxide was added thereto and thoroughly mixed to obtain a slurry. After the slurry was stirred for 30 minutes, it was filtered with filter paper to separate solid and liquid into a filtrate and crude zinc oxide. Using a mercury measuring device (manufactured by Nippon Instruments Co., Ltd., MA-3000), the mercury concentration in the filtrate was measured by reduction vaporization atomic absorption spectroscopy, and the mercury concentration in the crude zinc oxide after filtration was measured by heat vaporization atomic absorption spectroscopy. As a result, it was as shown in Table 1.

例2(比較):精製された酸化亜鉛を用いた洗煙排水処理
粗酸化亜鉛の代わりに市販の精製された高純度酸化亜鉛(関東化学株式会社製、1級、純度99.0%超)を用いたこと以外は、例1と同様にして洗煙排水の処理及び水銀濃度の測定を行った。結果は、表1に示されるとおりであった。
Example 2 (Comparative): Smoke washing wastewater treatment using purified zinc oxide Commercially available purified high-purity zinc oxide (manufactured by Kanto Kagaku Co., Ltd., grade 1, purity greater than 99.0%) instead of crude zinc oxide The treatment of the smoke washing wastewater and the measurement of the mercury concentration were carried out in the same manner as in Example 1, except that the was used. The results were as shown in Table 1.

Figure 0007110128000001
Figure 0007110128000001

表1に示されるとおり、粗酸化亜鉛を用いた例1では、洗煙排水中の水銀が粗酸化亜鉛に吸着されたことが分かる。一方、粗酸化亜鉛の代わりに市販の酸化亜鉛を用いた例2では、洗煙排水中の水銀はほとんど液中に残留していた。 As shown in Table 1, in Example 1 using crude zinc oxide, it can be seen that mercury in the smoke washing wastewater was adsorbed by the crude zinc oxide. On the other hand, in Example 2, in which commercially available zinc oxide was used instead of crude zinc oxide, most of the mercury in the smoke washing wastewater remained in the liquid.

例3:粗酸化亜鉛の加熱試験
水銀が粗酸化亜鉛から分離可能であることを確認するため、水銀が吸着した粗酸化亜鉛を加熱する試験を以下のとおり行った。まず、例1の(3)と同様の手順で水銀を吸着させた粗酸化亜鉛を別途作製し、加熱試験用サンプルとした。この加熱試験用サンプルの水銀濃度を例1と同様にして測定したところ6mg/kgであった。加熱試験用サンプル5gを5つの試料皿にそれぞれ採り、これらの試料皿に対して電気炉を用いて表2に示される別々の温度で30分間加熱した。加熱雰囲気として空気を導入し、排ガスの水銀濃度を排ガス水銀連続測定装置(日本インスツルメンツ株式会社製、EMP-2)により測定した。なお、排ガス中の水銀濃度は変動があり、安定しないことから、およその最高濃度を測定値とした。また、加熱後の加熱試験用サンプルの水銀濃度も上記同様にして測定した。結果は表2に示されるとおりであった。
Example 3 : Heating Test of Crude Zinc Oxide In order to confirm that mercury can be separated from crude zinc oxide, a test of heating crude zinc oxide with mercury adsorbed thereon was carried out as follows. First, crude zinc oxide to which mercury was adsorbed was prepared separately by the same procedure as in Example 1 (3), and used as a sample for a heating test. When the mercury concentration of this heating test sample was measured in the same manner as in Example 1, it was 6 mg/kg. A 5 g sample for heating test was placed in each of five sample pans, and these sample pans were heated at different temperatures shown in Table 2 for 30 minutes using an electric furnace. Air was introduced as the heating atmosphere, and the mercury concentration in the exhaust gas was measured using an exhaust gas mercury continuous measuring device (manufactured by Nippon Instruments Co., Ltd., EMP-2). Since the concentration of mercury in the flue gas fluctuates and is not stable, the approximate maximum concentration was used as the measured value. Also, the mercury concentration of the heating test sample after heating was measured in the same manner as described above. The results were as shown in Table 2.

Figure 0007110128000002
Figure 0007110128000002

表2に示されるとおり、水銀を吸着した粗酸化亜鉛を加熱することにより、水銀が揮発して排ガスとともに排出されることが分かった。また、加熱温度が高温であるほど脱水銀が進みやすい傾向があった。 As shown in Table 2, it was found that by heating the crude zinc oxide that had adsorbed mercury, the mercury volatilized and was discharged together with the exhaust gas. Moreover, there was a tendency that the higher the heating temperature, the easier the demercury progressed.

10 廃棄物処理装置
12 溶鉱炉
14 ボイラー
16 冷却塔
18 バグフィルター
20 ファン
22 脱硫塔
24 煙突
10 waste treatment equipment 12 blast furnace 14 boiler 16 cooling tower 18 bag filter 20 fan 22 desulfurization tower 24 chimney

Claims (5)

洗煙排水中の水銀を除去する方法であって、
亜鉛含有廃材の加熱還元揮発を経て得られた粗酸化亜鉛と、水銀を含む洗煙排水とを用意する工程と、
前記洗煙排水を前記粗酸化亜鉛と混合させて、前記洗煙排水中の水銀を前記粗酸化亜鉛に吸着させて除去する工程と、
を含む、方法。
A method for removing mercury in smoke washing wastewater, comprising:
a step of preparing crude zinc oxide obtained through heat-reduction volatilization of zinc-containing waste material and smoke washing wastewater containing mercury;
a step of mixing the smoke washing wastewater with the crude zinc oxide to remove mercury in the smoke washing wastewater by adsorption to the crude zinc oxide;
A method, including
前記洗煙排水が、亜鉛含有廃材の加熱還元揮発を経た粗酸化亜鉛を捕集除去した後の排ガスの洗浄に使用された洗浄液である、請求項1に記載の方法。 2. The method according to claim 1, wherein said smoke washing wastewater is a washing liquid used for washing exhaust gas after capturing and removing crude zinc oxide that has undergone thermal reduction volatilization of zinc-containing waste materials. 前記洗浄液が酸化剤を含む、請求項2に記載の方法。 3. The method of claim 2, wherein the cleaning liquid comprises an oxidizing agent. 前記酸化剤が、次亜塩素酸ナトリウム、酸素、オゾン、過酸化水素、ハロゲン分子、次亜ハロゲン酸塩、亜ハロゲン酸塩、ハロゲン酸塩、過ハロゲン酸塩、過マンガン酸塩、二クロム酸塩及びクロム酸塩からなる群から選択される少なくとも1種である、請求項3に記載の方法。 The oxidizing agent is sodium hypochlorite, oxygen, ozone, hydrogen peroxide, halogen molecules, hypohalite, halite, halide, perhalate, permanganate, dichromic acid 4. The method of claim 3, wherein the at least one is selected from the group consisting of salts and chromates. 前記水銀が吸着された前記粗酸化亜鉛を加熱して前記水銀を揮発分離する工程をさらに含む、請求項1~4のいずれか一項に記載の方法。
The method according to any one of claims 1 to 4, further comprising a step of heating the crude zinc oxide with the adsorbed mercury to volatilize and separate the mercury.
JP2019008369A 2019-01-22 2019-01-22 Method for removing mercury in smoke washing wastewater Active JP7110128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019008369A JP7110128B2 (en) 2019-01-22 2019-01-22 Method for removing mercury in smoke washing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008369A JP7110128B2 (en) 2019-01-22 2019-01-22 Method for removing mercury in smoke washing wastewater

Publications (2)

Publication Number Publication Date
JP2020116501A JP2020116501A (en) 2020-08-06
JP7110128B2 true JP7110128B2 (en) 2022-08-01

Family

ID=71889462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008369A Active JP7110128B2 (en) 2019-01-22 2019-01-22 Method for removing mercury in smoke washing wastewater

Country Status (1)

Country Link
JP (1) JP7110128B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130306521A1 (en) 2012-05-16 2013-11-21 Dennis John O'Rear Process, method, and system for removing heavy metals from fluids
JP5637032B2 (en) 2011-03-24 2014-12-10 ブラザー工業株式会社 Liquid discharge head
CN104815610A (en) 2015-05-22 2015-08-05 周末 Adsorbent based on ferroferric oxide and nano zinc oxide and preparation method for adsorbent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637032A (en) * 1979-08-30 1981-04-10 Dowa Mining Co Ltd Material for absorbing mercury in exhaust gas
JP6804945B2 (en) * 2016-11-18 2020-12-23 住友金属鉱山株式会社 Exhaust gas treatment method in zinc oxide ore manufacturing plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637032B2 (en) 2011-03-24 2014-12-10 ブラザー工業株式会社 Liquid discharge head
US20130306521A1 (en) 2012-05-16 2013-11-21 Dennis John O'Rear Process, method, and system for removing heavy metals from fluids
CN104815610A (en) 2015-05-22 2015-08-05 周末 Adsorbent based on ferroferric oxide and nano zinc oxide and preparation method for adsorbent

Also Published As

Publication number Publication date
JP2020116501A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US4957551A (en) Method for treatment of dust recovered from off gases in metallurgical processes
WO2014136890A1 (en) Method for treating titanium-containing feedstock
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
JP2020532425A (en) Methods for refining waste materials or industrial by-products containing chlorine
JP7110128B2 (en) Method for removing mercury in smoke washing wastewater
JP2007521393A (en) Mechanical separation of volatile metals at high temperatures.
JP4271196B2 (en) Method for recovering slag of quality suitable for valuable metals and cement raw materials
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP3940157B1 (en) Incineration residue treatment method and incineration residue treatment product
JP4118240B2 (en) How to recover lead from waste
JP4393915B2 (en) Method for treating substances containing zinc, lead and chlorine
JP2022134987A (en) Treatment method for incineration fly ash
JP2004141867A (en) Dust treatment method
JP2000016844A (en) Pyrolysis of dioxin and device therefor
JP2020104039A (en) Dechlorination processing method of chlorine-containing ashes and manufacturing method of cement raw materials
JP3564625B2 (en) Method for treating dust in exhaust gas
JP2003164829A (en) Method for treating heavy metal-containing fly ash
JPH08134557A (en) Operation of dust treatment by vacuum reaction furnace
JP2000026924A (en) Method for separating and removing non-ferrous metals in waste
JP3855207B2 (en) Method for treating fly ash in exhaust gas
JP4437204B2 (en) Fly ash treatment method
JP2007331967A (en) Method for manufacturing cement
JPH07316677A (en) Method for recovering valuable metal from steelmaking dust
JP2006028626A (en) Recycling treatment method for molten flying ash
WO2024046656A1 (en) Process for heavy metal removal from iron- and steelmaking flue dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7110128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150