JP6410531B2 - Magnet film manufacturing method and magnet film card using the product - Google Patents

Magnet film manufacturing method and magnet film card using the product Download PDF

Info

Publication number
JP6410531B2
JP6410531B2 JP2014180363A JP2014180363A JP6410531B2 JP 6410531 B2 JP6410531 B2 JP 6410531B2 JP 2014180363 A JP2014180363 A JP 2014180363A JP 2014180363 A JP2014180363 A JP 2014180363A JP 6410531 B2 JP6410531 B2 JP 6410531B2
Authority
JP
Japan
Prior art keywords
magnetic
film
pole
magnet
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014180363A
Other languages
Japanese (ja)
Other versions
JP2016054264A (en
Inventor
清 前橋
清 前橋
一正 藤井
一正 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichilaymagnet Co Ltd
Original Assignee
Nichilaymagnet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichilaymagnet Co Ltd filed Critical Nichilaymagnet Co Ltd
Priority to JP2014180363A priority Critical patent/JP6410531B2/en
Publication of JP2016054264A publication Critical patent/JP2016054264A/en
Application granted granted Critical
Publication of JP6410531B2 publication Critical patent/JP6410531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

本発明は、硬質磁性材料粉と粘結材である有機高分子エラストマーと溶剤を主たる成分とする磁性塗料を、支持体の片面に塗布、乾燥して磁性塗膜を形成した磁性フィルムに多極着磁を施して成る磁石フィルムに関するものである。そうして該磁石フィルムは掲示板の表示、室内壁面の表装、各種カードなどに使用されるものである。   The present invention is applied to a magnetic film in which a magnetic coating material comprising a hard magnetic material powder, an organic polymer elastomer as a binder and a solvent as main components is applied to one side of a support and dried to form a magnetic coating film. The present invention relates to a magnetized film. Thus, the magnet film is used for the display of a bulletin board, the cover of the indoor wall surface, various cards and the like.

従来の磁性塗料を用いて磁性層を形成した磁性フィルムは、磁性塗料を支持体の片面に塗布し異方性の硬質磁性材料粉の磁化容易軸を支持体面と平行の方向(面内方向)に磁場配向したものである。
該磁性フィルムに多極着磁を施すには、異方性硬質磁性材料粉の磁化容易軸の配向方向に対して多極着磁の磁極方向を直角にして磁束の向きが磁化容易軸方向になるように着磁をすることが必須条件である。しかし用途的に場合によっては、磁極方向を変化出来ないことは大変不都合な事である。先行技術文献としては下記の特許文献があるが全て面内配向技術を用いたものである。
A magnetic film in which a magnetic layer is formed using a conventional magnetic paint, the magnetic paint is applied to one side of the support, and the axis of easy magnetization of the anisotropic hard magnetic material powder is parallel to the support surface (in-plane direction) Are magnetically oriented.
In order to perform multipolar magnetization on the magnetic film, the magnetic pole direction of the multipolar magnetization is perpendicular to the orientation direction of the easy magnetization axis of the anisotropic hard magnetic material powder so that the direction of the magnetic flux is the easy magnetization axis direction. It is an indispensable condition to be magnetized. However, depending on the application, it is very inconvenient that the magnetic pole direction cannot be changed. Prior art documents include the following patent documents, but all use the in-plane orientation technique.

特公告昭63−6128号公報Japanese Patent Publication No. 63-6128 特開2001−76920号公報JP 2001-76920 A 特許第3271620号公報Japanese Patent No. 3271620 特許第3297807号公報Japanese Patent No. 3297807 特許第3309854号公報Japanese Patent No. 3309854 特許第3309855号公報Japanese Patent No. 3309855 特許第3326690号公報Japanese Patent No. 3326690 特許第3429503号公報Japanese Patent No. 3429503

従来の異方性の磁石フィルムは、薄層磁石の割に磁気吸着力が強く、薄層であることから印刷加工がし易く軽量で取り扱性に優れたものと言われていたが、近時、用途拡大に伴い定尺に裁断して複数枚重ねて取り扱う時に、接触する表裏が磁気吸着力で磁着して四隅を揃えて重ねる事が困難なことなどが問題視され、解決策が強く求められるように成った。本発明はこの問題などを解決するものである。   Conventional anisotropic magnet films have a strong magnetic attraction compared to thin-layer magnets, and since they are thin layers, they are said to be easy to print and lightweight and have excellent handling properties. At times, as the application expands, it is considered as a problem that it is difficult to align the four corners by magnetically adhering the front and back to touch when multiple sheets are cut into a standard size and handled in layers. It came to be strongly demanded. The present invention solves this problem and the like.

上記問題を解決するために種々検討を行った結果、定尺に裁断した磁石シート(カード)同士が重なった場合に、両者が同一極間の場合は磁極方向が重なることで、両者の表面同士、又は裏面同士、または表裏面間で磁気吸着力が生じる不都合に対して、多極着磁の極間を不規則に変えた着磁を施すこと、又、両者の磁極方向を交差することで相互の磁気吸着力が低下すること、又、多極着磁の極間を不規則に変え且つ磁極方向を交差することで更に両者の表裏間の磁気吸着力低減効果が向上すること。
As a result of various investigations to solve the above problem, when the magnetic sheets (cards) cut to a fixed size overlap each other, the magnetic pole directions overlap when both are in the same pole, Or, for the inconvenience that magnetic attraction force occurs between the back surfaces or between the front and back surfaces, magnetizing the poles of the multipolar magnetization irregularly , and crossing the magnetic pole directions of both The mutual magnetic attraction force is reduced, and the effect of reducing the magnetic attraction force between the two sides is further improved by irregularly changing the poles of multipolar magnetization and crossing the magnetic pole directions.

更に、それに伴い多極着磁の磁極方向を不規則に変えた着磁を施すことで磁石フィルム同士が異極との磁気吸引力で磁極に沿って斜め向きに磁気吸着した状態から、磁気吸着力に抗して端部を揃える作業で飛び出た端部をテーブル面に当てる(図19)衝撃などによって生じる変形〜傷付きを防止する為に、磁石フィルムの両面に支持体(フィルム)を設けることの効果が大であること、及び多極着磁の極間を不規則に変えて着磁を施した場合に近傍の異極間の磁気吸引吸着による波うち変形の発生(図15)を防止する効果が大(図16)であり、又、それによって全体的に両者間の磁気吸着力を低減する効果があることを見出した。
In addition, the magnetic film is magnetized in an oblique direction along the magnetic poles by magnetic attraction with different polarities by magnetizing the magnetic poles of the multipolar magnets irregularly. The end part that protrudes in the process of aligning the end part against the force is applied to the table surface (FIG. 19). In order to prevent deformation or damage caused by impact or the like, support bodies (films) are provided on both sides of the magnet film. And the occurrence of wave deformation due to magnetic attraction between adjacent different poles when magnetizing by irregularly changing between the poles of multipolar magnetization (Fig. 15). It has been found that the effect of preventing is great (FIG. 16), and that it has the effect of reducing the magnetic attractive force between the two as a whole.

又、従来の面内磁場配向技術による磁石フィルムを用いて、重ねた時に磁極方向が交差するように、四角形の定尺品の一辺が磁場配向方向に対して所定の範囲内で任意の角度で裁断をすることで、原反に所定の範囲内で任意の角度で斜めに着磁を施したものと同様になるようにする手段(図17)があるが、磁石フィルム原反より裁断時に使用出来ない部分を生じる不都合があり不経済である。
この不都合に対して本発明は、垂直磁場配向(図4、図5)にすることによって磁極方向を0〜360度変化させても磁気吸着力に差を生じない磁石フィルムとすることで本発明を完成するに至った。
Also, using a magnet film by the conventional in-plane magnetic field orientation technology, one side of a rectangular standard product is at an arbitrary angle within a predetermined range with respect to the magnetic field orientation direction so that the magnetic pole directions intersect when they are stacked. By cutting, there is means (Fig. 17) that makes the original fabric become the same as the one that is obliquely magnetized at an arbitrary angle within a predetermined range. There is an inconvenience that produces a part that cannot be done and it is uneconomical.
With respect to this inconvenience, the present invention provides a magnetic film that does not produce a difference in magnetic attractive force even when the magnetic pole direction is changed by 0 to 360 degrees by adopting a vertical magnetic field orientation (FIGS. 4 and 5). It came to complete.

(1)異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とする磁性塗料を支持体の片面に乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%のものを用いて乾燥後の厚みが40〜250μmに成るように塗布し、乾燥炉手前に布設した上下N―S極型垂直磁場配向装置の対峙するN極面とS極面間の下極(S極)側に接近する位置に非磁性のガイドロールを付設して磁性塗料を塗布された支持体がS極に接近する位置を通過させ、S極側に磁気吸引され安定して1000〜2500Oeの磁場がかかるようにして磁性塗料の異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と直角方向に磁場配向し、乾燥後の表面が平坦な磁性塗膜を形成して成る片面又は両面に磁極方向を自由に多極着磁を施すことが可能であることを特徴とする磁石フィルムの製造方法とする
(1) Anisotropic ferrite system, which is a solid component after drying a magnetic coating mainly composed of anisotropic ferrite hard magnetic material powder and an organic polymer elastomeric varnish that is a binder. When the amount of the anisotropic ferrite hard magnetic material powder is 50 to 65% by volume based on the total amount of the hard magnetic material powder, the organic polymer elastomer and the processing aid, the thickness after drying becomes 40 to 250 μm. Non-magnetic guide roll at a position approaching the lower pole (S pole) side between the opposite N pole face and the S pole face of the upper and lower NS pole type vertical magnetic field aligning device installed in front of the drying furnace. Is attached so that the support to which the magnetic coating is applied passes through the position approaching the south pole, and is magnetically attracted to the south pole side so that a magnetic field of 1000 to 2500 Oe is stably applied. Ferrite hard magnetic material powder It is possible to magnetically orient the magnetic pole in the direction perpendicular to the support surface and form a magnetic coating film with a flat surface after drying so that the magnetic pole direction can be freely multipolarized on one or both sides. It is set as the manufacturing method of the magnet film characterized by these .

(2)ポリエチレンテレフタレート系合成紙で、厚みが40〜220μmである支持体の片面に、磁性塗料である異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とし、乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%のものを用いて乾燥後の厚みが40〜250μmに成るように塗布し、乾燥炉手前に布設した上下N―S極型垂直磁場配向装置の対峙するN極面とS極面間の下極(S極)側に接近する位置に非磁性のガイドロールを付設して磁性塗料を塗布された支持体がS極に接近する位置を通過させ、S極側に磁気吸引され安定して1000〜2500 Oeの磁場がかかるようにして異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と直角方向に磁場配向し、乾燥して表面が平坦な磁性塗膜を形成して成る磁性フィルムに、
支持体と同様のフィルムを積層又は磁性フィルムの磁性塗膜同士を貼り合わせて両面に支持体を有する磁性フィルムとして耐波打変形吸着性及び耐角端部変形性を付与し、
その片面又は両面に多極着磁の磁極方向を塗布機にて磁性層を塗布されたフィルムの流れ方向と平行な方向にして各極間の距離が不規則な永久磁石型着磁ロールまたはワンターン着磁ヨークを用いて磁石フィルムに多極着磁の各極間の距離を不規則に着磁を施したことで、磁石フィルム同士のN極とS極の中心が重ならないことによって、取り扱い時の磁石フィルム同士の磁気吸着力を低減した磁石フィルムであって、下記の耐波打変形吸着性試験、及び耐角端部変形性試験で評価:◎印に適合する耐角端部変形性、耐波打変形吸着性優れた磁性フィルムが得られることを特徴とする磁石フィルムの製造方法とする

1、耐波打変形吸着性試験方法
試験試料(100×150mm)である磁石フィルム2枚を重ねて、38〜42℃の熱風循環式恒温装置内に7日放置後の、耐波打変形吸着の有無を観察して4段階評価を行う。)
◎:波打が認められない ○:波打が殆ど認められない △:波打がやや認められる ×:波打が認められる
2、耐角端部変形性試験方法
室温21〜25℃において、最初に試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、磁極方向を360°の範囲内でカード相互の磁気吸着力が最大と成る角度(磁極方向が重なる)で表裏を磁気吸着させる。その上に順次同様にして合計10枚を重ねた不揃いのカードを、磁気吸着力に抗して揃える為に、4辺を1辺ずつテーブルの平らな面に当てて揃えることを3回繰り返した後、角端部の変形、傷付き具合を目視で観察して4段階評価を行う。
◎:変形が認められない ○:変形が殆ど認められない △:変形がやや認められる
×:変形が認められる。
(2) Polyethylene terephthalate-based synthetic paper mainly composed of an anisotropic ferrite-based hard magnetic material powder as a magnetic paint and an organic polymer elastomer-based varnish as a binder on one side of a support having a thickness of 40 to 220 μm. The filling amount of the anisotropic ferrite hard magnetic material powder is 50 to 65 volumes with respect to the total amount of the anisotropic ferrite hard magnetic material powder, the organic polymer elastomer and the processing aid, which are solid components after drying. Is applied between the N pole surface and the S pole surface of the vertical NS magnetic field aligning device installed in front of the drying furnace. A non-magnetic guide roll is attached at a position approaching the pole (S pole) side, and a support coated with a magnetic coating is passed through a position approaching the S pole, and is magnetically attracted to the S pole side and stably 1000 ~ 2500 magnetic film by the magnetic field oriented magnetization easy axis of the anisotropic ferrite type hard magnetic material powder support surface perpendicular direction as the magnetic field of the e is applied and dried to the surface by forming a flat magnetic layer In addition,
Laminating the same film as the support or laminating the magnetic coatings of the magnetic film together to give the wavy deformation adsorption resistance and the corner end deformation resistance as a magnetic film having a support on both sides,
Permanent magnet type magnetized roll or one-turn with irregular distance between poles with multi-pole magnetized magnetic pole direction on one or both sides parallel to the flow direction of the film coated with magnetic layer by coating machine When magnetizing the magnet film using the magnetized yoke, the distance between the poles of multipolar magnetization is irregularly magnetized so that the centers of the N and S poles of the magnet films do not overlap. Magnetic film with reduced magnetic attractive force between the magnet films of the film, evaluated by the following wave deformation deformation adsorption test and corner end deformation resistance test: corner end deformation resistance, wave resistance suitable for ◎ mark the magnetic film having excellent droplet deformation adsorptive is obtained a method of manufacturing a magnet film characterized.

1. Wave-resistant deformation adsorption test method Existence of wave-shaped deformation adsorption after two magnet films, which are test samples (100 x 150 mm), are stacked and left in a hot air circulation thermostat at 38 to 42 ° C for 7 days. Observe the four-level evaluation. )
◎: No undulations are observed. ○: Almost no undulations are observed. Δ: Some undulations are observed. X: The undulations are observed. 2. Test method for resistance to deformation at corner edges. Two cards made of magnetic film, which is a test sample (100 × 150 mm), are stacked on top of each other, and the front and back sides are at an angle (the magnetic pole direction overlaps) that maximizes the magnetic attractive force between the cards within a magnetic pole direction of 360 °. Magnetically adsorb. In addition, in order to align the irregular cards in which a total of 10 cards were stacked in the same manner sequentially against the magnetic attractive force, the alignment was repeated three times by placing the four sides one by one against the flat surface of the table. Then, the four-level evaluation is performed by visually observing the deformation of the corner ends and the degree of scratches.
A: Deformation is not recognized. O: Deformation is hardly recognized. Δ: Deformation is slightly recognized. X: Deformation is recognized.

(3)前記磁性塗膜中の異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%であり、磁性塗膜の厚みが40〜250μmである磁性フィルムの片面又は両面に極間1〜2.5mmの多極着磁を施したことを特徴とする請求項1〜2いずれか1項記載の磁石フィルムの製造方法とする。
(3) The amount of the anisotropic ferrite hard magnetic material powder in the magnetic coating film is 50 to 65% by volume, and the thickness of the magnetic coating film is 40 to 250 μm. The method for producing a magnet film according to any one of claims 1 and 2, wherein multipolar magnetization of 1 to 2.5 mm is performed.

(4)前記両面に支持体を有する磁石フィルムの支持体がポリエチレンテレフタレート系合成紙で厚み40〜60μm、磁性塗膜の厚み80〜100μm、磁気吸着力0.5〜2.0g/cm、自重480g/m以下であることを特徴とする請求項2又は3いずれか1項に記載の磁石フィルムの製造方法とする。
(4) The support of the magnetic film having the support on both sides is a polyethylene terephthalate synthetic paper having a thickness of 40 to 60 μm, a thickness of the magnetic coating film of 80 to 100 μm, a magnetic adsorption force of 0.5 to 2.0 g / cm 2 , It is set as the manufacturing method of the magnet film of any one of Claim 2 or 3 characterized by being self weight 480g / m < 2 > or less .

(5)前記支持体の非塗布面が印刷可能又は書き消し可能面であることを特徴とする請求項1〜4いずれか1項に記載の磁石フィルムの製造方法とする。
(5) The method for producing a magnet film according to any one of claims 1 to 4, wherein the non-coated surface of the support is a printable or erasable surface .

(6)前記請求項1〜5いずれか1項に記載の磁石フィルムの製造方法で得られた磁石フィルムを用いたことを特徴とする磁石フィルムカードとする。
(6) A magnetic film card using the magnetic film obtained by the method for manufacturing a magnetic film according to any one of claims 1 to 5 is used .

本発明は、多極着磁を施した磁石フィルムを用いたカードなどの使用時の重ね合わせによる相互の磁気吸着力の低減策として、多極着磁の各極間の距離を不規則にすること、又は及び磁極を交差させる事による不都合を解決したものである。
The present invention makes the distance between each pole of multipolar magnetization irregular as a measure for reducing mutual magnetic attraction by superimposing cards using a magnetic film subjected to multipolar magnetization. Or inconvenience caused by crossing the magnetic poles.

即ち、多極着磁の各極間の距離を不規則にすること、又は及び磁極を交差させる事による磁気吸着力の軽減策に於いて、両面に支持体を設けることで、磁気吸着力に抗して四隅を揃える端部衝撃や自動送り機などによる磁石フィルムの変形、傷つきが防止され、又、極間が異なる異極磁気吸引による波打変形吸着が防止され、且つ変形吸着しないことで全体の磁気吸着力の低減効果が向上する。即ち、重ね時の相互の磁気吸着力が弱く、取り扱いが容易で、磁石フィルムの変形、傷つき防止効果が得られる。
In other words, in order to reduce the magnetic attraction force by making the distance between each pole of multipolar magnetization irregular , or by crossing the magnetic poles, by providing supports on both sides, the magnetic attraction force can be reduced. This prevents the film from being deformed and damaged by end impacts and automatic feeders that align the four corners against each other, and prevents wavy deformation from being attracted by different polar magnetic attraction between poles. The effect of reducing the overall magnetic attractive force is improved. That is, the mutual magnetic attractive force at the time of overlapping is weak and easy to handle, and the effect of preventing deformation and scratching of the magnet film can be obtained.

又、本発明の磁石フィルムは、垂直磁場配向した磁石フィルムであるので、磁極方向を0〜360度の範囲で変えても磁気吸着力に差を生じない利点がある。即ち、従来の面内磁場配向磁石フィルムは、磁極方向を面内磁場配向方向に対して直角の方向に着磁する必要があることから、傾斜着磁に相当するように傾斜して裁断する必要があり、裁断時ロスを生じる不都合があるが、本発明の磁石フィルムは、傾斜して裁断する必要がない利点があり経済的である。
又、公知の永久磁石型着磁ロールである、構造がディスク形状の磁石をシャフトに通して締付ける方法で製作したものを使用できるので、製作が容易で経済的である。
Further, since the magnet film of the present invention is a magnet film oriented in a vertical magnetic field, there is an advantage that even if the magnetic pole direction is changed in the range of 0 to 360 degrees, there is no difference in magnetic attractive force. That is, since the conventional in-plane magnetic field oriented magnet film needs to be magnetized in the direction perpendicular to the in-plane magnetic field orientation direction, it is necessary to be inclined and cut so as to correspond to gradient magnetization. However, the magnetic film of the present invention has the advantage that it does not need to be inclined and is economical.
Further, since a known permanent magnet type magnetized roll manufactured by a method of tightening a disk-shaped magnet through a shaft can be used, the manufacture is easy and economical.

本発明の基本構成を示す断面模式図である。(a)は支持体の片面に磁性粉が垂直磁場配向された磁性層を形成した後、支持体と同様なフィルムを積層して成ることを示し、(b)は他の方法として、支持体の片面に磁性粉が垂直磁場配向された磁性層を形成した後、磁性層面同士を張り合わせて成ることを示す断面模式図である。It is a cross-sectional schematic diagram which shows the basic composition of this invention. (A) shows that a magnetic layer in which magnetic powder is oriented in a vertical magnetic field is formed on one side of a support, and then a film similar to the support is laminated, and (b) shows another method of supporting the support. It is a cross-sectional schematic diagram which shows that after forming the magnetic layer by which the magnetic powder orientated by the perpendicular magnetic field on one side of this, the magnetic layer surfaces are bonded together. 前記図1の先駆体を示す断面模式図である。(a)は図1の(a)に対応し、(b)は図1の(b)に対応する。It is a cross-sectional schematic diagram which shows the precursor of the said FIG. (A) corresponds to (a) in FIG. 1, and (b) corresponds to (b) in FIG. 垂直磁場配向装置を付設した塗布機(コーター)の一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of the coating machine (coater) which attached the perpendicular magnetic field orientation apparatus. 垂直磁場配向装置を示す側面模式図である。It is a side surface schematic diagram which shows a perpendicular magnetic field orientation apparatus. 磁性層中の垂直方向に磁場配向された異方性フエライト粒子の1個を示す模式図(斜視図)である。It is a schematic diagram (perspective view) showing one of anisotropic ferrite particles that are magnetically oriented in the vertical direction in the magnetic layer. ドライラミネーターの一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a dry laminator. 熱ラミネーターの一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a thermal laminator. 磁性層中の垂直方向に磁場配向された異方性フエライト粒子の1個に対して着磁ヨークからの磁束が磁化容易軸(C)方向に成っている状態を示す模式図(斜視図)である。FIG. 4 is a schematic diagram (perspective view) showing a state in which the magnetic flux from the magnetized yoke is in the easy axis (C) direction for one of the anisotropic ferrite particles that are magnetically oriented in the vertical direction in the magnetic layer. is there. 永久磁石型着磁ロールの一例を示す模式図(斜視図)である。It is a schematic diagram (perspective view) showing an example of a permanent magnet type magnetizing roll. 永久磁石型着磁ロール2本を用いて、上下方向の磁束を形成して両面着磁する一例を示す側面模式図である。It is a side surface schematic diagram which shows an example which forms a magnetic flux of an up-down direction and magnetizes both surfaces using two permanent magnet type | mold magnetizing rolls. 本発明の磁石フィルムに施された着磁極間を不規則に着磁した状態を示す上面図である。It is a top view which shows the state which magnetized irregularly between the magnetic poles given to the magnet film of this invention. 従来の磁石フィルムの着磁極間(等間隔)と同様に着磁を施した断面(側面)模式図である。It is the cross section (side surface) schematic diagram which magnetized similarly to between the magnetic poles (equal intervals) of the conventional magnet film. 従来の磁石フィルムの着磁極間(等間隔)と同様に着磁を施した二枚が、着磁面と裏面(非着磁)を接して磁気吸着した状態を示す断面(側面)模式図である。It is a cross-sectional (side) schematic diagram showing a state in which two magnetized magnets in the same manner as between the magnetized magnetic poles (equal intervals) of a conventional magnet film are magnetically attracted by contacting the magnetized surface and the back surface (non-magnetized). is there. 本発明の磁石フィルムに施された着磁極間を不規則に着磁を施した二枚が、接して磁気吸着した状態を示す断面(側面)模式図であり、(a)は着磁面と裏面(非着磁)を接して磁気吸着した状態を示し、(b)は着磁面同士接して磁気吸着した状態を示す。It is a cross section (side surface) schematic diagram which shows the state which two sheets which magnetized irregularly between the magnetic poles given to the magnet film of this invention touched, and were magnetically attracted, (a) The back surface (non-magnetized) is shown in a magnetically attracted state, and (b) shows the magnetized surface in a magnetically attracted state. 表面(片面)に支持体を設けた磁石フィルム同士の表面と裏面を重ねて磁気吸着させた場合に生じた波うち部分吸着を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)It is a conceptual schematic cross section which shows partial adsorption | suction among the waves produced when the surface and back surface of magnet films which provided the support body on the surface (one side) were piled up and made to magnetically adsorb | suck. (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted) 両面に支持体を設けた磁石フィルム同士の表面と裏面を重ねて磁気吸着させた場合の、波うち部分吸着を生じない磁気吸着状態を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)It is a conceptual schematic cross section which shows the magnetic attraction | suction state which does not produce partial adsorption | suction among waves, when the magnetic film which provided the support body on both surfaces overlap | superposed and adsorb | sucked magnetically. (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted) 従来の面内磁場配向した磁石フィルムから、定尺品に傾斜着磁を施したものと同様にするため、磁場配向方向に対して傾斜を設けて裁断することを示す上面模式図である。FIG. 5 is a schematic top view showing that a conventional magnetic film oriented in-plane magnetic field orientation is cut with an inclination with respect to the magnetic field orientation direction in a manner similar to that obtained by subjecting a standard product to gradient magnetization. 多極着磁を施した二枚の磁石フィルムの着磁面と裏面(非着磁)が、磁極方向を交差して重なった場合に磁気吸着力が弱くなる理由を示す上面模式図であり、(a)は交差の状態を示し、(b)は交差箇所の部分拡大図である。It is a schematic top view showing the reason why the magnetic attractive force is weakened when the magnetized surface and back surface (non-magnetized) of two magnet films subjected to multipolar magnetization overlap each other in the magnetic pole direction, (A) shows the state of intersection, and (b) is a partially enlarged view of the intersection. 本発明の磁石フィルムカードを多数重ねて四周を揃える場合を示す正面模式図であり、(a)は平らな面18に下端部を当てて揃える模式図、(b)は揃えた状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a front schematic diagram which shows the case where many magnet film cards of this invention are piled up, and arrange | positions four rounds, (a) is a schematic diagram which hits a flat surface 18 and aligns a lower end part, (b) shows the state which arranged. 磁石フィルムと軟鉄板との垂直方向磁気吸着力測定装置を示す概念模式図(正面)である。It is a conceptual schematic diagram (front) which shows the perpendicular direction magnetic attraction force measuring apparatus of a magnet film and a soft iron plate. 磁石フィルム同士の引張剪断磁気吸着力測定装置を示す概念模式図(正面)である。It is a conceptual diagram (front) which shows the tensile shear magnetic attraction force measuring apparatus of magnet films.

以下、本発明を実施するための形態を図1〜19に基づいて説明する。
(1)図1は、本発明の磁石フィルムAの基本構成を示す断面模式図である。(a)は支持体1の片面に磁性粉が垂直磁場配向された磁性層2を塗布成形によって形成した後、支持体と同様なフィルム11を積層して成る磁性フィルムの片面に多極着磁を施した磁石フィルムAを示し、(b)は他の方法として、支持体1の片面に磁性粉が垂直磁場配向された磁性層2を形成した後、磁性面同士を張り合わせて成る磁性フィルムの片面に多極着磁を施した磁石フィルムA1を示す断面模式図である。
Hereinafter, the form for implementing this invention is demonstrated based on FIGS.
(1) FIG. 1 is a schematic cross-sectional view showing the basic structure of a magnet film A of the present invention. (A) shows that a magnetic layer 2 in which magnetic powder is oriented in a vertical magnetic field is formed on one side of a support 1 by coating, and then multipolar magnetization is applied to one side of a magnetic film in which a film 11 similar to the support is laminated. (B) shows another method of forming a magnetic layer 2 in which magnetic powder is oriented in a vertical magnetic field on one side of a support 1 and then bonding the magnetic surfaces together. It is a cross-sectional schematic diagram which shows magnet film A1 which gave multipolar magnetization to one side.

(2)図2は、前記図1の磁石フィルムAの先駆体を示す断面模式図である。(a)は図1の(a)に対応し、支持体1の片面に磁性粉が垂直磁場配向された磁性層2を塗布成形によって形成した先駆体Bを示し、(b)は図1の(b)に対応し、支持体1の片面に目的とする磁石フィルムの磁性層の二分の一の厚みの、磁性粉が垂直磁場配向された磁性層2を塗布成形によって形成した先駆体B1を示す。 (2) FIG. 2 is a schematic sectional view showing a precursor of the magnet film A shown in FIG. (A) corresponds to (a) of FIG. 1 and shows a precursor B in which a magnetic layer 2 in which magnetic powder is oriented in a vertical magnetic field is formed on one side of a support 1 by coating, and (b) of FIG. Corresponding to (b), a precursor B1 in which a magnetic layer 2 in which magnetic powder is oriented in a vertical magnetic field is formed on one surface of the support 1 by a half of the magnetic layer of the target magnetic film by coating. Show.

支持体1としては、表面に印刷可能層(印刷可能層の図示省略・以下同じ)を有する合成紙、無機粉末を含有したプラスチックフィルム、耐水紙などが挙げられ、その中でも引張弾性率3200〜4200MPa(JIS K7127)のものが好ましい。又、印刷可能層とは使用目的に適した印刷インキ受理層を意味する。   Examples of the support 1 include a synthetic paper having a printable layer on the surface (not shown of the printable layer, the same applies hereinafter), a plastic film containing an inorganic powder, water-resistant paper, and the like. Among them, the tensile elastic modulus is 3200 to 4200 MPa. (JIS K7127) is preferred. The printable layer means a printing ink receiving layer suitable for the purpose of use.

合成紙としては、例えばユポ合成紙FEB,FGS,FPG,VJFP,VJFD等(ユポコーポレイション社製)、トヨジェットGP,MW,MT,MP等(東洋紡績社製)、ピーチコートSPUY,(日清紡社製)が挙げられ、その中でもPET系(ポリエチレンテレフタレート)の合成紙であるトヨジェットMW,MT(東洋紡績社製)、ピーチコートSEY(日清紡社製)などが好適である。   Examples of synthetic paper include YUPO synthetic paper FEB, FGS, FPG, VJFP, VJFD, etc. (manufactured by Yupo Corporation), Toyojet GP, MW, MT, MP, etc. (manufactured by Toyobo Co., Ltd.), Peach Coat SPY, (Nisshinbo Co., Ltd.) Among them, Toyojet MW, MT (manufactured by Toyobo Co., Ltd.) and Peach Coat SEY (Nisshinbo Co., Ltd.), which are PET (polyethylene terephthalate) synthetic paper, are preferred.

無機粉末等を含有したプラスチックフィルムとしては、ポリエステルフィルム・クリスパーG2311,K1212、2323、K2411(日清紡社製)、半硬質塩化ビニルフィルム10P(リケンテクノス社製)等が挙げられ、耐水紙としては、エコクリスタル(新巴川製紙社製)、カレカ(三菱化学メデイア社製)などが挙げられる。   Examples of the plastic film containing inorganic powder include polyester films / Chrispar G2311, K1212, 2323, K2411 (Nisshinbo Co., Ltd.), semi-rigid vinyl chloride film 10P (Riken Technos), etc. Crystal (manufactured by Shinyodogawa Paper Co., Ltd.), Kaleka (manufactured by Mitsubishi Chemical Media Co., Ltd.), and the like.

表面に印刷可能層を有する支持体の厚みは40〜220μmが好ましく、40μm以下では磁石フィルムの端部傷付きや部分磁気吸着による波打変形の防止、形成する磁性層の色に対する隠蔽力が不足となる場合があり、220μmより厚いと磁気貼着時の磁気エアーギャップ(磁石の磁気吸着面と被着体(磁性体)面までの距離)となり磁気吸着力の低下が無視出来なくなるので好ましくない。   The thickness of the support having a printable layer on the surface is preferably 40 to 220 μm. If the thickness is 40 μm or less, the end of the magnetic film is not damaged or the wavy deformation due to partial magnetic adsorption is prevented, and the color hiding power of the formed magnetic layer is insufficient. If it is thicker than 220 μm, the magnetic air gap (distance between the magnet's magnetic attracting surface and the adherend (magnetic material) surface) will become a magnetic adhesion, and the decrease in magnetic attraction force cannot be ignored. .

インキ受理層は、合成紙は印刷方式(オフセット印刷、凸版印刷、インキジェット印刷、熱転写印刷等)に適したグレードを選べばよく、無機粉末等を含有したプラスチックフィルムは、印刷方式に適した公知のインキ受理層を塗布すればよい。   The ink receiving layer may be selected from a grade suitable for printing methods (offset printing, letterpress printing, ink jet printing, thermal transfer printing, etc.) for synthetic paper, and plastic films containing inorganic powders are known for printing methods. The ink receiving layer may be applied.

磁性粉が面内配向された磁性層2は、異方性フエライト系硬質磁性材料粉と有機高分子エラストマーを主たる組成とし、異方性フエライト系硬質磁性材料粉としてはストロンチュウムフエライト系、バリウムフェライト系などのM型フエライトが好適である。   The magnetic layer 2 in which the magnetic powder is oriented in the plane has a composition mainly composed of anisotropic ferrite hard magnetic material powder and organic polymer elastomer, and anisotropic ferrite hard magnetic material powder includes strontium ferrite and barium. M-type ferrites such as ferrite are suitable.

磁性層の全量に対する磁性材料粉の含有量は、50〜65容量%が好ましく50容量%より少ないと得られる磁気吸着力が不足する場合があり、65容量%を超えると塗布加工性が低下するので好ましくない。   The content of the magnetic material powder with respect to the total amount of the magnetic layer is preferably 50 to 65% by volume, and if it is less than 50% by volume, the magnetic attractive force obtained may be insufficient, and if it exceeds 65% by volume, the coating processability decreases. Therefore, it is not preferable.

有機高分子エラストマーとしては、エチレン酢酸ビニル共重合体エラストマー、エチレンエチルアクリレートエラストマー、エチレンプロピレンエラストマー、ウレタン系エラストマーなどが挙げられ、又、希望する物性によって適宜これらの混合物及びこれらとプラストマー(プラスチック)との混合物を使用することが出来る。   Examples of the organic polymer elastomer include an ethylene vinyl acetate copolymer elastomer, an ethylene ethyl acrylate elastomer, an ethylene propylene elastomer, a urethane elastomer, and the like, and a mixture thereof and a plastomer (plastic) as appropriate depending on desired physical properties. Can be used.

塗工液の作成は、前記有機高分子エラストマーを有機溶剤に溶解したワニス、又はエマルジョンと磁性材料粉を攪拌混合後、ビーズミルを用いて分散処理したものを使用する。
次に使用するコーターに適した粘度に粘度調整(有機溶剤に溶解したものは有機溶剤で、エマルジョンは水で希釈)を行った後、異物除去のための濾過処理を行う。
For the preparation of the coating liquid, a varnish obtained by dissolving the organic polymer elastomer in an organic solvent, or an emulsion and magnetic material powder which are stirred and mixed and then dispersed using a bead mill is used.
Next, after adjusting the viscosity to a viscosity suitable for the coater to be used (the one dissolved in the organic solvent is an organic solvent and the emulsion is diluted with water), a filtration treatment for removing foreign matters is performed.

図2で示す先駆体の磁性層の厚みは、(a)では50〜150μmが好ましく50μm未満では性能不足と成る場合があり、150μmを超えると性能過多になる他に厚みが厚くなることを避けたいので好ましくない。(b)では25〜75μmが好ましく25μm未満では性能不足と成る場合があり、75μmを超えると性能過多になる他に厚みが厚くなることを避けたいので好ましくない。   The thickness of the precursor magnetic layer shown in FIG. 2 is preferably 50 to 150 μm in (a), and if it is less than 50 μm, the performance may be insufficient, and if it exceeds 150 μm, in addition to excessive performance, avoid increasing the thickness. This is not preferable. In (b), 25 to 75 [mu] m is preferable, and if it is less than 25 [mu] m, the performance may be insufficient. If it exceeds 75 [mu] m, in addition to excessive performance, it is not preferable because the thickness is not increased.

又、先駆体の磁性層を、塗布成形後にニップ方式のプレスロールで加圧することで、平滑化、磁性層の密度向上(磁性の向上)をすることが出来る。そして先駆体に施す方が張り合わせ後に施すよりも効果的であり、又厚みバラツキ及びニップロールの加圧過多による皺入り不良を生じる可能性が少ない。   Further, the magnetic layer of the precursor can be smoothed and the density of the magnetic layer can be improved (improvement of magnetism) by applying pressure with a nip type press roll after coating and molding. And it is more effective to apply to the precursor than after pasting, and there is less possibility of causing flaws due to thickness variation and excessive pressurization of the nip roll.

磁性層の張り合わせ時の加圧変形による磁化磁粉のずれ動きによる磁気吸着力の低下防止(着磁を施す以前に加圧処理をすることで)となる。
加圧処理条件は、温度:60〜80°C、ニップゴムロールの硬度:ショアA55〜65°、線圧:200〜400N/cm程度が望ましい。
This prevents the magnetic attraction force from being lowered due to the displacement of the magnetized magnetic powder due to the pressurization deformation at the time of laminating the magnetic layers (by applying the pressure treatment before applying the magnetization).
The pressure treatment conditions are preferably a temperature of 60 to 80 ° C., a hardness of the nip rubber roll: Shore A of 55 to 65 °, and a linear pressure of about 200 to 400 N / cm.

(3)図3は、磁性層を塗布形成する垂直磁場配向装置MMを布設したコーターMCの一例を示す側面模式図であり、巻出機7より支持体1をコンマコーターヘッドに供給して上面に塗布し、乾燥炉4の入り口に布設した垂直磁場配向装置MMで磁場配向する。乾燥炉を出たところでニップロール5で加圧処理後冷却ロール6で冷却して巻取機8で先駆体B又はB1を巻取る。 (3) FIG. 3 is a schematic side view showing an example of a coater MC provided with a vertical magnetic field orientation device MM for coating and forming a magnetic layer. The support 1 is supplied from the unwinder 7 to the comma coater head, The magnetic field is oriented by a vertical magnetic field orientation device MM installed at the entrance of the drying furnace 4. When it leaves the drying furnace, it is pressurized with the nip roll 5 and then cooled with the cooling roll 6, and the precursor B or B 1 is wound up by the winder 8.

塗布は上記の他に、ブレードコーター、バーコーター、コンマコーター、グラビヤコーター、ロールコーター、リバースロールコーター等公知の方法で行う事が出来る。   In addition to the above, the coating can be performed by a known method such as a blade coater, a bar coater, a comma coater, a gravure coater, a roll coater, or a reverse roll coater.

(4)図4は、前記垂直磁場配向装置MMの概念模式図であり、永久磁石9を対峙させることによりM方向の磁束が得られ、この位置を通過するようにガイドロール14を設けることで、支持体1に塗布した磁性層(磁性塗料)中の磁粉が磁粉の磁化容易軸(結晶C軸方向)をM方向に揃えて配向することを示す。つまり製品の流れ方向Fに対して垂直磁場配向磁束方向Mと磁化容易軸方向Cが垂直方向となる。磁場配向に必要な磁界の強さは、1000〜2500Oe程度で良い。 (4) FIG. 4 is a conceptual schematic diagram of the vertical magnetic field orientation device MM. By facing the permanent magnet 9, a magnetic flux in the M direction is obtained, and a guide roll 14 is provided so as to pass through this position. 1 shows that the magnetic powder in the magnetic layer (magnetic coating material) applied to the support 1 is oriented with the easy magnetization axis (crystal C-axis direction) of the magnetic powder aligned in the M direction. That is, the perpendicular magnetic field orientation magnetic flux direction M and the magnetization easy axis direction C are perpendicular to the product flow direction F. The strength of the magnetic field necessary for the magnetic field orientation may be about 1000 to 2500 Oe.

(5)図5は、磁性層中に含まれる異方性フエライト粒子の1個10が前記図4の垂直方向の磁束Mによって磁化容易軸Cを同方向に向けて配向されることを示す概念模式図である。 (5) FIG. 5 is a concept showing that one of the anisotropic ferrite particles 10 contained in the magnetic layer is oriented with the easy axis C oriented in the same direction by the magnetic flux M in the vertical direction of FIG. It is a schematic diagram.

(6)図6は、ドライラミネーターを用いた一例を示す側面模式図であり、巻出機7より支持体と同様なフィルム1−1、又は先駆体B1を巻きだしてグラビヤコーター11で接着剤を塗布し、乾燥炉4にて乾燥後加熱ニップロール5で、巻出機7より供給される先駆体B、又はB1と張合せて冷却ロール6で冷却して得られた、この磁性フィルム(磁石フィルムの未着磁品)を巻取機8で巻き取ることを示す。 (6) FIG. 6 is a schematic side view showing an example using a dry laminator. The film 1-1 similar to the support or the precursor B1 is unwound from the unwinder 7, and the adhesive is used with the gravure coater 11. This magnetic film (magnet) obtained by drying in the drying furnace 4 and then being bonded to the precursor B or B1 supplied from the unwinder 7 by the heating nip roll 5 and cooled by the cooling roll 6 It shows that the non-magnetized product of the film is wound by the winder 8.

ドライラミネートに用いる接着剤は、塗布乾燥後張り合わせ時に再加熱を行い熱再活性可能な接着剤、又は、張り合わせ時に即接着できる粘接着剤(コンタクトタイプ)が好ましい。熱再活性可能な接着剤としては、水性型ウレタン樹脂系接着剤、例えば、コニシボンドCU3(コニシボンド社製)、ハイドランHW―311(DICグラフィックス社製)、WA―374(大日精化社製)が挙げられ、溶剤型ゴム系のクロロプレン系 セメダインGF(セメダイン社製)、樹脂系のポリエステル系R820(セメダイン社製)、ポリエステル系ウレタンのクリスボン4070(DICグラフィックス社製)が挙げられる。   The adhesive used for the dry lamination is preferably an adhesive that can be reheated by reheating at the time of lamination after coating and drying, or an adhesive (contact type) that can be immediately bonded at the time of lamination. Examples of heat-reactive adhesives include water-based urethane resin adhesives such as Konishi Bond CU3 (manufactured by Konishi Bond), Hydran HW-311 (manufactured by DIC Graphics), WA-374 (manufactured by Dainichi Seika). Solvent type rubber-based chloroprene-based cemedine GF (made by Cemedine), resin-based polyester-based R820 (made by Cemedine), and polyester-based urethane Crisbon 4070 (made by DIC Graphics).

又、粘接着剤(コンタクトタイプ)では、エマルジョンタイプのアクリル樹脂系のアクワテックスAP―25(中央理化工業社製)、溶剤タイプのシリル基含有特殊ポリマー スーパーX(セメダイン社製)が挙げられる。   For adhesives (contact type), emulsion type acrylic resin-based AQUATEX AP-25 (manufactured by Chuo Rika Kogyo Co., Ltd.), solvent type silyl group-containing special polymer Super X (manufactured by Cemedine) .

接着層は、1〜4μm(ドライ)程度になるように、ブレードコーター、バーコーター、コンマコーター、グラビヤコーター、ロールコーター、リバースロールコーター等公知の方法で接着剤を塗布乾燥したものでよい。   The adhesive layer may be obtained by applying and drying an adhesive by a known method such as a blade coater, a bar coater, a comma coater, a gravure coater, a roll coater, and a reverse roll coater so as to be about 1 to 4 μm (dry).

加熱ニップ方式プレスロールの条件は、接着剤によって異なるが、略加熱温度:70〜90°C(粘接着剤を使用の場合は加熱不要)、 ニップゴムロールの硬度:ショアA55〜65°、線圧:100〜300N/cm程度が望ましい。   The conditions of the heated nip type press roll differ depending on the adhesive, but the approximate heating temperature: 70 to 90 ° C. (No heating is required when using an adhesive), the hardness of the nip rubber roll: Shore A 55 to 65 °, line Pressure: about 100 to 300 N / cm is desirable.

(7)図7は、熱ラミネーターを用いた一例を示す側面模式図であり、先駆体同士の張り合わせに接着剤を用いないで磁性層同士を熱圧着によって張合せることが出来る。
上下の巻出機7より先駆体B1を加熱ロール13にて加熱後ニップロール5で張合せて冷却ロール6をへて巻取機8で磁性フィルム(磁石フィルムの未着磁品)を巻取ることを示す。
(7) FIG. 7 is a schematic side view showing an example using a thermal laminator, and the magnetic layers can be bonded together by thermocompression bonding without using an adhesive for bonding the precursors together.
The precursor B1 is heated by the heating roll 13 from the upper and lower unwinding machines 7, and then bonded by the nip roll 5 and then the cooling roll 6 is wound, and the magnetic film (unmagnetized product of the magnet film) is wound by the winder 8. Indicates.

この場合の磁性層に用いる有機高分子エラストマーは、熱圧着性の優れるクロロスルホン化ポリエチレンエラストマー、エチレン酢酸ビニル共重合体エラストマー、エチレンエチルアクリレートエラストマーなどと有機溶剤から成るワニス又はエマルジョンを用いることが好ましい。   The organic polymer elastomer used for the magnetic layer in this case is preferably a varnish or emulsion composed of an organic solvent and a chlorosulfonated polyethylene elastomer, an ethylene vinyl acetate copolymer elastomer, an ethylene ethyl acrylate elastomer or the like having excellent thermocompression bonding properties. .

加熱ニップ方式プレスロールの熱圧着条件は、磁性層の粘結材である有機高分子エラストマーの感熱性にもよるが、加熱温度:80〜90°C、 ニップゴムロールの硬度:ショアA55〜65、°線圧:200〜400N/cm程度が望ましい。   The thermocompression bonding conditions of the heated nip type press roll depend on the heat sensitivity of the organic polymer elastomer that is the binder of the magnetic layer, but the heating temperature is 80 to 90 ° C., the hardness of the nip rubber roll is Shore A 55 to 65, ° Linear pressure: about 200 to 400 N / cm is desirable.

(8)図8は、磁性層中に含まれる異方性フエライト粉10が前記図4の垂直方向の磁束Mによって磁化容易軸Cを同方向にして配向されていることに対して、その磁粉を着磁(磁化)する為の磁束の向きを示す概念模式図である。 (8) FIG. 8 shows that the anisotropic ferrite powder 10 contained in the magnetic layer is oriented with the easy axis C in the same direction by the vertical magnetic flux M in FIG. It is a conceptual schematic diagram which shows the direction of the magnetic flux for magnetizing (magnetizing).

(9)図9は、公知の永久磁石型着磁ロールを用いて、片面着磁を施す一例を示す。そうしてN極からS極への外部漏洩磁束MB1を生じていることを示す。磁性フィルムを該着磁ロールの約三分の一周接触通過することで着磁が施される。 (9) FIG. 9 shows an example in which single-sided magnetization is performed using a known permanent magnet type magnetizing roll. Thus, it is shown that the external leakage magnetic flux MB1 from the N pole to the S pole is generated. Magnetization is performed by passing the magnetic film through about one third of the circumference of the magnetizing roll.

(10)図10は、公知の上記永久磁石型着磁ロールを2本用いて、垂直方向の磁束MBを得るために着磁ロールを対向させることを示す概念模式図(斜視図)であり図8のMBに相当する。そうして磁性フィルムを該上下2本の着磁ロールで挟むようにして通過させることで両面着磁を施すことが出来る。 (10) FIG. 10 is a conceptual schematic diagram (perspective view) showing that the magnetizing rolls are opposed to obtain the magnetic flux MB in the vertical direction using two known permanent magnet type magnetizing rolls. Equivalent to 8 MB. Then, the double-sided magnetization can be performed by passing the magnetic film so as to be sandwiched between the two upper and lower magnetizing rolls.

又、着磁は公知の高圧パルス電流発生装置とワンターン着磁ヨークより成る着磁方法によっても着磁出来るが、磁性フィルムが薄物で極間が小なる場合は永久磁石型着磁ロール方式の方が好適である。   Magnetization can also be performed by a magnetizing method comprising a known high-voltage pulse current generator and a one-turn magnetizing yoke. However, if the magnetic film is thin and the distance between the poles is small, the permanent magnet type magnetizing roll method is preferred. Is preferred.

多極着磁は、極間0.5〜3mmの多極着磁を施すのが好ましいが、極間1mm以下では着磁ヨーク又は、着磁ロールの製作が困難であり、3mm以上では薄層磁石に適する極間の範囲(効率の良い着磁)を逸脱するので好ましくない。   For multipolar magnetization, it is preferable to apply multipolar magnetization of 0.5 to 3 mm between poles. However, it is difficult to produce a magnetizing yoke or a magnetizing roll if the distance between poles is 1 mm or less. This is not preferable because it deviates from the range between the poles suitable for the magnet (efficient magnetization).

(11)図11は、本発明の磁石フィルムに施された着磁極間を不規則に着磁した状態を示す上面図である。
(11) FIG. 11 is a top view showing a state in which the magnetic poles applied to the magnet film of the present invention are irregularly magnetized.

(12)図12は、従来の磁石フィルムの着磁(磁極が等間隔)を示す断面模式図であり、nは非着磁面のN極を示し、sは非着磁面のS極を示し、Nは着磁面のN極を示し、Sは着磁面のS極を示しているが、その各々の磁石極間(d1、d2、d3、d4、d5、d6、d7、d8、d9)は均一である。 (12) FIG. 12 is a schematic cross-sectional view showing magnetization (magnetic poles are equally spaced) of a conventional magnet film, where n is the N pole of the non-magnetized surface, and s is the S pole of the non-magnetized surface. N indicates the N pole of the magnetized surface, and S indicates the S pole of the magnetized surface, but between each of the magnet poles (d1, d2, d3, d4, d5, d6, d7, d8, d9) is uniform.

(13)図13は、従来の磁石フィルム同士が非着磁面と着磁面でN極の中心線とs極の中心線、S極の中心線とn極の中心線が合致して磁気吸着している状態を示したものである。
このように、従来の磁石フィルムの多極着磁は、夫々の極間距離が均一であるために、磁石フィルム同士が非着磁面と着磁面又は、着磁面と着磁面が接した場合に異極吸引によってS−n、N−s間又はS−N、N−S間で磁気吸着をするので、場合によっては不都合である。
(13) FIG. 13 shows that the conventional magnet films are non-magnetized and magnetized surfaces, and the center line of the N pole and the center line of the s pole, and the center line of the S pole and the center line of the n pole match. It shows the adsorbed state.
As described above, in the multipolar magnetization of the conventional magnet film, since the distance between the poles is uniform, the magnet films are in contact with each other between the non-magnetized surface and the magnetized surface or between the magnetized surface and the magnetized surface. In such a case, magnetic adsorption is performed between Sn and Ns or between SN and NS due to different polar attraction, which is inconvenient in some cases.

(14)その現象を阻害するためには、夫々の極間距離を不均一とさせれば対峙するN−Sの位置が極の中心線上に来ないため磁気吸引を阻害することができる。
図14(a)は、本発明の磁石フィルムA2,A2同士が非着磁面と着磁面でN極の中心線とs極の中心線、S極の中心線とn極の中心線が合致していない状態を示したものである。
この状態では著しく吸着力が低下するので不都合を生じる心配が無い。
又、図14(b)、磁石フィルムA2,A2同士が着磁面同士でN極の中心線とS極の中心線、S極の中心線とN極の中心線が合致していない状態を示したものである。
この状態においても、著しく吸着力が低下するので不都合を生じる心配が無い。
(14) In order to inhibit the phenomenon, if the distance between the respective poles is made non-uniform, the opposing NS position does not come on the center line of the pole, so that magnetic attraction can be inhibited.
FIG. 14 (a) shows that the magnetic films A2 and A2 of the present invention have a non-magnetized surface and a magnetized surface, and an N-pole center line and an s-pole center line, and an S-pole center line and an n-pole center line. It shows a state that does not match.
In this state, the adsorptive power is remarkably reduced, so there is no fear of inconvenience.
FIG. 14B shows a state in which the magnet films A2 and A2 are magnetized surfaces and the center line of the N pole and the center line of the S pole do not match the center line of the S pole and the center line of the N pole. It is shown.
Even in this state, the attractive force is remarkably lowered, so there is no fear of inconvenience.

磁石フィルムの極間は、厚みに対して適する極間寸法を基準極間として、この基準極間×(4〜6)の寸法を1単位として、1単位毎に基準極間×0.8、0.9、1.0、1.1、1.2の極間の範囲内で4〜6個の磁極を存在させ、その順番が連続する各単位内で不規則である多極着磁とすることが好ましく、より好ましくは基準極間×5の寸法を1単位として、1単位毎に基準極間×0.8、0.9、1.0、1.1、1.2の極間を各1個、計5個存在させ、その順番が連続する各単位内で不規則である多極着磁とすることである。例えば基準極間2mmの場合は、単位の寸法が10mmであり、その中に1.6mm、1.8mm、2.0mm、2.2mm、2.4mmの極間が各1個存在し、その順番が不規則であり、連続する各単位内の順番が不規則である多極着磁である。具体例を示せば、1単位を「 」で表わすと、「1.6mm、2.0mm、2.4mm、1.8mm、2.2mm」「2.0mm、2.4mm、1.8mm、2.2mm」・・・の如く各単位内の磁極の順番を不規則にすることになる。
Between the poles of the magnet film, the dimension between the poles suitable for the thickness is set as the gap between the reference poles, the dimension between the reference poles × (4 to 6) is taken as one unit, and the gap between the reference poles per unit is 0.8. There are 4 to 6 magnetic poles in the range between 0.9, 1.0, 1.1, and 1.2 poles, and the multipole magnetization is irregular in each unit in which the order is continuous. More preferably, assuming that the dimension of the reference gap × 5 is one unit, the gap between the reference poles per unit is 0.8, 0.9, 1.0, 1.1, 1.2 1 in each, a total of five, and multipolar magnetization that is irregular within each unit in which the order is continuous. For example, in the case of 2 mm between the reference electrodes, the unit size is 10 mm, and there is one each between 1.6 mm, 1.8 mm, 2.0 mm, 2.2 mm, and 2.4 mm, order is disordered, a multi-pole magnetization is irregular order within each unit of a row. For example, when one unit is represented by “”, “1.6 mm, 2.0 mm, 2.4 mm, 1.8 mm, 2.2 mm” “2.0 mm, 2.4 mm, 1.8 mm, 2 .2 mm "..., the order of the magnetic poles in each unit becomes irregular .

1単位が基準極間×4の場合は、基準極間×0.8、0.9、1.1、1.2の極間を各1個、計4個存在させ、基準極間×6の場合は、基準極間×0.8、0.9、1.1、1.2の極間を各1個と基準極間×1.0、の極間を2個の計6個存在させれば良い。
又、1単位が基準極間×4の寸法より小さいと極間を不規則にする自由度が少なくなり、1単位が基準極間×6の寸法より大きいと同寸法の極間が多くなり極間の不規則性の低下を招くので好ましくない。
尚、磁極間の寸法は、基準極間×(0.8〜1.2)とすることが、厚みに対して適する極間の範囲を逸脱しないので好ましい。
When one unit is between the reference electrodes × 4, there are four reference electrodes between each of the reference electrodes × 0.8, 0.9, 1.1, and 1.2, for a total of four reference electrodes × 6. In the case of, there are a total of 6 between the reference poles × 0.8, 0.9, 1.1, 1.2 and one between the reference poles x 1.0 You can do it.
Also, if one unit is smaller than the size of the reference electrode x 4, the degree of freedom for making the gap between the electrodes irregular is reduced, and if one unit is larger than the size of the reference electrode x 6, the distance between the electrodes of the same size increases. It is not preferable because it causes a decrease in irregularity .
In addition, it is preferable that the dimension between the magnetic poles is a reference inter-electrode interval × (0.8 to 1.2) because it does not deviate from the range between the inter-electrode electrodes suitable for the thickness.

磁極間不規則方式は、従来公知の永久磁石を用いた多極着磁ロールの形式で、各極間を特定することで実施できるので、長尺(巻物)原反を連続して着磁することが出来る利点がある。そして、幅広の長尺の着磁済原反から磁性カードを裁断する際に、まず原反の横方向に磁性カードの縦寸法で帯状に裁断し、次いで磁気カードの横寸法で裁断すればよい。この場合、最初の端部の捨て代を、標準磁極間寸法の10倍程度の寸法範囲内で不規則に切り捨ててから開始することで、各帯状に裁断したものから製作した磁性カードの磁極パターンが他のカードの磁極パターンと一致すること(吸着力低減効果が生じない組み合わせ)は殆ど生じない。
The irregular method between the magnetic poles can be implemented by specifying the distance between the poles in the form of a multi-pole magnetized roll using a conventionally known permanent magnet, so that a long (roll) material is continuously magnetized. There is an advantage that can be. Then, when cutting a magnetic card from a wide and long magnetized raw material, it is necessary to first cut into a strip shape in the longitudinal direction of the magnetic card in the horizontal direction of the original material, and then cut in the horizontal size of the magnetic card. . In this case, the magnetic pole pattern of the magnetic card manufactured from what was cut into each band shape by starting the discarding of the first end portion irregularly within a range of about 10 times the standard magnetic pole dimension. Almost coincides with the magnetic pole pattern of other cards (a combination that does not produce an effect of reducing the attractive force).

(15)図15は、表面(片面)に支持体を設けた磁石フィルムA4−1同士の表面と裏面を重ねた場合に生じた波うち部分吸着を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)
表面(片面)のみに支持体を設けた可撓性磁石フィルム(粘結材を有機高分子エラストマーとする)は、場合によっては温度、時間、によって略対峙する異極との磁気吸引力によって波打ち変形して部分磁気吸着を生じる不都合がある。
(15) FIG. 15 is a conceptual schematic cross-sectional view showing the partial adsorption of the wave generated when the front and back surfaces of the magnet films A4-1 provided with a support on the front surface (one surface) are overlapped. (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted)
A flexible magnet film (a binder is made of an organic polymer elastomer) provided with a support only on the surface (one side) is sometimes corrugated by a magnetic attraction force with a different polarity that opposes the temperature and time. There is an inconvenience of deformation and partial magnetic adsorption.

(16)図16は、本発明の両面に支持体を設けた磁石フィルムA2同士の表面と裏面を重ねた場合の、波うち部分吸着を生じない弱い磁気吸着状態を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)
両面に支持体を有することで適度の可撓性を有し且つ略対峙する異極との磁気吸引力に抗して波打ち部分吸着を生じない弱い磁気吸着状態を発現維持する。又、磁石フィルムの表面同士を重ねた場合も同様である。
(16) FIG. 16 is a conceptual schematic cross-sectional view showing a weak magnetic adsorption state that does not cause partial adsorption of waves when the front and back surfaces of the magnet films A2 provided with supports on both sides of the present invention are overlapped. . (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted)
By having the support on both sides, it has moderate flexibility and maintains a weak magnetic adsorption state that does not cause wavy partial adsorption against the magnetic attractive force with the opposite polarities. The same applies to the case where the surfaces of the magnet films are stacked.

(17)図17は、従来の面内磁場配向を施した定尺磁石フィルムから、磁場配向方向に対して傾斜を設けて裁断したことを示す上面模式図である。
磁場配向方向(製造流れ方向)に、面内磁場配向をした異方性磁石フィルムの着磁は、多極着磁の磁極の方向を磁場配向方向(製造流れ方向)に対して直角方向にすることが必須条件であり、当然、定尺磁石フィルムの1辺に対して傾斜を設けて着磁を施すために、着磁ロールの極方向に対して、未着磁の定尺磁石フィルムの1辺を傾斜するように着磁機に供給しても正常な着磁を施すことは出来ない。
(17) FIG. 17 is a schematic top view showing that a conventional magnet film subjected to in-plane magnetic field orientation is cut with an inclination with respect to the magnetic field orientation direction.
Magnetization of an anisotropic magnet film with in-plane magnetic field orientation in the magnetic field orientation direction (manufacturing flow direction) makes the direction of the magnetic pole of multipolar magnetization perpendicular to the magnetic field orientation direction (manufacturing flow direction). It is an essential condition. Naturally, in order to magnetize with an inclination with respect to one side of the standard magnet film, one of the non-magnetized standard magnet film with respect to the polar direction of the magnetizing roll is used. Even if it is supplied to the magnetizer so that the sides are inclined, normal magnetization cannot be performed.

前記不都合の対策として、多極着磁の磁極の方向を磁場配向方向(製造流れ方向)に対して直角の方向に着磁を施した磁石シートを用いて、傾斜を設けて裁断することで得ることを示している。この方法では、裁断時に使用しない箇所(ロス)を生じるので不経済である。
本発明の垂直磁場配向による磁性フィルムは、磁極方向を自由に着磁出来るのでこの様な裁断をする必要が無い(経済的である)。
As a countermeasure against the inconvenience, it is obtained by using a magnet sheet that is magnetized in a direction perpendicular to the magnetic field orientation direction (manufacturing flow direction) in the direction of the magnetic poles of multipolar magnetization, and cutting by providing an inclination. It is shown that. This method is not economical because a portion (loss) that is not used at the time of cutting is generated.
The magnetic film according to the vertical magnetic field orientation of the present invention can be freely magnetized in the magnetic pole direction, so that it is not necessary to perform such cutting (economical).

図18は、傾斜着磁された磁石フィルムを用いて作製された磁性カードを使って、非着磁面と着磁面を重ねた場合の吸着力低減を説明する模式図を表わしたものであり、図18(a)は平面図、図18(b)は最小単位の拡大図を示している。
これらの図に表わされるように、磁性カードの非着磁面には傾斜角度Eでなる磁極s,nが形成されており、その面に対して異なる傾斜角度Fで着磁された磁性カードを載せると、Gで表わされる交差角度で重なることになる。
ちなみに、現在の図面は、傾斜角度Eが30°(非着磁面)、傾斜角度Fが60°(着磁面)であり、交差角度Gは30°となっている。
FIG. 18 is a schematic diagram for explaining a reduction in the attractive force when a non-magnetized surface and a magnetized surface are overlapped using a magnetic card produced using a magnetic film that is tilted and magnetized. 18A shows a plan view, and FIG. 18B shows an enlarged view of the minimum unit.
As shown in these figures, magnetic poles s and n having an inclination angle E are formed on the non-magnetized surface of the magnetic card, and magnetic cards magnetized at different inclination angles F with respect to the surface are provided. When placed, they overlap at the intersection angle represented by G.
Incidentally, in the current drawing, the inclination angle E is 30 ° (non-magnetized surface), the inclination angle F is 60 ° (magnetized surface), and the intersection angle G is 30 °.

そして、この状態における磁気吸着状況は、図18(b)に示されるように、傾斜着磁の一対の磁極同士、即ち、N極、S極、n極、s極が交差することにより四つの同一形状・面積のブロック「V(N,n同極反撥)、W(S,s同極反撥)、Y(N,s異極吸引)、Z(S,n異極吸引)」が形成され、反撥するブロック2個と異極吸引するブロック2個となるので磁気吸着力は略相殺され、磁性カード同士は、図18(a)で示されるように、この関係が多数構成されているので、同様に磁気吸着力は略相殺(磁気吸着力低減)される。   Then, as shown in FIG. 18B, there are four magnetic adsorption states in this state by crossing the pair of magnetic poles of gradient magnetization, that is, the N pole, the S pole, the n pole, and the s pole. Blocks “V (N, n same polarity repulsion), W (S, s same polarity repulsion), Y (N, s different polarity suction), Z (S, n different polarity suction)” having the same shape and area are formed. Since two repelling blocks and two blocks attracting different poles are used, the magnetic attractive force is substantially offset, and the magnetic cards have a large number of relationships as shown in FIG. 18 (a). Similarly, the magnetic attractive force is substantially canceled (reduced magnetic attractive force).

なお、この作用効果は、交差角度Gが0、或いは極めて小さくない限り奏することができるため、その条件の範囲であれば、傾斜角度E、傾斜角度Fは、上記数値以外でも実施可能であることはいうまでもない。また、この現象及び作用効果は、着磁面同士を重ねた場合でも同様に生ずるものである。   This effect can be achieved as long as the crossing angle G is not 0 or very small. Therefore, as long as the conditions are within the range, the inclination angle E and the inclination angle F can be implemented by other than the above numerical values. Needless to say. In addition, this phenomenon and the effect are similarly generated even when the magnetized surfaces are overlapped with each other.

以下実施例を用いて、本発明を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

(1)先駆体の作成
1)支持体:ポリエステル系合成紙クリスパーK2311(東洋紡績社製)38μm厚にインキ受理層NS600X(高松油脂社製)をコンマコーターを用いて塗布した総厚50μmの合成紙を使用する。
(1) Preparation of precursor 1) Support: Polyester synthetic paper Krisper K2311 (manufactured by Toyobo Co., Ltd.) 38 μm thick, ink receiving layer NS600X (manufactured by Takamatsu Yushi Co., Ltd.) was applied using a comma coater, and a total thickness of 50 μm was synthesized. Use paper.

2)磁性層の形成
2)−1塗工液の配合
エチレン・酢酸ビニル共重体 商品名:エバフレックスEW−40LX(VA41%)三井・デュポンポリケミカル社製〔エラストマー〕・・・・・・・・・・・・・70重量部
エチレン・酢酸ビニル共重体 商品名:エバフレックスV−5772ET(VA33%)三井・デュポンポリケミカル社製〔エラストマー〕・・・・・・・・・・・・30重量部
異方性ストロンチュウムフエライト粉・磁場配向型(OP−71)DOWAエフテック社製〔硬質磁性材料〕・・・・・・・・・・・・・・・・・・・・・・・・・800重量部
メチルエチルケトン〔有機溶剤〕・・・・・・・・・・・・・・・・・・・240重量部
トルエン〔有機溶剤〕・・・・・・・・・・・・・・・・・・・・・・・・730重量部
〔固形分中の磁性材料粉の充填量 88.9重量%(60.3容量%)〕
2) Formation of magnetic layer 2) -1 Blending of coating liquid Ethylene / vinyl acetate copolymer Product name: Evaflex EW-40LX (VA 41%) Mitsui / DuPont Polychemical Co., Ltd. [Elastomer]・ ・ ・ ・ ・ ・ 70 parts by weight Ethylene / vinyl acetate copolymer Product name: EVAFLEX V-5572ET (VA 33%), Mitsui, manufactured by DuPont Polychemical Co., Ltd. [Elastomer] Part by weight anisotropic strontium ferrite powder, magnetic field orientation type (OP-71), manufactured by DOWA FTEC Co., Ltd. [Hard magnetic material] ... ... 800 parts by weight methyl ethyl ketone [organic solvent] ... 240 parts by weight toluene [organic solvent] ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 73 Parts [loading 88.9 wt% of the magnetic material powder in the solid content (60.3% by volume)]

2)−2塗工液の作成
前記配合に従って、攪拌機(ディスパー;剪断型 羽径200mm)に有機溶剤とエラストマーを投入し攪拌溶解後、次いで異方性ストロンチュウムフエライト粉を投入し混合攪拌したものを、サンドミル(ビーズ;1.25mm、ディスク;平型、周速12m/s)にて分散処理を行う。
2) -2 Preparation of coating liquid According to the above formulation, an organic solvent and an elastomer were added to a stirrer (disper; shear type blade diameter 200 mm), stirred and dissolved, and then anisotropic strontium ferrite powder was added and mixed and stirred. The material is subjected to a dispersion treatment in a sand mill (beads: 1.25 mm, disk: flat type, peripheral speed 12 m / s).

2)−3磁石層のコーティング
コーティングの直前に攪拌機で攪拌・粘度調整を行った後、支持体の片面にコンマコーターを用いて塗布厚90μm(ドライ)に塗布し乾燥炉の入口に布施した垂直磁場配向装置(図4参照)を通して垂直磁場配向(図5)(配向磁場の強さ:約1300Oe)を行い、乾燥炉(50〜100°C×10分)にて乾燥後冷却することで先駆体を作成する。
(2)他の片面に他の支持体を積層
2) -3 Coating of magnet layer Stirring and viscosity adjustment with a stirrer just before coating, vertical coating applied to a coating thickness of 90 μm (dry) using a comma coater on one side of the support and applied to the inlet of the drying furnace A vertical magnetic field orientation (FIG. 5) (strength of the orientation magnetic field: about 1300 Oe) is performed through a magnetic field orientation device (see FIG. 4), followed by drying and cooling in a drying furnace (50 to 100 ° C. × 10 minutes). Create a body.
(2) Laminate another support on the other side

グラビヤコーターヘッド、乾燥炉、ニップロール(加熱ロールとゴムロール)より成る公知のドライラミネーターを用いて、他の片面に他の支持体を下記の条件で積層する。(図3)
支持体の裏面に接着剤(ハイドランHW−311/DICグラフィックス社製)を塗布、塗布厚:1〜3μm(ドライ)、熱活性温度:80〜90°C、ニップロールのゴムロールの硬度:60、線圧:約120N/cmとする。
Using a known dry laminator composed of a gravure coater head, a drying furnace, and a nip roll (heating roll and rubber roll), another support is laminated on the other surface under the following conditions. (Figure 3)
An adhesive (Hydran HW-311 / DIC Graphics) was applied to the back surface of the support, coating thickness: 1 to 3 μm (dry), thermal activation temperature: 80 to 90 ° C., hardness of rubber roll of nip roll: 60, Linear pressure: about 120 N / cm.

(3)着磁
公知の永久磁石型着磁ロール(Y)2本を用いた形式で(図10)、垂直方向の磁束を形成し、着磁された磁石フィルムの磁極の方向が磁石フィルムの流れ方向に対して平行で、多極着磁の極間2.0mmピッチを基準とした不規則な着磁を施し、両面に支持体を有する両面着磁磁石フィルムを得る。即ち、従来公知である永久磁石型着磁ロールは、組み込む永久磁石の厚みを2.0mm均一とするのに対して、本発明を実施する着磁ロールは、組み込む永久磁石の厚みを、1単位の寸法が10mmで、その中に1.6mm、1.8mm、2.0mm、2.2mm、2.4mmの極間が各1個存在し、その順番が連続する各単位内で不規則であるように組み込んだ着磁ロールを用いて着磁を施す。
(3) Magnetization In a form using two known permanent magnet type magnetizing rolls (Y) (FIG. 10), a magnetic flux in the vertical direction is formed, and the direction of the magnetic pole of the magnetized magnet film is that of the magnet film. Irregularly magnetized based on a 2.0 mm pitch between poles of multipolar magnetization parallel to the flow direction, a double-sided magnetized magnet film having a support on both sides is obtained. That is, the permanent magnet type magnetizing roll which is conventionally known, with respect to the 2.0mm uniform thickness of the permanent magnet incorporated, magnetizing roll embodying the invention the thickness of the permanent magnet incorporated, 1 unit The dimension of 10 mm is 1.6 mm, 1.8 mm, 2.0 mm, 2.2 mm, 2.4 mm, and there is one gap between them, and the order is irregular within each unit. Magnetization is performed using a magnetizing roll incorporated in a certain manner.

先駆体の磁性層の厚みを45μmとし、接着剤を用いて磁性性層同士を張合せる以外は実施例1同様にする。
(1)磁性性層同士の張合せ
グラビヤコーターヘッド、乾燥炉、ニップロール(加熱ロールとゴムロール)より成る公知のドライラミネーターを用いて、下記の条件で積層する。(図3)
一方の先駆体の磁性層面に、接着剤(ハイドランHW−311/DICグラフィックス社製)を塗布、塗布厚:1〜3μm(ドライ)、熱活性温度:80〜90°C、ニップロールのゴムロールの硬度:60、線圧:約120N/cmとする。
The thickness of the magnetic layer of the precursor is 45 μm, and the same procedure as in Example 1 is performed except that the magnetic layers are bonded to each other using an adhesive.
(1) Lamination of magnetic layers Using a known dry laminator composed of a gravure coater head, a drying furnace, and a nip roll (heating roll and rubber roll), lamination is performed under the following conditions. (Figure 3)
Adhesive (Hydran HW-311 / manufactured by DIC Graphics) is applied to the magnetic layer surface of one precursor, coating thickness: 1 to 3 μm (dry), thermal activation temperature: 80 to 90 ° C., rubber roll of nip roll Hardness: 60, linear pressure: about 120 N / cm.

(2)応用例(ポストカードの作成)
縦480mm×横930mmに断裁して、縦150mm×横100mmのはがきを横9列×縦3段の27枚に対して、片面に郵便はがきの宛名面を印刷(郵便はがき、郵便番号枠、切手貼付枠の印刷)及び、他の片面に風景画をインキジェット印刷にて印刷を施し、縦150mm×横100mmのはがきを裁断する。
(2) Application example (creation of postcards)
Cut the postcard of length 480mm x width 930mm, and print the address face of the postcard on one side of the postcard of length 150mm x width 100mm on 27 sheets of width 9 rows x length 3 (postcard, postal code frame, stamp Printing a sticky frame) and printing a landscape image on the other side by ink jet printing, and cutting a postcard of 150 mm length × 100 mm width.

支持体をPET系合成紙クリスパーK2323(東洋紡社製)75μm厚にインキ受理層NS600X(高松油脂社製)を塗布して総厚100μm、磁性層の厚みを130μmとする以外は実施例2と同様にする。(以下、ポストカードの作成例は省力するが、各実施例について同様にして作成することが出来る)   Example 2 except that the base material is PET synthetic paper Krisper K2323 (Toyobo Co., Ltd.) with a thickness of 75 μm and an ink receiving layer NS600X (Takamatsu Yushi Co., Ltd.) is applied to make the total thickness 100 μm and the magnetic layer thickness 130 μm. To. (Hereafter, postcard creation examples will save labor, but each example can be created in the same way.)

定尺裁断品に、片面着磁で極間が等間隔の傾斜着磁を施す他は実施例2と同様にする。
傾斜着磁は、永久磁石型着磁ロール(図9)の下部にゴムロールを接触させて、その間に定尺裁断品を永久磁石型着磁ロールの製品流れ方向に対して、定尺裁断品の縦右辺方向を傾斜角度30°のものと、60°のものを作成する(重ね磁気吸着力測定時の交差角が30°となる)。又、傾斜角度0°のものも作成して、0°、30°、60°に磁極方向を変えた場合に得られる磁気吸着力の測定に供する。
The same procedure as in Example 2 was performed, except that the regular cut product was subjected to one side magnetization and gradient magnetization with equal intervals between the poles.
Inclined magnetization, a rubber roll is brought into contact with the lower part of a permanent magnet type magnetizing roll (FIG. 9), and a standard size cut product is measured with respect to the product flow direction of the permanent magnet type magnetizing roll. A vertical right side direction having an inclination angle of 30 ° and that having a tilt angle of 60 ° are created (the crossing angle at the time of measuring the overlapping magnetic attraction force is 30 °). In addition, one having an inclination angle of 0 ° is also prepared and used for measurement of magnetic attraction force obtained when the magnetic pole direction is changed to 0 °, 30 °, and 60 °.

極間を等間隔(1mm)とし傾斜着磁をする他は、実施例2と同様にする。
傾斜着磁は、実施例1と同様の永久磁石型着磁ロール(図10)に定尺裁断品を永久磁石型着磁ロールの製品流れ方向に対して、定尺裁断品の縦右辺方向を傾斜角度60°のものと、30°のものを作成する(重ね磁気吸着力測定時の交差角が90°となる)。
The same as in Example 2, except that the poles are equally spaced (1 mm) and tilted magnetization is performed.
Inclined magnetization is the same as that of the first embodiment in the permanent magnet type magnetized roll (FIG. 10). A tilt angle of 60 ° and a tilt angle of 30 ° are created (the crossing angle when measuring the overlapping magnetic attraction force is 90 °).

極間を不規則(標準極間2.0mm)とする他は、実施例4と同様にする。
The same operation as in Example 4 was performed except that the distance between the poles was irregular (standard gap between 2.0 mm).

支持体をPP系合成紙SPUY115VSIP100μm厚(日清紡社製)とし、磁性層の厚みを130μmとし、不規則着磁(標準極間を2.5mm)とし支持体を磁性層に積層する他は、実施例5と同様にする。
不規則着磁は、1単位の寸法が12.50mmで、その中に2.0mm、2.25mm、2.5mm、2.75mm、3.00mmの極間が各1個存在し、その順番が連続する各単位内で不規則であるように組み込んだ着磁ロールを用いて着磁を施す。
Except that the support is made of PP synthetic paper SPUY115VSIP 100μm (made by Nisshinbo Co., Ltd.), the thickness of the magnetic layer is 130μm, irregular magnetization (standard spacing is 2.5mm), and the support is laminated on the magnetic layer. Same as Example 5.
Irregular magnetization has a unit size of 12.50 mm, and there are 2.0 mm, 2.25 mm, 2.5 mm, 2.75 mm, and 3.00 mm poles each in that order. Is magnetized using a magnetizing roll incorporated so as to be irregular within each continuous unit.

(比較例1)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、極間が等間隔(2mmP)の両面着磁を施した磁石フィルム。
(Comparative Example 1)
In the same manner as in Example 1, a magnetic film in which a magnetic layer is formed on one side of a support and a support is not provided on the other side, and both sides are magnetized at equal intervals (2 mmP).

(比較例2)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、標準極間2.0mmの不規則着磁を施した磁石フィルム。
(Comparative Example 2)
In the same manner as in Example 1, a magnetic film in which a magnetic layer is formed on one side of a support and irregular magnetization is applied with a standard pole distance of 2.0 mm without providing a support on the other side.

(比較例3)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、極間が等間隔(2mmP)の傾斜着磁を施した定尺裁断磁石フィルム。
傾斜着磁は、(傾斜角度30と60、交差角30)。
(Comparative Example 3)
In the same manner as in Example 1, a magnetic layer was formed on one side of a support, and a support was not provided on the other side. .
The tilt magnetization is (tilt angles 30 and 60, intersection angle 30).

(比較例4)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、標準極間2.0mmの不規則の傾斜着磁を施した定尺裁断磁石フィルム。 傾斜着磁は、(傾斜角度30と60、交差角30)。
(Comparative Example 4)
In the same manner as in Example 1, a magnetic layer is formed on one side of a support, and a regular cut magnet with irregular gradient magnetization of 2.0 mm between standard poles without providing a support on the other side. the film. The tilt magnetization is (tilt angles 30 and 60, intersection angle 30).

(比較例5)
支持体をPET系合成紙クリスパーK2323(東洋紡社製)75μm厚にインキ受理層NS600X(高松油脂社製)を塗布して総厚100μmとし、他の片面に支持体を設けない他は、実施例7と同様にした磁性フィルム。
(Comparative Example 5)
Example except that the base material is PET synthetic paper Krisper K2323 (Toyobo Co., Ltd.) 75 μm thick and the ink receiving layer NS600X (manufactured by Takamatsu Yushi Co., Ltd.) is applied to make the total thickness 100 μm, and the support is not provided on the other side. Magnetic film similar to 7.

次に、性能試験方法等について説明する。
1、磁気吸着力測定方法(磁石フィルムと軟鉄板との垂直方向磁気吸着力)
該測定方法は、標準的な磁気吸着力の測定方法であり、磁石フィルム単体の磁気吸着力の性能を知る事ができる。
平滑なプラスチック板の上面に1辺が約60mmの正方形の平滑な2mm厚の軟鉄板を両面テープを用いて貼着する。一方、背面中央に引掛けを設けた1辺が50mmの正方形の平滑なプラスチック板に、1辺が40mmの正方形の試験試料を両面テープを用いて貼着する。そして両者を磁気吸着させて垂直方向に引き離すに要する力を、プラスチック板背面の引掛けにバネ秤を引っ掛けて測定して磁気吸着力(g/cm)を算出する。(図20参照)
Next, a performance test method and the like will be described.
1. Magnetic adsorption force measurement method (perpendicular magnetic adsorption force between magnet film and soft iron plate)
This measuring method is a standard method for measuring magnetic attraction force, and the performance of the magnetic attraction force of a single magnet film can be known.
A smooth 2 mm-thick soft iron plate having a square of about 60 mm on one side is attached to the upper surface of a smooth plastic plate using a double-sided tape. On the other hand, a square test sample with a side of 40 mm is stuck to a smooth plastic plate with a side of 50 mm provided with a hook at the center of the back using a double-sided tape. Then, the magnetic adsorption force (g / cm 2 ) is calculated by measuring the force required to magnetically attract the two and pulling them apart in the vertical direction by hooking a spring balance on the back of the plastic plate. (See Figure 20)

2、重ね引張剪断磁気吸着力測定方法
平滑なプラスチック板の上面に1辺が約60mmの正方形の試験試料を両面テープを用いて貼着する。一方、側面中央に引掛けを設けた1辺が50mmの正方形のプラスチック板に両面テープを用いて他の試験試料を貼着する。そして両者を磁気吸着させて水平方向に引き離すに要する力を、プラスチック板側面の引掛けにバネ秤を引っ掛けて測定して引張剪断磁気吸着力(g/cm)を算出する。(図21参照)
2. Method for measuring lap tensile shear magnetic adsorption force A square test sample having a side of about 60 mm is attached to the upper surface of a smooth plastic plate using a double-sided tape. On the other hand, another test sample is attached to a square plastic plate having a hook at the center of the side and having a side of 50 mm using a double-sided tape. Then, the force required to magnetically attract the two and pull them apart in the horizontal direction is measured by hooking a spring balance to the hook on the side of the plastic plate to calculate the tensile shear magnetic attracting force (g / cm 2 ). (See Figure 21)

3、耐波打変形吸着性試験方法
試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、38〜42℃の熱風循環式恒温装置内に7日放置後の、耐波打変形吸着の有無を観察して4段階評価を行う。(図15参照)
◎:波打が認められない ○:波打が殆ど認められない △:波打がやや認められる ×:波打が認められる
3. Anti-waving deformation adsorbability test method Two anti-magnetic wave test cards (100 x 150 mm) are stacked, and the anti-waving deformation after standing for 7 days in a hot air circulation thermostat at 38-42 ° C. A four-step evaluation is performed by observing the presence or absence of adsorption. (See Figure 15)
◎: No undulations are observed. ○: Most undulations are not observed. △: Some undulations are observed.

4、耐角端部変形性試験方法
室温21〜25℃において、最初に試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、磁極方向を360°の範囲内でカード相互の磁気吸着力が最大と成る角度(磁極方向が重なる)で表裏を磁気吸着させる。その上に順次同様にして合計10枚を重ねた不揃いのカードを、磁気吸着力に抗して揃える為に、4辺を1辺ずつテーブルの平らな面に当てて揃えることを3回繰り返した後、角端部の変形、傷付き具合を目視で観察して4段階評価を行う。(図19参照)
◎:変形が認められない ○:変形が殆ど認められない △:変形がやや認められる
×:変形が認められる。
4. Corner edge resistance test method At room temperature of 21-25 ° C, two magnetic film cards, which are test samples (100x150mm), are first stacked, and the cards are placed within a range of 360 °. The front and back sides are magnetically attracted at an angle (the magnetic pole directions overlap) at which the magnetic attraction force becomes maximum. In addition, in order to align the irregular cards in which a total of 10 cards were stacked in the same manner sequentially against the magnetic attractive force, the alignment was repeated three times by placing the four sides one by one against the flat surface of the table. Then, the four-level evaluation is performed by visually observing the deformation of the corner ends and the degree of scratches. (See Figure 19)
A: Deformation is not recognized. O: Deformation is hardly recognized. Δ: Deformation is slightly recognized. X: Deformation is recognized.

5、作業性試験方法
試験試料(100×150mm)である磁石フィルム製のカード50枚を、テーブル上に散乱させた後、十枚ずつ四隅を揃える作業を行い、4段階の評価を行う。
◎:優れる ○:良い △:やや劣る ×:劣る
5. Workability test method After 50 magnetic film cards, which are test samples (100 × 150 mm), are scattered on the table, the work of aligning the four corners by 10 pieces is performed, and four-stage evaluation is performed.
◎: Excellent ○: Good △: Slightly inferior ×: Inferior

次に試験結果について説明する。
各実施例、比較例について各試験を行い主な構成と試験結果を表にまとめた。
表1は本発明の実施例、表2は比較例についてまとめたものである。
Next, test results will be described.
Each test was conducted for each example and comparative example, and the main configuration and test results were summarized in a table.
Table 1 summarizes the examples of the present invention, and Table 2 summarizes the comparative examples.

1、実施例4から分かるように、本発明の垂直磁場配向した磁石フィルムは磁極方向を変化させても得られる磁気吸着力に差を生じないことが分かる。 1. As can be seen from Example 4, it can be seen that the perpendicular magnetic field oriented magnet film of the present invention does not produce a difference in the magnetic attractive force obtained even when the magnetic pole direction is changed.

2、実施例1と比較例1から分かるように、実施例1は支持体が両面にあり極間が不規則であるので重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打変形吸着性、耐角端部変形性が優れるので作業性も優れる。それに対して比較例1は極間が等間隔であるので重ね磁気吸着力が大きく作業性が劣る。
2. As can be seen from Example 1 and Comparative Example 1, Example 1 has a large effect of reducing the overlapping magnetic attractive force (shear tensile magnetic attractive force) because the support is on both sides and the distance between the electrodes is irregular . Workability is also excellent because of the excellent resistance to undulation deformation and the resistance to corner edge resistance. On the other hand, in Comparative Example 1, since the distance between the poles is equal, the overlapping magnetic attractive force is large and the workability is inferior.

3、実施例2と比較例2から分かるように、実施例2は支持体が両面にあり極間が不規則であるので重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打吸着性、耐角部変形性が優れるので作業性も優れる。それに対して、比較例2は支持体が片面のみであるので耐波打吸着性、耐角部変形性が劣るので作業性も劣る。
4、実施例3も実施例2と同様に優れる。
3. As can be seen from Example 2 and Comparative Example 2, since Example 2 has a support on both sides and the distance between the electrodes is irregular , the effect of reducing the overlapping magnetic attractive force (shear tensile magnetic attractive force) is great. Workability is also excellent because of its excellent resistance to waving and corner deformation. On the other hand, in Comparative Example 2, since the support is only on one side, the wave-adsorbing adsorption property and the corner portion deformation property are inferior, and the workability is also inferior.
4 and Example 3 are excellent as in Example 2.

5、実施例4と比較例3から分かるように、実施例4は支持体が両面にあり磁極を交差させることにより、重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打変形吸着性、耐角端部変形性が優れるので作業性も優れる。それに対して比較例3は支持体が片面のみであるので耐角端部変形性が劣り、作業に注意を要するので作業性も劣る。
6、実施例5も実施例4と同様に優れる。
5. As can be seen from Example 4 and Comparative Example 3, in Example 4, the support is on both sides and the magnetic poles are crossed, so that the effect of reducing the lap magnetic attractive force (shear tensile magnetic attractive force) is great, and the wave resistance Workability is also excellent because of the excellent impact resistance and deformation at the corner edges. On the other hand, in Comparative Example 3, since the support is only on one side, the corner end deformation resistance is inferior, and the workability is also inferior because the work requires attention.
6 and Example 5 are also excellent as in Example 4.

7、実施例6と比較例4から分かるように、実施例6は支持体が両面にあり極間を不規則に且つ磁極を交差させることにより、重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打変形吸着性、耐角端部変形性が優れるので作業性も優れる。それに対して比較例4は支持体が片面であるので耐角部変形性が劣り、作業に注意を要するので作業性も劣る。又、実施例7と比較例5についても同様である。
7. As can be seen from Example 6 and Comparative Example 4, in Example 6, the support is provided on both sides, the poles are irregularly spaced, and the magnetic poles are crossed, so that the overlap magnetic attractive force (shear tensile magnetic attractive force) is increased. The reduction effect is great, and the workability is also excellent because of the excellent resistance to undulation deformation and corner end resistance. On the other hand , Comparative Example 4 is inferior in the corner portion deformation resistance because the support is a single side, and the workability is also inferior because the work requires attention. The same applies to Example 7 and Comparative Example 5.

8、これらの結果からも、本発明の両面に支持体を有する効果が大きいことが分かる。又、本発明の垂直磁場配向した磁性フィルムは、磁極方向(角度)を変えても得られる磁気吸着力は変化しない事が分かる。 8. From these results, it can be seen that the effect of having the support on both sides of the present invention is great. In addition, it can be seen that the magnetic attractive force obtained by the magnetic film oriented in the perpendicular magnetic field of the present invention does not change even if the magnetic pole direction (angle) is changed.

両面に印刷可能な支持体を有し、片面又は両面に着磁が施された磁石フィルムであって、重ねた場合の磁気吸着力を低減させた本発明品は、カード類への応用が期待される。特にポストカードに好適である。   A magnetic film having a support that can be printed on both sides and magnetized on one side or both sides, with reduced magnetic attraction when stacked, is expected to be applied to cards. Is done. It is particularly suitable for a post card.

A 本発明の磁石フィルム(非着磁面側の弱い磁極の記載省略)
A1 磁石層形成を異にする本発明の磁石フィルム
A2 着磁極間を不規則に着磁を施した本発明の磁石フィルム
A3 従来の面内配向型磁石フィルムの着磁の磁極方向に対して斜めに裁断した定尺磁石フィルム
A4 従来の着磁方式による磁石フィルム(極間が等間隔)
A4−1 従来の片面に支持体を有する磁石フィルム(着磁極間が不規則
B 前記本発明の磁石フィルムAの先駆体
B1 前記本発明の磁石フィルムA1の先駆体
MC 垂直磁場配向装置を付設した塗布機(コーター)
MM 垂直磁場配向装置
CA1、CA2、CA3 本発明の磁石フィルムカード
DL ドライラミネーター
HL 熱ラミネーター
C 磁性粉結晶のC軸方向
F 製品の流れ方向
M 磁場配向磁束の方向
MB 両面磁磁ロールからの垂直方向の磁束
MB1 片面着磁ロールからの磁束
N 磁石のN極 n、裏面(非着磁面)生じるN極、N1、他の磁石のN極
S 磁石のS極 s、裏面(非着磁面)生じるS極、S1、他の磁石のS極
d1、d2、d3、d4、d5、d6、d7、d8、d9 極間
Y 永久磁石型着磁ロール
MA1 軟鉄板と磁石フィルム間の垂直方向磁気吸着力測定装置
MA2 磁石フィルム同士の引張剪断磁気吸着力測定装置
1 支持体
1―1 支持体と同様なフィルム
2 磁性粉が面内配向された磁性層
3 コーターヘッド(コンマコーター)
4 乾燥炉
5 ニップロール
6 冷却ロール
7 巻出機
8 B、B―1(巻取機)
9 永久磁石
10 磁性粉(異方性フエライト結晶)
11 コーターヘッド(グラビヤロールコーター)
12 磁性フィルム(磁石フィルムの未着磁品)
13 加熱ロール
14 ガイドロール(非磁性製)
15 Nd―Fe―B系希土類永久磁石
16 軟質磁性材料(鉄など)製バックヨーク
17 シャフト
18 平坦な台(テーブル)
19 平滑なプラスチック板
20 両面粘着テープ
21 軟鉄板
22 試験試料
23 中央に引掛けを設けた平滑なプラスチック板
24 バネ秤
25 試験試料
26 他の試験試料
27 側面中央に引掛けを設けた平滑なプラスチック板
A Magnet film of the present invention (omitted description of weak magnetic poles on the non-magnetized surface side)
A1 Magnet film of the present invention with different magnet layer formation A2 Magnet film of the present invention irregularly magnetized between magnetized magnetic poles A3 Oblique with respect to the magnetic pole direction of magnetization of a conventional in-plane oriented magnet film A4 magnet film cut into a square A4 Magnet film using conventional magnetizing method (equal spacing between poles)
A4-1 magnet film having a support the conventional single-sided (between magnetic poles is irregular)
B Precursor of the magnetic film A of the present invention B1 Precursor of the magnetic film A1 of the present invention MC Coating machine (coater) provided with a vertical magnetic field orientation device
MM Vertical magnetic orientation device CA1, CA2, CA3 Magnet film card of the present invention DL Dry laminator HL Thermal laminator C C-axis direction of magnetic powder crystal F Flow direction of product M Direction of magnetic field orientation magnetic flux MB Vertical direction from double-sided magnetic roll Magnetic flux MB1 Magnetic flux from a single-sided magnetized roll N N-pole of magnet n, N-pole generated on back (non-magnetized surface), N1, N-pole of other magnet S S-pole s of magnet, back (non-magnetized surface) S pole generated, S poles of other magnets d1, d2, d3, d4, d5, d6, d7, d8, d9 Between poles Y Permanent magnet type magnetized roll MA1 Vertical magnetic attraction between soft iron plate and magnet film Force measurement device MA2 Tensile shear magnetic adsorption force measurement device between magnet films 1 Support 1-1 Film similar to support 2 Magnetic layer with magnetic powder oriented in plane 3 Coater head (Commaco Over)
4 Drying oven 5 Nip roll 6 Cooling roll 7 Unwinder 8 B, B-1 (winder)
9 Permanent magnet 10 Magnetic powder (anisotropic ferrite crystal)
11 Coater head (gravure roll coater)
12 Magnetic film (Magnet film not magnetized)
13 Heating roll 14 Guide roll (Nonmagnetic)
15 Nd-Fe-B rare earth permanent magnet 16 Back yoke made of soft magnetic material (iron, etc.) 17 Shaft 18 Flat base (table)
19 Smooth plastic plate 20 Double-sided adhesive tape 21 Soft iron plate 22 Test sample 23 Smooth plastic plate provided with a hook in the center 24 Spring balance 25 Test sample 26 Other test samples 27 Smooth plastic provided with a hook in the center of the side Board

Claims (6)

異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とする磁性塗料を支持体の片面に乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%のものを用いて乾燥後の厚みが40〜250μmに成るように塗布し、乾燥炉手前に布設した上下N―S極型垂直磁場配向装置の対峙するN極面とS極面間の下極(S極)側に接近する位置に非磁性のガイドロールを付設して磁性塗料を塗布された支持体がS極に接近する位置を通過させ、S極側に磁気吸引され安定して1000〜2500Oeの磁場がかかるようにして磁性塗料の異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と直角方向に磁場配向し、乾燥後の表面が平坦な磁性塗膜を形成して成る片面又は両面に磁極方向を自由に多極着磁を施すことが可能であることを特徴とする磁石フィルムの製造方法。 Anisotropic ferrite-based hard magnetic material that is a solid component after drying on one side of a support with a magnetic paint mainly composed of anisotropic ferrite-based hard magnetic material powder and organic polymer elastomer-based varnish as a binder Coating with an anisotropic ferrite hard magnetic material powder with a filling amount of 50 to 65% by volume based on the total amount of powder, organic polymer elastomer and processing aid so that the thickness after drying is 40 to 250 μm. In addition, a non-magnetic guide roll is attached at a position approaching the lower pole (S pole) side between the opposite N pole face and S pole face of the upper and lower NS pole type vertical magnetic field orientation device installed before the drying furnace. The magnetic coating material is passed through a position where the support is close to the south pole, and is magnetically attracted to the south pole side so that a magnetic field of 1000 to 2500 Oe is stably applied. Magnetization capacity of magnetic material powder The magnetic pole orientation can be freely applied to one or both sides of a magnetic film whose axis is perpendicular to the support surface and a magnetic coating film with a flat surface after drying is formed. A method for producing a magnet film. ポリエチレンテレフタレート系合成紙で、厚みが40〜220μmである支持体の片面に、磁性塗料である異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とし、乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%のものを用いて乾燥後の厚みが40〜250μmに成るように塗布し、乾燥炉手前に布設した上下N―S極型垂直磁場配向装置の対峙するN極面とS極面間の下極(S極)側に接近する位置に非磁性のガイドロールを付設して磁性塗料を塗布された支持体がS極に接近する位置を通過させ、S極側に磁気吸引され安定して1000〜2500 Oeの磁場がかかるようにして異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と直角方向に磁場配向し、乾燥して表面が平坦な磁性塗膜を形成して成る磁性フィルムに、
支持体と同様のフィルムを積層又は磁性フィルムの磁性塗膜同士を貼り合わせて両面に支持体を有する磁性フィルムとして耐波打変形吸着性及び耐角端部変形性を付与し、
その片面又は両面に多極着磁の磁極方向を塗布機にて磁性層を塗布されたフィルムの流れ方向と平行な方向にして各極間の距離が不規則な永久磁石型着磁ロールまたはワンターン着磁ヨークを用いて磁石フィルムに多極着磁の各極間の距離を不規則に着磁を施したことで、磁石フィルム同士のN極とS極の中心が重ならないことによって、取り扱い時の磁石フィルム同士の磁気吸着力を低減した磁石フィルムであって、下記の耐波打変形吸着性試験、及び耐角端部変形性試験で評価:◎印に適合する耐角端部変形性、耐波打変形吸着性優れた磁石フィルムが得られることを特徴とする磁石フィルムの製造方法。

1、耐波打変形吸着性試験方法
試験試料(100×150mm)である磁石フィルム2枚を重ねて、38〜42℃の熱風循環式恒温装置内に7日放置後の、耐波打変形吸着の有無を観察して4段階評価を行う。)
◎:波打が認められない ○:波打が殆ど認められない △:波打がやや認められる ×:波打が認められる
2、耐角端部変形性試験方法
室温21〜25℃において、最初に試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、磁極方向を360°の範囲内でカード相互の磁気吸着力が最大と成る角度(磁極方向が重なる)で表裏を磁気吸着させる。その上に順次同様にして合計10枚を重ねた不揃いのカードを、磁気吸着力に抗して揃える為に、4辺を1辺ずつテーブルの平らな面に当てて揃えることを3回繰り返した後、角端部の変形、傷付き具合を目視で観察して4段階評価を行う。
◎:変形が認められない ○:変形が殆ど認められない △:変形がやや認められる
×:変形が認められる。
With polyethylene terephthalate-based synthetic paper, on one side of the support having a thickness of 40 to 220 μm, the main component is an anisotropic ferrite-based hard magnetic material powder as a magnetic paint and an organic polymer elastomer-based varnish as a binder, Filling amount of anisotropic ferrite hard magnetic material powder 50 to 65% by volume with respect to the total amount of anisotropic ferrite hard magnetic material powder, organic polymer elastomer and processing aid, which is a solid part after drying Is applied so that the thickness after drying becomes 40 to 250 μm, and the lower pole between the N pole face and the S pole face of the upper and lower NS pole type vertical magnetic field orientation device installed before the drying furnace (S A non-magnetic guide roll is attached to a position approaching the pole) side, and the support coated with the magnetic coating is passed through the position approaching the south pole, and is magnetically attracted to the south pole side, and is stably 1000 to 2500 Oe. of Magnetic field orientation of the easy magnetization axis of the anisotropic ferrite type hard magnetic material powder support surface and perpendicular to the field is applied such, the magnetic film dried to the surface by forming a flat magnetic layer,
Laminating the same film as the support or laminating the magnetic coatings of the magnetic film together to give the wavy deformation adsorption resistance and the corner end deformation resistance as a magnetic film having a support on both sides,
Permanent magnet type magnetized roll or one-turn with irregular distance between poles with multi-pole magnetized magnetic pole direction on one or both sides parallel to the flow direction of the film coated with magnetic layer by coating machine When magnetizing the magnet film using the magnetized yoke, the distance between the poles of multipolar magnetization is irregularly magnetized so that the centers of the N and S poles of the magnet films do not overlap. Magnetic film with reduced magnetic attractive force between the magnet films of the film, evaluated by the following wave deformation deformation adsorption test and corner end deformation resistance test: corner end deformation resistance, wave resistance suitable for ◎ mark method for producing a magnet film characterized in that the magnet film having excellent droplet deformation adsorptive is obtained.

1. Wave-resistant deformation adsorption test method Existence of wave-shaped deformation adsorption after two magnet films, which are test samples (100 x 150 mm), are stacked and left in a hot air circulation thermostat at 38 to 42 ° C for 7 days. Observe the four-level evaluation. )
◎: No undulations are observed. ○: Almost no undulations are observed. Δ: Some undulations are observed. X: The undulations are observed. 2. Test method for resistance to deformation at corner edges. Two test pieces (100 x 150 mm) of magnetic film cards are stacked on top of each other, and the front and back sides are at an angle that maximizes the magnetic attractive force between the cards within the range of 360 ° in the magnetic pole direction (the magnetic pole directions overlap). Magnetically adsorb. In addition, in order to align the irregular cards in which a total of 10 cards were stacked in the same manner sequentially against the magnetic attractive force, the alignment was repeated three times by placing the four sides one by one against the flat surface of the table. Then, the four-level evaluation is performed by visually observing the deformation of the corner ends and the degree of scratches.
A: Deformation is not recognized. O: Deformation is hardly recognized. Δ: Deformation is slightly recognized. X: Deformation is recognized.
前記磁性塗膜中の異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%であり、磁性塗膜の厚みが40〜250μmである磁性フィルムの片面又は両面に極間1〜2.5mmの多極着磁を施したことを特徴とする請求項1〜2いずれか1項記載の磁石フィルムの製造方法。   The amount of the anisotropic ferrite hard magnetic material powder in the magnetic coating film is 50 to 65% by volume, and the thickness of the magnetic coating film is 40 to 250 μm. The method for producing a magnet film according to any one of claims 1 to 2, wherein a multipolar magnetization of 0.5 mm is applied. 前記両面に支持体を有する磁石フィルムの支持体がポリエチレンテレフタレート系合成紙で厚み40〜60μm、磁性塗膜の厚み80〜100μm、磁気吸着力0.5〜2.0g/cm、自重480g/m以下であることを特徴とする請求項2又は3いずれか1項に記載の磁石フィルムの製造方法。 The support of the magnet film having the support on both sides is a polyethylene terephthalate-based synthetic paper with a thickness of 40 to 60 μm, a thickness of the magnetic coating film of 80 to 100 μm, a magnetic adsorption force of 0.5 to 2.0 g / cm 2 , and its own weight 480 g / The method for producing a magnetic film according to claim 2 , wherein m 2 or less. 前記支持体の非塗布面が印刷可能又は書き消し可能面であることを特徴とする請求項1〜4いずれか1項に記載の磁石フィルムの製造方法。   The method for producing a magnetic film according to any one of claims 1 to 4, wherein the non-coated surface of the support is a printable or erasable surface. 前記請求項1〜5いずれか1項に記載の磁石フィルムの製造方法で得られた磁石フィルムを用いたことを特徴とする磁石フィルムカード。
A magnet film card obtained by using the magnet film obtained by the method for producing a magnet film according to any one of claims 1 to 5.
JP2014180363A 2014-09-04 2014-09-04 Magnet film manufacturing method and magnet film card using the product Active JP6410531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014180363A JP6410531B2 (en) 2014-09-04 2014-09-04 Magnet film manufacturing method and magnet film card using the product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014180363A JP6410531B2 (en) 2014-09-04 2014-09-04 Magnet film manufacturing method and magnet film card using the product

Publications (2)

Publication Number Publication Date
JP2016054264A JP2016054264A (en) 2016-04-14
JP6410531B2 true JP6410531B2 (en) 2018-10-24

Family

ID=55744243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014180363A Active JP6410531B2 (en) 2014-09-04 2014-09-04 Magnet film manufacturing method and magnet film card using the product

Country Status (1)

Country Link
JP (1) JP6410531B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324635B2 (en) * 1974-03-04 1978-07-21
JP2001297911A (en) * 2000-04-13 2001-10-26 Dainippon Ink & Chem Inc Flexible magnet sheet
JP2002141219A (en) * 2000-10-31 2002-05-17 Dainippon Ink & Chem Inc Flexible magnet sheet and its manufacturing method
JP2003158011A (en) * 2001-11-21 2003-05-30 Sony Corp Magnetic attraction sheet, its magnetizing method, and its manufacturing method
JP5276034B2 (en) * 2010-03-17 2013-08-28 ニチレイマグネット株式会社 Magnetic film and magnetic card using the same

Also Published As

Publication number Publication date
JP2016054264A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
WO2009154177A1 (en) Electrostatic attracting sheet
EP2342723B1 (en) Flexible magnetic sheet
JP6363432B2 (en) Electrostatic adsorption sheet and display using the same
JP2003045713A (en) Magnetic attraction sheet and manufacturing method therefor
JP5276034B2 (en) Magnetic film and magnetic card using the same
JP6492058B2 (en) Flexible magnetic adsorption sheet and method for manufacturing the same
JP6410531B2 (en) Magnet film manufacturing method and magnet film card using the product
JP6266476B2 (en) Magnet film and magnet film card using the same
JP2003071978A (en) Magnetic attraction sheet
JP6091029B1 (en) Window film having magnetic composite layer and double-sided display mechanism
JP6144972B2 (en) Electrostatic adsorption sheet, method for producing the same, and display using the electrostatic adsorption sheet
JP5974934B2 (en) Magnetic composite film having printable layers on both sides and method for producing the magnetic composite film
JP3822561B2 (en) Display mechanism and wall cover mechanism
JP3326690B2 (en) Magnetic adsorption sheet for display
JP2002049318A (en) Flexible magnet sheet
JP3619412B2 (en) Stacked display mechanism
JP6004583B2 (en) Superposition type magnetic sticking display mechanism
JP7349168B2 (en) magnetic film
JP6203807B2 (en) Magnetic window film and double-sided display mechanism
JP3429503B2 (en) Magnetic adsorption sheet
JPH11273938A (en) Flexible magnet sheet and method for manufacturing the same
JP2003318018A (en) Magnetic attraction sheet
JP2003337539A (en) Pasting sheet for display of attraction type which does not use tacky adhesive
JP2003045714A (en) Magnetic attraction sheet and manufacturing method therefor
JPH07104670A (en) Magnetic sheet label

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R150 Certificate of patent or registration of utility model

Ref document number: 6410531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250