JP6710120B2 - Conductive adhesive, electronic component, and method for manufacturing electronic component - Google Patents

Conductive adhesive, electronic component, and method for manufacturing electronic component Download PDF

Info

Publication number
JP6710120B2
JP6710120B2 JP2016130791A JP2016130791A JP6710120B2 JP 6710120 B2 JP6710120 B2 JP 6710120B2 JP 2016130791 A JP2016130791 A JP 2016130791A JP 2016130791 A JP2016130791 A JP 2016130791A JP 6710120 B2 JP6710120 B2 JP 6710120B2
Authority
JP
Japan
Prior art keywords
conductive
meth
conductive adhesive
acrylate
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016130791A
Other languages
Japanese (ja)
Other versions
JP2017066367A (en
Inventor
福島 和信
和信 福島
佐々木 正樹
正樹 佐々木
和貴 仲田
和貴 仲田
大作 須藤
大作 須藤
健太郎 大渕
健太郎 大渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Ink Manufacturing Co Ltd
Original Assignee
Taiyo Ink Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Ink Manufacturing Co Ltd filed Critical Taiyo Ink Manufacturing Co Ltd
Priority to TW105128951A priority Critical patent/TWI716445B/en
Priority to KR1020160123808A priority patent/KR102570880B1/en
Priority to CN201610861050.8A priority patent/CN106916547A/en
Publication of JP2017066367A publication Critical patent/JP2017066367A/en
Application granted granted Critical
Publication of JP6710120B2 publication Critical patent/JP6710120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は導電性接着剤、電子部品および電子部品の製造方法に関する。 The present invention relates to a conductive adhesive, an electronic component and a method for manufacturing an electronic component.

近年のエレクトロニクス機器の軽薄短小化に伴うプリント配線板の高密度化に伴い、電子部品の電気的接続、例えば配線板と電子素子との電気的接続や配線板間の電気的接続に用いる技術として、導電性接着剤の開発・改良が進められている(例えば特許文献1、2)。導電性接着剤は、電気的に接続したい部材間に塗布し、熱圧着することによって、軽量かつ省スペースで電気的接続を可能とする。 As the density of printed wiring boards has increased due to the recent trend of lighter, thinner, shorter, and smaller electronic devices, as a technique used for electrical connection of electronic components, for example, electrical connection between wiring boards and electronic elements and electrical connection between wiring boards. The development and improvement of conductive adhesives are underway (for example, Patent Documents 1 and 2). The electrically conductive adhesive is applied between members to be electrically connected and thermocompression-bonded to enable electrical connection in a lightweight and space-saving manner.

導電性接着剤自体は絶縁性であるが、熱圧着により、導電性接着剤に含有される導電粒子が電極間に挟まり押し付けられることによって導電する経路が形成されるため、部材間の電気的な接続が可能となる。一方、熱圧着後も電極間に挟まれずに圧力がかからなかった領域は、導電粒子は分散したままであるため、絶縁性が維持される。これによって、いわゆる異方導電性の接続構造体となる。 Although the conductive adhesive itself is insulative, the conductive particles contained in the conductive adhesive are sandwiched between the electrodes and pressed against each other by thermocompression bonding to form a conductive path. Connection is possible. On the other hand, even after the thermocompression bonding, the conductive particles remain dispersed in the region where the electrodes are not sandwiched between the electrodes and the pressure is not applied, so that the insulating property is maintained. As a result, a so-called anisotropic conductive connection structure is obtained.

特開2012−216770号公報JP 2012-216770 A 特開2013−045650号公報JP, 2013-045650, A

上記のような導電性接着剤を用いて形成した異方導電性の接続構造体は、圧力がかからなかった領域には絶縁性が維持されているものの、その領域には導電粒子が存在するため、優れた耐電圧性を付与することが困難であった。 The anisotropic conductive connection structure formed using the conductive adhesive as described above, the insulating property is maintained in the region where no pressure is applied, but conductive particles are present in that region Therefore, it has been difficult to provide excellent withstand voltage.

そこで本発明の目的は、導電性を維持しつつ、耐電圧性に優れた異方導電性の接続構造体を形成することができる導電性接着剤、該導電性接着剤を用いて電気的に接続した部材を含む電子部品および該導電性接着剤を用いた電子部品の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a conductive adhesive capable of forming an anisotropic conductive connection structure having excellent withstand voltage while maintaining conductivity, and electrically using the conductive adhesive. An object of the present invention is to provide an electronic component including connected members and a method of manufacturing an electronic component using the conductive adhesive.

本発明者等は上記に鑑み鋭意検討した結果、低融点金属からなる導電粒子を特定の配合量で配合することによって、上記課題を解決しうることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the above, the present inventors have found that the above problems can be solved by blending conductive particles made of a low melting point metal in a specific blending amount, and have completed the present invention.

即ち、本発明の導電性接着剤は、熱圧着することによって部材同士を異方導電接着する、熱溶融性の導電粒子を含む導電性接着剤であって、前記熱溶融性の導電粒子の配合量が固形分換算で0.01〜4.0体積%であることを特徴とするものである。 That is, the conductive adhesive of the present invention is a conductive adhesive that anisotropically conductively bonds members by thermocompression bonding, and contains heat-meltable conductive particles, wherein the heat-meltable conductive particles are blended. The amount is 0.01 to 4.0% by volume in terms of solid content.

本発明の導電性接着剤は、前記熱溶融性の導電粒子が、低融点はんだ粒子であることが好ましい。 In the conductive adhesive of the present invention, the heat-meltable conductive particles are preferably low melting point solder particles.

本発明の導電性接着剤は、さらに、有機成分を含むことが好ましい。 The conductive adhesive of the present invention preferably further contains an organic component.

本発明の導電性接着剤は、前記有機成分(溶剤を含む場合は溶剤を除く)中のエチレン性不飽和結合当量が260〜1000であることが好ましい。 The conductive adhesive of the present invention preferably has an ethylenically unsaturated bond equivalent of 260 to 1,000 in the organic component (excluding the solvent when the solvent is included).

本発明の電子部品は、前記導電性接着剤を用いて電気的に接続した部材を含むことを特徴とするものである。 The electronic component of the present invention is characterized by including a member electrically connected using the conductive adhesive.

本発明の電子部品の製造方法は、前記導電性接着剤を塗布し、熱圧着することによって部材同士を異方導電接着することを特徴とするものである。 The method of manufacturing an electronic component of the present invention is characterized in that the conductive adhesive is applied and thermocompression-bonded to anisotropically bond the members to each other.

本発明によれば、導電性を維持しつつ、耐電圧性に優れた異方導電性の接続構造体を形成することができる導電性接着剤、および、該導電性接着剤を用いて電気的に接続した部材を含む電子部品および該導電性接着剤を用いた電子部品の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while maintaining electroconductivity, the electroconductive adhesive which can form the anisotropic conductive connection structure excellent in withstand voltage, and electrical conductivity using this electroconductive adhesive. It is possible to provide an electronic component including a member connected to the electronic component and a method for manufacturing the electronic component using the conductive adhesive.

本発明の導電性接着剤は、熱圧着することによって部材同士を異方導電接着する、熱溶融性の導電粒子(以下、単に「導電粒子」とも称する)を含む導電性接着剤であって、前記熱溶融性の導電粒子の配合量が固形分換算で0.01〜4.0体積%であることを特徴とするものである。導電粒子を0.01〜4.0体積%という少量で配合すると、導電粒子が不足するために十分な導電性を確保できないと考えられたが、実際には顕著な導電性の低下は生じることなく、耐電圧が向上することがわかった。詳しいメカニズムは明らかではないが、導電粒子の配合量を少なくしたことにより、電極間の導電粒子が少なくなるものの、これによって熱圧着時に電極間に挟まれた導電粒子1つ当たりにかかる圧力の増加に伴い、導電粒子のつぶれ具合(加圧方向(Z軸方向)の一次元収縮とX−Y方向の二次元伸長)が増加し、電極間に挟まれた導電粒子1つ当たりが電極と接触する面積が増加するため、導電性を確保できたと考えられる。一方で、導電粒子の配合量を少量にしたことにより、非電気的接続箇所においては、分散している導電粒子の濃度が低くなってより絶縁性が高まり、X−Y方向で隣り合う電極間の耐電圧性が向上したと考えられる。
ここで、前記体積%の算出方法としては、JIS K−5400に準拠し100mlの比重カップを用いて熱溶融性の導電粒子以外の組成物(接着剤)の比重を測定し、熱溶融性の導電粒子の真比重を用いて下記式にて算出する。
(式)
導電粒子の濃度(体積%)=100×(熱溶融性の導電粒子の配合量/熱溶融性の導電粒子の真比重)/((熱溶融性の導電粒子の配合量/熱溶融性の導電粒子の真比重)+(熱溶融性の導電粒子以外の組成物の配合量/熱溶融性の導電粒子以外の組成物の比重))
The conductive adhesive of the present invention is a conductive adhesive containing heat-meltable conductive particles (hereinafter, also simply referred to as “conductive particles”) for anisotropically conductively bonding members by thermocompression bonding, The blending amount of the heat-meltable conductive particles is 0.01 to 4.0% by volume in terms of solid content. When the conductive particles were blended in a small amount of 0.01 to 4.0% by volume, it was considered that sufficient conductivity could not be ensured due to a shortage of conductive particles, but in practice, a remarkable decrease in conductivity may occur. It was found that the withstand voltage was improved. Although the detailed mechanism is not clear, the conductive particles between the electrodes are reduced by reducing the blending amount of the conductive particles, but this increases the pressure applied to each conductive particle sandwiched between the electrodes during thermocompression bonding. As a result, the degree of collapse of the conductive particles (one-dimensional contraction in the pressing direction (Z-axis direction) and two-dimensional expansion in the XY direction) increases, and each conductive particle sandwiched between the electrodes contacts the electrode. It is considered that the conductivity was secured because the area to be covered increases. On the other hand, since the conductive particles are mixed in a small amount, the concentration of the conductive particles dispersed in the non-electrical connection portion is reduced, and the insulating property is further increased, and the electrodes between adjacent electrodes in the XY direction are increased. It is considered that the withstand voltage of is improved.
Here, the volume% is calculated by measuring the specific gravity of the composition (adhesive) other than the heat-meltable conductive particles using a 100-ml specific gravity cup in accordance with JIS K-5400 to determine the heat-meltability. It is calculated by the following formula using the true specific gravity of the conductive particles.
(formula)
Concentration of conductive particles (volume %)=100×(blending amount of heat-melting conductive particles/true specific gravity of heat-melting conductive particles)/((blending amount of heat-melting conductive particles/heat-melting conductivity) True specific gravity of particles) + (blending amount of composition other than heat-meltable conductive particles/specific gravity of composition other than heat-meltable conductive particles))

以下、本発明の導電性接着剤が含有する成分について詳述する。 Hereinafter, the components contained in the conductive adhesive of the present invention will be described in detail.

本発明の導電性接着剤は、熱溶融性の導電粒子の配合量が固形分換算で0.01〜4.0体積%で含む樹脂組成物であれば特に限定されず、その他の成分としては、導電性接着剤に用いることができる公知慣用の成分を用いればよい。公知慣用の成分としては、有機成分、無機成分が挙げられ、有機成分を好適に用いることができる。ここでいう、有機成分とは、無機成分以外の全ての成分をいい、具体的には後述する樹脂成分、パーオキサイド、湿潤分散剤、消泡剤等が挙げられる。接着剤用の樹脂成分としては、公知慣用の熱硬化型、熱溶融型、紫外線硬化型、湿気硬化型の樹脂のうち少なくとも何れか1種を用いることができる。これらの樹脂のなかでも、熱圧着による電気的な接続が容易であることから、熱硬化型、紫外線硬化型の樹脂が好ましい。熱硬化型の樹脂としては、アクリレート樹脂等のエチレン性不飽和結合を有する化合物、エポキシ樹脂等が挙げられる。熱溶融型の樹脂としては、熱可塑性のポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド、ポリエーテルエーテルケトンが挙げられる。紫外線硬化型の樹脂としては、ウレタンアクリレート、アクリル樹脂アクリレート(即ちアクリル共重合樹脂のアクリレート)、エポキシアクリレートが挙げられる。湿気硬化型の樹脂としては湿気硬化形のポリウレタン樹脂、シリコン樹脂、シアノアクリレートが挙げられる。
なかでも、熱硬化型の樹脂がより好ましく、エチレン性不飽和結合を有する化合物が特に好ましい。以下、熱硬化型の樹脂について説明する。
The conductive adhesive of the present invention is not particularly limited as long as it is a resin composition containing 0.01 to 4.0% by volume of the heat-meltable conductive particles in terms of solid content, and as other components, Well-known and commonly used components that can be used for the conductive adhesive may be used. Known and commonly used components include organic components and inorganic components, and organic components can be preferably used. The term "organic component" as used herein means all components other than the inorganic component, and specific examples thereof include a resin component, a peroxide, a wetting dispersant, and a defoaming agent which will be described later. As the resin component for the adhesive, at least one selected from known and commonly used thermosetting, heat-melting, ultraviolet-curing, and moisture-curing resins can be used. Among these resins, thermosetting and ultraviolet curable resins are preferable because they can be easily electrically connected by thermocompression. Examples of thermosetting resins include compounds having an ethylenically unsaturated bond such as acrylate resins, epoxy resins, and the like. Examples of the heat-melt type resin include thermoplastic polyester, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyamide, polyacetal, polycarbonate, polyphenylene sulfide, and polyether ether ketone. Examples of the ultraviolet curable resin include urethane acrylate, acrylic resin acrylate (that is, acrylate of acrylic copolymer resin), and epoxy acrylate. Examples of moisture-curable resins include moisture-curable polyurethane resins, silicone resins, and cyanoacrylates.
Among them, thermosetting resins are more preferable, and compounds having an ethylenically unsaturated bond are particularly preferable. The thermosetting resin will be described below.

(エチレン性不飽和結合を有する化合物)
熱硬化型の樹脂として、エチレン性不飽和結合を有する化合物を配合することによって、170℃以下、2MPa以下という低温、低圧でも熱圧着可能な導電性接着剤を容易に得ることができる。
(Compound having an ethylenically unsaturated bond)
By blending a compound having an ethylenically unsaturated bond as a thermosetting resin, it is possible to easily obtain a conductive adhesive that can be thermocompression bonded even at a low temperature of 170° C. or lower and 2 MPa or lower at low pressure.

エチレン性不飽和結合を有する化合物としては、単官能または多官能の(メタ)アクリロイル基含有化合物を好ましく用いることができる。本願明細書において(メタ)アクリロイル基とは、アクリロイル基およびメタクリロイル基を総称する用語であり、他の類似の表現についても同様である。 As the compound having an ethylenically unsaturated bond, a monofunctional or polyfunctional (meth)acryloyl group-containing compound can be preferably used. In the present specification, the (meth)acryloyl group is a general term for an acryloyl group and a methacryloyl group, and the same applies to other similar expressions.

このような(メタ)アクリロイル基含有化合物としては、例えば、置換または非置換の脂肪族アクリレート、脂環式アクリレート、芳香族アクリレート、ヘテロ環含有アクリレート、およびこれらのエチレンオキサイド変性アクリレート、エポキシアクリレート、芳香族ウレタンアクリレート、脂肪族ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリオールアクリレート、アルキッドアクリレート、メラミンアクリレート、シリコーンアクリレート、ポリブタジエンアクリレート、並びにこれらに対応するメタクリレート類などを用いることができる。 Examples of such (meth)acryloyl group-containing compounds include substituted or unsubstituted aliphatic acrylates, alicyclic acrylates, aromatic acrylates, heterocycle-containing acrylates, and ethylene oxide-modified acrylates, epoxy acrylates, aromatics thereof. Group urethane acrylates, aliphatic urethane acrylates, polyester acrylates, polyether acrylates, polyol acrylates, alkyd acrylates, melamine acrylates, silicone acrylates, polybutadiene acrylates, and their corresponding methacrylates can be used.

より具体的には、単官能の(メタ)アクリロイル基含有化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ブトキシメチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の脂肪族(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4−(メタ)アクリロキシトリシクロ[5.2.1.02,6]デカン、イソボルニル(メタ)アクリレート等の脂環式(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート等の芳香族(メタ)アクリレート、脂肪族エポキシ変性(メタ)アクリレート等変性(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(メタ)アクリロイロキシエチルフタル酸、γ−(メタ)アクリロキシアルキルトリアルコキシシランなどを用いることができる。 More specifically, examples of the monofunctional (meth)acryloyl group-containing compound include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and 4-hydroxybutyl (meth). ) Acrylate, hydroxypropyl (meth)acrylate, butoxymethyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, isodecyl (meth)acrylate, glycerol mono (meth)acrylate and other aliphatic (meth)acrylates Alicyclic (meth)acrylates such as acrylate, cyclohexyl (meth)acrylate, 4-(meth)acryloxytricyclo[5.2.1.02,6]decane, isobornyl (meth)acrylate, phenoxyethyl (meth) Aromatic (meth)acrylates such as acrylate, benzyl (meth)acrylate, phenyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, modified (meth)acrylates such as aliphatic epoxy-modified (meth)acrylate, Tetrahydrofurfuryl (meth)acrylate, (meth)acryloyloxyethylphthalic acid, γ-(meth)acryloxyalkyltrialkoxysilane and the like can be used.

また、多官能の(メタ)アクリロイル基含有化合物としては、ビスフェノール−A−ジ(メタ)アクリレート、アルキレンオキサイド変性ビスフェノール−A−ジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオ−ルジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビス[4−(メタ)アクリロキシメチル]トリシクロ[5.2.1.02,6]デカン、ビス[4−(メタ)アクリロキシ−2−ヒドロキシプロピルオキシフェニル]プロパン、イソホロンジイソシアネート変性ウレタン(メタ)アクリレート、ヘキサメチレンジイソシアネート変性ウレタン(メタ)アクリレート、オリゴシロキサニルジ(メタ)アクリレート、トリメチルヘキサメチレンジイソシアネート変性ウレタン(メタ)アクリレート、トリアリルイソシアヌレート、ビニル(メタ)アクリレート、アリル(メタ)アクリレートなどを用いることができる。 As the polyfunctional (meth)acryloyl group-containing compound, bisphenol-A-di(meth)acrylate, alkylene oxide-modified bisphenol-A-di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene Glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, bis[4-(meth)acryl Roxymethyl]tricyclo[5.2.1.02,6]decane, bis[4-(meth)acryloxy-2-hydroxypropyloxyphenyl]propane, isophorone diisocyanate-modified urethane (meth)acrylate, hexamethylene diisocyanate-modified urethane ( It is possible to use (meth)acrylate, oligosiloxanyl di(meth)acrylate, trimethylhexamethylene diisocyanate-modified urethane (meth)acrylate, triallyl isocyanurate, vinyl (meth)acrylate, allyl (meth)acrylate and the like.

このほか、以下の化合物も用いることができる。
(1)2−ヒドロキシエチル(メタ)アクリレートを、2,4−トリレンジイソシアネートを介して液状ポリブタジエンのヒドロキシル基とウレタン付加反応させることにより得られる液状ポリブタジエンウレタン(メタ)アクリレート、
(2)無水マレイン酸を付加したマレイン化ポリブタジエンに、2−ヒドロキシアクリレートをエステル化反応させて得られる液状ポリブタジエンアクリレート、
(3)ポリブタジエンのカルボキシル基と、(メタ)アクリル酸グリシジルとのエポキシエステル化反応により得られる液状ポリブタジエン(メタ)アクリレート、
(4)液状ポリブタジエンにエポキシ化剤を作用させて得られるエポキシ化ポリブタジエンと、(メタ)アクリル酸とのエステル化反応により得られる液状ポリブタジエン(メタ)アクリレート、
(5)ヒドロキシル基を有する液状ポリブタジエンと、(メタ)アクリル酸クロリドとの脱塩素反応によって得られる液状ポリブタジエン(メタ)アクリレート、および、
(6)分子両末端にヒドロキシル基を有する液状ポリブタジエンの二重結合を水素添加した液状水素化1,2ポリブタジエングリコールを、ウレタン(メタ)アクリレート変成した液状水素化1,2ポリブタジエン(メタ)アクリレート。
In addition, the following compounds can also be used.
(1) Liquid polybutadiene urethane (meth)acrylate obtained by subjecting 2-hydroxyethyl (meth)acrylate to a urethane addition reaction with a hydroxyl group of liquid polybutadiene via 2,4-tolylene diisocyanate,
(2) Liquid polybutadiene acrylate obtained by esterifying 2-hydroxy acrylate with maleic polybutadiene to which maleic anhydride is added,
(3) Liquid polybutadiene (meth)acrylate obtained by an epoxy esterification reaction of a carboxyl group of polybutadiene and glycidyl (meth)acrylate,
(4) Liquid polybutadiene (meth)acrylate obtained by esterification reaction of epoxidized polybutadiene obtained by causing an epoxidizing agent to act on liquid polybutadiene, and (meth)acrylic acid,
(5) Liquid polybutadiene (meth)acrylate obtained by dechlorination reaction of liquid polybutadiene having a hydroxyl group and (meth)acrylic acid chloride, and
(6) Liquid hydrogenated 1,2 polybutadiene (meth)acrylate obtained by modifying urethane (meth)acrylate from liquid hydrogenated 1,2 polybutadiene glycol obtained by hydrogenating double bonds of liquid polybutadiene having hydroxyl groups at both ends of the molecule.

これらの市販品の例としては、NISSO PB TE−2000、NISSO PB TEA−1000、NISSO PB TE−3000、NISSO PB TEAI−1000(以上いずれも日本曹達社製)、MM−1000−80、MAC−1000−80(以上いずれも日本石油化学社製)、ポリベックACR−LC(日本ヒドラジン工業社製)、HYCAR VT VTR 2000×164(宇部興産社製)、Quinbeam101(日本ゼオン社製)、Chemlink5000(SARTOMER社製)、BAC−15(大阪有機化学工業社製)、BAC−45(大阪有機化学工業社製)、UAT−2000(共栄社化学社製)、エポリード PB−3600(ダイセル化学工業社製)、EY RESIN、BR−45UAS(ライトケミカル工業社製)などが挙げられる。 Examples of these commercially available products include NISSO PB TE-2000, NISSO PB TEA-1000, NISSO PB TE-3000, NISSO PB TEAI-1000 (all manufactured by Nippon Soda Co., Ltd.), MM-1000-80, MAC- 1000-80 (all manufactured by Nippon Petrochemical Co., Ltd.), Polybeck ACR-LC (manufactured by Nippon Hydrazine Industry Co., Ltd.), HYCAR VT VTR 2000×164 (manufactured by Ube Industries, Ltd.), Quinnbeam 101 (manufactured by Zeon Corporation), Chemlink 5000 (SARTOMER). BAC-15 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), BAC-45 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), UAT-2000 (manufactured by Kyoeisha Chemical Co., Ltd.), Epolide PB-3600 (manufactured by Daicel Chemical Co., Ltd.) EY RESIN, BR-45UAS (manufactured by Light Chemical Industry Co., Ltd.) and the like can be mentioned.

このような(メタ)アクリロイル基含有化合物のうち、特に、2−ヒドロキシ−3−フェノキシプロピルアクリレート、フェノキシエチルアクリレート、4−ヒドロキシブチルアクリレート、テトラヒドロフルフリルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−アクリロイロキシエチルフタル酸、脂肪族ウレタンアクリレートが好ましい。 Among such (meth)acryloyl group-containing compounds, 2-hydroxy-3-phenoxypropyl acrylate, phenoxyethyl acrylate, 4-hydroxybutyl acrylate, tetrahydrofurfuryl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl, among others. Acrylate, 2-acryloyloxyethyl phthalic acid, and aliphatic urethane acrylate are preferable.

これらエチレン性不飽和結合を有する化合物は、1種または2種以上混合して使用することができる。 These compounds having an ethylenically unsaturated bond may be used either individually or in combination of two or more.

以上説明したようなエチレン性不飽和結合を有する化合物は、導電性接着剤中に、溶剤を除く有機成分中のエチレン性不飽和結合当量が260〜1000となるように配合することが好ましい。より好ましくは260〜700、さらに好ましくは350〜700、特に好ましくは350〜550、もっとも好ましくは400〜500である。エチレン性不飽和結合当量を260以上とすることで、硬化の際に生じる硬化収縮が抑えられ、十分な接着強度を得ることができる。また、エチレン性不飽和結合当量を1000以下とすることで、十分な硬化性を得ることができる。ここで、エチレン性不飽和結合当量とは、グラム当量でエチレン性不飽和結合数あたりの質量である。エチレン性不飽和基が(メタ)アクリロイル基である場合は一般的に(メタ)アクリル当量とも呼ばれる。例えば、エチレン性不飽和基が(メタ)アクリロイル基である場合は、(メタ)アクリロイル基1個あたりの有機成分(溶剤を含む場合は溶剤を除く)の質量と定義される。すなわち、エチレン性不飽和結合当量は、有機成分(溶剤を含む場合は溶剤を除く)の質量合計を組成物中のエチレン性不飽和結合の数で除することにより得ることができる。 The compound having an ethylenically unsaturated bond as described above is preferably blended in the conductive adhesive so that the ethylenically unsaturated bond equivalent in the organic component excluding the solvent is 260 to 1000. It is more preferably 260 to 700, further preferably 350 to 700, particularly preferably 350 to 550, and most preferably 400 to 500. By setting the ethylenically unsaturated bond equivalent to 260 or more, curing shrinkage that occurs during curing can be suppressed, and sufficient adhesive strength can be obtained. Further, when the ethylenically unsaturated bond equivalent is 1000 or less, sufficient curability can be obtained. Here, the ethylenically unsaturated bond equivalent is a mass per number of ethylenically unsaturated bonds in gram equivalent. When the ethylenically unsaturated group is a (meth)acryloyl group, it is also generally called (meth)acrylic equivalent. For example, when the ethylenically unsaturated group is a (meth)acryloyl group, it is defined as the mass of the organic component (excluding the solvent when the solvent is contained) per one (meth)acryloyl group. That is, the ethylenically unsaturated bond equivalent can be obtained by dividing the total mass of the organic components (excluding the solvent when the solvent is included) by the number of ethylenically unsaturated bonds in the composition.

このようなエチレン性不飽和結合を有する化合物の重合開始剤として後述のパーオキサイドを用いることにより、反応が速やかに開始され、迅速な硬化が可能となり、接着強度が良好となる。 By using the below-mentioned peroxide as a polymerization initiator of the compound having such an ethylenically unsaturated bond, the reaction is started quickly, rapid curing becomes possible, and the adhesive strength becomes good.

エチレン性不飽和結合を有する化合物の配合量は、導電性接着剤の総質量に対して10〜90質量%、好ましくは30〜60質量%、より好ましくは40〜55質量%である。エチレン性不飽和結合を有する化合物の配合量を、導電性接着剤の総質量に対して10質量%以上とすることにより、十分な硬化性が得られ、接着強度も良好とされる。また、エチレン性不飽和結合を有する化合物の配合量を、導電性接着剤の総質量に対して90質量%以下とすることにより、硬化収縮が抑えられ接着強度も良好となる。 The compounding amount of the compound having an ethylenically unsaturated bond is 10 to 90% by mass, preferably 30 to 60% by mass, and more preferably 40 to 55% by mass based on the total mass of the conductive adhesive. By setting the compounding amount of the compound having an ethylenically unsaturated bond to 10% by mass or more with respect to the total mass of the conductive adhesive, sufficient curability is obtained and the adhesive strength is also made good. Further, when the compounding amount of the compound having an ethylenically unsaturated bond is 90% by mass or less with respect to the total mass of the conductive adhesive, curing shrinkage is suppressed and adhesive strength becomes good.

本発明の導電性接着剤は、熱硬化型の樹脂として前記エチレン性不飽和結合を有する化合物を含有する場合、前記化合物以外の有機バインダーをさらに含有することが好ましい。有機バインダーを添加することにより、熱硬化の際に生じる応力を緩和し、接着強度をさらに向上することができる。 When the conductive adhesive of the present invention contains the compound having an ethylenically unsaturated bond as a thermosetting resin, it is preferable that the conductive adhesive further contains an organic binder other than the compound. By adding the organic binder, the stress generated during thermosetting can be relaxed and the adhesive strength can be further improved.

有機バインダーとは有機樹脂成分であり、公知慣用の天然樹脂、合成樹脂を用いることができる。このような有機バインダーとしては、セルロース、およびロジン等の天然樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミド、アクリル樹脂、ポリエチレンテレフタレート、フッ素樹脂、シリコン樹脂、ポリエステル樹脂、アセタール樹脂、ブチラール樹脂などの合成樹脂を用いることができる。なかでもアクリル樹脂、ブチラール樹脂、飽和ポリエステル樹脂を用いることが好ましく、飽和ポリエステル樹脂がより好ましい。 The organic binder is an organic resin component, and a known and commonly used natural resin or synthetic resin can be used. Such organic binders include natural resins such as cellulose and rosin, polyethylene, polypropylene, polystyrene, polycarbonate, polyvinyl chloride, polyvinyl acetate, polyamide, acrylic resin, polyethylene terephthalate, fluororesin, silicone resin, polyester resin, Synthetic resins such as acetal resin and butyral resin can be used. Among them, acrylic resin, butyral resin, and saturated polyester resin are preferably used, and saturated polyester resin is more preferable.

アクリル樹脂の具体例としては、クラリティシリーズ(クラレ社製)のクラリティLA2330等が挙げられる。 Specific examples of the acrylic resin include Clarity LA2330 of Clarity series (manufactured by Kuraray Co., Ltd.) and the like.

ブチラール樹脂の具体例としては、積水化学エスレックシリーズ(積水化学工業社製)のエスレックBL−1、BL−1H、BL−2、BL−2H、BL−5、BL−10、BL−10、BL−S、BL−L等が挙げられる。 Specific examples of the butyral resin include S-REC BL-1, BL-1H, BL-2, BL-2H, BL-5, BL-10, BL-10 of Sekisui Chemical S-REC series (manufactured by Sekisui Chemical Co., Ltd.). BL-S, BL-L, etc. are mentioned.

飽和ポリエステル樹脂の具体例としては、東洋紡バイロンシリーズ(東洋紡績社製)のバイロン200、220、240、245、270、280、290、296、300、337、500、530、550、560、600、630、650、BX1001、GK110、130、140、150、180、190、250、330、590、640、680、780、810、880、890等が挙げられる。 Specific examples of the saturated polyester resin include Byron 200, 220, 240, 245, 270, 280, 290, 296, 300, 337, 500, 530, 550, 560, 600 of Toyobo Byron series (manufactured by Toyobo Co., Ltd.). 630, 650, BX1001, GK110, 130, 140, 150, 180, 190, 250, 330, 590, 640, 680, 780, 810, 880, 890 and the like.

有機バインダーは、室温(25℃)、大気圧において固形のものを用いるのが好ましい。固形の有機バインダーを用いることで導電性接着剤の硬化後の強度を維持しやすくなる。有機バインダーのTg(ガラス転移温度)は−20〜150℃、好ましくは0〜120℃、より好ましくは10〜70℃であることが好ましい。 The organic binder is preferably solid at room temperature (25° C.) and atmospheric pressure. By using a solid organic binder, it becomes easier to maintain the strength of the conductive adhesive after curing. The Tg (glass transition temperature) of the organic binder is preferably -20 to 150°C, preferably 0 to 120°C, more preferably 10 to 70°C.

有機バインダーの分子量は1,000〜100,000、好ましくは3,000〜80,000、より好ましくは5,000〜60,000であることが好ましい。分子量が1,000以上であれば硬化時にブリードアウトすることなく応力緩和することができ、100,000以下であればエチレン性不飽和結合を有する化合物と容易に相溶し十分な流動性を得ることができる。 The molecular weight of the organic binder is preferably 1,000 to 100,000, preferably 3,000 to 80,000, and more preferably 5,000 to 60,000. If the molecular weight is 1,000 or more, the stress can be relaxed without bleeding out during curing, and if it is 100,000 or less, it is easily compatible with a compound having an ethylenically unsaturated bond to obtain sufficient fluidity. be able to.

有機バインダーの配合量は、導電性接着剤の総質量に対して1〜90質量%、好ましくは3〜60質量%、より好ましくは5〜60質量%、さらに好ましくは5〜45質量%、さらに好ましくは10〜45質量%、特に好ましくは20〜40質量%である。 The compounding amount of the organic binder is 1 to 90% by mass, preferably 3 to 60% by mass, more preferably 5 to 60% by mass, further preferably 5 to 45% by mass, and further, the total mass of the conductive adhesive. It is preferably 10 to 45% by mass, particularly preferably 20 to 40% by mass.

本発明の導電性接着剤は、熱硬化型の樹脂としてエチレン性不飽和結合を有する化合物を含有する場合、重合開始剤としてパーオキサイドを含有することが好ましい。パーオキサイドにより、エチレン性不飽和結合を有する化合物のラジカル反応が開始される。その結果、エチレン性不飽和結合を有する化合物の硬化が低温にて短時間で行われ、電子部品における部材同士の接着力を向上することができる。 When the conductive adhesive of the present invention contains a compound having an ethylenically unsaturated bond as a thermosetting resin, it preferably contains peroxide as a polymerization initiator. The peroxide initiates a radical reaction of the compound having an ethylenically unsaturated bond. As a result, the compound having an ethylenically unsaturated bond is cured at a low temperature in a short time, and the adhesive force between the members in the electronic component can be improved.

前記パーオキサイドとしては液状および粉末のパーオキサイドが含まれ、具体例としては、以下の材料を挙げることができる。 The peroxide includes liquid and powdered peroxides, and specific examples thereof include the following materials.

メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、およびアセチルアセトンパーオキサイド等のケトンパーオキサイド、1,1−ジ(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(t−ブチルパーオキシ)−2−メチルシクロヘキサン、および1,1−ジ(t−ブチルパーオキシ)シクロヘキサン等のパーオキシケタール、2,2−ジ(t−ブチルパーオキシ)ブタン、n−ブチル4,4−ジ−(t−ブチルパーオキシ)バレレート、および2,2−ジ(4,4−ジ−(t−ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール、p−メンタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3−テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、およびt−ブチルヒドロパーオキサイド等のハイドロパーオキサイド、ジ(2−t−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド、ジ−t−ブチルパーオキサイド、および2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3等のジアルキルパーオキサイド、ジイソブチルパーオキサイド、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、ジコハク酸パーオキサイド、ジ−(3−メチルベンゾイル)パーオキサイド、ベンゾイル(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、およびジ−(4−メチルベンゾイル)パーオキサイド等のジアシルパーオキサイド、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート等のパーオキシジカーボネート、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパ−オキシネオデカノエート、t−ブチルパ−オキシネオヘプタノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3−メチルベンゾエート、t−ブチルパーオキシベンゾエート、およびt−ブチルパーオキシアリルモノカーボネート等のパーオキシエステル、および3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン。 Ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and acetylacetone peroxide, 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxide) Peroxyketals such as (oxy)cyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, and 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t- Butylperoxy)butane, n-butyl 4,4-di-(t-butylperoxy)valerate, and 2,2-di(4,4-di-(t-butylperoxy)cyclohexyl)propane Hydroperoxides such as oxyketal, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutylhydroperoxide, cumene hydroperoxide, and t-butylhydroperoxide; (2-t-butylperoxyisopropyl)benzene, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-hexylper Dialkyl peroxides such as oxide, di-t-butylperoxide, and 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, diisobutylperoxide, di(3,5,5- Trimethylhexanoyl) peroxide, dilauroyl peroxide, disuccinic acid peroxide, di-(3-methylbenzoyl) peroxide, benzoyl(3-methylbenzoyl) peroxide, dibenzoyl peroxide, and di-(4-methyl Benzoyl)peroxide, etc., diacyl peroxide, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di(4-t-butylcyclohexyl)peroxydicarbonate, di(2-ethylhexyl)peroxydicarbonate , Peroxydicarbonate such as di-sec-butylperoxydicarbonate, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, t-hexylperoxyneodeca Noate, t-butylperoxyneodecanoate, t-butylperoxyneopeptanoate, t-hexylperoxypyvale , T-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy) ) Hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylper Oxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexylmonocarbonate, t-hexylperoxybenzoate, 2 ,5-Dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxyacetate, t-butylperoxy-3-methylbenzoate, t-butylperoxybenzoate, and t-butylperoxyallylmono Peroxyesters such as carbonate, and 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone.

このようなパーオキサイドのなかでも、液状のものを用いることが好ましい。液状のパーオキサイドを用いることにより、保存安定性にも優れた導電性接着剤を得ることができる。ここで、液状のパーオキサイドとは、室温(25℃)、大気圧において液状のパーオキサイドをいう。 Of these peroxides, liquid ones are preferably used. By using liquid peroxide, a conductive adhesive having excellent storage stability can be obtained. Here, the liquid peroxide means liquid peroxide at room temperature (25° C.) and atmospheric pressure.

通常、熱硬化性の樹脂組成物では、粉体の硬化剤を配合し、潜在性硬化剤としての機能を付与しているが、前記エチレン性不飽和結合を有する化合物を含有する場合には、意外にも、液状のパーオキサイドを用いることにより、導電性接着剤の保存安定性が向上する。その結果、液状のパーオキサイドによれば、導電性接着剤中に良好に分散して、エチレン性不飽和結合を有する化合物に対して良好に作用し硬化を促進する。 Usually, in a thermosetting resin composition, a powder curing agent is blended to impart a function as a latent curing agent, but when it contains a compound having the ethylenically unsaturated bond, Unexpectedly, the use of liquid peroxide improves the storage stability of the conductive adhesive. As a result, the liquid peroxide disperses satisfactorily in the conductive adhesive, acts well on the compound having an ethylenically unsaturated bond, and accelerates curing.

液状のパーオキサイドとしては、例えば、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、およびアセチルアセトンパーオキサイド等のケトンパーオキサイド、1,1−ジ(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(t−ブチルパーオキシ)−2−メチルシクロヘキサン、および1,1−ジ(t−ブチルパーオキシ)シクロヘキサン等のパーオキシケタール、2,2−ジ(t−ブチルパーオキシ)ブタン、n−ブチル4,4−ジ−(t−ブチルパーオキシ)バレレート、および2,2−ジ(4,4−ジ−(t−ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール、p−メンタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3−テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、およびt−ブチルヒドロパーオキサイド等のハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド、ジ−t−ブチルパーオキサイド、および2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3等のジアルキルパーオキサイド、ジイソブチルパーオキサイド、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジ−(3−メチルベンゾイル)パーオキサイド、およびベンゾイル(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド等のジアシルパーオキサイド、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート等のパーオキシジカーボネート、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパ−オキシネオデカノエート、t−ブチルパ−オキシネオヘプタノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3−メチルベンゾエート、t−ブチルパーオキシベンゾエート、およびt−ブチルパーオキシアリルモノカーボネート等のパーオキシエステル、および3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノンを挙げることができる。 Examples of liquid peroxides include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and acetylacetone peroxide, 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1 Peroxyketals such as 1,1-di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, and 1,1-di(t-butylperoxy)cyclohexane 2,2-di(t-butylperoxy)butane, n-butyl 4,4-di-(t-butylperoxy)valerate, and 2,2-di(4,4-di-(t-butyl) Peroxyketals such as peroxy)cyclohexyl)propane, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutylhydroperoxide, cumene hydroperoxide, and t-butylhydro. Hydroperoxides such as peroxides, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-hexyl peroxide, di-t-butylperoxide , And dialkyl peroxides such as 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, diisobutyl peroxide, di(3,5,5-trimethylhexanoyl) peroxide, di- (3-Methylbenzoyl)peroxide, diacyl peroxide such as benzoyl(3-methylbenzoyl)peroxide and dibenzoylperoxide, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di(2- Ethylhexyl) peroxydicarbonate, peroxydicarbonate such as di-sec-butylperoxydicarbonate, cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, t -Hexyl peroxy neodecanoate, t-butyl peroxyne neodecanoate, t-butyl peroxy neo heptanoate, t-hexyl peroxypivalate, t-butyl peroxypivalate, 1,1,3 ,3-Tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane, t-hexylpa -Oxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t- Butyl peroxy laurate, t-butyl peroxy isopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxy acetate, t-butyl peroxy-3-methyl Mention may be made of peroxyesters such as benzoate, t-butylperoxybenzoate and t-butylperoxyallyl monocarbonate, and 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone. .

なかでも、本発明において好ましいパーオキサイドとしては、1,1−ジ(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレート等のパーオキシケタール、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等のハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)3−ヘキシン等のジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシカーボネート、および1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシ−3−メチルベンゾエート、およびt−ブチルパーオキシベンゾエート等のパーオキシエステルが挙げられる。また、上記の特に好ましいパーオキサイドのうち、パーオキシエステルを用いることにより優れた密着性が得られる。なかでも下記構造を有するアルキルパーオキシエステルを用いることにより、極めて優れた接着強度が得られる。

Figure 0006710120
(式中、RおよびR´はそれぞれ独立にアルキル基を表す。) Among them, preferred peroxides in the present invention are 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy)cyclohexane, n- Peroxyketals such as butyl-4,4-di-(t-butylperoxy)valerate, hydroperoxides such as 1,1,3,3-tetramethylbutylhydroperoxide, 2,5-dimethyl-2, 5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-hexyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(t-butyl) Peroxy)3-hexyne and other dialkyl peroxides, diacyl peroxides, peroxycarbonates, and 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-hexylperoxy-2- Ethyl hexanoate, t-butyl peroxy-2-ethyl hexanoate, t-hexyl peroxy isopropyl monocarbonate, t-butyl peroxy-3,3,5-trimethyl hexanoate, t-butyl peroxy laurate And peroxyesters such as t-butylperoxy-2-ethylhexylmonocarbonate, t-hexylperoxybenzoate, t-butylperoxy-3-methylbenzoate, and t-butylperoxybenzoate. Further, among the above particularly preferable peroxides, excellent adhesion can be obtained by using peroxyester. Above all, by using an alkyl peroxy ester having the following structure, extremely excellent adhesive strength can be obtained.
Figure 0006710120
(In the formula, R and R′ each independently represent an alkyl group.)

以上説明したようなパーオキサイドは、1分間半減期温度が80〜160℃、好ましくは85〜145℃、より好ましくは90〜135℃のものを用いることが好ましい。1分間半減期温度を80℃以上とすることにより、室温での使用において十分な可使時間を確保することができる。また、1分間半減期温度を160℃以下とすることにより、十分な硬化性を確保することができる。 As the peroxide as described above, one having a one-minute half-life temperature of 80 to 160° C., preferably 85 to 145° C., more preferably 90 to 135° C. is preferably used. By setting the one-minute half-life temperature to 80° C. or higher, it is possible to secure a sufficient pot life in use at room temperature. Further, by setting the one-minute half-life temperature to 160° C. or lower, sufficient curability can be secured.

パーオキサイドは、単独でも使用されるが、複数種類を組み合わせて使用することもできる。 The peroxide may be used alone or in combination of two or more kinds.

このようなパーオキサイドの配合量は、エチレン性不飽和結合を有する化合物100質量部に対して0.1〜20質量部、好ましくは3〜15質量部、より好ましくは5〜10質量部の範囲で適宜選択される。パーオキサイドの配合量をエチレン性不飽和結合を有する化合物100質量部に対して0.1質量部以上とすることにより、十分な硬化性を確保することができる。パーオキサイドの配合量をエチレン性不飽和結合を有する化合物100質量部に対して20質量部以下とすることにより、十分な密着性を確保することができる。 The amount of such a peroxide is in the range of 0.1 to 20 parts by mass, preferably 3 to 15 parts by mass, and more preferably 5 to 10 parts by mass with respect to 100 parts by mass of the compound having an ethylenically unsaturated bond. Is selected appropriately. Sufficient curability can be ensured by adjusting the amount of the peroxide to be 0.1 part by mass or more based on 100 parts by mass of the compound having an ethylenically unsaturated bond. Sufficient adhesion can be ensured by adjusting the amount of the peroxide to be 20 parts by mass or less with respect to 100 parts by mass of the compound having an ethylenically unsaturated bond.

[熱溶融性の導電粒子]
本発明の導電性接着剤は、熱溶融性の導電粒子を含有する。ここで、導電粒子とは体積固有抵抗が1×10Ω・cm以下である物質の粒子を意味する。
[Heat-melting conductive particles]
The conductive adhesive of the present invention contains heat-meltable conductive particles. Here, the conductive particles mean particles of a substance having a volume resistivity of 1×10 6 Ω·cm or less.

導電粒子が、電極間に挟まれることにより、部材同士が電気的に接続される。 By sandwiching the conductive particles between the electrodes, the members are electrically connected to each other.

前記導電粒子としては、熱溶融するものであれば特に限定されるものではない。特に170℃以下、2MPa以下での熱圧着で溶融するような導電粒子を用いることが好ましく、なかでも低融点はんだ粒子がより好ましい。 The conductive particles are not particularly limited as long as they can be melted by heat. In particular, it is preferable to use conductive particles that melt by thermocompression bonding at 170° C. or lower and 2 MPa or lower, and among them, low melting point solder particles are more preferable.

ここで、低融点はんだ粒子とは、融点が200℃以下、好ましくは170℃以下、より好ましくは150℃以下のはんだ粒子を意味する。 Here, the low melting point solder particles mean solder particles having a melting point of 200° C. or lower, preferably 170° C. or lower, and more preferably 150° C. or lower.

また、低融点はんだ粒子としては鉛を含まないはんだ粒子が好ましく、この鉛を含まないはんだ粒子とは、JIS Z 3282(はんだ−化学成分及び形状)で規定されている、鉛含有率0.10質量%以下のはんだ粒子を意味する。 The low melting point solder particles are preferably lead-free solder particles, and the lead-free solder particles are defined by JIS Z 3282 (solder-chemical composition and shape) and have a lead content of 0.10. It means solder particles of not more than mass %.

鉛を含まないはんだ粒子としては、錫、ビスマス、インジウム、銅、銀、アンチモンから選択される1種類以上の金属から構成される低融点はんだが好適に用いられる。特に、コスト、取り扱い性、接合強度のバランスの観点から、錫(Sn)とビスマス(Bi)との合金が好ましく用いられる。 As the lead-free solder particles, a low melting point solder composed of one or more kinds of metals selected from tin, bismuth, indium, copper, silver and antimony is preferably used. In particular, an alloy of tin (Sn) and bismuth (Bi) is preferably used from the viewpoint of the balance of cost, handleability, and bonding strength.

このようなはんだ粒子中のBiの含有量は、15〜65質量%、好ましくは35〜65質量%、より好ましくは55〜60質量%の範囲で適宜選択される。 The content of Bi in such solder particles is appropriately selected within a range of 15 to 65% by mass, preferably 35 to 65% by mass, and more preferably 55 to 60% by mass.

Biの含有量を15質量%以上とすることにより、その合金は約160℃で溶融を開始する。さらにBiの含有量を増加させると溶融開始温度は低下していき、20質量%以上で溶融開始温度が139℃となり、58質量%で共晶組成となる。Bi含有量を15〜65質量%の範囲とすることにより、低融点化効果が十分に得られる結果、低温であっても十分な導通接続が得られる。 When the Bi content is 15% by mass or more, the alloy starts melting at about 160°C. When the content of Bi is further increased, the melting start temperature is lowered, and the melting start temperature becomes 139° C. at 20 mass% or more and the eutectic composition becomes at 58 mass %. By setting the Bi content in the range of 15 to 65 mass %, the effect of lowering the melting point can be sufficiently obtained, and as a result, sufficient conductive connection can be obtained even at a low temperature.

このような導電粒子は、球状であることが好ましく、レーザー回折式粒度分布測定による平均粒径D50が0.1〜20μm、好ましくは3〜17μm、より好ましくは7〜15μmであることが好ましい。導電粒子の平均粒径D50を20μm以下とすることにより、微細な箇所であっても十分な導電接続が可能となる。また、導電粒子の平均粒径D50を0.1μm以上とすることにより、導電性接着剤中での導電粒子の凝集を抑制することができる。なお、本発明において、球状の導電粒子とは、導電粒子の形状が確認できる倍率において、球状粉の長径と短径の比が1〜1.5のものを90%以上含むものをいう。 Such conductive particles are preferably spherical and have an average particle diameter D50 measured by a laser diffraction type particle size distribution of 0.1 to 20 μm, preferably 3 to 17 μm, and more preferably 7 to 15 μm. By setting the average particle diameter D50 of the conductive particles to 20 μm or less, sufficient conductive connection can be achieved even at a fine portion. Further, by setting the average particle diameter D50 of the conductive particles to 0.1 μm or more, the aggregation of the conductive particles in the conductive adhesive can be suppressed. In the present invention, the spherical conductive particles mean particles containing 90% or more of spherical powders having a ratio of major axis to minor axis of 1 to 1.5 at a magnification at which the shape of the conductive particles can be confirmed.

導電粒子の配合量は、導電性接着剤中に固形分換算で0.01〜4.0体積%である。上記のとおり、導電性と耐電性を両立することができる。好ましくは、0.01〜3.5体積%であり、より好ましくは0.1〜3.0体積%、さらに好ましくは0.1〜2.5体積%であり、特に好ましくは0.1〜2.0体積%である。 The content of the conductive particles is 0.01 to 4.0% by volume in terms of solid content in the conductive adhesive. As described above, it is possible to achieve both conductivity and electric resistance. It is preferably 0.01 to 3.5% by volume, more preferably 0.1 to 3.0% by volume, still more preferably 0.1 to 2.5% by volume, and particularly preferably 0.1 to 3.5% by volume. It is 2.0% by volume.

本発明の導電性接着剤は、チクソトロピー性付与剤を配合することが好ましい。チクソトロピー性付与剤を配合することにより、比重の高い導電粒子の沈降を防止することができる。 The conductive adhesive of the present invention preferably contains a thixotropic agent. By incorporating the thixotropy imparting agent, it is possible to prevent the conductive particles having a high specific gravity from settling.

チクソトロピー性付与剤としては、公知慣用のものを使用でき、例えば、ベントナイト、ワックス、ステアリン酸金属塩、変性ウレア、シリカなどを用いることができる。これらの中でもシリカが好ましい。前記シリカはアモルファスシリカであることが好ましく、一次粒子の平均粒子径が50nm以下のアモルファスシリカであることがさらに好ましく、表面を疎水化処理した疎水性アモルファスシリカであることが特に好ましい。 As the thixotropy-imparting agent, a conventionally known one can be used, and for example, bentonite, wax, stearic acid metal salt, modified urea, silica and the like can be used. Of these, silica is preferable. The silica is preferably amorphous silica, more preferably amorphous silica having an average primary particle diameter of 50 nm or less, and particularly preferably hydrophobic amorphous silica having a surface subjected to a hydrophobic treatment.

このようなチクソトロピー性付与剤の配合量は、接着剤用の樹脂成分を含む樹脂組成物の総質量に対して0.01〜20質量%、好ましくは0.1〜10質量%、より好ましくは1〜5質量%の範囲で適宜選択される。配合量を0.01質量%以上とすることで比重の高い導電粒子の沈降を防止することができ、20質量%以下とすることで十分な密着性を確保することができる。 The content of such a thixotropy-imparting agent is 0.01 to 20% by mass, preferably 0.1 to 10% by mass, more preferably 100% by mass based on the total mass of the resin composition containing a resin component for an adhesive. It is appropriately selected within the range of 1 to 5% by mass. The content of 0.01% by mass or more can prevent the conductive particles having a high specific gravity from settling, and the content of 20% by mass or less can ensure sufficient adhesion.

本発明の導電性接着剤は、湿潤分散剤を配合することが好ましい。湿潤分散剤を配合することにより、導電粉の分散が良好となり凝集による粗粒の発生を防止することができる。 The conductive adhesive of the present invention preferably contains a wetting and dispersing agent. By blending the wetting and dispersing agent, the conductive powder is well dispersed and the generation of coarse particles due to aggregation can be prevented.

湿潤分散剤としては、公知慣用のものを使用でき、例えば、脂肪族カルボン酸、脂肪族カルボン酸塩、高級アルコール硫酸エステル、アルキルスルホン酸、リン酸エステル、ポリエーテル、ポリエステルカルボン酸やこれらの塩類を用いることができる。これらの中でもリン酸エステルが好ましい。 As the wetting and dispersing agent, known and commonly used ones can be used, for example, aliphatic carboxylic acid, aliphatic carboxylic acid salt, higher alcohol sulfuric acid ester, alkyl sulfonic acid, phosphoric acid ester, polyether, polyester carboxylic acid and salts thereof. Can be used. Among these, phosphoric acid ester is preferable.

このような湿潤分散剤の配合量は、接着剤用の樹脂成分を含む樹脂組成物の総質量に対して0.01〜10質量%、好ましくは0.05〜5質量%、より好ましくは0.1〜3質量%の範囲で適宜選択される。配合量を0.01質量%以上とすることで粗粒の発生を防止することができ、配合量を10質量%以下とすることで十分な絶縁性を確保することができる。 The blending amount of such a wetting and dispersing agent is 0.01 to 10% by mass, preferably 0.05 to 5% by mass, more preferably 0, with respect to the total mass of the resin composition containing the resin component for an adhesive. It is appropriately selected within a range of 0.1 to 3% by mass. The content of 0.01% by mass or more can prevent the generation of coarse particles, and the content of 10% by mass or less can ensure sufficient insulation.

本発明の導電性接着剤は、消泡剤を配合することが好ましい。消泡剤を配合することにより、気泡の発生を抑制することが可能となりボイドの発生を防止することができる。 The electrically conductive adhesive of the present invention preferably contains an antifoaming agent. By adding an antifoaming agent, it is possible to suppress the generation of bubbles and prevent the generation of voids.

消泡剤としては、公知慣用のものを使用でき、例えば、シリコン樹脂、変性シリコン樹脂、有機高分子ポリマー、有機オリゴマーなど用いることができる。これらの中でも有機高分子ポリマーや有機オリゴマーが好ましく、ビニルエーテルの重合物がより好ましい。 As the defoaming agent, known and conventional ones can be used, and for example, a silicone resin, a modified silicone resin, an organic polymer, an organic oligomer or the like can be used. Among these, organic high molecular polymers and organic oligomers are preferable, and vinyl ether polymers are more preferable.

このような消泡剤の配合量は、接着剤用の樹脂成分を含む樹脂組成物の総質量に対して0.01〜10質量%、好ましくは0.1〜5質量%、より好ましくは0.5〜3質量%の範囲で適宜選択される。配合量を0.01質量%以上とすることでボイドの発生を防止することができ、配合量を10質量%以下とすることで十分な密着性を確保することができる。 The content of such an antifoaming agent is 0.01 to 10% by mass, preferably 0.1 to 5% by mass, more preferably 0, with respect to the total mass of the resin composition containing the resin component for an adhesive. It is appropriately selected within the range of 0.5 to 3 mass %. Void generation can be prevented by setting the blending amount to 0.01% by mass or more, and sufficient adhesion can be secured by setting the blending amount to 10% by mass or less.

接着剤用の樹脂成分を含む樹脂組成物は、必要に応じてレベリング剤などの公知慣用の添加剤を配合することができる。 The resin composition containing the resin component for the adhesive may be mixed with known and commonly used additives such as a leveling agent, if necessary.

本発明の導電性接着剤は、溶剤を含まないことが好ましい。ここで、「溶剤を用いない」とは、接着剤用の樹脂成分を含む樹脂組成物が実質的に溶剤を含まず、接着剤用の樹脂成分を含む樹脂組成物の、150℃、30分加熱による質量の減少が、加熱前の質量と比較して、3質量%以下であることをいう。 The conductive adhesive of the present invention preferably contains no solvent. Here, “without using a solvent” means that a resin composition containing a resin component for an adhesive does not substantially contain a solvent, and a resin composition containing a resin component for an adhesive has a temperature of 150° C. for 30 minutes. It means that the decrease in mass due to heating is 3% by mass or less as compared with the mass before heating.

本発明の導電性接着剤は、電子部品における部材同士の電気的接続に用いることができる。例えば、プリント配線板と電子素子との電気的接続やプリント配線板間の電気的接続に用いることができ、なかでも、リジッドプリント配線板とフレキシブルプリント配線板の電気的接続に用いることが好ましい。また、スマートフォン、タブレット端末、ウェアラブル端末における電気的接続にも好適に用いることができる。さらに高周波特性が良好であるため、高周波特性が求められる電子機器における電気的接続にも好適に用いることができる。 The conductive adhesive of the present invention can be used for electrically connecting members in an electronic component. For example, it can be used for electrical connection between a printed wiring board and an electronic element or electrical connection between printed wiring boards, and above all, it is preferably used for electrical connection between a rigid printed wiring board and a flexible printed wiring board. Further, it can be suitably used for electrical connection in smartphones, tablet terminals, and wearable terminals. Further, since the high frequency characteristic is good, it can be suitably used for electrical connection in an electronic device that requires high frequency characteristics.

本発明に係る導電性接着剤の塗布方法は特に限定されず、例えば、本発明の導電性接着剤は、プリント配線板等における接続部材の電気的接続箇所に、スクリーンメッシュやメタルマスクによる塗布、あるいはディスペンサーなどの塗布装置により塗布することができる。 The method of applying the conductive adhesive according to the present invention is not particularly limited, and for example, the conductive adhesive of the present invention is applied to the electrically connecting portion of the connecting member in the printed wiring board or the like with a screen mesh or a metal mask, Alternatively, it can be applied by an application device such as a dispenser.

接続箇所に導電性接着剤が十分に供給されたことを確認した後、被接続部材(部品)を接続部材(基板)の接続箇所に載せ、所定温度、所定圧力での熱圧着を行うことにより硬化する。これにより、接続部材(基板)と被接続部材(部品)とが電気的に接続することができる。 After confirming that the conductive adhesive has been sufficiently supplied to the connection point, place the member to be connected (component) on the connection point of the connection member (board) and perform thermocompression bonding at a predetermined temperature and pressure. Harden. As a result, the connecting member (substrate) and the connected member (component) can be electrically connected.

熱圧着時の熱圧着温度は100〜240℃、好ましくは120〜200℃、より好ましくは140〜160℃とし、熱圧着圧力は0.05〜2.0MPa、好ましくは0.1〜1.5MPa、より好ましくは0.5〜1.0MPaとし、熱圧着時間は1〜60秒、好ましくは1〜20秒、より好ましくは1〜9秒で熱圧着される。100℃以上の温度での処理によると、熱反応が良好に進行し、240℃以下の温度での処理を行うことにより、接着対象の電子部品等が加熱による損傷を受けずに本来の性能を保持する。また、圧力を0.05MPa以上とすることにより、電子部品間に十分な接合が形成され、導電性も十分となる。また、熱圧着圧力を小さくすることにより、電子部品への過剰な負荷の印加による損傷が回避される。また、熱圧着時間は、短時間とすることで電子部品への熱による損傷が回避される。熱圧着後の電気的接続箇所の膜厚は特に限定されないが、10μm以下、好ましくは0.01〜5μm、より好ましくは0.01〜3μm、特に好ましくは0.01〜1μmになるように熱圧着すればよい。 The thermocompression bonding temperature is 100 to 240° C., preferably 120 to 200° C., more preferably 140 to 160° C., and the thermocompression bonding pressure is 0.05 to 2.0 MPa, preferably 0.1 to 1.5 MPa. More preferably 0.5 to 1.0 MPa, and thermocompression bonding time is 1 to 60 seconds, preferably 1 to 20 seconds, more preferably 1 to 9 seconds. When the treatment is performed at a temperature of 100° C. or higher, the thermal reaction proceeds well, and by performing the treatment at a temperature of 240° C. or lower, the electronic components to be bonded are not damaged by heating and the original performance is maintained. Hold. Further, by setting the pressure to 0.05 MPa or more, sufficient bonding is formed between the electronic components and the conductivity is also sufficient. Further, by reducing the thermocompression bonding pressure, damage due to application of an excessive load to the electronic component can be avoided. Further, by making the thermocompression bonding time short, damage to electronic components due to heat can be avoided. The thickness of the electrically connected portion after thermocompression bonding is not particularly limited, but the thickness is 10 μm or less, preferably 0.01 to 5 μm, more preferably 0.01 to 3 μm, and particularly preferably 0.01 to 1 μm. Just crimp.

本発明の導電性接着剤によれば、導電粒子を0.01〜4.0体積%としたことによって、電極に挟まれる導電粒子の数が少なくなり、導電粒子にかかる圧力が増大するため、低温かつ低圧力、具体的には170℃以下さらには150℃以下でかつ2.0MPa以下、1.5MPa以下さらには1.0MPa以下の熱圧着でも部材同士を異方導電接着することができる。その結果、150℃、0.8MPaという、かなりの低温かつ低圧力でも容易に異方導電接着することも可能である。 According to the conductive adhesive of the present invention, by setting the conductive particles to 0.01 to 4.0% by volume, the number of conductive particles sandwiched between the electrodes is reduced, and the pressure applied to the conductive particles is increased. The members can also be anisotropically conductively bonded to each other by thermocompression bonding at a low temperature and a low pressure, specifically 170° C. or lower, further 150° C. or lower and 2.0 MPa or lower, 1.5 MPa or lower, further 1.0 MPa or lower. As a result, anisotropic conductive adhesion can be easily performed even at a considerably low temperature of 150° C. and 0.8 MPa and a low pressure.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。また、以下において特に断りのない限り、「部」、「%」は質量基準であるものとする。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Further, in the following, "part" and "%" are based on mass unless otherwise specified.

(実施例1〜4および比較例1、2)
(導電性接着剤の調製)
表1に示す配合割合(質量部)にて各成分を配合撹拌し、実施例1〜4および比較例1、2の導電性接着剤を調製した。
(Examples 1 to 4 and Comparative Examples 1 and 2)
(Preparation of conductive adhesive)
Each component was mixed and stirred at the mixing ratio (parts by mass) shown in Table 1 to prepare the conductive adhesives of Examples 1 to 4 and Comparative Examples 1 and 2.

(導通抵抗の評価)
試験片の作製
上記にて調製した実施例1〜4および比較例1、2の導電性接着剤を、リジッド基板(基材:FR−4、電極幅:100μm、電極長さ:6mm、ピッチ幅:0.2mm、コの字型電極数70、直線型電極1、フラッシュAu処理)上に、メタルマスク(マスク厚:80μm、開口:15mm×1mm)を介してスクレイパーにより塗布した。次に、硬化性組成物を塗布した状態のリジッド基板に対し、フレキシブル基板(幅:16mm、基材:ポリイミド、電極幅:100μm、電極長さ:6mm、ピッチ幅:0.2mm、コの字型電極数70、直線型電極数1、フラッシュAu処理)を載置した。この載置に際しては、リジッド基板の電極とフレキシブル基板の電極の位置をデイジーチェーンが形成されるように合わせ、双方の電極の重なり合う長さが3.5mmとなるようにした。このようにして載置した基板同士の接合面に対し、0.79MPa(ツール:幅3mm 長さ18mm、荷重:42.7N)、150℃、6秒で熱圧着を行い、70個の電気的接続箇所を有するデイジーチェーン回路試験片を作製した。
(Evaluation of conduction resistance)
Preparation of Test Pieces The conductive adhesives of Examples 1 to 4 and Comparative Examples 1 and 2 prepared above were prepared using a rigid substrate (base material: FR-4, electrode width: 100 μm, electrode length: 6 mm, pitch width). : 0.2 mm, U-shaped electrode number 70, linear electrode 1, flash Au treatment), and applied with a scraper through a metal mask (mask thickness: 80 μm, opening: 15 mm×1 mm). Next, a flexible substrate (width: 16 mm, base material: polyimide, electrode width: 100 μm, electrode length: 6 mm, pitch width: 0.2 mm, U-shaped) was applied to the rigid substrate coated with the curable composition. 70 mold electrodes, 1 linear electrode, and flash Au treatment) were mounted. During this placement, the positions of the electrodes on the rigid substrate and the electrodes on the flexible substrate were aligned so that a daisy chain was formed, and the overlapping length of both electrodes was 3.5 mm. With respect to the joint surface between the substrates thus mounted, thermocompression bonding was performed at 0.79 MPa (tool: width 3 mm, length 18 mm, load: 42.7 N) at 150° C. for 6 seconds, and 70 electrical pieces were electrically connected. A daisy chain circuit test piece having connection points was produced.

導通抵抗の測定
上記方法によって得られた試験片の抵抗値をテスター(日置電機社製ミリオームハイテスタ3540)を用いて測定した。
Measurement of Conduction Resistance The resistance value of the test piece obtained by the above method was measured using a tester (Milliohm HiTester 3540 manufactured by Hioki Electric Co., Ltd.).

(耐電圧の評価)
試験片の作製
上記にて調製した実施例1〜4および比較例1、2の導電性接着剤を、リジッド基板(基材:FR−4、電極幅:100μm、電極長さ:6mm、ピッチ幅:0.2mm、櫛型電極数71、フラッシュAu処理)上に、メタルマスク(マスク厚:80μm、開口:15mm×1mm)を介してスクレイパーにより塗布した。次に、導電性接着剤を塗布した状態のリジッド基板に対し、フレキシブル基板(幅:16mm、基材:ポリイミド、電極幅:100μm、電極長さ:6mm、ピッチ幅:0.2mm、櫛型電極数71、フラッシュAu処理)を載置した。この載置に際しては、リジッド基板の電極とフレキシブル基板の電極の位置を耐電圧が測定できるように合わせ、双方の電極の重なり合う長さが3.5mmとなるようにした。このようにして載置した基板同士の接合面に対し、0.79MPa(ツール:幅3mm 長さ18mm、荷重:42.7N)、150℃、6秒で熱圧着を行い、試験片を作製した。
(Evaluation of withstand voltage)
Preparation of Test Pieces The conductive adhesives of Examples 1 to 4 and Comparative Examples 1 and 2 prepared above were prepared using a rigid substrate (base material: FR-4, electrode width: 100 μm, electrode length: 6 mm, pitch width). : 0.2 mm, number of comb-shaped electrodes 71, flash Au treatment), was applied by a scraper through a metal mask (mask thickness: 80 μm, opening: 15 mm×1 mm). Next, a flexible substrate (width: 16 mm, base material: polyimide, electrode width: 100 μm, electrode length: 6 mm, pitch width: 0.2 mm, comb-shaped electrode) was applied to the rigid substrate with the conductive adhesive applied. (Number 71, flash Au treatment) was placed. In this placement, the positions of the electrodes on the rigid substrate and the electrodes on the flexible substrate were aligned so that the withstand voltage could be measured, and the overlapping length of both electrodes was 3.5 mm. The bonded surfaces of the substrates thus mounted were thermocompression bonded at 0.79 MPa (tool: width 3 mm, length 18 mm, load: 42.7 N) at 150° C. for 6 seconds to prepare a test piece. ..

耐電圧の測定
上記方法によって得られた試験片の耐電圧をテスター(アドバンテスト社製TR8601 HIGH MEGOHM METER)を用いて測定した。
Measurement of withstand voltage The withstand voltage of the test piece obtained by the above method was measured using a tester (TR8601 HIGH MEGOHM METER manufactured by Advantest Corporation).

(密着強度の評価)
試験片の作製
上記にて調製した実施例1〜4および比較例1、2の導電性接着剤を、リジッド基板(基材:FR−4、電極幅:100μm、電極長さ:6mm、ピッチ幅:0.2mm、コの字型電極数70、直線型電極1、フラッシュAu処理)上に、メタルマスク(マスク厚:80μm、開口:15mm×1mm)を介してスクレイパーにより塗布した。次に、導電性接着剤を塗布した状態のリジッド基板に対し、フレキシブル基板(幅:16mm、基材:ポリイミド、電極幅:100μm、電極長さ:6mm、ピッチ幅:0.2mm、コの字型電極数70、直線型電極数1、フラッシュAu処理)を載置した。この載置に際しては、リジッド基板の電極とフレキシブル基板の電極の位置をデイジーチェーンが形成されるように合わせ、双方の電極の重なり合う長さが3.5mmとなるようにした。このようにして載置した基板同士の接合面に対し、0.79MPa(ツール:幅3mm 長さ18mm、荷重:42.7N)、150℃、6秒で熱圧着を行い、70個の電気的接続箇所を有するデイジーチェーン回路試験片を作製した。
(Evaluation of adhesion strength)
Preparation of Test Pieces The conductive adhesives of Examples 1 to 4 and Comparative Examples 1 and 2 prepared above were prepared using a rigid substrate (base material: FR-4, electrode width: 100 μm, electrode length: 6 mm, pitch width). : 0.2 mm, U-shaped electrode number 70, linear electrode 1, flash Au treatment), and applied with a scraper through a metal mask (mask thickness: 80 μm, opening: 15 mm×1 mm). Next, a flexible substrate (width: 16 mm, base material: polyimide, electrode width: 100 μm, electrode length: 6 mm, pitch width: 0.2 mm, U-shaped) was applied to the rigid substrate with the conductive adhesive applied. 70 mold electrodes, 1 linear electrode, and flash Au treatment) were mounted. During this placement, the positions of the electrodes on the rigid substrate and the electrodes on the flexible substrate were aligned so that a daisy chain was formed, and the overlapping length of both electrodes was 3.5 mm. With respect to the joint surface between the substrates thus mounted, thermocompression bonding was performed at 0.79 MPa (tool: width 3 mm, length 18 mm, load: 42.7 N) at 150° C. for 6 seconds, and 70 electrical pieces were electrically connected. A daisy chain circuit test piece having connection points was produced.

密着強度の測定
上記方法によって得られた試験片の密着強度をボンドテスター(ノードソン・アドバンスト・テクノロジー社製4000Plus)を用いてJIS K 6854−1に準じてフレキシブル基板を垂直方向にピールして密着強度を測定した。
Measurement of Adhesion Strength The adhesion strength of the test piece obtained by the above method was measured by using a bond tester (4000Plus manufactured by Nordson Advanced Technology Co., Ltd.) and peeling the flexible substrate in the vertical direction according to JIS K 6854-1. Was measured.

(Z軸方向から見た導電粒子のつぶれ具合の評価)
上記接着強度の測定で引きはがしたリジッド基板を電子顕微鏡(日本電子社(JEOL)製JSM−5610LV)で観察し、基板中央部に位置する電極上(1本、重なり合った長さ3.5mmの部分)のZ軸方向から見た導電粒子の長手方向の径(楕円形の場合は長径、円形の場合は直径)をすべて測定し、その平均値をAとした。次に基板中央部に位置する電極間(1本、重なり合った長さ3.5mmの部分)のZ軸方向から見た導電粒子の長手方向の径(楕円形の場合は長径、円形の場合は直径)をすべて測定し、その平均値をaとした。
得られたAの値をaの値で除して導電性粒子のつぶれ具合(倍)を求めた。
(Evaluation of the degree of collapse of conductive particles viewed from the Z-axis direction)
The rigid substrate peeled off by the measurement of the adhesive strength is observed with an electron microscope (JSM-5610LV manufactured by JEOL Ltd.), and on the electrode located in the center of the substrate (one, overlapping length 3.5 mm). (Part) was measured in the longitudinal direction of the conductive particles as viewed in the Z-axis direction (major axis in the case of an elliptical shape, diameter in the case of a circular shape), and the average value was defined as A. Next, the diameter of the conductive particles in the longitudinal direction as seen from the Z-axis direction between the electrodes located in the central portion of the substrate (one overlapped portion having a length of 3.5 mm) (long diameter in the case of an ellipse, long diameter in the case of a circle) (Diameter) were all measured, and the average value was defined as a.
The obtained value of A was divided by the value of a to obtain the degree of collapse (times) of the conductive particles.

(温度サイクル試験)
上記導通抵抗と同じ方法で試験片を作成した。試験片を楠本化成社製WINTECH NT1531Wを用いて−40℃キープ時間1分、125℃キープ時間1分の条件で1000サイクル経過した試験片の導通抵抗を測定し初期値との変化率(%)を算出し、変化率が0〜2%のものを○、2%超〜10%を△、10%超を×と評価した。
(Temperature cycle test)
A test piece was prepared by the same method as the above-mentioned conduction resistance. The test piece was measured using Kusunoki Kasei's WINTECH NT1531W at -40° C. for 1 minute and 125° C. for 1 minute to measure the conduction resistance of the test piece after 1000 cycles, and the rate of change (%) from the initial value When the change rate was 0 to 2%, it was evaluated as ○, 2% to 10% was evaluated as Δ, and 10% or more was evaluated as ×.

Figure 0006710120
*1:エチレン性不飽和結合を有する化合物(A−1):2−ヒドロキシ−3−フェノキシプロピルアクリレート(東亞合成社製アロニックス M−5700、分子量:222、Tg:17℃、粘度:1.65dPa・s/25℃)
*2:エチレン性不飽和結合を有する化合物(A−2):フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO−A、分子量:192 、Tg:−22℃、粘度:0.125dPa・s/25℃)
*3:エチレン性不飽和結合を有する化合物(A−3):脂肪族ウレタンアクリレート(ダイセル・オルネクス株式会社製EBECRYL270、分子量:1500、Tg:−27℃、粘度:30dPa・s/60℃)
*4:飽和ポリエステル樹脂(東洋紡績社製バイロン337、分子量:10000、Tg:14℃)
*5:1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート(日油社製パーオクタO、性状:液体、1分間半減期温度:124.3℃、10時間半減期温度:65.3℃)
*6:低融点はんだ粒子(42Sn−58Bi[42Sn−58Bi組成の球状粒子:平均粒径(レーザー回折式粒度分計測定による平均粒子径D50)、13.12μm)])*7:シリカ微粒子[比表面積170m/g](日本アエロジル社製アエロジルR974)*8:リン酸エステル(共栄社化学社製ライトエステルP−2M)
*9:ビニルエーテルポリマー(共栄社化学社製フローレンAC−326F)
* 各実施例、比較例の樹脂組成物(導電性接着剤)に含まれる、有機成分中のエチレン性不飽和結合当量は、実施例1〜4、比較例1〜2いずれも、457であった(実施例、比較例はいずれも無溶剤)。
(有機成分中のエチレン性不飽和結合当量の算出方法)
(有機成分の質量合計)/(組成物中のエチレン性不飽和結合の数)
=67.0/0.1466=457
Figure 0006710120
*1: Compound (A-1) having an ethylenically unsaturated bond: 2-hydroxy-3-phenoxypropyl acrylate (Aronix M-5700 manufactured by Toagosei Co., Ltd., molecular weight: 222, Tg: 17° C., viscosity: 1.65 dPa・S/25℃)
*2: Compound (A-2) having an ethylenically unsaturated bond: phenoxyethyl acrylate (light acrylate PO-A manufactured by Kyoeisha Chemical Co., Ltd., molecular weight: 192, Tg: -22°C, viscosity: 0.125 dPa·s/25. ℃)
*3: Compound having an ethylenically unsaturated bond (A-3): Aliphatic urethane acrylate (EBECRYL270 manufactured by Daicel Ornex Co., molecular weight: 1500, Tg: -27°C, viscosity: 30 dPa·s/60°C)
*4: Saturated polyester resin (Byron 337 manufactured by Toyobo Co., molecular weight: 10,000, Tg: 14°C)
*5: 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (Perocta O manufactured by NOF CORPORATION, Property: liquid, 1 minute half-life temperature: 124.3°C, 10 hour half-life (Temperature: 65.3°C)
*6: Low melting point solder particles (42Sn-58Bi [spherical particles having a composition of 42Sn-58Bi: average particle size (average particle size D50 measured by a laser diffraction particle size analyzer), 13.12 μm)]) *7: silica fine particles [ Specific surface area 170 m 2 /g] (Aerosil R974 manufactured by Nippon Aerosil Co., Ltd.)*8: Phosphate ester (light ester P-2M manufactured by Kyoeisha Chemical Co., Ltd.)
*9: Vinyl ether polymer (Floren AC-326F manufactured by Kyoeisha Chemical Co., Ltd.)
* The ethylenically unsaturated bond equivalent in the organic component contained in the resin composition (conductive adhesive) of each Example and Comparative Example is 457 in each of Examples 1 to 4 and Comparative Examples 1 and 2. (No solvent was used in the examples and comparative examples).
(Calculation method of ethylenically unsaturated bond equivalent in organic component)
(Total mass of organic components)/(Number of ethylenically unsaturated bonds in the composition)
=67.0/0.1466=457

(熱溶融性の導電粒子の含有量(導電粒子の濃度)(体積%)の算出方法)
JIS K−5400に準拠し100mlの比重カップ(ヨシミツ精機(株))を用いてはんだ粉(低融点はんだ粒子)以外の組成物(接着剤)の比重を測定し、はんだ粉(低融点はんだ粒子)の真比重を用いて下記式にて体積%を算出した。
なお、42Sn−58Biの真比重は8.7、はんだ粉以外の組成物(接着剤)の比重は1.13であった。
(式)
導電粒子の濃度(体積%)=100×(はんだ粉の配合量/はんだ粉の真比重)/((はんだ粉の配合量/はんだ粉の真比重)+(はんだ粉以外の組成物の配合量/はんだ粉以外の組成物の比重))
(Method of calculating content of heat-meltable conductive particles (concentration of conductive particles) (volume %))
According to JIS K-5400, the specific gravity of the composition (adhesive) other than the solder powder (low melting point solder particles) was measured using a 100 ml specific gravity cup (Yoshimitsu Seiki Co., Ltd.), and the solder powder (low melting point solder particles) was measured. ) Was used to calculate the volume% by the following formula.
The true specific gravity of 42Sn-58Bi was 8.7, and the specific gravity of the composition (adhesive) other than the solder powder was 1.13.
(formula)
Concentration of conductive particles (volume %)=100×(blending amount of solder powder/true specific gravity of solder powder)/((blending amount of solder powder/true specific gravity of solder powder)+(blending amount of composition other than solder powder /Specific gravity of the composition other than solder powder))

上記表中に示すように、熱溶融性の導電粒子の配合量が固形分換算で0.01〜4.0体積%である導電性接着剤は、導電性を維持しつつ、耐電圧性に優れた異方導電性の接続構造体を形成することがわかる。 As shown in the above table, the conductive adhesive having a blending amount of the heat-meltable conductive particles of 0.01 to 4.0% by volume in terms of solid content has a high withstand voltage while maintaining conductivity. It can be seen that a connection structure having excellent anisotropic conductivity is formed.

Claims (5)

熱圧着することによって部材同士を異方導電接着する、電粒子を含む導電性接着剤であって、
前記導電粒子は、熱溶融性の導電粒子である低融点はんだ粒子のみからなり、
前記低融点はんだ粒子の配合量が固形分換算で0.01〜3.5体積%であることを特徴とする導電性接着剤。
Bonding the anisotropic conductive member to each other by thermocompression bonding, a conductive adhesive containing conductive particles,
The conductive particles consist only of low melting point solder particles that are heat-meltable conductive particles,
A conductive adhesive characterized in that the compounding amount of the low melting point solder particles is 0.01 to 3.5 % by volume in terms of solid content.
さらに、有機成分を含むことを特徴とする請求項1に記載の導電性接着剤。 The conductive adhesive according to claim 1, further comprising an organic component. 前記有機成分(溶剤を含む場合は溶剤を除く)中のエチレン性不飽和結合当量が260〜1000であることを特徴とする請求項に記載の導電性接着剤。 The conductive adhesive according to claim 2 , wherein the organic component (excluding the solvent when the solvent is included) has an ethylenically unsaturated bond equivalent of 260 to 1,000. 請求項1〜のいずれか一項に記載の導電性接着剤を用いて電気的に接続した部材を含むことを特徴とする電子部品。 Electronic component, characterized in that it comprises a member which is electrically connected using a conductive adhesive according to any one of claims 1-3. 請求項1〜のいずれか一項に記載の導電性接着剤を塗布し、熱圧着することによって部材同士を導電接着することを特徴とする電子部品の製造方法。 The method of manufacturing an electronic component, characterized in that according to claim 1 applying a conductive adhesive according to any one of 3 to conductive bonding the members to each other by thermocompression bonding.
JP2016130791A 2015-09-30 2016-06-30 Conductive adhesive, electronic component, and method for manufacturing electronic component Active JP6710120B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW105128951A TWI716445B (en) 2015-09-30 2016-09-07 Conductive adhesive, electronic part, and manufacturing method of electronic part
KR1020160123808A KR102570880B1 (en) 2015-09-30 2016-09-27 Conductive adhesive, electronic component and method for producing electronic component
CN201610861050.8A CN106916547A (en) 2015-09-30 2016-09-28 The manufacture method of conductive adhesive, electronic unit and electronic unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015194909 2015-09-30
JP2015194909 2015-09-30

Publications (2)

Publication Number Publication Date
JP2017066367A JP2017066367A (en) 2017-04-06
JP6710120B2 true JP6710120B2 (en) 2020-06-17

Family

ID=58491782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130791A Active JP6710120B2 (en) 2015-09-30 2016-06-30 Conductive adhesive, electronic component, and method for manufacturing electronic component

Country Status (4)

Country Link
JP (1) JP6710120B2 (en)
KR (1) KR102570880B1 (en)
CN (1) CN106916547A (en)
TW (1) TWI716445B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899069B2 (en) * 2016-06-27 2021-07-07 株式会社スリーボンド Thermosetting conductive adhesive
JP2018060788A (en) * 2016-09-30 2018-04-12 太陽インキ製造株式会社 Conductive adhesive, cured product and electronic component
CN112839439A (en) * 2019-11-25 2021-05-25 Oppo(重庆)智能科技有限公司 Printed circuit board assembly, preparation method and electronic equipment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948038B2 (en) * 1992-12-18 1999-09-13 住友ベークライト株式会社 Anisotropic conductive film
JP2000340036A (en) * 1999-05-27 2000-12-08 Asahi Chem Ind Co Ltd Anisotropic conductive connection body
TWI384049B (en) * 2005-09-05 2013-02-01 Nitto Denko Corp Adhesive composition, adhesive sheet and surface protective film
EP2011844A1 (en) * 2006-04-27 2009-01-07 Sumitomo Bakelite Co., Ltd. Adhesive tape, semiconductor package, and electronic device
CN102585709B (en) * 2007-08-08 2016-04-27 日立化成株式会社 The syndeton of adhesive composite, film-like adhesive and circuit block
JP5540916B2 (en) * 2010-06-15 2014-07-02 デクセリアルズ株式会社 Method for manufacturing connection structure
JP5964597B2 (en) 2011-03-30 2016-08-03 株式会社タムラ製作所 Anisotropic conductive paste and method of connecting electronic parts using the same
JP5802081B2 (en) 2011-08-24 2015-10-28 株式会社タムラ製作所 Anisotropic conductive paste
JP2013143426A (en) * 2012-01-10 2013-07-22 Nitto Denko Corp Conductive adhesive sheet and solar cell module
JP2013179272A (en) * 2012-02-08 2013-09-09 Hitachi Chemical Co Ltd Solar battery module manufacturing method and resin composition
JP5907377B2 (en) * 2012-02-09 2016-04-26 Dic株式会社 Moisture curable polyurethane hot melt resin composition
JP2014065766A (en) * 2012-09-24 2014-04-17 Dexerials Corp Anisotropic conductive adhesive
JP6061644B2 (en) * 2012-09-24 2017-01-18 株式会社タムラ製作所 Anisotropic conductive paste and printed wiring board using the same
JP2014084395A (en) * 2012-10-23 2014-05-12 Hitachi Chemical Co Ltd Electroconductive adhesive composition, electroconductive adhesive-fitted metal conductor wire, connection body, solar cell module, and method for manufacturing the same
JP6170376B2 (en) * 2013-08-27 2017-07-26 日東電工株式会社 Conductive bonding composition, conductive bonding sheet, electronic component and method for producing the same
KR102334672B1 (en) * 2014-06-03 2021-12-06 다이요 잉키 세이조 가부시키가이샤 Curable composition and electronic component

Also Published As

Publication number Publication date
KR102570880B1 (en) 2023-08-25
JP2017066367A (en) 2017-04-06
KR20170038692A (en) 2017-04-07
CN106916547A (en) 2017-07-04
TWI716445B (en) 2021-01-21
TW201728720A (en) 2017-08-16

Similar Documents

Publication Publication Date Title
KR102334672B1 (en) Curable composition and electronic component
JP5152191B2 (en) Circuit connection material, connection structure and manufacturing method thereof
JP2017101131A (en) Conductive adhesive, cured product and electronic component
KR20140148333A (en) Anisotropic conductive paste and printed wiring board using the same
JP6710120B2 (en) Conductive adhesive, electronic component, and method for manufacturing electronic component
JP2017145382A (en) Conductive adhesive and method for producing the same, cured product and electronic component
JP2020164744A (en) Conductive adhesive and syringe
JP2018168336A (en) Conductive adhesive, cured product, electronic component and method for manufacturing electronic component
JP4380328B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
KR20170038691A (en) Conductive adhesive and method for production thereof, cured product, and electronic component
JP2017069543A (en) Connection structure and electronic component
KR102564310B1 (en) Conductive adhesive, cured product, electronic component and method for producing electronic component
JP2018060788A (en) Conductive adhesive, cured product and electronic component
JP4794704B2 (en) Circuit connection material, circuit terminal connection structure, and circuit terminal connection method
JP2016148012A (en) Curable composition and electronic component
JP2019065231A (en) Conductive adhesive, cured article, electronic component, and manufacturing method of electronic component
JP2016035044A (en) Conductive adhesive and electronic component
KR102044574B1 (en) Circuit connection material, connection structure, and fabrication method for same
TW201720887A (en) Conductive adhesive and its production method, cured product, and electronic parts providing a conductive adhesive capable of maintaining excellent conductivity and improving adhesion with members
JP3885349B2 (en) Circuit connection material, circuit terminal connection structure, and circuit terminal connection method
JP4905502B2 (en) Circuit board manufacturing method and circuit connecting material
JP2017066393A (en) Electrically conductive adhesive and electronic component
JP2010004067A (en) Circuit connection material
JP2005290394A (en) Adhesive film for connecting circuit and method for producing circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200526

R150 Certificate of patent or registration of utility model

Ref document number: 6710120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350