JPH07316677A - Method for recovering valuable metal from steelmaking dust - Google Patents

Method for recovering valuable metal from steelmaking dust

Info

Publication number
JPH07316677A
JPH07316677A JP10806294A JP10806294A JPH07316677A JP H07316677 A JPH07316677 A JP H07316677A JP 10806294 A JP10806294 A JP 10806294A JP 10806294 A JP10806294 A JP 10806294A JP H07316677 A JPH07316677 A JP H07316677A
Authority
JP
Japan
Prior art keywords
steelmaking dust
fluorine
chlorine
sulfuric acid
valuable metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10806294A
Other languages
Japanese (ja)
Inventor
Ryoji Miyabayashi
良次 宮林
Yoichi Takazawa
洋一 高沢
Juichi Yoneda
寿一 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Aen KK
Original Assignee
Nikko Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Aen KK filed Critical Nikko Aen KK
Priority to JP10806294A priority Critical patent/JPH07316677A/en
Publication of JPH07316677A publication Critical patent/JPH07316677A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W30/54

Abstract

PURPOSE:To recover valuable metals from the steelmaking dust contg. zinc, iron, fluorine, chlorine, etc., and to more efficiently remove the fluorine and chlorine. CONSTITUTION:Sulfuric acid is added to the steelmaking dust, and the mixture is kneaded and then subjected to sulfating roasting. The waste sulfating roasting gas is washed with water, the washing water is neutralized to precipitate the fluorine compd., and the neutralized washing water is filtered to transfer the chlorine into the filtrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鋼ダストからの有価
金属の回収方法に関するものであり、さらに詳しく述べ
るならば、製鋼ダスト中の塩素、フッ素を効率的に亜鉛
等の有価金属から分離する処理方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering valuable metals from steelmaking dust. More specifically, chlorine and fluorine in steelmaking dust are efficiently separated from valuable metals such as zinc. It relates to a processing method.

【0002】[0002]

【従来の技術】製鋼ダストをそのまま亜鉛乾式製錬所で
処理すると、塩素とフッ素が工程に濃縮し、ボイラー、
電気集塵機などの廃棄ガス処理設備を腐食する。また、
製鋼ダストの湿式処理として硫酸浸出を行うと、塩素と
フッ素が浸出液中に入り、電解精練工程の電極を侵す。
このような背景があるために、例えば、特公昭53−2
9122号公報の平電炉製鋼ダスト等からの有価金属回
収方法が提案された。この方法は、平電炉製鋼ダストを
水洗し、塩素、ナトリウム、カリウムを除去する工程
と、その工程で得られ、亜鉛、鉛、カドミウム、鉄等を
含有する水洗ダストにコークスを加えて造粒し、亜鉛及
び鉛等を含む焼結鉄鉱を得る工程と、さらにその工程か
らの焼結ガスを除塵して得たダストをアルカリ性の水で
洗浄してフッ素を除き、鉛とカドミウム等を含む非鉄金
属滓を得る工程からなる。最初の水洗で塩素は95%以
上が除かれる。
2. Description of the Related Art When steelmaking dust is directly processed in a zinc dry smelter, chlorine and fluorine are concentrated in the process, and the boiler,
Corrosion of waste gas treatment equipment such as electric dust collectors. Also,
When sulfuric acid leaching is carried out as a wet treatment of steelmaking dust, chlorine and fluorine enter the leachate and attack the electrode in the electrolytic refining process.
Due to this background, for example, Japanese Patent Publication No. 53-2
A method for recovering valuable metals from dust and the like of Hiraden furnace steelmaking disclosed in Japanese Patent No. 9122 has been proposed. This method is a step of washing the Hiraden furnace steelmaking dust with water and removing chlorine, sodium, potassium, and granulating by adding coke to the washing dust containing zinc, lead, cadmium, iron, etc. obtained in that step. , A step of obtaining sintered iron ore containing zinc and lead, etc., and a dust obtained by removing the sintering gas from the step is washed with alkaline water to remove fluorine, and a non-ferrous metal containing lead and cadmium. It consists of the process of obtaining slag. The first water wash removes more than 95% of chlorine.

【0003】この方法では、フッ素に関しては、コーク
スを加えて造粒した水洗ダストを1000℃程度の高温
で焼結し、その後アルカリ洗浄を行うことにより、約8
0%のフッ素を洗浄水中に溶出させている。なお、明細
書で考察されているようにフッ素を水溶液に可溶にする
ためには焼結時の高温処理が重要な役割を担っている。
In this method, regarding fluorine, about 8 is obtained by sintering coke-washed water-washed dust at a high temperature of about 1000 ° C. and then performing alkali washing.
0% fluorine is eluted in the wash water. As discussed in the specification, high temperature treatment during sintering plays an important role in making fluorine soluble in an aqueous solution.

【0004】また、特開昭55−104434号公報で
は含亜鉛製鉄ダストの処理方法が提案されている。この
方法では、製鉄ダストの還元焼成時に発生する2次ダス
トを水でリパルプした後湿式磁選機にかけ、引き続き固
液分離することにより、鉄及び亜鉛含有率の高い非磁着
物ハロゲン化合物類を分離回収している。
Further, JP-A-55-104434 proposes a method for treating zinc-containing iron dust. In this method, the secondary dust generated during reduction firing of iron-making dust is repulped with water, then subjected to a wet magnetic separator, and then solid-liquid separated to separate and collect non-magnetic halogen compounds with high iron and zinc contents. is doing.

【0006】さらに、ウェルツ法により、製鋼ダストと
コークス、石灰石を混合し、還元キルンにて1200℃
程度で処理すると、製鋼ダスト中の酸化亜鉛が還元され
亜鉛蒸気となり揮発する。この亜鉛蒸気は排ガス中で酸
化され酸化亜鉛となり集塵設備で回収される。塩素とフ
ッ素も還元キルンで揮発し酸化亜鉛に入る。酸化亜鉛は
アルカリ洗浄し、塩素とフッ素を除去し、亜鉛精練原料
とする。
Further, steelmaking dust, coke, and limestone are mixed by the Weltz method, and the mixture is heated in a reduction kiln at 1200 ° C.
When treated in a moderate amount, zinc oxide in steelmaking dust is reduced to become zinc vapor and volatilize. This zinc vapor is oxidized in the exhaust gas to become zinc oxide, which is collected in the dust collection facility. Chlorine and fluorine also volatilize in the reduction kiln and enter zinc oxide. Zinc oxide is washed with alkali to remove chlorine and fluorine and used as a zinc scouring material.

【0007】[0007]

【発明が解決しようとする課題】前掲特公昭53−29
122号公報の方法及びウェルツ法では高温の処理が必
要になり、またフッ素の分離率が高くはない。また、前
掲特開昭55−104434号公報の方法では、磁着物
と非磁着物の両方にフッ素が含有されるので同様にフッ
素の分離率が高くはない。したがって、本発明は、上記
した従来技術の問題点を克服し、製鋼ダスト中の塩素及
びフッ素を高率で亜鉛等の有価金属から分離し、その後
の有価金属回収処理におけるこれら塩素、フッ素の妨害
を排除することができる低温プロセスを提供することを
目的とする。特に、本発明は、亜鉛品位が高く、亜鉛リ
サイクル原料として重要であるが、フッ素を多く含有す
るため従来法では処理が困難な製鋼ダストからフッ素を
効率的に除去することを目的とする。また、本発明は、
上記低温プロセスにより有価金属から分離された塩素及
びフッ素をさらに分離する方法を提供することも目的と
する。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 53-29
The method disclosed in Japanese Patent No. 122 and the Weltz method require high temperature treatment, and the fluorine separation rate is not high. Further, in the method disclosed in Japanese Patent Laid-Open No. 55-104434, since fluorine is contained in both the magnetic substance and the non-magnetic substance, the fluorine separation rate is not so high. Therefore, the present invention overcomes the above-mentioned problems of the prior art, separates chlorine and fluorine in steelmaking dust from valuable metals such as zinc at a high rate, and interferes with these chlorine and fluorine in the subsequent valuable metal recovery processing. It is intended to provide a low temperature process that can eliminate In particular, the present invention has a high zinc quality and is important as a zinc recycling raw material, but an object thereof is to efficiently remove fluorine from steelmaking dust that is difficult to process by the conventional method because it contains a large amount of fluorine. Further, the present invention is
It is also an object to provide a method for further separating chlorine and fluorine separated from valuable metals by the above low temperature process.

【0008】[0008]

【課題を解決するための手段】本発明は、製鋼ダストか
ら亜鉛等の有価金属を回収する方法において、製鋼ダス
トと硫酸を混練後350〜550℃の温度で硫酸化焙焼
を行うことにより、焙焼排ガス中に塩素及びフッ素を移
行させることを特徴とする製鋼ダストからの有価金属回
収方法である。本発明において、焙焼温度は350℃よ
り低いと焙焼時間が長くなり、550℃を越えると省エ
ネルギの利点がなくかつ焙焼効果も飽和するので本発明
においては350〜550℃の焙焼温度を採用する。特
に400〜450℃の焙焼温度が好ましい。上記のよう
に有価金属と塩素、フッ素を分離した後は、有価金属中
の特に亜鉛を回収し、また塩素、フッ素を除去する排ガ
ス浄化を行う。これを行う上で好ましい後工程は、硫酸
化焙焼工程からの排ガスを水洗浄する工程と、水洗浄工
程で得られた洗浄液を中和してフッ素化合物固形物を生
成する工程と、中和後の洗浄液を濾過して濾液中に塩素
を移行させる工程とを有する。以下、本発明の構成をよ
り詳しく説明する。
The present invention is a method for recovering valuable metals such as zinc from steelmaking dust by kneading steelmaking dust and sulfuric acid and then performing sulfation and roasting at a temperature of 350 to 550 ° C. It is a method of recovering valuable metals from steelmaking dust, which is characterized by migrating chlorine and fluorine into roasting exhaust gas. In the present invention, when the roasting temperature is lower than 350 ° C., the roasting time becomes long, and when it exceeds 550 ° C., there is no advantage of energy saving and the roasting effect is saturated. Therefore, in the present invention, the roasting temperature of 350 to 550 ° C. Adopt temperature. A roasting temperature of 400 to 450 ° C. is particularly preferable. After separating valuable metals from chlorine and fluorine as described above, especially zinc in the valuable metals is recovered, and exhaust gas is purified to remove chlorine and fluorine. Preferred post-processes for doing this are a step of washing the exhaust gas from the sulfation roasting step with water, a step of neutralizing the washing liquid obtained in the water washing step to produce a fluorine compound solid, and a neutralization step. And filtering the subsequent washing liquid to transfer chlorine into the filtrate. Hereinafter, the constitution of the present invention will be described in more detail.

【0009】本発明が処理対象とする製鋼ダストは、焼
結炉、平炉、電気炉などの製鋼工程から発生するもので
あり、特にZn:20〜70%、Fe:1〜30%,
F:0.5〜6%、Cl:4〜20%を含有するもので
ある。その他の成分は、総量で0〜50%のPb,C
d,Cr,Ca,SiO2 ,Al2 O3 ,MgO,S等
である。フッ素除去効率が高い本発明方法を適用するの
に特に好ましい製鋼ダストは4%以上のフッ素を含有す
るものである。また製鋼ダストは硫酸と混錬させて十分
に反応させるための粒度は特に制限がなく、製鋼工場か
ら排出されるダストの粒度のままでよい。また、硫酸及
び製鋼ダストは通常常温〜100℃の温度で混練され
る。
The steelmaking dust to be treated by the present invention is generated from a steelmaking process such as a sintering furnace, an open furnace, an electric furnace, etc., and particularly Zn: 20 to 70%, Fe: 1 to 30%,
F: 0.5 to 6%, Cl: 4 to 20% are contained. Other components are Pb, C of 0 to 50% in total.
d, Cr, Ca, SiO2, Al2 O3, MgO, S and the like. Particularly preferred steelmaking dust for applying the method of the present invention having high fluorine removal efficiency contains 4% or more of fluorine. Further, there is no particular limitation on the particle size of the steelmaking dust to be kneaded with sulfuric acid to sufficiently react with it, and the particle size of the dust discharged from the steelmaking plant may be the same. The sulfuric acid and the steelmaking dust are usually kneaded at a temperature of room temperature to 100 ° C.

【0010】硫酸化焙焼工程は、主として製鋼ダスト中
のZn及びFeを硫酸化物に変化させるとともに亜鉛製
錬原料となる焙焼ケーキ中のF及びCl量をできるだけ
少なくするために、製鋼ダストを空気と十分に接触する
ようにしつつ加熱することにより行う。
In the sulphation roasting step, the steelmaking dust is mainly converted in order to convert Zn and Fe in the steelmaking dust into sulfates and to reduce the amounts of F and Cl in the roasting cake as a zinc smelting raw material as much as possible. This is done by heating while making sufficient contact with air.

【0011】以下、好ましい硫酸添加率を、本発明者が
行った予備実験結果を参照として、説明する。製鋼ダス
ト25gに所定の硫酸を添加し混合した後るつぼに装入
し電気炉で450℃に加熱し3時間保持し、次に製鋼ダ
ストを分析し各元素の残存率を求めた。下表に試験結果
を表1に硫酸添加率(ダストに対するH2 SO4 の重
量)と硫酸化物の塩素、フッ素の残存率を示す。
The preferable addition rate of sulfuric acid will be described below with reference to the results of preliminary experiments conducted by the present inventor. 25 g of steelmaking dust was mixed with a predetermined sulfuric acid, charged into a crucible, heated to 450 ° C. in an electric furnace and held for 3 hours, and then the steelmaking dust was analyzed to determine the residual ratio of each element. The test results are shown in the table below, and Table 1 shows the addition rate of sulfuric acid (weight of H2 SO4 to dust) and the residual rates of chlorine and fluorine in the sulfate.

【0012】[0012]

【表1】 硫酸添加率 残 存 率(%) (g /g −dust) Zn Fe Pb Cd F Cl 0.0 99 −100 100 100 100 87−93 97 −100 0.35 98 −100 100 100 100 64−77 100 0.70 91 −100 100 100 100 21−33 65 − 90 1.05 100 100 100 100 2 0 [Table 1] Sulfuric acid addition rate Residual rate (%) (g / g-dust) Zn Fe Pb Cd F Cl 0.0 99 -100 100 100 100 87-93 97 -100 0.35 98 -100 100 100 100 64-77 100 0.70 91 -100 100 100 100 21−33 65 − 90 1.05 100 100 100 100 2 0

【0013】表1より、硫酸添加率が増すと塩素とフッ
素の残存率が低下し、これらが排ガス中に移行する量が
増大することがわかる。硫酸添加率が1.05で塩素及
びフッ素とも残存率がそれぞれ2及び0%になった。こ
の添加率=1.0は、実験に使用した品位の製鋼ダスト
中の亜鉛、鉄をすべて硫酸化物にする硫酸量と等しかっ
た。一方、硫酸添加率が増しても亜鉛、鉛、カドミウム
などの有価非鉄金属は焙焼ダスト中に全量またはほぼ全
量残存しており、被焙焼製鋼ダストを亜鉛製錬の原料と
できることがわかる。
From Table 1, it can be seen that as the addition rate of sulfuric acid increases, the residual rates of chlorine and fluorine decrease and the amount of these that migrate into the exhaust gas increases. When the sulfuric acid addition rate was 1.05, the residual rates of chlorine and fluorine were 2 and 0%, respectively. This addition rate = 1.0 was equal to the amount of sulfuric acid that converted all zinc and iron in the grade steelmaking dust used in the experiment to sulfate. On the other hand, valuable non-ferrous metals such as zinc, lead, and cadmium remain in the roasting dust in the total amount or almost the entire amount even if the sulfuric acid addition rate increases, and it can be seen that the roasted steel-making dust can be used as a raw material for zinc smelting.

【0014】さらに、硫酸添加率を1.05、1.1
5、1.3としてその他の条件を変えて同様の実験を行
った結果を表2、3に示す。
Further, the sulfuric acid addition rate is 1.05, 1.1.
Tables 2 and 3 show the results of conducting the same experiment with other conditions changed to 5 and 1.3.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】表2、3より単に製鋼ダストと硫酸を混錬
処理するだけでは塩素もフッ素も除去できないことが分
かる。以上の結果より、硫酸の添加量は製鋼ダスト中の
亜鉛及び鉄を硫酸化物とする量を基準とし、この基準量
+30%以内〜−30%とすることが好ましい。なお基
準量を下回ると塩素の残存率が若干高まるが、この場合
は硫酸化焙焼温度を高くする対策を講じることが望まし
い。また、実際の操業においては混錬物に水を適量添加
することにより硫酸が製鋼ダスト全体を速やかに濡らす
ようにして混錬の効率を高めることができる。
From Tables 2 and 3, it is understood that chlorine and fluorine cannot be removed by simply kneading the steelmaking dust and sulfuric acid. From the above results, it is preferable that the addition amount of sulfuric acid is based on the amount of zinc oxide and iron oxide in the steelmaking dust as sulfates, and the reference amount is within + 30% to −30%. When the amount is less than the standard amount, the residual rate of chlorine is slightly increased, but in this case, it is desirable to take measures to raise the sulphation roasting temperature. Further, in an actual operation, by adding an appropriate amount of water to the kneaded product, sulfuric acid can quickly wet the entire steelmaking dust, and the kneading efficiency can be improved.

【0018】上述の焙焼工程で得た生成物は主として硫
酸化物からなり、塩素とフッ素を含まないので、亜鉛乾
式製練所にて酸化焙焼または焼結処理し、その後亜鉛製
錬を行って亜鉛等を回収する。また、亜鉛電解精練所で
はそのまま湿式粉砕し、硫酸を添加後亜鉛電解液として
使用することも可能である。
Since the product obtained in the above-mentioned roasting step is mainly composed of sulfate and does not contain chlorine and fluorine, it is subjected to oxidative roasting or sintering treatment in a zinc dry smelting plant, and then zinc smelting is carried out. To recover zinc, etc. Further, it is also possible to perform wet pulverization as it is at a zinc electrolytic refining plant and add sulfuric acid to use as a zinc electrolytic solution.

【0019】続いて、上記と同様の実験を、硫酸添加率
と焙焼化温度を変えて行った結果を図2及び図3を参照
として説明する。図2は硫酸添加率に対するフッ素の残
存率を焙焼温度をパラメータとして示すグラフであり、
図3は硫酸添加率に対する塩素の残存率を焙焼温度をパ
ラメータとして示すグラフである。図2、3より硫酸/
製鋼ダスト比率が約0.9以上かつ焙焼温度350〜4
50℃で顕著なフッ素及び塩素除去効果があることが分
かる。
Next, the same experiment as above was carried out by changing the addition rate of sulfuric acid and the roasting temperature, and the results will be described with reference to FIGS. FIG. 2 is a graph showing the residual rate of fluorine with respect to the addition rate of sulfuric acid, using the roasting temperature as a parameter,
FIG. 3 is a graph showing the residual rate of chlorine with respect to the addition rate of sulfuric acid, using the roasting temperature as a parameter. From Figures 2 and 3, sulfuric acid /
Steelmaking dust ratio is about 0.9 or more and roasting temperature is 350-4
It can be seen that there is a remarkable effect of removing fluorine and chlorine at 50 ° C.

【0020】硫酸化焙焼工程での排ガスに含有された塩
素及びフッ素の除去はスクラバー、スプレー塔等の処理
などの公知の排ガス処理技術で行うことができる。排ガ
ス中の塩素、フッ素を洗浄塔で回した洗浄液の塩素とフ
ッ素は中和によりフッ素をフッ化物固形物とする。pH
と硫酸液中のF濃度との関係を示す図4から分かるよう
に、pHが2.5未満であると溶液中に溶解しているフ
ッ素が多くまたpH5.5を越えると、pHが高くなっ
ても溶解しているフッ素は余り低下しないので、pH=
2.5〜5.5,特に3.5〜4.5の範囲が好まし
い。中和は、CaCO3 ,Ca(OH)2 及び/または
NaOHの添加によることが好ましく、特にCaCO3
,Ca(OH)2 はフッ素をフッ化化合物として固定
し、これを製鋼原料として使用できるので、好ましいp
H調整添加剤である。中和後、残渣から塩素を分離す
る。
Removal of chlorine and fluorine contained in the exhaust gas in the sulfation / roasting step can be carried out by a known exhaust gas treatment technique such as treatment with a scrubber or a spray tower. The chlorine and fluorine in the cleaning liquid obtained by turning chlorine and fluorine in the exhaust gas in the cleaning tower are neutralized to form fluorine as a solid fluoride substance. pH
As can be seen from FIG. 4, which shows the relationship between the F concentration in the sulfuric acid solution and the F concentration in the sulfuric acid solution, when the pH is less than 2.5, a large amount of fluorine is dissolved in the solution, and when the pH exceeds 5.5, the pH increases. However, since the dissolved fluorine does not decrease much, pH =
The range of 2.5-5.5, especially 3.5-4.5 is preferable. Neutralization is preferably by addition of CaCO3, Ca (OH) 2 and / or NaOH, especially CaCO3
, Ca (OH) 2 has fluorine as a fluorinated compound and can be used as a raw material for steelmaking.
H adjustment additive. After neutralization, chlorine is separated from the residue.

【0021】[0021]

【作用】製鋼ダストの硫酸化焙焼中に塩素及びフッ素は
比較的低温でほぼ全量揮発する。この原因は、製鋼ダス
ト中に塩化物(ZnCl2 ,CaCl2 )及びフッ化物
(CaF,ZnF)の形態で含有されている塩素及びフ
ッ素が硫酸との混錬過程でそれぞれHCl及びHFに変
化するためと考えられる。このような変化を経た製鋼ダ
ストは非常に低い温度で焙焼可能でありしかも塩素、フ
ッ素と亜鉛等の相互の分離率が高い。以下、図1のフロ
ーチャートで示す工程図と物流バランスにより本方法の
実施例を説明する。
[Function] Almost all chlorine and fluorine are volatilized at a relatively low temperature during the sulfation and roasting of steelmaking dust. This is because chlorine and fluorine contained in the steelmaking dust in the form of chlorides (ZnCl2, CaCl2) and fluorides (CaF, ZnF) change into HCl and HF during the kneading process with sulfuric acid, respectively. Conceivable. The steelmaking dust that has undergone such changes can be roasted at a very low temperature and has a high mutual separation rate of chlorine, fluorine and zinc. An embodiment of this method will be described below with reference to the process diagram and the distribution balance shown in the flowchart of FIG.

【0022】[0022]

【実施例】表4に示す組成の製鋼ダスト(200t)と
硫酸(H2 SO4 換算200t;硫酸添加率=1.0)
とをロータリーキルンで10〜20rpmの回転数にて
5〜15分混錬する。なお、表4に記した元素以外は主
として酸素である。
EXAMPLE Steelmaking dust (200 t) having the composition shown in Table 4 and sulfuric acid (200 t in terms of H2 SO4; sulfuric acid addition rate = 1.0)
And are kneaded in a rotary kiln at a rotation speed of 10 to 20 rpm for 5 to 15 minutes. The elements other than those shown in Table 4 are mainly oxygen.

【0023】[0023]

【表4】 原料(200t)の品位 Zn Fe Pb Cd Cr F Cl 品位(%) 41.7 6.51 0.68 0.28 0.63 4.5 6.6 量 (t) 83.4 13.02 1.36 0.56 1.26 9.0 13.26 [Table 4] Quality of raw material (200t) Zn Fe Pb Cd Cr F Cl Quality (%) 41.7 6.51 0.68 0.28 0.63 4.5 6.6 Amount (t) 83.4 13.02 1.36 0.56 1.26 9.0 13.26

【0024】続いて、重油を燃料とするロータリーキル
ン式焙焼炉で450℃の温度にて2〜5時間焙焼を行
う。焙焼中に製鋼ダストの塩素とフッ素はほぼすべて揮
発し、塩素とフッ素を含まず、有価金属が全量移行した
焙焼ケーキが得られた。その品位を次の表に示す。
Subsequently, roasting is carried out at a temperature of 450 ° C. for 2 to 5 hours in a rotary kiln type roasting furnace using heavy oil as a fuel. Almost all chlorine and fluorine in steelmaking dust were volatilized during roasting, and a roasted cake containing no valuable metals and chlorine and fluorine was obtained. The grade is shown in the following table.

【0025】[0025]

【表5】 焙焼ケーキ品位(350D.t,水分0%) Zn Fe Pb Cd Cr F Cl 品位(%) 28.83 3.72 0.39 0.16 0.36 0.05 0.00 量 (t) 83.40 13.02 1.36 0.56 1.26 0.18 0.00 分配(%) 100 100 100 100 100 2 0 [Table 5] Roasted cake quality (350 Dt, moisture 0%) Zn Fe Pb Cd Cr F Cl Quality (%) 28.83 3.72 0.39 0.16 0.36 0.05 0.00 Amount (t) 83.40 13.02 1.36 0.56 1.26 0.18 0.00 Distribution (%) 100 100 100 100 100 2 0

【0026】焙焼ケーキは酸化焙焼して硫酸を回収し、
あるいはそのまま焼結し、排ガス中の亜硫酸ガスは石灰
石200tで中和し、その後亜鉛製錬を行う。焙焼炉か
らの排ガスの流量は20〜60Nm3 /分の範囲(平均
45Nm3 /分)であり、排ガスの平均温度は250℃
である。排ガスをスクラバー洗浄塔に導き総量で120
0Nm3 の水(毎分0.1m3 に相当)で洗浄する。ス
クラバー洗浄水の品位を示す表6よりフッ素及び塩素の
分配率は非常に高いことが分かる。
The roasted cake is oxidized and roasted to recover sulfuric acid,
Alternatively, sintering is performed as it is, sulfurous acid gas in the exhaust gas is neutralized with 200 t of limestone, and then zinc smelting is performed. The flow rate of the exhaust gas from the roasting furnace is in the range of 20 to 60 Nm3 / min (average 45 Nm3 / min), and the average temperature of the exhaust gas is 250 ° C.
Is. The exhaust gas is led to the scrubber washing tower and the total amount is 120
Wash with 0 Nm3 of water (equivalent to 0.1 m3 per minute). Table 6 showing the quality of scrubber wash water shows that the distribution ratio of fluorine and chlorine is very high.

【0027】[0027]

【表6】 スクラバー洗浄水 Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.0 0.0 0.0 0.0 0.0 17.6 26.4 量 (t) 0.0 0.0 0.0 0.0 0.0 8.82 13.20 分配(%) 0 0 0 0 0 98 100 [Table 6] Scrubber cleaning water Zn Fe Pb Cd Cr F Cl Grade (g / l) 0.0 0.0 0.0 0.0 0.0 17.6 26.4 Amount (t) 0.0 0.0 0.0 0.0 0.0 8.82 13.20 Distribution (%) 0 0 0 0 0 98 100

【0028】スクラバー洗浄塔から約60℃の温度で排
ガスが放出される。この排ガスは硫酸ミストを含んでい
るので、ミストコットレルにより硫酸を回収し、浄化さ
れた清浄ガスを放出する。一方、スクラバー洗浄塔では
塩素、フッ素、亜硫酸などを含むスクラバー洗浄水を循
環し、これらが所定濃度になった時にスクラバー洗浄塔
から抜き出す。その時のpHは1〜2の範囲である。続
いて、CaCO3 ,Ca(OH)2 あるいはNaOHに
より洗浄水をpH=2.5〜5.5に中和する。このp
H範囲に中和するに要する添加量は、CaCO3 =5
0.2t,Ca(OH)2 =37.1t,あるいはNa
OH=40.1tである。CaCO3 添加後フィルタプ
レスによる濾過を行い得られた濾液(表7、1195m
3 )と残渣(表8、30D.t)の品位をそれぞれの表
に示す。
Exhaust gas is discharged from the scrubber washing tower at a temperature of about 60.degree. Since this exhaust gas contains sulfuric acid mist, sulfuric acid is recovered by the mist cotrel and the purified clean gas is released. On the other hand, in the scrubber cleaning tower, scrubber cleaning water containing chlorine, fluorine, sulfurous acid, etc. is circulated, and when these reach a predetermined concentration, the scrubber cleaning water is withdrawn from the scrubber cleaning tower. The pH at that time is in the range of 1-2. Subsequently, the wash water is neutralized to pH = 2.5 to 5.5 with CaCO3, Ca (OH) 2 or NaOH. This p
The amount of addition required to neutralize to H range is CaCO3 = 5
0.2t, Ca (OH) 2 = 37.1t, or Na
OH = 40.1t. Filtrate obtained by filtering with a filter press after adding CaCO3 (Table 7, 1195 m
3) and the quality of the residue (Table 8, 30D.t) are shown in each table.

【0029】[0029]

【表7】 脱フッ素処理後濾液(1195m3 )品位 Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.0 0.0 0.0 0.0 0.0 0.4 10.8 量 (t) 0.0 0.0 0.0 0.0 0.0 0.53 12.94 分配(%) 94 0 0 95 0 6 98 [Table 7] Filter after defluorination treatment (1195 m3) Quality Zn Fe Pb Cd Cr F Cl Quality (g / l) 0.0 0.0 0.0 0.0 0.0 0.4 10.8 Amount (t) 0.0 0.0 0.0 0.0 0.0 0.53 12.94 Distribution (%) 94 0 0 95 0 6 98

【0030】[0030]

【表8】 脱フッ素処理残渣(30D.t,49W.t.水分60%) Zn Fe Pb Cd Cr F Cl 品位(%) 0 0 0 0 0 28 0.892 量 (t) 0.00 0.00 0.00 0.00 0.00 8.29 0.26 分配(%) 6 100 100 4 100 94 2 [Table 8] Defluorination treatment residue (30 Dt, 49 Wt, moisture 60%) Zn Fe Pb Cd Cr F Cl Quality (%) 0 0 0 0 0 28 0.892 Amount (t) 0.00 0.00 0.00 0.00 0.00 8.29 0.26 Distribution (%) 6 100 100 4 100 94 2

【0031】表7、8より塩素とフッ素はほぼ完全に分
離されていることが明らかである。
From Tables 7 and 8, it is clear that chlorine and fluorine are almost completely separated.

【0032】[0032]

【発明の効果】以上説明したように、本発明は、省エネ
ルギを達成しまた作業環境も良い製鋼ダストから有価金
属を回収する技術であるので工業上の価値が高い。また
従来の技術では処理困難であったフッ素含有量が高い製
鋼ダストの処理も可能であるので、資源回収の面でも価
値が高い。
INDUSTRIAL APPLICABILITY As described above, the present invention is a technology of recovering valuable metals from steelmaking dust that achieves energy saving and has a good working environment, and thus has a high industrial value. Further, since it is possible to treat steelmaking dust having a high fluorine content, which was difficult to treat by the conventional technique, it is also valuable in terms of resource recovery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例に係るフローチャートで
ある。
FIG. 1 is a flow chart according to an embodiment of the method of the present invention.

【図2】硫酸添加率とフッ素残存率の関係を示すグラフ
である。
FIG. 2 is a graph showing a relationship between a sulfuric acid addition rate and a fluorine residual rate.

【図3】硫酸添加率と塩素残存率の関係を示すグラフで
ある。
FIG. 3 is a graph showing a relationship between a sulfuric acid addition rate and a chlorine residual rate.

【図4】pHと硫酸液中のフッ素浸出率の関係をCaC
O3 ,NaOH,Ca(OH)2 等のpH調整・フッ素
固定剤をパラメータとして表すグラフである。
FIG. 4 shows the relationship between pH and the fluorine leaching rate in a sulfuric acid solution as CaC.
6 is a graph showing pH adjusting / fluorine fixing agents such as O3, NaOH and Ca (OH) 2 as parameters.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月2日[Submission date] June 2, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】本発明が処理対象とする製鋼ダストは、焼
結炉、平炉、電気炉などの製鋼工程から発生するもので
あり、特にZn:20〜70%、Fe:1〜30%,
F:0.5〜6%、Cl:4〜20%を含有するもので
ある。その他の成分は、総量で0〜50%のPb,C
d,Cr,Ca,SiO2 ,Al23 ,MgO,S等
である。フッ素除去効率が高い本発明方法を適用するの
に特に好ましい製鋼ダストは4%以上のフッ素を含有す
るものである。また製鋼ダストは硫酸と混錬させて十分
に反応させるための粒度は特に制限がなく、製鋼工場か
ら排出されるダストの粒度のままでよい。また、硫酸及
び製鋼ダストは通常常温〜100℃の温度で混練され
る。
The steelmaking dust to be treated by the present invention is generated from a steelmaking process such as a sintering furnace, an open furnace, an electric furnace, etc., and particularly Zn: 20 to 70%, Fe: 1 to 30%,
F: 0.5 to 6%, Cl: 4 to 20% are contained. Other components are Pb, C of 0 to 50% in total.
d, Cr, Ca, SiO 2 , Al 2 O 3 , MgO, S and the like. Particularly preferred steelmaking dust for applying the method of the present invention having high fluorine removal efficiency contains 4% or more of fluorine. Further, there is no particular limitation on the particle size of the steelmaking dust to be kneaded with sulfuric acid to sufficiently react with it, and the particle size of the dust discharged from the steelmaking plant may be the same. The sulfuric acid and the steelmaking dust are usually kneaded at a temperature of room temperature to 100 ° C.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】以下、好ましい硫酸添加率を、本発明者が
行った予備実験結果を参照として、説明する。製鋼ダス
ト25gに所定の硫酸を添加し混合した後るつぼに装入
し電気炉で450℃に加熱し3時間保持し、次に製鋼ダ
ストを分析し各元素の残存率を求めた。下表に試験結果
を表1に硫酸添加率(ダストに対するH2 SO4 の重
量)と硫酸化物の塩素、フッ素の残存率を示す。
The preferable addition rate of sulfuric acid will be described below with reference to the results of preliminary experiments conducted by the present inventor. 25 g of steelmaking dust was mixed with a predetermined sulfuric acid, charged into a crucible, heated to 450 ° C. in an electric furnace and held for 3 hours, and then the steelmaking dust was analyzed to determine the residual ratio of each element. The table below shows the test results, and Table 1 shows the addition rate of sulfuric acid (weight of H 2 SO 4 to dust) and the residual rates of chlorine and fluorine in the sulfate.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】硫酸化焙焼工程での排ガスに含有された塩
素及びフッ素の除去はスクラバー、スプレー塔等の処理
などの公知の排ガス処理技術で行うことができる。排ガ
ス中の塩素、フッ素を洗浄塔で回した洗浄液の塩素とフ
ッ素は中和によりフッ素をフッ化物固形物とする。pH
と硫酸液中のF濃度との関係を示す図4から分かるよう
に、pHが2.5未満であると溶液中に溶解しているフ
ッ素が多くまたpH5.5を越えると、pHが高くなっ
ても溶解しているフッ素は余り低下しないので、pH=
2.5〜5.5,特に3.5〜4.5の範囲が好まし
い。中和は、CaCO3 ,Ca(OH)2 及び/または
NaOHの添加によることが好ましく、特にCaCO
3 ,Ca(OH)2 はフッ素をフッ化化合物として固定
し、これを製鋼原料として使用できるので、好ましいp
H調整添加剤である。中和後、残渣から塩素を分離す
る。
Removal of chlorine and fluorine contained in the exhaust gas in the sulfation / roasting step can be carried out by a known exhaust gas treatment technique such as treatment with a scrubber or a spray tower. The chlorine and fluorine in the cleaning liquid obtained by turning chlorine and fluorine in the exhaust gas in the cleaning tower are neutralized to form fluorine as a solid fluoride substance. pH
As can be seen from FIG. 4, which shows the relationship between the F concentration in the sulfuric acid solution and the F concentration in the sulfuric acid solution, when the pH is less than 2.5, a large amount of fluorine is dissolved in the solution, and when the pH exceeds 5.5, the pH increases. However, since the dissolved fluorine does not decrease much, pH =
The range of 2.5-5.5, especially 3.5-4.5 is preferable. Neutralization is preferably by addition of CaCO 3 , Ca (OH) 2 and / or NaOH, especially CaCO 3.
3 , Ca (OH) 2 is preferable because it fixes fluorine as a fluorinated compound and can be used as a steelmaking raw material.
H adjustment additive. After neutralization, chlorine is separated from the residue.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【作用】製鋼ダストの硫酸化焙焼中に塩素及びフッ素は
比較的低温でほぼ全量揮発する。この原因は、製鋼ダス
ト中に塩化物(ZnCl2 ,CaCl2 )及びフッ化物
(CaF,ZnF)の形態で含有されている塩素及びフ
ッ素が硫酸との混錬過程でそれぞれHCl及びHFに変
化するためと考えられる。このような変化を経た製鋼ダ
ストは非常に低い温度で焙焼可能でありしかも塩素、フ
ッ素と亜鉛等の相互の分離率が高い。以下、図1のフロ
ーチャートで示す工程図と物流バランスにより本方法の
実施例を説明する。
[Function] Almost all chlorine and fluorine are volatilized at a relatively low temperature during the sulfation and roasting of steelmaking dust. The reason for this is that chlorine and fluorine contained in the steelmaking dust in the form of chloride (ZnCl 2 , CaCl 2 ) and fluoride (CaF, ZnF) change into HCl and HF during the kneading process with sulfuric acid, respectively. It is thought to be because. The steelmaking dust that has undergone such changes can be roasted at a very low temperature and has a high mutual separation rate of chlorine, fluorine and zinc. An embodiment of this method will be described below with reference to the process diagram and the distribution balance shown in the flowchart of FIG.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】[0022]

【実施例】表4に示す組成の製鋼ダスト(200t)と
硫酸(H2 SO4 換算200t;硫酸添加率=1.0)
とをロータリーキルンで10〜20rpmの回転数にて
5〜15分混錬する。なお、表4に記した元素以外は主
として酸素である。
Example Steelmaking dust (200 t) having the composition shown in Table 4 and sulfuric acid (200 t in terms of H 2 SO 4 ; sulfuric acid addition rate = 1.0)
And are kneaded in a rotary kiln at a rotation speed of 10 to 20 rpm for 5 to 15 minutes. The elements other than those shown in Table 4 are mainly oxygen.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】焙焼ケーキは酸化焙焼して硫酸を回収し、
あるいはそのまま焼結し、排ガス中の亜硫酸ガスは石灰
石200tで中和し、その後亜鉛製錬を行う。焙焼炉か
らの排ガスの流量は20〜60Nm3 /分の範囲(平均
45Nm3 /分)であり、排ガスの平均温度は250℃
である。排ガスをスクラバー洗浄塔に導き総量で120
0Nm3 の水(毎分0.1m3 に相当)で洗浄する。ス
クラバー洗浄水の品位を示す表6よりフッ素及び塩素の
分配率は非常に高いことが分かる。
The roasted cake is oxidized and roasted to recover sulfuric acid,
Alternatively, sintering is performed as it is, sulfurous acid gas in the exhaust gas is neutralized with 200 t of limestone, and then zinc smelting is performed. Flow rate of the exhaust gas from the roasting furnace is 20 to 60 nm 3 / min range (average 45 Nm 3 / min), the average temperature of the exhaust gas is 250 ° C.
Is. The exhaust gas is led to the scrubber washing tower and the total amount is 120
Wash with 0 Nm 3 of water (equivalent to 0.1 m 3 per minute). Table 6 showing the quality of scrubber wash water shows that the distribution ratio of fluorine and chlorine is very high.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】スクラバー洗浄塔から約60℃の温度で排
ガスが放出される。この排ガスは硫酸ミストを含んでい
るので、ミストコットレルにより硫酸を回収し、浄化さ
れた清浄ガスを放出する。一方、スクラバー洗浄塔では
塩素、フッ素、亜硫酸などを含むスクラバー洗浄水を循
環し、これらが所定濃度になった時にスクラバー洗浄塔
から抜き出す。その時のpHは1〜2の範囲である。続
いて、CaCO3 ,Ca(OH)2 あるいはNaOHに
より洗浄水をpH=2.5〜5.5に中和する。このp
H範囲に中和するに要する添加量は、CaCO3 =5
0.2t,Ca(OH)2 =37.1t,あるいはNa
OH=40.1tである。CaCO3 添加後フィルタプ
レスによる濾過を行い得られた濾液(表7、1195m
3 )と残渣(表8、30D.t)の品位をそれぞれの表
に示す。
Exhaust gas is discharged from the scrubber washing tower at a temperature of about 60.degree. Since this exhaust gas contains sulfuric acid mist, sulfuric acid is recovered by the mist cotrel and the purified clean gas is released. On the other hand, in the scrubber cleaning tower, scrubber cleaning water containing chlorine, fluorine, sulfurous acid, etc. is circulated, and when these reach a predetermined concentration, the scrubber cleaning water is withdrawn from the scrubber cleaning tower. The pH at that time is in the range of 1-2. Subsequently, the wash water is neutralized to pH = 2.5 to 5.5 with CaCO 3 , Ca (OH) 2 or NaOH. This p
The amount of addition required to neutralize to the H range is CaCO 3 = 5
0.2t, Ca (OH) 2 = 37.1t, or Na
OH = 40.1t. Filtrate obtained by performing filtration with a filter press after adding CaCO 3 (Table 7, 1195 m
3 ) and the quality of the residue (Table 8, 30D.t) are shown in each table.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】[0029]

【表7】 脱フッ素処理後濾液(1195m3 )品位 Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.0 0.0 0.0 0.0 0.0 0.4 10.8 量 (t) 0.0 0.0 0.0 0.0 0.0 0.53 12.94 分配(%) 94 0 0 95 0 6 98 [Table 7] Filter after defluorination treatment (1195 m 3 ) Quality Zn Fe Pb Cd Cr F Cl Quality (g / l) 0.0 0.0 0.0 0.0 0.0 0.4 10.8 Amount (t) 0.0 0.0 0.0 0.0 0.0 0.53 12.94 Distribution (%) 94 0 0 95 0 6 98

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例に係るフローチャートで
ある。
FIG. 1 is a flow chart according to an embodiment of the method of the present invention.

【図2】硫酸添加率とフッ素残存率の関係を示すグラフ
である。
FIG. 2 is a graph showing a relationship between a sulfuric acid addition rate and a fluorine residual rate.

【図3】硫酸添加率と塩素残存率の関係を示すグラフで
ある。
FIG. 3 is a graph showing a relationship between a sulfuric acid addition rate and a chlorine residual rate.

【図4】pHと硫酸液中のフッ素浸出率の関係をCaC
3 ,NaOH,Ca(OH)2 等のpH調整・フッ素
固定剤をパラメータとして表すグラフである。
FIG. 4 shows the relationship between pH and the fluorine leaching rate in a sulfuric acid solution as CaC.
It is a graph showing a pH adjusting / fluorine fixing agent such as O 3 , NaOH and Ca (OH) 2 as parameters.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 製鋼ダストから亜鉛等の有価金属を回収
する方法において、製鋼ダストと硫酸を混練後350〜
550℃の温度で硫酸化焙焼を行うことにより、焙焼排
ガス中に塩素及びフッ素を移行させることを特徴とする
製鋼ダストからの有価金属回収方法。
1. A method for recovering valuable metals such as zinc from steelmaking dust in a range of 350 to 350 after kneading steelmaking dust and sulfuric acid.
A method for recovering valuable metals from steelmaking dust, which comprises migrating chlorine and fluorine into the roasting exhaust gas by carrying out sulfate roasting at a temperature of 550 ° C.
【請求項2】 前記硫酸化焙焼工程からの排ガスを水洗
浄する工程と、前記水洗浄工程で得られた洗浄液を中和
してフッ素化合物固形物を生成する工程と、中和後の洗
浄液を濾過して濾液中に塩素を移行させる工程とを有す
ることを特徴とする請求項1記載の製鋼ダストからの有
価金属回収方法。
2. A step of washing exhaust gas from the sulfate roasting step with water, a step of neutralizing the washing solution obtained in the water washing step to produce a fluorine compound solid, and a washing solution after neutralization. The method of recovering valuable metals from steelmaking dust according to claim 1, further comprising the step of:
【請求項3】 中和工程においてpHを約2.5〜5.
5に調整することを特徴とする請求項2記載の製鋼ダス
トからの有価金属回収方法。
3. The pH in the neutralization step is about 2.5-5.
5. The method for recovering valuable metals from steelmaking dust according to claim 2, wherein the value is adjusted to 5.
【請求項4】 中和工程において、水洗浄工程で得られ
た洗浄液に、苛性ソーダ、炭酸カルシウム及び水酸化カ
ルシウムから選択された1種または2種以上を添加する
ことを特徴とする請求項3記載の製鋼ダストからの有価
金属回収方法。
4. The neutralizing step, wherein one or more selected from caustic soda, calcium carbonate and calcium hydroxide is added to the cleaning liquid obtained in the water cleaning step. For recovering valuable metals from steelmaking dust in Japan.
【請求項5】 中和工程において、水洗浄工程で得られ
た洗浄液に、炭酸カルシウム及び水酸化カルシウムから
選択された1種または2種を添加することを特徴とする
請求項4記載の製鋼ダストからの有価金属回収方法。
5. The steelmaking dust according to claim 4, wherein in the neutralization step, one or two kinds selected from calcium carbonate and calcium hydroxide are added to the cleaning liquid obtained in the water cleaning step. Method for recovering valuable metals from the market.
【請求項6】 製鋼ダストが亜鉛を20〜70%、鉄を
1〜30%、フッ素を0.5〜6%、塩素を4〜20%
含有することを特徴とする請求項1から5までのいずれ
か1項記載の製鋼ダストからの有価金属回収方法。
6. Steelmaking dust contains 20 to 70% zinc, 1 to 30% iron, 0.5 to 6% fluorine, and 4 to 20% chlorine.
The method for recovering valuable metals from steelmaking dust according to any one of claims 1 to 5, wherein the valuable metal is contained.
【請求項7】 製鋼ダストがフッ素を4%以上含有する
ことを特徴とする請求項6記載の製鋼ダストからの有価
金属回収方法。
7. The method for recovering valuable metals from steelmaking dust according to claim 6, wherein the steelmaking dust contains 4% or more of fluorine.
【請求項8】 硫酸化焙焼工程において、製鋼ダストの
1重量部に対して硫酸を0.7〜1.3重量部混練する
ことを特徴とする請求項6または7記載の製鋼ダストか
らの有価金属回収方法。
8. The steelmaking dust according to claim 6, wherein 0.7 to 1.3 parts by weight of sulfuric acid is kneaded with 1 part by weight of the steelmaking dust in the sulfating and roasting step. Valuable metal recovery method.
JP10806294A 1994-05-23 1994-05-23 Method for recovering valuable metal from steelmaking dust Pending JPH07316677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10806294A JPH07316677A (en) 1994-05-23 1994-05-23 Method for recovering valuable metal from steelmaking dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10806294A JPH07316677A (en) 1994-05-23 1994-05-23 Method for recovering valuable metal from steelmaking dust

Publications (1)

Publication Number Publication Date
JPH07316677A true JPH07316677A (en) 1995-12-05

Family

ID=14474938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10806294A Pending JPH07316677A (en) 1994-05-23 1994-05-23 Method for recovering valuable metal from steelmaking dust

Country Status (1)

Country Link
JP (1) JPH07316677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326814A (en) * 2001-05-07 2002-11-12 Sumitomo Metal Mining Co Ltd Production method of fired ore of zinc oxide or ore briquette of zinc oxide
JP2003524070A (en) * 2000-02-23 2003-08-12 レキュパック Steelworks dust treatment method
EP1666614A4 (en) * 2003-07-22 2007-06-06 Obschestvo S Ogranichennoy Otv Method for processing oxidises nickel-cobalt ore (variants)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524070A (en) * 2000-02-23 2003-08-12 レキュパック Steelworks dust treatment method
JP2002326814A (en) * 2001-05-07 2002-11-12 Sumitomo Metal Mining Co Ltd Production method of fired ore of zinc oxide or ore briquette of zinc oxide
JP4715022B2 (en) * 2001-05-07 2011-07-06 住友金属鉱山株式会社 Method for producing zinc oxide sinter or zinc oxide briquette
EP1666614A4 (en) * 2003-07-22 2007-06-06 Obschestvo S Ogranichennoy Otv Method for processing oxidises nickel-cobalt ore (variants)

Similar Documents

Publication Publication Date Title
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
JP5565354B2 (en) Method for producing zinc oxide sinter
CA2188658A1 (en) Recovery of chemical values from industrial wastes
CN107058750B (en) Germanic Bellamya aeruginosa comprehensive recycling process
CN105039747A (en) Method for enrichment and separation of selenium and mercury from lead filter cake
JP2003225633A (en) Method of treating chloride-containing dust
JPH07316677A (en) Method for recovering valuable metal from steelmaking dust
JP4506017B2 (en) Method for producing zinc oxide sinter or zinc oxide briquette
JP2005246226A (en) Treating method for fly ash
RU2680767C1 (en) Iron-containing sludge processing method
JP6123930B2 (en) Method for producing zinc oxide ore
JP7211153B2 (en) Method for producing lead compound
JP3896442B2 (en) Method for treating fly ash containing heavy metals
JP4350262B2 (en) Residue treatment method
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JPH10109077A (en) Method for recovering heavy metal from molten fry ash
JP7415629B2 (en) Method for producing zinc oxide ore
JP3944556B2 (en) Method for treating fly ash containing heavy metals
JPH10501305A (en) Method for wet refining by leaching with sodium carbonate for the purification of Weertz oxide
JP2000135480A (en) Treatment of residue
JP3730997B1 (en) Method for recycling molten fly ash
JP7243749B2 (en) Valuable metal recovery method and recovery device
WO2023157826A1 (en) Zinc recovery method
JP7110128B2 (en) Method for removing mercury in smoke washing wastewater
JP4359090B2 (en) Method for treating zinc-containing dust