JP6616917B2 - Substrate processing apparatus, semiconductor device manufacturing method, and recording medium - Google Patents

Substrate processing apparatus, semiconductor device manufacturing method, and recording medium Download PDF

Info

Publication number
JP6616917B2
JP6616917B2 JP2019059946A JP2019059946A JP6616917B2 JP 6616917 B2 JP6616917 B2 JP 6616917B2 JP 2019059946 A JP2019059946 A JP 2019059946A JP 2019059946 A JP2019059946 A JP 2019059946A JP 6616917 B2 JP6616917 B2 JP 6616917B2
Authority
JP
Japan
Prior art keywords
processing
processing module
exhaust
utility system
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019059946A
Other languages
Japanese (ja)
Other versions
JP2019110340A (en
Inventor
大義 上村
孝志 野上
智志 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP2019059946A priority Critical patent/JP6616917B2/en
Publication of JP2019110340A publication Critical patent/JP2019110340A/en
Application granted granted Critical
Publication of JP6616917B2 publication Critical patent/JP6616917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、基板処理装置、半導体装置の製造方法および記録媒体に関するものである。   The present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a recording medium.

半導体装置(デバイス)の製造工程における基板処理では、例えば、複数枚の基板を一括して処理する縦型基板処理装置が使用されている。基板処理装置のメンテナンスの際には、基板処理装置周辺にメンテナンスエリアを確保する必要があり、メンテナンスエリアを確保するために、基板処理装置のフットプリントが大きくなってしまう場合がある(例えば、特許文献1)。   In substrate processing in a manufacturing process of a semiconductor device (device), for example, a vertical substrate processing apparatus that processes a plurality of substrates at once is used. During maintenance of the substrate processing apparatus, it is necessary to secure a maintenance area around the substrate processing apparatus, and the footprint of the substrate processing apparatus may become large in order to secure the maintenance area (for example, patents) Reference 1).

特開2010−283356号公報JP 2010-283356 A

本発明はこのような事情に鑑みてなされたものであり、その目的は、メンテナンスエリアを確保しつつフットプリントを低減させることが可能な技術を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the technique which can reduce a footprint, ensuring a maintenance area.

本発明の一態様によれば、
基板処理用の第1の処理容器を有する第1の処理モジュールと、
前記第1の処理モジュールの側面側に隣接して配置され、基板処理用の第2の処理容器を有する第2の処理モジュールと、
前記第1の処理容器内を排気する第1の排気系と、前記第1の処理容器内に処理ガスを供給する第1の供給系とを含み、前記第1の処理モジュール背面に隣接して配置される第1のユーティリティ系と、
前記第2の処理容器内を排気する第2の排気系と、前記第2の処理容器内に処理ガスを供給する第2の供給系とを含み、前記第2の処理モジュール背面に隣接して配置される第2のユーティリティ系と、
を備える基板処理装置であって、
前記第1の処理モジュール及び前記第2の処理モジュールの背面方向には、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1の処理モジュール及び前記第2の処理モジュールに対して共通に使用されるメンテナンスエリアが形成され、
前記第1のユーティリティ系及び前記第2のユーティリティ系は、その正面側よりも背面側の方が前記メンテナンスエリアに突出して形成される技術が提供される。
According to one aspect of the invention,
A first processing module having a first processing vessel for substrate processing;
A second processing module disposed adjacent to a side surface of the first processing module and having a second processing container for substrate processing;
A first exhaust system for exhausting the interior of the first processing container; and a first supply system for supplying a processing gas into the first processing container, adjacent to the rear surface of the first processing module. A first utility system to be arranged;
A second exhaust system for exhausting the inside of the second processing container; and a second supply system for supplying a processing gas into the second processing container, adjacent to the rear surface of the second processing module. A second utility system to be arranged;
A substrate processing apparatus comprising:
In the back direction of the first processing module and the second processing module, the first processing module and the second processing module are connected between the first utility system and the second utility system. A common maintenance area is formed for
The first utility system and the second utility system are provided with a technique in which the rear side protrudes into the maintenance area rather than the front side.

本発明によれば、メンテナンスエリアを確保しつつフットプリントを低減させることが可能となる。   According to the present invention, it is possible to reduce the footprint while securing the maintenance area.

本発明の実施形態で好適に用いられる基板処理装置の一例を概略的に示す上面図である。It is a top view which shows roughly an example of the substrate processing apparatus used suitably by embodiment of this invention. 本発明の実施形態で好適に用いられる基板処理装置の一例を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly an example of the substrate processing apparatus used suitably by embodiment of this invention. 本発明の実施形態で好適に用いられる基板処理装置の一例を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly an example of the substrate processing apparatus used suitably by embodiment of this invention. 本発明の実施形態で好適に用いられる処理炉の一例を概略的に示す縦断面図である。It is a longitudinal section showing roughly an example of a processing furnace used suitably in an embodiment of the present invention. 本発明の実施形態で好適に用いられる処理モジュールの一例を概略的に示す横断面図である。It is a cross-sectional view which shows roughly an example of the processing module used suitably by embodiment of this invention.

以下、図面を参照しながら、本発明の限定的でない例示の実施形態について説明する。全図面中、同一または対応する構成については、同一または対応する参照符号を付し、重複する説明を省略する。また、後述する収納室9側を正面側(前側)、後述する搬送室6A、6B側を背面側(後ろ側)とする。さらに、後述する処理モジュール3A、3Bの境界線(隣接面)に向う側を内側、境界線から離れる側を外側とする。   Hereinafter, non-limiting exemplary embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and redundant description is omitted. Further, the storage chamber 9 side described later is referred to as a front side (front side), and the transfer chambers 6A and 6B described below are referred to as back sides (rear sides). Furthermore, let the side which faces the boundary line (adjacent surface) of processing modules 3A and 3B, which will be described later, be the inside, and the side away from the boundary line be the outside.

本実施形態において、基板処理装置は、半導体装置(デバイス)の製造方法における製造工程の一工程として熱処理等の基板処理工程を実施する縦型基板処理装置(以下、処理装置と称する)2として構成されている。   In the present embodiment, the substrate processing apparatus is configured as a vertical substrate processing apparatus (hereinafter referred to as a processing apparatus) 2 that performs a substrate processing process such as a heat treatment as one process of the manufacturing process in the method of manufacturing a semiconductor device (device). Has been.

図1、2に示すように、処理装置2は隣接する2つの処理モジュール3A、3Bを備えている。処理モジュール3Aは、処理炉4Aと搬送室6Aにより構成される。処理モジュール3Bは、処理炉4Bと搬送室6Bにより構成される。処理炉4A、4Bの下方には、搬送室6A、6Bがそれぞれ配置されている。搬送室6A、6Bの正面側に隣接して、ウエハWを移載する移載機7を備える移載室8が配置されている。移載室8の正面側には、ウエハWを複数枚収納するポッド(フープ)5を収納する収納室9が連結されている。収納室9の全面にはI/Oポート22が設置され、I/Oポート22を介して処理装置2内外にポッド5が搬入出される。   As shown in FIGS. 1 and 2, the processing apparatus 2 includes two adjacent processing modules 3A and 3B. The processing module 3A includes a processing furnace 4A and a transfer chamber 6A. The processing module 3B includes a processing furnace 4B and a transfer chamber 6B. Transfer chambers 6A and 6B are respectively disposed below the processing furnaces 4A and 4B. Adjacent to the front side of the transfer chambers 6A and 6B, a transfer chamber 8 including a transfer machine 7 for transferring the wafer W is arranged. A storage chamber 9 for storing a pod (hoop) 5 for storing a plurality of wafers W is connected to the front side of the transfer chamber 8. An I / O port 22 is installed on the entire surface of the storage chamber 9, and the pod 5 is carried into and out of the processing apparatus 2 through the I / O port 22.

搬送室6A、6Bと移載室8との境界壁(隣接面)には、ゲートバルブ90A、90Bがそれぞれ設置される。移載室8内および搬送室6A、6B内には圧力検知器がそれぞれに設置されており、移載室8内の圧力は、搬送室6A、6B内の圧力よりも低くなるように設定されている。また、移載室8内および搬送室6A、6B内には酸素濃度検知器がそれぞれに設置されており、移載室8A内および搬送室6A、6B内の酸素濃度は大気中における酸素濃度よりも低く維持されている。移載室8の天井部には、移載室8内にクリーンエアを供給するクリーンユニット62Cが設置されており、移載室8内にクリーンエアとして、例えば、不活性ガスを循環させるように構成されている。移載室8内を不活性ガスにて循環パージすることにより、移載室8内を清浄な雰囲気とすることができる。このような構成により、移載室8内に搬送室6A、6B内のパーティクル等が混入することを抑制することができ、移載室8内および搬送室6A、6B内でウエハW上に自然酸化膜が形成されることを抑制することができる。   Gate valves 90A and 90B are installed on boundary walls (adjacent surfaces) between the transfer chambers 6A and 6B and the transfer chamber 8, respectively. Pressure detectors are installed in the transfer chamber 8 and the transfer chambers 6A and 6B, respectively, and the pressure in the transfer chamber 8 is set to be lower than the pressure in the transfer chambers 6A and 6B. ing. In addition, oxygen concentration detectors are installed in the transfer chamber 8 and the transfer chambers 6A and 6B, respectively. The oxygen concentration in the transfer chamber 8A and the transfer chambers 6A and 6B is higher than the oxygen concentration in the atmosphere. Is also kept low. A clean unit 62C for supplying clean air into the transfer chamber 8 is installed at the ceiling of the transfer chamber 8, and for example, an inert gas is circulated in the transfer chamber 8 as clean air. It is configured. By circulating and purging the inside of the transfer chamber 8 with an inert gas, the inside of the transfer chamber 8 can be made a clean atmosphere. With such a configuration, it is possible to prevent particles and the like in the transfer chambers 6A and 6B from entering the transfer chamber 8, and to naturally move on the wafer W in the transfer chamber 8 and the transfer chambers 6A and 6B. Formation of an oxide film can be suppressed.

処理モジュール3Aおよび処理モジュール3Bは同一の構成を備えるため、以下においては、代表して処理モジュール3Aについてのみ説明する。   Since the processing module 3A and the processing module 3B have the same configuration, only the processing module 3A will be described below as a representative.

図4に示すように、処理炉4Aは、円筒形状の反応管10Aと、反応管10Aの外周に設置された加熱手段(加熱機構)としてのヒータ12Aとを備える。反応管は、例えば石英やSiCにより形成される。反応管10Aの内部には、基板としてのウエハWを処理する処理室14Aが形成される。反応管10Aには、温度検出器としての温度検出部16Aが設置される。温度検出部16Aは、反応管10Aの内壁に沿って立設されている。   As shown in FIG. 4, the processing furnace 4A includes a cylindrical reaction tube 10A and a heater 12A as heating means (heating mechanism) installed on the outer periphery of the reaction tube 10A. The reaction tube is made of, for example, quartz or SiC. Inside the reaction tube 10A, a processing chamber 14A for processing the wafer W as a substrate is formed. A temperature detector 16A as a temperature detector is installed in the reaction tube 10A. The temperature detector 16A is erected along the inner wall of the reaction tube 10A.

基板処理に使用されるガスは、ガス供給系としてのガス供給機構34Aによって処理室14A内に供給される。ガス供給機構34Aが供給するガスは、成膜される膜の種類に応じて換えられる。ここでは、ガス供給機構34Aは、原料ガス供給部、反応ガス供給部および不活性ガス供給部を含む。ガス供給機構34Aは後述する供給ボックス72Aに収納されている。   The gas used for substrate processing is supplied into the processing chamber 14A by a gas supply mechanism 34A as a gas supply system. The gas supplied by the gas supply mechanism 34A is changed according to the type of film to be formed. Here, the gas supply mechanism 34A includes a source gas supply unit, a reaction gas supply unit, and an inert gas supply unit. The gas supply mechanism 34A is housed in a supply box 72A described later.

原料ガス供給部は、ガス供給管36aを備え、ガス供給管36aには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)38aおよび開閉弁であるバルブ40aが設けられている。ガス供給管36aはマニホールド18の側壁を貫通するノズル44aに接続される。ノズル44aは、反応管10内に上下方向に沿って立設し、ボート26に保持されるウエハWに向かって開口する複数の供給孔が形成されている。ノズル44aの供給孔を通してウエハWに対して原料ガスが供給される。   The raw material gas supply unit includes a gas supply pipe 36a. A gas flow controller (MFC) 38a, which is a flow rate controller (flow rate control unit), and a valve 40a, which is an on-off valve, are provided in order from the upstream direction. It has been. The gas supply pipe 36 a is connected to a nozzle 44 a that penetrates the side wall of the manifold 18. The nozzle 44 a is erected in the vertical direction in the reaction tube 10 and has a plurality of supply holes that open toward the wafers W held by the boat 26. The source gas is supplied to the wafer W through the supply hole of the nozzle 44a.

以下、同様の構成にて、反応ガス供給部からは、供給管36b、MFC38b、バルブ40bおよびノズル44bを介して、反応ガスがウエハWに対して供給される。不活性ガス供給部からは、供給管36c、36d、MFC38c、38d、バルブ40c、40dおよびノズル44a、44bを介して、ウエハWに対して不活性ガスが供給される。   Thereafter, the reaction gas is supplied from the reaction gas supply unit to the wafer W through the supply pipe 36b, the MFC 38b, the valve 40b, and the nozzle 44b with the same configuration. From the inert gas supply unit, an inert gas is supplied to the wafer W via supply pipes 36c and 36d, MFCs 38c and 38d, valves 40c and 40d, and nozzles 44a and 44b.

反応管10Aの下端開口部には、円筒形のマニホールド18Aが、Oリング等のシール部材を介して連結され、反応管10Aの下端を支持している。マニホールド18Aの下端開口部は円盤状の蓋部22Aによって開閉される。蓋部22Aの上面にはOリング等のシール部材が設置されており、これにより、反応管10A内と外気とが気密にシールされる。蓋部22A上には断熱部24Aが載置される。   A cylindrical manifold 18A is connected to the lower end opening of the reaction tube 10A via a seal member such as an O-ring to support the lower end of the reaction tube 10A. The lower end opening of the manifold 18A is opened and closed by a disc-shaped lid 22A. A sealing member such as an O-ring is installed on the upper surface of the lid portion 22A, whereby the inside of the reaction tube 10A and the outside air are hermetically sealed. 24 A of heat insulation parts are mounted on the cover part 22A.

マニホールド18Aには、排気管46Aが取り付けられている。排気管46Aには、処理室14A内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ48Aおよび圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ40Aを介して、真空排気装置としての真空ポンプ52Aが接続されている。このような構成により、処理室14A内の圧力を処理に応じた処理圧力とすることができる。主に、排気管46A、APCバルブ40A、圧力センサ48Aにより、排気系Aが構成される。排気系Aは後述する排気ボックス74Aに収納されている。   An exhaust pipe 46A is attached to the manifold 18A. The exhaust pipe 46A is provided with a pressure sensor 48A as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 14A and an APC (Auto Pressure Controller) valve 40A as a pressure regulator (pressure adjustment unit). A vacuum pump 52A as an evacuation device is connected. With such a configuration, the pressure in the processing chamber 14A can be set to a processing pressure corresponding to the processing. An exhaust system A is mainly configured by the exhaust pipe 46A, the APC valve 40A, and the pressure sensor 48A. The exhaust system A is accommodated in an exhaust box 74A described later.

処理室14Aは、複数枚、例えば25〜150枚のウエハWを垂直に棚状に支持する基板保持具としてのボート26Aを内部に収納する。ボート26Aは、蓋部22Aおよび断熱部24Aを貫通する回転軸28Aにより、断熱部24Aの上方に支持される。回転軸28Aは蓋部22Aの下方に設置された回転機構30Aに接続されており、回転軸28Aは反応管10Aの内部を気密にシールした状態で回転可能に構成される。蓋部22は昇降機構としてのボートエレベータ32Aにより上下方向に駆動される。これにより、ボート26Aおよび蓋部22Aが一体的に昇降され、反応管10Aに対してボート26Aが搬入出される。   The processing chamber 14A accommodates therein a boat 26A as a substrate holder that supports a plurality of, for example, 25 to 150 wafers W vertically in a shelf shape. The boat 26A is supported above the heat insulating portion 24A by a rotating shaft 28A that penetrates the lid portion 22A and the heat insulating portion 24A. The rotation shaft 28A is connected to a rotation mechanism 30A installed below the lid portion 22A, and the rotation shaft 28A is configured to be rotatable in a state where the inside of the reaction tube 10A is hermetically sealed. The lid portion 22 is driven in the vertical direction by a boat elevator 32A as an elevating mechanism. Thereby, the boat 26A and the lid portion 22A are integrally moved up and down, and the boat 26A is carried into and out of the reaction tube 10A.

ボート26AへのウエハWの移載は搬送室6Aで行われる。図3に示すように、搬送室6A内の一側面(搬送室6Aの外側側面、搬送室6Bに面する側面と反対側の側面)には、クリーンユニット60Aが設置されており、搬送室6A内にクリーンエア(例えば、不活性ガス)を循環させるように構成されている。搬送室6A内に供給された不活性ガスは、ボート26Aを挟んでクリーンユニット60Aと対面する側面(搬送室6Bに面する側面)に設置された排気部62Aによって搬送室6A内から排気され、クリーンユニット60Aから搬送室6A内に再供給される(循環パージ)。搬送室6A内の圧力は移載室8内の圧力よりも低くなるように設定されている。また、搬送室6A内の酸素濃度は、大気中における酸素濃度よりも低くなるように設定されている。このような構成により、ウエハWの搬送作業中にウエハW上に自然酸化膜が形成されることを抑制することができる。   The transfer of the wafer W to the boat 26A is performed in the transfer chamber 6A. As shown in FIG. 3, a clean unit 60A is installed on one side of the transfer chamber 6A (the outer side of the transfer chamber 6A, the side opposite to the side facing the transfer chamber 6B), and the transfer chamber 6A. Clean air (for example, inert gas) is circulated in the interior. The inert gas supplied into the transfer chamber 6A is exhausted from the transfer chamber 6A by the exhaust part 62A installed on the side surface (side surface facing the transfer chamber 6B) facing the clean unit 60A across the boat 26A. Re-supplied from the clean unit 60A into the transfer chamber 6A (circulation purge). The pressure in the transfer chamber 6 </ b> A is set to be lower than the pressure in the transfer chamber 8. The oxygen concentration in the transfer chamber 6A is set to be lower than the oxygen concentration in the atmosphere. With such a configuration, it is possible to suppress the formation of a natural oxide film on the wafer W during the transfer operation of the wafer W.

回転機構30A、ボートエレベータ32A、ガス供給機構34AのMFC38a〜dおよびバルブ40a〜d、APCバルブ50Aには、これらを制御するコントローラ100が接続される。コントローラ100は、例えば、CPUを備えたマイクロプロセッサ(コンピュータ)からなり、処理装置2の動作を制御するよう構成される。コントローラ100には、例えばタッチパネル等として構成された入出力装置102が接続されている。コントローラ100は、処理モジュール3Aと処理モジュール3Bとで夫々に1つずつ設置されても良いし、共通して1つ設置されても良い。   A controller 100 is connected to the rotation mechanism 30A, the boat elevator 32A, the MFCs 38a to d of the gas supply mechanism 34A, the valves 40a to d, and the APC valve 50A. The controller 100 is composed of, for example, a microprocessor (computer) having a CPU, and is configured to control the operation of the processing device 2. For example, an input / output device 102 configured as a touch panel or the like is connected to the controller 100. One controller 100 may be installed in each of the processing module 3A and the processing module 3B, or one controller 100 may be installed in common.

コントローラ100には記憶媒体としての記憶部104が接続されている。記憶部104には、処理装置10の動作を制御する制御プログラムや、処理条件に応じて処理装置2の各構成部に処理を実行させるためのプログラム(レシピとも言う)が、読み出し可能に格納される。   A storage unit 104 as a storage medium is connected to the controller 100. The storage unit 104 stores a control program for controlling the operation of the processing device 10 and a program (also referred to as a recipe) for causing each component unit of the processing device 2 to execute processing according to processing conditions in a readable manner. The

記憶部104は、コントローラ100に内蔵された記憶装置(ハードディスクやフラッシュメモリ)であってもよいし、可搬性の外部記録装置(磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)であってもよい。また、コンピュータへのプログラムの提供は、インターネットや専用回線等の通信手段を用いて行ってもよい。プログラムは、必要に応じて、入出力装置102からの指示等にて記憶部104から読み出され、読み出されたレシピに従った処理をコントローラ100が実行することで、処理装置2は、コントローラ100の制御のもと、所望の処理を実行する。コントローラ100は、コントローラボックス76A、76Bに収納される。   The storage unit 104 may be a storage device (hard disk or flash memory) built in the controller 100, or a portable external recording device (magnetic disk such as magnetic tape, flexible disk or hard disk, CD or DVD, etc. It may be an optical disk, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card. Further, the program may be provided to the computer using a communication means such as the Internet or a dedicated line. The program is read from the storage unit 104 according to an instruction from the input / output device 102 as necessary, and the controller 100 executes processing according to the read recipe, so that the processing device 2 Under the control of 100, a desired process is executed. The controller 100 is accommodated in the controller boxes 76A and 76B.

次に、上述の処理装置2を用い、基板上に膜を形成する処理(成膜処理)について説明する。ここでは、ウエハWに対して、原料ガスとしてDCS(SiH2 Cl2 :ジクロロシラン)ガスと、反応ガスとしてO2 (酸素)ガスとを供給することで、ウエハW上にシリコン酸化(SiO2)膜を形成する例について説明する。なお、以下の説明において、処理装置2を構成する各部の動作はコントローラ100により制御される。 Next, a process (film forming process) for forming a film on the substrate using the processing apparatus 2 described above will be described. Here, by supplying DCS (SiH 2 Cl 2 : dichlorosilane) gas as a source gas and O 2 (oxygen) gas as a reaction gas to the wafer W, silicon oxide (SiO 2) is formed on the wafer W. ) An example of forming a film will be described. In the following description, the operation of each part constituting the processing apparatus 2 is controlled by the controller 100.

(ウエハチャージおよびボートロード)
ゲートバルブ90Aを開き、ボート20Aに対してウエハWを搬送する。複数枚のウエハWがボート26Aに装填(ウエハチャージ)されると、ゲートバルブ90Aが閉じられる。ボート26Aは、ボートエレベータ32Aによって処理室14内に搬入(ボートロード)され、反応管10Aの下部開口は蓋部22Aによって気密に閉塞(シール)された状態となる。
(Wafer charge and boat load)
The gate valve 90A is opened and the wafer W is transferred to the boat 20A. When a plurality of wafers W are loaded into the boat 26A (wafer charge), the gate valve 90A is closed. The boat 26A is carried into the processing chamber 14 by the boat elevator 32A (boat loading), and the lower opening of the reaction tube 10A is airtightly closed (sealed) by the lid portion 22A.

(圧力調整および温度調整)
処理室14A内が所定の圧力(真空度)となるように、真空ポンプ52Aによって真空排気(減圧排気)される。処理室14A内の圧力は、圧力センサ48Aで測定され、この測定された圧力情報に基づきAPCバルブ50Aが、フィードバック制御される。また、処理室14A内のウエハWが所定の温度となるように、ヒータ12Aによって加熱される。この際、処理室14Aが所定の温度分布となるように、温度検出部16Aが検出した温度情報に基づきヒータ12Aへの通電具合がフィードバック制御される。また、回転機構30Aによるボート26AおよびウエハWの回転を開始する。
(Pressure adjustment and temperature adjustment)
The processing chamber 14A is evacuated (reduced pressure) by the vacuum pump 52A so that a predetermined pressure (vacuum degree) is obtained. The pressure in the processing chamber 14A is measured by the pressure sensor 48A, and the APC valve 50A is feedback-controlled based on the measured pressure information. Further, the wafer W in the processing chamber 14A is heated by the heater 12A so as to reach a predetermined temperature. At this time, the power supply to the heater 12A is feedback-controlled based on the temperature information detected by the temperature detector 16A so that the processing chamber 14A has a predetermined temperature distribution. Further, the rotation of the boat 26A and the wafer W by the rotation mechanism 30A is started.

(成膜処理)
[原料ガス供給工程]
処理室14A内の温度が予め設定された処理温度に安定すると、処理室14A内のウエハWに対してDCSガスを供給する。DCSガスは、MFC38aにて所望の流量となるように制御され、ガス供給管36aおよびノズル44aを介して処理室14A内に供給される。
(Deposition process)
[Raw gas supply process]
When the temperature in the processing chamber 14A is stabilized at a preset processing temperature, DCS gas is supplied to the wafer W in the processing chamber 14A. The DCS gas is controlled to have a desired flow rate by the MFC 38a, and is supplied into the processing chamber 14A through the gas supply pipe 36a and the nozzle 44a.

[原料ガス排気工程]
次に、DCSガスの供給を停止し、真空ポンプ52Aにより処理室14A内を真空排気する。この時、不活性ガス供給部から不活性ガスとしてNガスを処理室14A内に供給しても良い(不活性ガスパージ)。
[Raw material gas exhaust process]
Next, the supply of DCS gas is stopped, and the inside of the processing chamber 14A is evacuated by the vacuum pump 52A. At this time, N 2 gas as an inert gas may be supplied from the inert gas supply unit into the processing chamber 14A (inert gas purge).

[反応ガス供給工程]
次に、処理室14A内のウエハWに対してO2ガスを供給する。O2ガスは、MFC38bにて所望の流量となるように制御され、ガス供給管36bおよびノズル44bを介して処理室14A内に供給される。
[Reactive gas supply process]
Next, O 2 gas is supplied to the wafer W in the processing chamber 14A. The O 2 gas is controlled to have a desired flow rate by the MFC 38b, and is supplied into the processing chamber 14A through the gas supply pipe 36b and the nozzle 44b.

[反応ガス排気工程]
次に、O2ガスの供給を停止し、真空ポンプ52Aにより処理室14A内を真空排気する。この時、不活性ガス供給部からNガスを処理室14A内に供給しても良い(不活性ガスパージ)。
[Reactant gas exhaust process]
Next, the supply of O 2 gas is stopped, and the inside of the processing chamber 14A is evacuated by the vacuum pump 52A. At this time, N 2 gas may be supplied from the inert gas supply unit into the processing chamber 14A (inert gas purge).

上述した4つの工程を行うサイクルを所定回数(1回以上)行うことにより、ウエハW上に、所定組成および所定膜厚のSiO2膜を形成することができる。 By performing a cycle of performing the above-described four steps a predetermined number of times (one or more times), a SiO 2 film having a predetermined composition and a predetermined film thickness can be formed on the wafer W.

(ボートアンロードおよびウエハディスチャージ)
所定膜厚の膜を形成した後、不活性ガス供給部からNガスが供給され、処理室14A内がNガスに置換されると共に、処理室14Aの圧力が常圧に復帰される。その後、ボートエレベータ32Aにより蓋部22Aが降下されて、ボート26Aが反応管10Aから搬出(ボートアンロード)される。その後、処理済ウエハWはボート26Aより取出される(ウエハディスチャージ)。
(Boat unload and wafer discharge)
After forming a film with a predetermined thickness, N 2 gas is supplied from the inert gas supply unit, the inside of the processing chamber 14A is replaced with N 2 gas, and the pressure in the processing chamber 14A is returned to normal pressure. Thereafter, the lid 22A is lowered by the boat elevator 32A, and the boat 26A is carried out (boat unloading) from the reaction tube 10A. Thereafter, the processed wafer W is taken out from the boat 26A (wafer discharge).

その後、ウエハWはポッド5に収納され処理装置2外に搬出されても良いし、処理炉4Bへ搬送され、例えば、アニール等の基板処理が連続して行われても良い。処理炉4AでのウエハWの処理後に連続して処理炉4BでウエハWの処理を行う場合、ゲートバルブ90Aおよび90Bを開とし、ボート26Aからボート26BへウエハWが直接搬送される。その後の処理炉4B内へのウエハWの搬入出は、上述の処理炉4Aによる基板処理と同様の手順にて行われる。また、処理炉4B内での基板処理は、例えば、上述の処理炉4Aによる基板処理と同様の手順にて行われる。   Thereafter, the wafer W may be stored in the pod 5 and carried out of the processing apparatus 2, or may be transferred to the processing furnace 4B, and substrate processing such as annealing may be continuously performed. When processing the wafer W in the processing furnace 4B continuously after the processing of the wafer W in the processing furnace 4A, the gate valves 90A and 90B are opened, and the wafer W is directly transferred from the boat 26A to the boat 26B. The subsequent loading / unloading of the wafer W into / from the processing furnace 4B is performed in the same procedure as the substrate processing by the processing furnace 4A described above. Further, the substrate processing in the processing furnace 4B is performed, for example, in the same procedure as the substrate processing by the above-described processing furnace 4A.

ウエハWにSiO2膜を形成する際の処理条件としては、例えば、下記が例示される。
処理温度(ウエハ温度):300℃〜700℃、
処理圧力(処理室内圧力)1Pa〜4000Pa、
DCSガス:100sccm〜10000sccm、
2ガス:100sccm〜10000sccm、
2ガス:100sccm〜10000sccm、
それぞれの処理条件を、それぞれの範囲内の値に設定することで、成膜処理を適正に進行させることが可能となる。
Examples of processing conditions for forming the SiO 2 film on the wafer W include the following.
Processing temperature (wafer temperature): 300 ° C. to 700 ° C.,
Processing pressure (processing chamber pressure) 1 Pa to 4000 Pa,
DCS gas: 100 sccm to 10000 sccm,
O 2 gas: 100 sccm to 10000 sccm,
N 2 gas: 100 sccm to 10000 sccm,
By setting each processing condition to a value within the respective range, it is possible to appropriately progress the film forming process.

次に、処理装置2の背面構成について説明する。
例えば、ボート26が破損した場合には、ボート26を交換する必要がある。また、反応管10が破損した場合や、反応管10のクリーニングが必要な場合は、反応管10を取り外す必要がある。このように、搬送室6や処理炉4におけるメンテナンスを実施する場合には、処理装置2の背面側のメンテナンスエリアからメンテナンスを行う。
Next, the back configuration of the processing apparatus 2 will be described.
For example, when the boat 26 is damaged, it is necessary to replace the boat 26. Further, when the reaction tube 10 is damaged or when the reaction tube 10 needs to be cleaned, it is necessary to remove the reaction tube 10. Thus, when performing maintenance in the transfer chamber 6 and the processing furnace 4, the maintenance is performed from the maintenance area on the back side of the processing apparatus 2.

図1に示すように、搬送室6A、6Bの背面側には、メンテナンス口78A、78Bがそれぞれ形成されている。メンテナンス口78Aは搬送室6Aの搬送室6B側に形成され、メンテナンス口78Bは搬送室6Bの搬送室6A側に形成される。メンテナンス口78A、78Bはメンテナンス扉80A、80Bにより開閉される。メンテナンス扉80A、80Bはヒンジ82A、82Bを基軸として回動可能に構成される。ヒンジ82Aは搬送室6Aの搬送室6B側に設置され、ヒンジ82Bは搬送室6Bの搬送室6A側に設置される。すなわち、ヒンジ82A、82Bは搬送室6A、6Bの背面側の隣接面に位置する内側角部付近に互いに隣接するように設置される。メンテナンスエリアは処理モジュール3A背面における処理モジュール3B側と処理モジュール3B背面における処理モジュール3A側とに形成されている。   As shown in FIG. 1, maintenance ports 78A and 78B are formed on the back sides of the transfer chambers 6A and 6B, respectively. The maintenance port 78A is formed on the transfer chamber 6B side of the transfer chamber 6A, and the maintenance port 78B is formed on the transfer chamber 6A side of the transfer chamber 6B. Maintenance ports 78A and 78B are opened and closed by maintenance doors 80A and 80B. The maintenance doors 80A and 80B are configured to be rotatable about the hinges 82A and 82B. The hinge 82A is installed on the transfer chamber 6B side of the transfer chamber 6A, and the hinge 82B is installed on the transfer chamber 6A side of the transfer chamber 6B. That is, the hinges 82A and 82B are installed so as to be adjacent to each other in the vicinity of the inner corner located on the adjacent surface on the back side of the transfer chambers 6A and 6B. The maintenance area is formed on the processing module 3B side on the back side of the processing module 3A and on the processing module 3A side on the back side of the processing module 3B.

想像線で示すように、メンテナンス扉80A、80Bがヒンジ82A、82Bを中心にして搬送室6A、6Bの背面側後方に水平に回動されることにより、背面メンテナンス口78A、78Bが開かれる。メンテナンス扉80Aは、搬送室6Aに向かって左開きに180°まで開放可能なように構成される。メンテナンス扉80Bは、搬送室6Bに向かって右開きに180°まで開放可能なように構成される。すなわち、搬送室6Aに向かって、メンテナンス扉80Aは時計回りに回動し、メンテナンス扉80Bは反時計回りに回動する。言い換えれば、メンテナンス扉80A、80Bは、互いに反対方向に回動される。メンテナンス扉80A、80Bは取外し可能に構成されており、取り外してメンテナンスを行っても良い。   As indicated by the imaginary line, the maintenance doors 80A and 80B are horizontally rotated around the hinges 82A and 82B toward the rear side of the transfer chambers 6A and 6B, thereby opening the rear maintenance ports 78A and 78B. The maintenance door 80A is configured to be able to open up to 180 ° to the left toward the transfer chamber 6A. The maintenance door 80B is configured to be able to open up to 180 ° rightward toward the transfer chamber 6B. That is, toward the transfer chamber 6A, the maintenance door 80A rotates clockwise, and the maintenance door 80B rotates counterclockwise. In other words, the maintenance doors 80A and 80B are rotated in opposite directions. The maintenance doors 80A and 80B are configured to be removable, and maintenance may be performed by removing them.

搬送室6A、6Bの背面近傍には、ユーティリティ系70A、70Bが設置されている。ユーティリティ系70A、70Bはメンテナンスリアを介在して対向して配置される。ユーティリティ系70A、70Bのメンテナンスを行う際は、ユーティリティ系70A、70Bの内側、すなわち、ユーティリティ系70A、70Bの間の空間(メンテナンスエリア)から行う。ユーティリティ系70A、70Bは、筐体側(搬送室6A、6B側)からそれぞれ順に、排気ボックス74A、74B、供給ボックス72A、72B、コントローラボックス76A、76Bで構成されている。ユーティリティ系70A、70Bの各ボックスのメンテナンス口はそれぞれ内側(メンテナンスエリア側)に形成されている。すなわち、ユーティリティ系70A、70Bの各ボックスのメンテナンス口は互いに向かい合うように形成されている。   Utility systems 70A and 70B are installed in the vicinity of the back surfaces of the transfer chambers 6A and 6B. Utility systems 70A and 70B are arranged to face each other with a maintenance rear interposed therebetween. When the maintenance of the utility systems 70A and 70B is performed, the maintenance is performed inside the utility systems 70A and 70B, that is, from the space (maintenance area) between the utility systems 70A and 70B. The utility systems 70A and 70B are configured by exhaust boxes 74A and 74B, supply boxes 72A and 72B, and controller boxes 76A and 76B in this order from the housing side (the transfer chambers 6A and 6B side). The maintenance ports of the utilities 70A and 70B are formed on the inner side (maintenance area side). That is, the maintenance ports of the utilities 70A and 70B are formed so as to face each other.

排気ボックス74Aは、搬送室6Aの背面における搬送室6Bとは反対側に位置する外側角部に配置される。排気ボックス74Bは、搬送室6Bの背面における搬送室6Aとは反対側に位置する外側角部に配置される。すなわち、排気ボックス74A、74Bは、搬送室6A、6Bの外側側面と排気ボックス74A、74Bの外側側面とが平面に接続するように、平坦に(なめらかに)設置される。供給ボックス72Aは、排気ボックス74Aの搬送室6Aに隣接する側と反対側に隣接して配置される。供給ボックス72Bは、排気ボックス74Bの搬送室6Bに隣接する側と反対側に隣接して配置される。   The exhaust box 74A is disposed at an outer corner located on the opposite side to the transfer chamber 6B on the back surface of the transfer chamber 6A. The exhaust box 74B is disposed at an outer corner located on the opposite side of the transfer chamber 6B from the transfer chamber 6A. That is, the exhaust boxes 74A and 74B are installed flat (smoothly) so that the outer side surfaces of the transfer chambers 6A and 6B and the outer side surfaces of the exhaust boxes 74A and 74B are connected to a plane. The supply box 72A is disposed adjacent to the side of the exhaust box 74A opposite to the side adjacent to the transfer chamber 6A. The supply box 72B is disposed adjacent to the side of the exhaust box 74B opposite to the side adjacent to the transfer chamber 6B.

上面視において、排気ボックス74A、74Bの厚さ(短辺方向の幅)は供給ボックス72A、72Bの厚さより小さくなっている。言い換えれば、排気ボックス74A、74Bよりも供給ボックス72A、72Bの方が、メンテナンスエリア側に突出している。供給ボックス72A、72B内には、ガス集積システムや多数の付帯設備が配置されているため、排気ボックス72A、72Bよりも厚さが大きくなってしまうことがある。そこで、排気ボックス72A、72Bを筐体側に設置することにより、メンテナンス扉80A,80B前のメンテナンスエリアを広く確保することができる。すなわち、上面視において、供給ボックス72A、72B間の距離よりも、排気ボックス74A、74B間の距離の方が大きくなっているため、供給ボックス72A,72Bを筐体側に設置するよりも、排気ボックス74A、74Bを筐体側に設置した方が、メンテナンススペースを広く確保することができる。   When viewed from above, the thickness (width in the short side direction) of the exhaust boxes 74A and 74B is smaller than the thickness of the supply boxes 72A and 72B. In other words, the supply boxes 72A and 72B protrude toward the maintenance area side than the exhaust boxes 74A and 74B. In the supply boxes 72A and 72B, since a gas accumulation system and a number of incidental facilities are arranged, the thickness may be larger than that of the exhaust boxes 72A and 72B. Therefore, by installing the exhaust boxes 72A and 72B on the housing side, a wide maintenance area in front of the maintenance doors 80A and 80B can be secured. That is, in the top view, the distance between the exhaust boxes 74A and 74B is larger than the distance between the supply boxes 72A and 72B. A wider maintenance space can be secured by installing 74A and 74B on the housing side.

図3に示すように、ガス供給機構34A、34Bのファイナルバルブ(ガス供給系の最下段に位置するバルブ40a、40b)は、排気ボックス74A、74Bの上方に配置されている。好ましくは、排気ボックス74A、74Bの真上(直上)に配置されている。このような構成により、供給ボックス72A、72Bを筐体側から離れたところに設置しても、ファイナルバルブから処理室内への配管長を短くすることができるため、成膜の品質を向上させることができる。   As shown in FIG. 3, final valves (valves 40a and 40b located at the lowest stage of the gas supply system) of the gas supply mechanisms 34A and 34B are arranged above the exhaust boxes 74A and 74B. Preferably, the exhaust boxes 74A and 74B are disposed directly above (directly above). With such a configuration, the piping length from the final valve to the processing chamber can be shortened even when the supply boxes 72A and 72B are installed away from the housing side, so that the quality of film formation can be improved. it can.

図5に示すように、処理モジュール3A、3Bおよびユーティリティ系70A、70Bの各構成は、処理モジュール3A、3Bの隣接面Sに対して面対称に配置されている。排気管46A、46Bはそれぞれが角部方向を臨むように、すなわち、排気管46A、46Bが、排気ボックス74A、74B方向を臨むように反応管10A、10Bが設置される。また、ファイナルバルブからノズルまでの配管長が、処理モジュール3A、3Bで略同じ長さとなるように配管が配置されている。さらに、図5中の矢印で示すように、ウエハWの回転方向も処理炉4A、4Bにおいて互いに反対方向となるように構成される。 As shown in FIG. 5, the processing module 3A, 3B and utility system 70A, each configuration of 70B, processing modules 3A, are disposed plane-symmetrically with respect to the adjacent surface S 1 of 3B. The reaction tubes 10A, 10B are installed so that the exhaust pipes 46A, 46B face the corner direction, that is, the exhaust pipes 46A, 46B face the exhaust box 74A, 74B direction. The pipes are arranged so that the pipe lengths from the final valve to the nozzles are substantially the same in the processing modules 3A and 3B. Further, as indicated by arrows in FIG. 5, the rotation direction of the wafer W is also configured to be opposite to each other in the processing furnaces 4A and 4B.

次に、処理装置2のメンテナンスについて説明する。
搬送室6A内が不活性ガスで循環パージされている場合、メンテナンス扉80Aを開放できないようにインターロックが設定されている。また、搬送室6A内の酸素濃度が大気圧における酸素濃度よりも低い場合も、メンテナンス扉80Aを開放できないようにインターロックが設定されている。メンテナンス扉80Bに関しても同様である。さらに、メンテナンス扉80A、80Bを開いているときは、ゲートバルブ90A、90Bを開放できないようにインターロックが設定されている。メンテナンス扉80A、80Bが開の状態でゲートバルブ90A、90Bを開とする場合は、処理装置2全体をメンテナンスモードとした上で、別途設置されているメンテナンススイッチをオンとすることにより、ゲートバルブ90A、90Bに関するインターロックが解除され、ゲートバルブ90A、90Bを開とすることができる。
Next, maintenance of the processing apparatus 2 will be described.
When the inside of the transfer chamber 6A is circulated and purged with an inert gas, an interlock is set so that the maintenance door 80A cannot be opened. Further, the interlock is set so that the maintenance door 80A cannot be opened even when the oxygen concentration in the transfer chamber 6A is lower than the oxygen concentration at atmospheric pressure. The same applies to the maintenance door 80B. Further, when the maintenance doors 80A and 80B are opened, an interlock is set so that the gate valves 90A and 90B cannot be opened. When the gate valves 90A and 90B are opened while the maintenance doors 80A and 80B are open, the gate valve 90A and 90B is set to the maintenance mode and the maintenance switch separately installed is turned on. The interlocks related to 90A and 90B are released, and the gate valves 90A and 90B can be opened.

メンテナンス扉80Aを開ける際は、搬送室6A内の酸素濃度を大気中における酸素濃度以上、好ましくは、大気中における酸素濃度まで上昇させるために、クリーンユニット62Aから搬送室6A内に大気雰囲気を流入させる。この時、搬送室6A内の圧力が、移載室8内の圧力よりも高くならないように、搬送室6A内の循環パージを解除し、搬送室6A内の雰囲気を搬送室6A外に排気するとともに、クリーンユニット62Aのファンの回転数を循環パージ時の回転数よりも落とし、搬送室6A内への大気の流入量を制御する。このように制御することにより、搬送室6A内の酸素濃度を上昇させつつ、搬送室6A内の圧力を移載室8内の圧力よりも低く維持することができる。   When opening the maintenance door 80A, an air atmosphere flows from the clean unit 62A into the transfer chamber 6A in order to increase the oxygen concentration in the transfer chamber 6A to the oxygen concentration in the atmosphere or more, preferably to the oxygen concentration in the atmosphere. Let At this time, the circulation purge in the transfer chamber 6A is canceled and the atmosphere in the transfer chamber 6A is exhausted outside the transfer chamber 6A so that the pressure in the transfer chamber 6A does not become higher than the pressure in the transfer chamber 8. At the same time, the rotational speed of the fan of the clean unit 62A is reduced below the rotational speed at the time of the circulation purge, and the amount of air flowing into the transfer chamber 6A is controlled. By controlling in this way, the pressure in the transfer chamber 6A can be kept lower than the pressure in the transfer chamber 8 while increasing the oxygen concentration in the transfer chamber 6A.

搬送室6A内の酸素濃度が大気圧中における酸素濃度と同等となると、インターロックが解除され、メンテナンス扉80Aを開けることができる。この時、搬送室6A内の酸素濃度が大気圧中における酸素濃度と同等であっても、搬送室6A内の圧力が移載室8内の圧力よりも高い場合は、メンテナンス扉80Aを開放できないように設定されている。メンテナンス扉80Aが開放されると、クリーンユニット62Aのファンの回転数を、少なくとも循環パージ時の回転数よりも大きくする。より好適には、クリーンユニット62Aのファンの回転数を最大とする。   When the oxygen concentration in the transfer chamber 6A becomes equal to the oxygen concentration in atmospheric pressure, the interlock is released and the maintenance door 80A can be opened. At this time, even if the oxygen concentration in the transfer chamber 6A is equal to the oxygen concentration in atmospheric pressure, the maintenance door 80A cannot be opened if the pressure in the transfer chamber 6A is higher than the pressure in the transfer chamber 8. Is set to When the maintenance door 80A is opened, the rotational speed of the fan of the clean unit 62A is made larger than at least the rotational speed during the circulation purge. More preferably, the rotational speed of the fan of the clean unit 62A is maximized.

移載室9内のメンテナンスは、移載室9の前方であって、ポッドオープナが設置されていない部分に形成されたメンテナンス口78Cから行われる。メンテナンス口78Cはメンテナンス扉によって開閉されるよう構成されている。上述のように、処理装置2全体をメンテナンスモードとした際は、ゲートバルブ90A、90Bを開として、ゲートバルブ90A、90B側よりメンテナンスすることも出来る。すなわち、移載室8内のメンテナンスは、装置正面からでも装置背面からでも、どちらからでも実施することができる。   Maintenance in the transfer chamber 9 is performed from a maintenance port 78 </ b> C formed in a portion in front of the transfer chamber 9 where no pod opener is installed. The maintenance port 78C is configured to be opened and closed by a maintenance door. As described above, when the entire processing apparatus 2 is set to the maintenance mode, the gate valves 90A and 90B can be opened and maintenance can be performed from the gate valves 90A and 90B side. That is, the maintenance in the transfer chamber 8 can be performed from either the front of the apparatus or the back of the apparatus.

<本実施形態による効果>
本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
<Effects of this embodiment>
According to the present embodiment, one or more effects shown below can be obtained.

(1)ユーティリティ系を筐体側から排気ボックス、供給ボックスと配置することにより、処理装置背面のメンテナンスエリアを広くすることができる。このような構成により、搬送室背面のメンテナンス口を広く形成することができ、メンテナンス性を向上させることができる。また、処理装置背面のメンテナンスエリアを広くすることで、装置の両側にメンテナンスエリアを確保する必要がないため、装置のフットプリントを低減させることができる。   (1) By arranging the utility system from the housing side to the exhaust box and the supply box, the maintenance area on the rear surface of the processing apparatus can be widened. With such a configuration, the maintenance port on the back surface of the transfer chamber can be widely formed, and the maintainability can be improved. In addition, by widening the maintenance area on the back of the processing apparatus, it is not necessary to secure maintenance areas on both sides of the apparatus, so that the footprint of the apparatus can be reduced.

(2)左右の処理モジュールのユーティリティ系を処理装置の両外側側面に互いに対面して設置することにより、装置背面の空間を左右の処理モジュール共通のメンテナンスエリアとして使用することが可能となる。例えば、従来の装置においては、装置背面の両端に供給ボックスと排気ボックスとを対面するように設置していることがある。このような構成の装置を2つ並べた場合、2つ装置の境界線で、一方の排気ボックスと他方の供給ボックスとが隣接することになる。これに対して本実施形態によれば、2つの処理モジュールの境界線において、ユーティリティ系が配置されていないため、メンテナンスエリアを広く確保することができる。   (2) By installing the utility system of the left and right processing modules facing each other on both outer side surfaces of the processing apparatus, the space on the back of the apparatus can be used as a maintenance area common to the left and right processing modules. For example, in a conventional apparatus, a supply box and an exhaust box may be installed so as to face each other at both ends on the back of the apparatus. When two apparatuses having such a configuration are arranged, one exhaust box and the other supply box are adjacent to each other at the boundary line between the two apparatuses. On the other hand, according to the present embodiment, since a utility system is not arranged at the boundary line between two processing modules, a wide maintenance area can be secured.

(3)ガス供給系のファイナルバルブを排気ボックスの上方に設置することにより、ファイナルバルブから処理室までの配管長を短くすることができる。すなわち、ガス供給時のガス遅延や流量変動等を抑制することができ、成膜の品質を向上させることができる。通常、成膜の品質は、ガス流量やガス圧力等のガス供給条件に影響されるため、反応管内にガスを安定して供給するために供給ボックスを筐体近くに設置することが好まれる。しかしながら、本発明においては、ファイナルバルブを反応管の近くに設置することにより、成膜の品質に悪影響を及ぼすことなく、筐体から離れた位置に供給ボックスを配置することが可能となる。また、排気ボックスを処理容器(反応管)から延在される排気管よりも下方に配置し、その直上にファイナルバルブを配置することにより、処理室までの配管長を短くできる。さらに、ファイナルバルブを排気ボックスの直上に設置することにより、ファイナルバルブの交換等のメンテナンスが容易となる。   (3) By installing the final valve of the gas supply system above the exhaust box, the piping length from the final valve to the processing chamber can be shortened. That is, gas delay and flow rate fluctuations during gas supply can be suppressed, and the quality of film formation can be improved. Usually, since the quality of film formation is affected by gas supply conditions such as gas flow rate and gas pressure, it is preferable to install a supply box near the casing in order to stably supply gas into the reaction tube. However, in the present invention, by providing the final valve near the reaction tube, it is possible to dispose the supply box at a position away from the housing without adversely affecting the quality of film formation. Further, by disposing the exhaust box below the exhaust pipe extending from the processing vessel (reaction tube) and disposing the final valve immediately above it, the piping length to the processing chamber can be shortened. Further, by installing the final valve directly above the exhaust box, maintenance such as replacement of the final valve becomes easy.

(4)処理モジュールの境界を境として線対称に各構成を設置することにより、左右の処理モジュールでの成膜の品質のばらつきを抑制することができる。すなわち、処理モジュール内の各構成、ユーティリティ系、ガス供給管配置や排気配管配置を線対称に設置することにより、供給ボックスから反応管への配管長や、反応管から排気ボックスへの配管長を左右の処理モジュールで略同一とすることができる。これにより、左右の処理モジュールにおいて同様の条件で成膜を実施することができ、成膜の品質を揃えることができるため、生産性を向上させることができる。   (4) By disposing each configuration line-symmetrically with respect to the boundary between the processing modules, it is possible to suppress variations in film formation quality between the left and right processing modules. That is, by installing each configuration in the processing module, utility system, gas supply pipe arrangement and exhaust pipe arrangement symmetrically, the pipe length from the supply box to the reaction pipe and the pipe length from the reaction pipe to the exhaust box can be reduced. The left and right processing modules can be substantially the same. Accordingly, film formation can be performed under the same conditions in the left and right processing modules, and the quality of the film formation can be made uniform, so that productivity can be improved.

(5)メンテナンス扉を2つの処理モジュールの境界側に設置し、他方の処理モジュールに向けて回動するように構成することにより、メンテナンス扉を180度開放することができ、また、搬送室背面のメンテナンス口を広く形成することができるため、メンテナンス性を向上させることができる。   (5) The maintenance door can be opened 180 degrees by installing the maintenance door on the boundary between the two processing modules and rotating toward the other processing module. Since the maintenance port can be formed widely, the maintenance performance can be improved.

(6)一方の処理モジュールで基板処理を行いつつ、他方の処理モジュールや移載室内のメンテナンスをすることが可能となる。これにより、成膜処理を停止せずにメンテナンスができるため、装置の稼働率を上昇させることができ、生産性を向上させることができる。   (6) While performing substrate processing with one processing module, it becomes possible to perform maintenance on the other processing module and the transfer chamber. Thereby, since maintenance can be performed without stopping the film forming process, the operating rate of the apparatus can be increased and productivity can be improved.

(7)一方の処理モジュールのメンテナンス扉を開放する際、搬送室内の圧力を移載室内の圧力よりも低く維持しつつ、搬送室内の酸素濃度を大気圧における酸素濃度へ上昇させることにより、移載室側への搬送室から移載室への雰囲気の流入を抑制することができる。また、メンテナンス扉を開放後は搬送室内のクリーンユニットのファンの回転数を循環パージ時よりも上げることにより、メンテナンス扉開放後(搬送室を大気開放後)も、搬送室内から移載室内へ雰囲気が流入することを抑制することができる。このような構成により、一方の処理モジュールでメンテナンス扉を開放したとしても、他方の処理モジュールを稼働させ続けることが可能となる。すなわち、搬送室でメンテナンスを行っていても、移載室内の清浄雰囲気を保つことができ、また、移載室内の酸素濃度の上昇を抑制することができるため、稼働中の処理モジュールに悪影響を及ぼすことなく、停止中の処理モジュールをメンテナンスすることができる。これにより、一方の処理モジュールを稼働させた状態で他方の処理モジュールのメンテナンスをすることができるため、メンテナンスの際に処理装置全体の稼働を停止させる必要がなく、生産性を向上させることができる。   (7) When opening the maintenance door of one processing module, the oxygen concentration in the transfer chamber is increased to the oxygen concentration at atmospheric pressure while maintaining the pressure in the transfer chamber lower than the pressure in the transfer chamber. Inflow of the atmosphere from the transfer chamber to the transfer chamber to the transfer chamber can be suppressed. In addition, after opening the maintenance door, the number of rotations of the fan of the clean unit in the transfer chamber is increased from that during the circulation purge. Can be prevented from flowing in. With such a configuration, even if the maintenance door is opened in one processing module, the other processing module can continue to operate. That is, even if maintenance is performed in the transfer chamber, a clean atmosphere in the transfer chamber can be maintained, and an increase in oxygen concentration in the transfer chamber can be suppressed. Without being affected, it is possible to maintain the processing module being stopped. As a result, maintenance of the other processing module can be performed while one processing module is in operation, so that it is not necessary to stop operation of the entire processing apparatus during maintenance, and productivity can be improved. .

以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の実施形態では、原料ガスとしてDCSガスを用いる例について説明したが、本発明は、このような態様に限定されない。例えば、原料ガスとしては、DCSガスの他、HCD(SiCl:ヘキサクロロジシラン)ガス、MCS(SiHCl:モノクロロシラン)ガス、TCS(SiHCl:トリクロロシラン)ガス等の無機系ハロシラン原料ガスや、3DMAS(Si[N(CHH:トリスジメチルアミノシラン)ガス、BTBAS(SiH[NH(C)]:ビスターシャリブチルアミノシラン)ガス等のハロゲン基非含有のアミノ系(アミン系)シラン原料ガスや、MS(SiH:モノシラン)ガス、DS(Si:ジシラン)ガス等のハロゲン基非含有の無機系シラン原料ガスを用いることができる。 For example, in the above-described embodiment, the example in which the DCS gas is used as the source gas has been described, but the present invention is not limited to such an aspect. For example, as the source gas, inorganic halosilane source materials such as DCS gas, HCD (Si 2 Cl 6 : hexachlorodisilane) gas, MCS (SiH 3 Cl: monochlorosilane) gas, TCS (SiHCl 3 : trichlorosilane) gas, etc. Halogen group-free such as gas, 3DMAS (Si [N (CH 3 ) 2 ] 3 H: trisdimethylaminosilane) gas, BTBAS (SiH 2 [NH (C 4 H 9 )] 2 : Bisthal butylaminosilane) gas, etc. Amino group (amine) silane source gas, MS (SiH 4 : monosilane) gas, DS (Si 2 H 6 : disilane) gas, and other inorganic group-free silane source gases can be used.

例えば、上述の実施形態では、SiO2膜を形成する例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、これらの他、もしくは、これらに加え、アンモニア(NH)ガス等の窒素(N)含有ガス(窒化ガス)、プロピレン(C)ガス等の炭素(C)含有ガス、三塩化硼素(BCl)ガス等の硼素(B)含有ガス等を用い、SiN膜、SiON膜、SiOCN膜、SiOC膜、SiCN膜、SiBN膜、SiBCN膜等を形成することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。 For example, in the above-described embodiment, the example in which the SiO 2 film is formed has been described. However, the present invention is not limited to such an embodiment. For example, in addition to these, or in addition to these, nitrogen (N) -containing gas (nitriding gas) such as ammonia (NH 3 ) gas, carbon (C) -containing gas such as propylene (C 3 H 6 ) gas, trichloride A boron (B) -containing gas such as boron (BCl 3 ) gas or the like can be used to form a SiN film, a SiON film, a SiOCN film, a SiOC film, a SiCN film, a SiBN film, a SiBCN film, or the like. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.

また例えば、本発明は、ウエハW上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む膜、すなわち、金属系膜を形成する場合においても、好適に適用可能である。   Further, for example, the present invention provides titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) on the wafer W. The present invention can also be suitably applied to the case of forming a film containing a metal element such as

上述の実施形態では、ウエハW上に膜を堆積させる例について説明したが、本発明は、このような態様に限定されない。例えば、ウエハWやウエハW上に形成された膜等に対して、酸化処理、拡散処理、アニール処理、エッチング処理等の処理を行う場合にも、好適に適用可能である。   In the above-described embodiment, an example in which a film is deposited on the wafer W has been described. However, the present invention is not limited to such an aspect. For example, the present invention can also be suitably applied to a case where a process such as an oxidation process, a diffusion process, an annealing process, or an etching process is performed on the wafer W or a film formed on the wafer W.

また、上述の実施形態や変形例は、適宜組み合わせて用いることができる。このときの処理条件は、例えば上述の実施形態や変形例と同様な処理条件とすることができる。   Further, the above-described embodiments and modifications can be used in appropriate combination. The processing conditions at this time can be set to the same processing conditions as in the above-described embodiment or modification, for example.

3・・・処理モジュール
72・・・供給ボックス
74・・・排気ボックス
76・・・コントローラボックス
3 ... Processing module 72 ... Supply box 74 ... Exhaust box 76 ... Controller box

Claims (40)

基板処理用の第1の処理容器を有する第1の処理モジュールと、
前記第1の処理モジュールの側面側に隣接して配置され、基板処理用の第2の処理容器を有する第2の処理モジュールと、
前記第1の処理容器内を排気する第1の排気系と、前記第1の処理容器内に処理ガスを供給する第1の供給系とを含み、前記第1の処理モジュール背面に隣接して配置される第1のユーティリティ系と、
前記第2の処理容器内を排気する第2の排気系と、前記第2の処理容器内に処理ガスを供給する第2の供給系とを含み、前記第2の処理モジュール背面に隣接して配置される第2のユーティリティ系と、
を備え、
前記第1の処理モジュール及び前記第2の処理モジュールの背面方向には、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1の処理モジュール及び前記第2の処理モジュールに対して共通に使用されるメンテナンスエリアが形成され、
前記第1のユーティリティ系及び前記第2のユーティリティ系は、その正面側よりも背面側の方が前記メンテナンスエリアに突出して形成される、基板処理装置。
A first processing module having a first processing vessel for substrate processing;
A second processing module disposed adjacent to a side surface of the first processing module and having a second processing container for substrate processing;
A first exhaust system for exhausting the interior of the first processing container; and a first supply system for supplying a processing gas into the first processing container, adjacent to the rear surface of the first processing module. A first utility system to be arranged;
A second exhaust system for exhausting the inside of the second processing container; and a second supply system for supplying a processing gas into the second processing container, adjacent to the rear surface of the second processing module. A second utility system to be arranged;
With
In the back direction of the first processing module and the second processing module, the first processing module and the second processing module are connected between the first utility system and the second utility system. A common maintenance area is formed for
The substrate processing apparatus, wherein the first utility system and the second utility system are formed such that a rear side protrudes into the maintenance area rather than a front side.
前記第1のユーティリティ系は、前記第1の供給系を含む第1の供給ボックスと、前記第1の排気系を含む第1の排気ボックスを含み、
前記第2のユーティリティ系は、前記第2の供給系を含む第2の供給ボックスと、前記第2の排気系を含む第2の排気ボックスを含む請求項1に記載の基板処理装置。
The first utility system includes a first supply box including the first supply system, and a first exhaust box including the first exhaust system,
The substrate processing apparatus according to claim 1, wherein the second utility system includes a second supply box including the second supply system, and a second exhaust box including the second exhaust system.
前記メンテナンスエリアは、前記第1のユーティリティ系と前記第2のユーティリティ系の背面側よりも前記第1のユーティリティ系と前記第2のユーティリティ系の正面側の方が大きい領域を備える請求項1または請求項2に記載の基板処理装置。   The maintenance area includes a region where the front side of the first utility system and the second utility system is larger than the back side of the first utility system and the second utility system. The substrate processing apparatus according to claim 2. 前記第1の処理容器と前記第1の供給ボックスとの間の第1配管に設けられる第1のファイナルバルブと、
前記第2の処理容器と前記第2の供給ボックスとの間の第2配管に設けられる第2のファイナルバルブとを更に備え、
前記第1のファイナルバルブおよび前記第2のファイナルバルブは、前記メンテナンスエリアを避けて配置される請求項2に記載の基板処理装置。
A first final valve provided in a first pipe between the first processing container and the first supply box;
A second final valve provided in a second pipe between the second processing container and the second supply box;
The substrate processing apparatus according to claim 2, wherein the first final valve and the second final valve are disposed so as to avoid the maintenance area.
前記第1の排気ボックスのメンテナンス口と前記第2の排気ボックスのメンテナンス口は互いに向かい合い、前記第1の供給ボックスのメンテナンス口と前記第2の供給ボックスのメンテナンス口は互いに向かい合うように、前記メンテナンスエリア側に配置される請求項2に記載の基板処理装置。   The maintenance port so that the maintenance port of the first exhaust box and the maintenance port of the second exhaust box face each other, and the maintenance port of the first supply box and the maintenance port of the second supply box face each other. The substrate processing apparatus of Claim 2 arrange | positioned at the area side. 前記第1のユーティリティ系には、前記第1の排気ボックス及び前記第1の供給ボックスよりも背面側に、前記第1のファイナルバルブ、前記第1の排気系及び前記第1の供給系の動作を制御する第1のコントローラを収納する第1のコントローラボックスが設けられ、
前記第2のユーティリティ系には、前記第2の排気ボックス及び前記第2の供給ボックスよりも背面側に、前記第2のファイナルバルブ、前記第2の排気系及び前記第2の供給系の動作を制御する第2のコントローラを収納する第2のコントローラボックスが設けられる請求項4に記載の基板処理装置。
The first utility system includes an operation of the first final valve, the first exhaust system, and the first supply system on the back side of the first exhaust box and the first supply box. A first controller box for storing a first controller for controlling
The second utility system includes operations of the second final valve, the second exhaust system, and the second supply system on the back side of the second exhaust box and the second supply box. The substrate processing apparatus according to claim 4, wherein a second controller box that houses a second controller that controls the substrate is provided.
前記第1の排気ボックスは、少なくとも前記第1の排気系が備える第1のAPCバルブを収納し、
前記第2の排気ボックスは、少なくとも前記第2の排気系が備える第2のAPCバルブを収納する請求項2に記載の基板処理装置。
The first exhaust box houses at least a first APC valve provided in the first exhaust system,
The substrate processing apparatus according to claim 2, wherein the second exhaust box houses at least a second APC valve provided in the second exhaust system.
前記第1の処理モジュールと前記第2の処理モジュールは、前記第1の処理モジュールと前記第2の処理モジュールの隣接面に対して面対称に配置され、
前記第1のユーティリティ系と前記第2のユーティリティ系は、前記隣接面に対して面対称に配置される請求項1または請求項2に記載の基板処理装置。
The first processing module and the second processing module are arranged symmetrically with respect to adjacent surfaces of the first processing module and the second processing module,
The substrate processing apparatus according to claim 1, wherein the first utility system and the second utility system are arranged symmetrically with respect to the adjacent surface.
前記第1の処理容器で処理される基板と、前記第2の処理容器で処理される基板は、互いに反対方向に回転される請求項1または請求項2に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the substrate processed in the first processing container and the substrate processed in the second processing container are rotated in directions opposite to each other. 前記第1の処理容器と前記第2の処理容器は、複数枚の基板を垂直に棚状に支持する基板保持具を内部にそれぞれ収容する請求項1または請求項2に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein each of the first processing container and the second processing container stores therein a substrate holder that supports a plurality of substrates vertically in a shelf shape. 前記第1のファイナルバルブは、前記第1のユーティリティ系の外に設けられ、
前記第2のファイナルバルブは、前記第2のユーティリティ系の外に設けられる請求項4に記載の基板処理装置。
The first final valve is provided outside the first utility system,
The substrate processing apparatus according to claim 4, wherein the second final valve is provided outside the second utility system.
前記第1のコントローラは、前記第1のファイナルバルブに、原料ガスと反応ガスを前記第1の処理容器内へ順次供給するサイクルを複数回行わせることが可能なように構成される請求項6に記載の基板処理装置。   The first controller is configured to allow the first final valve to perform a plurality of cycles in which a source gas and a reaction gas are sequentially supplied into the first processing container. 2. The substrate processing apparatus according to 1. 前記第1のファイナルバルブから前記第1の処理容器への配管長と、前記第2のファイナルバルブから前記第2の処理容器への配管長は、等しく構成される請求項4に記載の基板処理装置。   The substrate processing according to claim 4, wherein a pipe length from the first final valve to the first processing container and a pipe length from the second final valve to the second processing container are configured to be equal. apparatus. 前記第1の処理モジュールと前記第2の処理モジュールは、互いに隙間を設けずに配置される請求項1または請求項2に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the first processing module and the second processing module are arranged without providing a gap therebetween. 前記第1の供給ボックスは、少なくとも前記第1の供給系が備えるガス集積システムを収納し、
前記第2の供給ボックスは、少なくとも前記第2の供給系が備えるガス集積システムを収納する請求項2に記載の基板処理装置。
The first supply box houses at least a gas accumulation system provided in the first supply system,
The substrate processing apparatus according to claim 2, wherein the second supply box houses at least a gas integrated system included in the second supply system.
前記第1のユーティリティ系内において、前記第1の供給ボックス及び前記第1の排気ボックスのうち、厚みの小さい方が、前記第1の処理モジュール側に配置され、
前記第2のユーティリティ系内において、前記第2の供給ボックス及び前記第2の排気ボックスのうち、厚みの小さい方が、前記第2の処理モジュール側に配置される請求項2に記載の基板処理装置。
In the first utility system, the smaller one of the first supply box and the first exhaust box is disposed on the first processing module side,
3. The substrate processing according to claim 2, wherein a smaller one of the second supply box and the second exhaust box is disposed on the second processing module side in the second utility system. apparatus.
前記メンテナンスエリアは、前記第1の処理モジュールの第1の搬送室及び前記第2の処理モジュールの第2の搬送室に対して共通に使用される請求項1または請求項2に記載の基板処理装置。   The substrate processing according to claim 1, wherein the maintenance area is used in common for a first transfer chamber of the first processing module and a second transfer chamber of the second processing module. apparatus. 前記メンテナンスエリアは、前記第1の処理モジュールの第1の搬送室及び前記第2の処理モジュールの第2の搬送室の背面に隣接し、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1のユーティリティ系及び前記第2のユーティリティ系のいずれも存在しなくて、前記第1の搬送室及び前記第2の搬送室に対して共通に使用される請求項1または請求項2に記載の基板処理装置。   The maintenance area is adjacent to the back surface of the first transfer chamber of the first processing module and the second transfer chamber of the second processing module, and the first utility system and the second utility system. The first utility system and the second utility system are not present in between, and are used in common for the first transfer chamber and the second transfer chamber. Item 3. The substrate processing apparatus according to Item 2. 前記メンテナンスエリアは、前記第1の処理モジュールの第1の搬送室の第1のメンテナンス扉及び前記第2の処理モジュールの第2の搬送室の第2のメンテナンス扉の背面に隣接し、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1のユーティリティ系及び前記第2のユーティリティ系のいずれも存在しなくて、前記第1のメンテナンス扉及び前記第2のメンテナンス扉の開閉に対して共通に使用される請求項1または請求項2に記載の基板処理装置。   The maintenance area is adjacent to the back of the first maintenance door of the first transfer chamber of the first processing module and the second maintenance door of the second transfer chamber of the second processing module, and Between the one utility system and the second utility system, neither the first utility system nor the second utility system exists, and the first maintenance door and the second maintenance door 3. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is commonly used for opening and closing. 第1の処理モジュールの第1の処理容器内を排気する第1の排気系と、前記第1の処理容器内に処理ガスを供給する第1の供給系とを含み、前記第1の処理モジュール背面に隣接して配置される第1のユーティリティ系と、
前記第1の処理モジュールの側面側に隣接する第2の処理モジュールの第2の処理容器内を排気する第2の排気系と、前記第2の処理容器内に処理ガスを供給する第2の供給系とを含み、前記第2の処理モジュール背面に隣接して配置される第2のユーティリティ系とを備え、
前記第1の処理モジュール及び前記第2の処理モジュールの背面方向には、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1の処理モジュール及び前記第2の処理モジュールに対して共通に使用されるメンテナンスエリアが形成され、
前記第1のユーティリティ系及び前記第2のユーティリティ系は、その正面側よりも背面側の方が前記メンテナンスエリアに突出して形成される基板処理装置を使用し、
前記第1の供給系から前記第1の処理容器内に処理ガスを供給し、前記第1の排気系から前記第1の処理容器内を排気し、前記第1の処理容器内で基板を処理する第1処理工程と、
前記第2の供給系から前記第2の処理容器内に処理ガスを供給し、前記第2の排気系から前記第2の処理容器内を排気し、前記第2の処理容器内で基板を処理する第2処理工程と、
を有する、半導体装置の製造方法。
A first exhaust system for exhausting the inside of the first processing container of the first processing module; and a first supply system for supplying a processing gas into the first processing container. A first utility system disposed adjacent to the back surface;
A second exhaust system for exhausting the inside of the second processing container of the second processing module adjacent to the side surface of the first processing module; and a second exhaust gas for supplying a processing gas into the second processing container. A second utility system that is disposed adjacent to the back surface of the second processing module.
In the back direction of the first processing module and the second processing module, the first processing module and the second processing module are connected between the first utility system and the second utility system. A common maintenance area is formed for
The first utility system and the second utility system use a substrate processing apparatus formed so that the rear side protrudes into the maintenance area rather than the front side.
Processing gas is supplied from the first supply system into the first processing container, the first processing container is exhausted from the first exhaust system, and the substrate is processed in the first processing container. A first processing step,
A processing gas is supplied from the second supply system into the second processing container, the second processing container is exhausted from the second exhaust system, and the substrate is processed in the second processing container. A second processing step,
A method for manufacturing a semiconductor device, comprising:
前記第1処理工程および前記第2処理工程は、
前記第1のユーティリティ系は、前記第1の供給系を含む第1の供給ボックスと、前記第1の排気系を含む第1の排気ボックスを含み、
前記第2のユーティリティ系は、前記第2の供給系を含む第2の供給ボックスと、前記第2の排気系を含む第2の排気ボックスを含む前記基板処理装置によって行われる請求項20に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The first utility system includes a first supply box including the first supply system, and a first exhaust box including the first exhaust system,
21. The second utility system is performed by the substrate processing apparatus including a second supply box including the second supply system and a second exhaust box including the second exhaust system. Semiconductor device manufacturing method.
前記第1処理工程および前記第2処理工程は、
前記第1のユーティリティ系と前記第2のユーティリティ系の背面側よりも前記第1のユーティリティ系と前記第2のユーティリティ系の正面側の方が大きい前記メンテナンスエリアが構成される前記基板処理装置によって行われる請求項20または請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The substrate processing apparatus in which the maintenance area is configured such that the front side of the first utility system and the second utility system is larger than the back side of the first utility system and the second utility system. The method for manufacturing a semiconductor device according to claim 20, wherein the method is performed.
前記第1の処理容器と前記第1の供給ボックスの間の第1配管に設けられる第1のファイナルバルブと、
前記第2の処理容器と前記第2の供給ボックスの間の第2配管に設けられる第2のファイナルバルブとを更に備え、
前記第1のファイナルバルブおよび前記第2のファイナルバルブは、前記メンテナンスエリアを避けて配置される前記基板処理装置を使用し、
前記第1処理工程では、前記第1のファイナルバルブを介して、前記処理ガスが前記第1の処理容器に供給され、
前記第2処理工程では、前記第2のファイナルバルブを介して、前記処理ガスが前記第2の処理容器に供給される請求項21に記載の半導体装置の製造方法。
A first final valve provided in a first pipe between the first processing container and the first supply box;
A second final valve provided in a second pipe between the second processing container and the second supply box;
The first final valve and the second final valve use the substrate processing apparatus arranged to avoid the maintenance area,
In the first processing step, the processing gas is supplied to the first processing container via the first final valve,
The method of manufacturing a semiconductor device according to claim 21, wherein, in the second processing step, the processing gas is supplied to the second processing container via the second final valve.
前記第1処理工程および前記第2処理工程は、
前記第1の排気ボックスのメンテナンス口と前記第2の排気ボックスのメンテナンス口は互いに向かい合い、前記第1の供給ボックスのメンテナンス口と前記第2の供給ボックスのメンテナンス口は互いに向かい合うように、前記メンテナンスエリア側に配置された前記基板処理装置によって行われる請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The maintenance port so that the maintenance port of the first exhaust box and the maintenance port of the second exhaust box face each other, and the maintenance port of the first supply box and the maintenance port of the second supply box face each other. The method for manufacturing a semiconductor device according to claim 21, wherein the method is performed by the substrate processing apparatus disposed on an area side.
前記第1処理工程では、前記第1のユーティリティ系の、前記第1の排気ボックス及び前記第1の供給ボックスよりも背面側に設けられた第1のコントローラボックスに収納された第1のコントローラにより、前記第1のファイナルバルブ、前記第1の排気系及び前記第1の供給系の動作を制御し、
前記第2処理工程では、前記第2のユーティリティ系の、前記第2の排気ボックス及び前記第2の供給ボックスよりも背面側に設けられた第2のコントローラボックスに収納された第2のコントローラにより、前記第2のファイナルバルブ、前記第2の排気系及び前記第2の供給系の動作を制御する請求項23に記載の半導体装置の製造方法。
In the first processing step, the first utility system includes a first controller housed in a first controller box provided on the back side of the first exhaust box and the first supply box. Controlling the operations of the first final valve, the first exhaust system and the first supply system;
In the second processing step, the second utility system includes a second controller housed in a second controller box provided on the back side of the second exhaust box and the second supply box. 24. The method of manufacturing a semiconductor device according to claim 23, wherein operations of the second final valve, the second exhaust system, and the second supply system are controlled.
前記第1処理工程では、前記第1の排気ボックスに収納された、前記第1の排気系が備えるAPCバルブにて前記第1の処理容器内の排気を制御する工程を有し、
前記第2処理工程では、前記第2の排気ボックスに収納された、前記第2の排気系が備えるAPCバルブにて前記第2の処理容器内の排気を制御する工程を有する請求項21に記載の半導体装置の製造方法。
The first processing step includes a step of controlling exhaust in the first processing container by an APC valve provided in the first exhaust system and housed in the first exhaust box.
The said 2nd process process has the process of controlling the exhaust_gas | exhaustion in a said 2nd process container by the APC valve with which the said 2nd exhaust system accommodated in the said 2nd exhaust box is equipped. Semiconductor device manufacturing method.
前記第1処理工程および前記第2処理工程は、
前記第1の処理モジュールと前記第2の処理モジュールが、前記第1の処理モジュールと前記第2の処理モジュールの隣接面に対して面対称に配置され、
前記第1のユーティリティ系と前記第2のユーティリティ系が、前記隣接面に対して面対称に配置された前記基板処理装置によって行われる請求項20または請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The first processing module and the second processing module are arranged in plane symmetry with respect to adjacent surfaces of the first processing module and the second processing module;
The method for manufacturing a semiconductor device according to claim 20 or 21, wherein the first utility system and the second utility system are performed by the substrate processing apparatus arranged in plane symmetry with respect to the adjacent surface.
前記第1処理工程では、前記第1の処理容器で基板を回転させて処理し、
前記第2処理工程では、前記第2の処理容器で、前記第1の処理容器での基板の回転方向と反対方向に基板を回転させて処理する請求項20または請求項21に記載の半導体装置の製造方法。
In the first processing step, the substrate is rotated and processed in the first processing container,
The semiconductor device according to claim 20 or 21, wherein, in the second processing step, processing is performed by rotating the substrate in a direction opposite to a rotation direction of the substrate in the first processing container in the second processing container. Manufacturing method.
前記第1処理工程では、前記第1の処理容器で複数枚の基板を垂直に棚状に支持する基板保持具を内部にそれぞれ収容させて処理し、
前記第2処理工程では、前記第2の処理容器で複数枚の基板を垂直に棚状に支持する基板保持具を内部にそれぞれ収容させて処理する請求項20または請求項21に記載の半導体装置の製造方法。
In the first processing step, a substrate holder for supporting a plurality of substrates vertically in a shelf shape in the first processing container is respectively housed and processed,
The semiconductor device according to claim 20 or 21, wherein, in the second processing step, a substrate holder for supporting a plurality of substrates vertically in a shelf shape in the second processing container is respectively accommodated and processed. Manufacturing method.
前記第1処理工程では、前記第1のユーティリティ系の外に設けられた前記第1のファイナルバルブを介して前記処理ガスを前記第1の処理容器に供給し、
前記第2処理工程では、前記第2のユーティリティ系の外に設けられた前記第2のファイナルバルブを介して前記処理ガスを前記第2の処理容器に供給する請求項23に記載の半導体装置の製造方法。
In the first processing step, the processing gas is supplied to the first processing container via the first final valve provided outside the first utility system,
24. The semiconductor device according to claim 23, wherein, in the second processing step, the processing gas is supplied to the second processing container via the second final valve provided outside the second utility system. Production method.
前記第1処理工程では、前記第1のコントローラが、前記第1のファイナルバルブに、原料ガスと反応ガスを前記第1の処理容器内へ順次供給するサイクルを複数回行わせる請求項25に記載の半導体装置の製造方法。   26. In the first processing step, the first controller causes the first final valve to perform a cycle of sequentially supplying a source gas and a reaction gas into the first processing container a plurality of times. Semiconductor device manufacturing method. 前記第1処理工程および前記第2処理工程は、
前記第1のファイナルバルブから前記第1の処理容器への配管長と、前記第2のファイナルバルブから前記第2の処理容器への配管長が等しい前記基板処理装置によって行われる請求項23に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
24. The substrate processing apparatus according to claim 23, wherein a pipe length from the first final valve to the first processing container is equal to a pipe length from the second final valve to the second processing container. Semiconductor device manufacturing method.
前記第1処理工程および前記第2処理工程は、
前記第1の処理モジュールと前記第2の処理モジュールは、互いに隙間を設けずに配置された前記基板処理装置によって行われる請求項20または請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The method of manufacturing a semiconductor device according to claim 20 or 21, wherein the first processing module and the second processing module are performed by the substrate processing apparatus arranged without providing a gap therebetween.
前記第1処理工程では、前記第1の供給ボックスに収納された、前記第1の供給系が備えるガス集積システムにて前記第1の処理容器内への前記処理ガスの供給を制御する工程を有し、
前記第2処理工程では、前記第2の供給ボックスに収納された、前記第2の供給系が備えるガス集積システムにて前記第2の処理容器内への前記処理ガスの供給を制御する工程を有する請求項21に記載の半導体装置の製造方法。
In the first processing step, a step of controlling the supply of the processing gas into the first processing container in a gas accumulation system provided in the first supply system and housed in the first supply box. Have
In the second processing step, a step of controlling the supply of the processing gas into the second processing container in a gas integrated system provided in the second supply system and housed in the second supply box. A method for manufacturing a semiconductor device according to claim 21.
前記第1処理工程および前記第2処理工程は、
前記第1のユーティリティ系内において、前記第1の供給ボックス及び前記第1の排気ボックスのうち、厚みの小さい方が、前記第1の処理モジュール側に配置され、
前記第2のユーティリティ系内において、前記第2の供給ボックス及び前記第2の排気ボックスのうち、厚みの小さい方が、前記第2の処理モジュール側に配置される前記基板処理装置によって行われる請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
In the first utility system, the smaller one of the first supply box and the first exhaust box is disposed on the first processing module side,
In the second utility system, the smaller one of the second supply box and the second exhaust box is performed by the substrate processing apparatus disposed on the second processing module side. Item 22. A method for manufacturing a semiconductor device according to Item 21.
前記第1処理工程および前記第2処理工程は、
前記メンテナンスエリアが、前記第1の処理モジュールの第1の搬送室及び前記第2の処理モジュールの第2の搬送室に対して共通に使用されるように構成された前記基板処理装置によって行われる請求項20または請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The maintenance area is performed by the substrate processing apparatus configured to be used in common for the first transfer chamber of the first processing module and the second transfer chamber of the second processing module. A method for manufacturing a semiconductor device according to claim 20 or claim 21.
前記第1処理工程および前記第2処理工程は、
前記メンテナンスエリアが、前記第1の処理モジュールの第1の搬送室及び前記第2の処理モジュールの第2の搬送室の背面に隣接し、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1のユーティリティ系及び前記第2のユーティリティ系のいずれも存在しなくて、前記第1の搬送室及び前記第2の搬送室に対して共通に使用されるように構成された前記基板処理装置によって行われる請求項20または請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The maintenance area is adjacent to the back of the first transfer chamber of the first processing module and the second transfer chamber of the second processing module, and the first utility system and the second utility system In the meantime, neither the first utility system nor the second utility system exists, and it is configured to be used in common for the first transfer chamber and the second transfer chamber. The method for manufacturing a semiconductor device according to claim 20, wherein the method is performed by the substrate processing apparatus.
前記第1処理工程および前記第2処理工程は、
前記メンテナンスエリアが、前記第1の処理モジュールの第1の搬送室の第1のメンテナンス扉及び前記第2の処理モジュールの第2の搬送室の第2のメンテナンス扉の背面に隣接し、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1のユーティリティ系及び前記第2のユーティリティ系のいずれも存在しなくて、前記第1のメンテナンス扉及び前記第2のメンテナンス扉の開閉に対して共通に使用されるように構成された前記基板処理装置によって行われる請求項20または請求項21に記載の半導体装置の製造方法。
The first processing step and the second processing step are:
The maintenance area is adjacent to the back of the first maintenance door of the first transfer chamber of the first processing module and the second maintenance door of the second transfer chamber of the second processing module, and Between the one utility system and the second utility system, neither the first utility system nor the second utility system exists, and the first maintenance door and the second maintenance door The method for manufacturing a semiconductor device according to claim 20 or 21, wherein the method is performed by the substrate processing apparatus configured to be commonly used for opening and closing.
第1の処理モジュールの第1の処理容器内を排気する第1の排気系と、前記第1の処理容器内に処理ガスを供給する第1の供給系とを含み、前記第1の処理モジュール背面に隣接して配置される第1のユーティリティ系と、
前記第1の処理モジュールの側面側に隣接する第2の処理モジュールの第2の処理容器内を排気する第2の排気系と、前記第2の処理容器内に処理ガスを供給する第2の供給系とを含み、前記第2の処理モジュール背面に隣接して配置される第2のユーティリティ系とを備え、
前記第1の処理モジュール及び前記第2の処理モジュールの背面方向には、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1の処理モジュール及び前記第2の処理モジュールに対して共通に使用されるメンテナンスエリアが形成され、
前記第1のユーティリティ系及び前記第2のユーティリティ系は、その正面側よりも背面側の方が前記メンテナンスエリアに突出して形成される基板処理装置によって、
前記第1の供給系から前記第1の処理容器内に処理ガスを供給し、前記第1の排気系から前記第1の処理容器内を排気し、前記第1の処理容器内で基板を処理する第1処理手順と、
前記第2の供給系から前記第2の処理容器内に処理ガスを供給し、前記第2の排気系から前記第2の処理容器内を排気し、前記第2の処理容器内で基板を処理する第2処理手順と、
を行わせるコンピュータ読み取り可能な記録媒体に格納されたプログラム。
A first exhaust system for exhausting the inside of the first processing container of the first processing module; and a first supply system for supplying a processing gas into the first processing container. A first utility system disposed adjacent to the back surface;
A second exhaust system for exhausting the inside of the second processing container of the second processing module adjacent to the side surface of the first processing module; and a second exhaust gas for supplying a processing gas into the second processing container. A second utility system that is disposed adjacent to the back surface of the second processing module.
In the back direction of the first processing module and the second processing module, the first processing module and the second processing module are connected between the first utility system and the second utility system. A common maintenance area is formed for
The first utility system and the second utility system are formed by a substrate processing apparatus formed so that the rear side protrudes into the maintenance area rather than the front side.
Processing gas is supplied from the first supply system into the first processing container, the first processing container is exhausted from the first exhaust system, and the substrate is processed in the first processing container. A first processing procedure,
A processing gas is supplied from the second supply system into the second processing container, the second processing container is exhausted from the second exhaust system, and the substrate is processed in the second processing container. A second processing procedure,
A program stored in a computer-readable recording medium for performing
第1の処理モジュールの第1の処理容器内を排気する第1の排気系と、前記第1の処理容器内に処理ガスを供給する第1の供給系とを含み、前記第1の処理モジュール背面に隣接して配置される第1のユーティリティ系と、
前記第1の処理モジュールの側面側に隣接する第2の処理モジュールの第2の処理容器内を排気する第2の排気系と、前記第2の処理容器内に処理ガスを供給する第2の供給系とを含み、前記第2の処理モジュール背面に隣接して配置される第2のユーティリティ系とを備え、
前記第1の処理モジュール及び前記第2の処理モジュールの背面方向には、前記第1のユーティリティ系及び前記第2のユーティリティ系の間において、前記第1の処理モジュール及び前記第2の処理モジュールに対して共通に使用されるメンテナンスエリアが形成され、
前記第1のユーティリティ系及び前記第2のユーティリティ系は、その正面側よりも背面側の方が前記メンテナンスエリアに突出して形成される基板処理装置によって、
前記第1の供給系から前記第1の処理容器内に処理ガスを供給し、前記第1の排気系から前記第1の処理容器内を排気し、前記第1の処理容器内で基板を処理する第1処理手順と、
前記第2の供給系から前記第2の処理容器内に処理ガスを供給し、前記第2の排気系から前記第2の処理容器内を排気し、前記第2の処理容器内で基板を処理する第2処理手順と、
を行わせるプログラムを格納したコンピュータ読み取り可能な記録媒体。
A first exhaust system for exhausting the inside of the first processing container of the first processing module; and a first supply system for supplying a processing gas into the first processing container. A first utility system disposed adjacent to the back surface;
A second exhaust system for exhausting the inside of the second processing container of the second processing module adjacent to the side surface of the first processing module; and a second exhaust gas for supplying a processing gas into the second processing container. A second utility system that is disposed adjacent to the back surface of the second processing module.
In the back direction of the first processing module and the second processing module, the first processing module and the second processing module are connected between the first utility system and the second utility system. A common maintenance area is formed for
The first utility system and the second utility system are formed by a substrate processing apparatus formed so that the rear side protrudes into the maintenance area rather than the front side.
Processing gas is supplied from the first supply system into the first processing container, the first processing container is exhausted from the first exhaust system, and the substrate is processed in the first processing container. A first processing procedure,
A processing gas is supplied from the second supply system into the second processing container, the second processing container is exhausted from the second exhaust system, and the substrate is processed in the second processing container. A second processing procedure,
A computer-readable recording medium storing a program for performing the operation.
JP2019059946A 2019-03-27 2019-03-27 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium Active JP6616917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019059946A JP6616917B2 (en) 2019-03-27 2019-03-27 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019059946A JP6616917B2 (en) 2019-03-27 2019-03-27 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018524671A Division JP6621921B2 (en) 2016-06-30 2016-06-30 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium

Publications (2)

Publication Number Publication Date
JP2019110340A JP2019110340A (en) 2019-07-04
JP6616917B2 true JP6616917B2 (en) 2019-12-04

Family

ID=67180190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019059946A Active JP6616917B2 (en) 2019-03-27 2019-03-27 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium

Country Status (1)

Country Link
JP (1) JP6616917B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240001948A (en) 2022-06-28 2024-01-04 주식회사 원익아이피에스 Substrate processing apparatus and substrate processing system having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204449A (en) * 1998-01-14 1999-07-30 Tokyo Electron Ltd Vertical heat treatment system
JP2001023872A (en) * 1999-07-09 2001-01-26 Hitachi Ltd Semiconductor substrate processing apparatus
JP4384770B2 (en) * 2000-01-27 2009-12-16 株式会社日立国際電気 Substrate processing equipment
JP3610900B2 (en) * 2000-11-30 2005-01-19 東京エレクトロン株式会社 Heat treatment equipment
JP4884607B2 (en) * 2001-07-12 2012-02-29 東京エレクトロン株式会社 Heat treatment equipment
JP5921168B2 (en) * 2011-11-29 2016-05-24 株式会社日立国際電気 Substrate processing equipment

Also Published As

Publication number Publication date
JP2019110340A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6621921B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
JP7429747B2 (en) Substrate processing equipment, semiconductor device manufacturing method and program
WO2017138087A1 (en) Substrate treatment apparatus and method for manufacturing semiconductor device
JP6616917B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
JP6591710B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
JP6591711B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
JP6591712B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
JP6625256B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
CN216049147U (en) Protective member for work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191108

R150 Certificate of patent or registration of utility model

Ref document number: 6616917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250