JP6173894B2 - Surface water volume management method and system for ground material - Google Patents

Surface water volume management method and system for ground material Download PDF

Info

Publication number
JP6173894B2
JP6173894B2 JP2013248776A JP2013248776A JP6173894B2 JP 6173894 B2 JP6173894 B2 JP 6173894B2 JP 2013248776 A JP2013248776 A JP 2013248776A JP 2013248776 A JP2013248776 A JP 2013248776A JP 6173894 B2 JP6173894 B2 JP 6173894B2
Authority
JP
Japan
Prior art keywords
particle size
ground material
moisture content
surface water
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013248776A
Other languages
Japanese (ja)
Other versions
JP2015105898A (en
Inventor
勝利 藤崎
勝利 藤崎
昭 武井
昭 武井
隆幸 神戸
隆幸 神戸
小林 弘明
弘明 小林
一也 小野田
一也 小野田
元郎 中村
元郎 中村
広行 田村
広行 田村
鎮雄 山口
鎮雄 山口
知幸 林
知幸 林
大道 三上
大道 三上
秀幸 照井
秀幸 照井
健一 川野
健一 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013248776A priority Critical patent/JP6173894B2/en
Publication of JP2015105898A publication Critical patent/JP2015105898A/en
Application granted granted Critical
Publication of JP6173894B2 publication Critical patent/JP6173894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は地盤材料の表面水量管理方法及びシステムに関し,とくに様々な粒径の混在するCSG材,セメント改良土母材,骨材等の地盤材料の表面水量又はその変動を管理する方法及びシステムに関する。   The present invention relates to a surface water volume management method and system for ground materials, and more particularly to a method and system for managing the surface water volume of ground materials such as CSG materials, cement-modified soil base materials, and aggregates having various particle sizes, or fluctuations thereof. .

ダム,防潮堤(堤防)等の盛土,その他の土木構造物を構築する工事において,材料・施工の合理化を図る観点から,工事現場付近の地山や河床等の採取場で調達し又は発生した様々な粒径の粒子(粘土,砂,礫等)が混在する地盤材料(以下,単に地盤材料ということがある)Sを用いて構造材料とすることがある。例えばCSG(Cemented Sand and Gravel),セメント改良土等の構造材料は,現場付近の採取場等で調達した地盤材料S(CSG材,セメント改良土母材等と呼ばれる)に水及びセメントを混合してそのまま施工するものであり,大量且つ高速な施工を可能とする利点を有する(非特許文献1参照)。現場付近で調達した地盤材料を骨材としたコンクリートを構造材料とする場合もある。   Procured or generated at a sampling site near the construction site, such as dams, seawalls (banks), and other civil engineering structures from the viewpoint of rationalizing materials and construction A ground material (hereinafter simply referred to as a ground material) S in which particles of various particle sizes (clay, sand, gravel, etc.) are mixed may be used as a structural material. For example, CSG (Cemented Sand and Gravel) and structural materials such as cement improved soil are mixed with ground material S (called CSG material, cement improved soil base material, etc.) procured at a sampling site near the site and water and cement. It has the advantage of enabling large-scale and high-speed construction (see Non-Patent Document 1). In some cases, the structural material is concrete made of ground material procured near the site.

図7に示すように,現場付近の採取場1等で調達した地盤材料Sを用いた構造材料は,破砕装置1a等で適当に破砕することはあるものの,原則的に人為的な粒度調整を施さずに地盤材料Sをそのまま用いるものであり,地盤材料Sの粒度や含水率の変動(バラツキ)によって品質(とくに強度)の変動が生じる。そのため,ダンプトラック等の運搬機械3で工事現場に順次搬入される地盤材料Sの粒度,含水率を粒度試験装置8,含水率試験装置9によって適宜確認し,地盤材料Sに添加する水W及びセメントCの混合量を調整して構造材料の品質を適切に管理することが求められる。   As shown in Fig. 7, structural materials using the ground material S procured at the sampling site 1 etc. near the site may be appropriately crushed by the crushing device 1a, etc. The ground material S is used as it is without being applied, and the quality (particularly strength) varies due to the variation (variation) in the particle size and moisture content of the ground material S. Therefore, the particle size and moisture content of the ground material S sequentially carried into the construction site by the transport machine 3 such as a dump truck are appropriately checked by the particle size testing device 8 and the moisture content testing device 9, and the water W added to the ground material S and It is required to appropriately control the quality of the structural material by adjusting the mixing amount of the cement C.

図9は,構造材料(例えばCSG)の品質管理方法の一例を示す(非特許文献1参照)。先ず,現場付近で調達する地盤材料S(CSG材)について数多くの粒度試験を行い,粒度分布が最も粗い標本(大径粒状材の含有率が最も多い標本)と粒度分布が最も細かい標本(小径粒状材の含有率が最も多い標本)とを選定する。次いで,最粗粒標本及び最細粒標本を使用した構造材料(CSG)について単位水量を変えながら強度試験を行い,強度不足となる下限値と施工に不向きな上限値とを検出する。そのうえで構造材料を製造する際に,最粗粒標本の粒度−強度曲線(図中の点線)と最細粒標本の粒度−強度曲線(図中の実線)と2本の許容単位水量範囲を示す縦線とで囲まれた「ひし形」(斜線部分)の範囲内となるように,地盤材料Sに添加する水W及びセメントCの混合量を調整することによって構造材料の所要品質(強度)を確保する。   FIG. 9 shows an example of a quality control method for a structural material (for example, CSG) (see Non-Patent Document 1). First, a number of particle size tests are conducted on the ground material S (CSG material) procured near the site, and the sample with the coarsest particle size distribution (the sample with the largest content of large-diameter granular material) and the sample with the finest particle size distribution (small diameter) Specimens with the highest content of granular material). Next, a strength test is performed on the structural material (CSG) using the coarsest sample and the finest sample while changing the unit water amount, and a lower limit value that is insufficient in strength and an upper limit value that is not suitable for construction are detected. In addition, when manufacturing the structural material, the particle size-intensity curve (dotted line in the figure) of the coarsest sample, the particle size-intensity curve (solid line in the figure) of the finest sample, and two allowable unit water volume ranges are shown. The required quality (strength) of the structural material is adjusted by adjusting the amount of water W and cement C added to the ground material S so that it is within the range of the “diamond” (shaded area) surrounded by vertical lines. Secure.

図6は,構造材料を製造する方法の流れ図を示す。先ず,1日の構造材料の製造開始前にストックヤード2(図7参照)等において,ステップS201において使用する地盤材料Sの粒度分布D,及び所定粒径i別の密度(表乾密度ρi・絶乾密度Gi),吸水率Qi,含水率wi等を計測し,ステップS202において,所要品質が確保できるような単位水量(例えば図9の下限と上限との中間値)を設定する。そのうえで製造時に,ステップS203において地盤材料Sをホッパー4へ投入し,ステップS204において粒度分布Dに応じた地盤材料Sの表面水量Wを算出し,ステップS205において単位水量と表面水量と差に応じた給水量(=単位水量−表面水量)及びセメント量を地盤材料Sに添加する。地盤材料Sの表面水量は,ステップS201で求めた粒度分布Dから所定粒径i別の重量比Miを求め,その粒径別の重量比MiとステップS201で求めた粒径別の表乾密度ρi,吸水率Qi,含水率wiとから例えば(1)〜(3)式により計算することができる。   FIG. 6 shows a flow diagram of a method for manufacturing a structural material. First, in the stock yard 2 (see FIG. 7) or the like before the start of the production of the structural material for one day, the particle size distribution D of the ground material S used in step S201 and the density (surface dry density ρi · The absolute dry density Gi), the water absorption rate Qi, the moisture content wi, etc. are measured, and in step S202, a unit water amount (for example, an intermediate value between the lower limit and the upper limit in FIG. 9) that can ensure the required quality is set. In addition, at the time of manufacture, the ground material S is thrown into the hopper 4 in step S203, the surface water amount W of the ground material S corresponding to the particle size distribution D is calculated in step S204, and the unit water amount and the surface water amount are determined in step S205. A water supply amount (= unit water amount-surface water amount) and a cement amount are added to the ground material S. The surface water amount of the ground material S is obtained by determining the weight ratio Mi for each predetermined particle size i from the particle size distribution D determined in step S201, and the surface dry density for each particle size determined in step S201 by the weight ratio Mi for each particle size. From ρi, water absorption Qi, and moisture content wi, it can be calculated by, for example, the equations (1) to (3).

粒径別の表面水率ωi
=(含水率wi−吸水率Qi)/(1+吸水率Qi/100) ………………(1)
粒径別の表面水量Wi=表乾密度ρi×表面水率ωi ……………………………(2)
全粒径の表面水量W
=Σ(粒径別の表面水量Wi×粒径別の重量比Mi) …………………………(3)
Surface water ratio ωi by particle size
= (Moisture content wi-water absorption rate Qi) / (1 + water absorption rate Qi / 100) (1)
Surface water quantity by particle size Wi = surface dry density ρi × surface water ratio ωi (2)
Surface water volume W of all particle sizes
= Σ (surface water amount by particle size Wi x weight ratio by particle size Mi) ………………………… (3)

図6のステップS206〜S207は,所定時間(例えば1回/1〜4時間程度)おきに地盤材料Sを抜き取り,地盤材料Sの粒度分布D及び粒度別の含水率wiを計測する処理を示す。地盤材料Sの粒度分布D及び含水率wiを適宜計測しながらステップS203〜S205を繰り返すことにより,ステップS204において地盤材料Sの表面水量Wの変動を把握し,その変動に応じてステップS205において給水量を調整することができる。(1)〜(3)式に示すように,地盤材料Sの表面水量Wは密度(表乾密度ρi・絶乾密度Gi)及び吸水率Qiによっても変わりうるが,現実的にはそれらの値はほとんど変動しないので,ステップS201において1回/1日程度計測すれば足り,粒度分布D及び含水率wiの所定時間おきの計測によって地盤材料Sの表面水量Wの主な変動を把握することができる。   Steps S206 to S207 in FIG. 6 show processing for extracting the ground material S every predetermined time (for example, about once to about 1 to 4 hours) and measuring the particle size distribution D of the ground material S and the moisture content wi for each particle size. . By repeating steps S203 to S205 while appropriately measuring the particle size distribution D and moisture content wi of the ground material S, the variation in the surface water amount W of the ground material S is grasped in step S204, and the water supply is performed in step S205 according to the variation. The amount can be adjusted. As shown in the equations (1) to (3), the surface water amount W of the ground material S may vary depending on the density (surface dry density ρi / absolute dry density Gi) and the water absorption rate Qi. Therefore, it is sufficient to measure about once per day in step S201, and it is possible to grasp the main fluctuation of the surface water amount W of the ground material S by measuring the particle size distribution D and the moisture content wi every predetermined time. it can.

一般に地盤材料Sの粒度分布Dは,粒径dを横軸(対数軸)とし,その粒径d以下の粒状材の全体に対する通過質量百分率P(d)(粒径dより小径の総質量/粒状材全体の総質量×100。以下,加積通過率ということがある)を縦軸(線形軸)とした片対数グラフ,すなわち図8のような粒径加積曲線P(d)によって表すことができる。図8は,図9の最粗粒標本及び最細粒標本の粒径加積曲線Pr(d),Ps(d)を表したものである。図8のような粒径加積曲線Pを作成する最も基本的な方法は篩い分けであるが(非特許文献2参照),地盤材料Sの篩い分けは非常に手間がかかることから,画像解析技術を用いて地盤材料Sの粒径加積曲線を迅速に求める方法が開発されている(特許文献1〜3参照)。画像解析法を用いれば,例えば1回/10〜60分程度の頻度で地盤材料Sの粒径加積曲線P(d),すなわち粒度分布Dを計測することができる。また,その粒径加積曲線P(d)から地盤材料Sの所定粒径i別の通過質量百分率Pi(d)を求め,更にその通過質量百分率Pi(d)から所定粒径i別の重量比Miを求めることができる。   In general, the particle size distribution D of the ground material S is such that the particle size d is the horizontal axis (logarithmic axis), and the passing mass percentage P (d) with respect to the entire granular material having the particle size d or less (total mass / diameter smaller than the particle size d / The total mass of the entire granular material × 100 (hereinafter, sometimes referred to as a cumulative passage rate) is represented by a semi-logarithmic graph having a vertical axis (linear axis), that is, a particle size accumulation curve P (d) as shown in FIG. be able to. FIG. 8 shows the particle size accumulation curves Pr (d) and Ps (d) of the coarsest grain sample and the finest grain sample of FIG. Although the most basic method for creating the particle size accumulation curve P as shown in FIG. 8 is sieving (see Non-Patent Document 2), sieving the ground material S is very time-consuming, so image analysis A method for quickly obtaining a particle size accumulation curve of the ground material S using a technique has been developed (see Patent Documents 1 to 3). If the image analysis method is used, for example, the particle size accumulation curve P (d) of the ground material S, that is, the particle size distribution D can be measured at a frequency of about once every 10 to 60 minutes. Further, the passage mass percentage Pi (d) for each predetermined particle diameter i of the ground material S is obtained from the particle diameter accumulation curve P (d), and the weight for each predetermined particle diameter i is further determined from the passage mass percentage Pi (d). The ratio Mi can be determined.

また,地盤材料Sの粒度別の含水率wiは,例えば110(±5)℃の恒温乾燥炉で乾燥したときに失われる質量から求めることができるが(非特許文献3のJISA1203を参照。以下,恒温乾燥炉法ということがある),試験結果を得るために24時間程度を要する。このため,より迅速な方法として,地盤材料Sを電子レンジで乾燥させる含水率試験方法(非特許文献4の地盤工学会基準JGS0122を参照。以下,電子レンジ法ということがある),及び地盤材料をフライパンで炙って直接加熱する含水率試験方法(非特許文献5参照。以下,フライパン法ということがある)が採用されている。この迅速な方法を用いれば,地盤材料Sの粒度別の含水率wiも例えば1回/30〜60分程度の頻度で計測することができる。   Moreover, although the moisture content wi according to the particle size of the ground material S can be calculated | required from the mass lost when drying with a constant temperature drying furnace of 110 (+/- 5) degreeC, for example (refer nonpatent literature 3 JISA1203). , Sometimes called constant temperature drying furnace method), it takes about 24 hours to obtain the test results. For this reason, as a quicker method, a moisture content test method for drying the ground material S in a microwave oven (refer to the Geotechnical Society Standard JGS0122 of Non-Patent Document 4, hereinafter referred to as a microwave oven method), and a ground material A moisture content test method (refer to Non-Patent Document 5; hereinafter referred to as “fry pan method”) is employed in which the sample is heated directly in a frying pan. If this rapid method is used, the moisture content wi for each particle size of the ground material S can be measured at a frequency of, for example, about once / 30 to 60 minutes.

特開2009−036533号公報JP 2009-036533 A 特開2010−249553号公報JP 2010-249553 A 特開2011−163836号公報JP 2011-163836 A 特開昭56−049945号公報JP 56-049945 A 特開2009−121930号公報JP 2009-121930 A 特公昭61−061623号公報Japanese Examined Patent Publication No. 61-061623 特開平06−229917号公報Japanese Patent Laid-Open No. 06-229917

柳川城二「ダム事業における新技術−台形CSGダム−」建設工業調査会出版,ベース設計資料,No.136土木編,2008年3月20日発行,インターネット(URL:http://www.kenkocho.co.jp/html/136/sa_136.html)Jyuji Yanagawa "New technology in dam business-trapezoidal CSG dam" published by Construction Industry Research Committee, Base Design Material, No. 136 Civil Engineering, published on March 20, 2008, Internet (URL: http://www.kenkocho.co.jp/html/136/sa_136.html) 日本工業規格「土の粒度試験方法」JIS−A1204Japanese Industrial Standard "Soil Grain Size Test Method" JIS-A1204 社団法人地盤工学会「地盤材料試験の方法と解説」,丸善出版,2009年11月,pp.104〜105Geotechnical Society of Japan “Ground Material Testing Methods and Explanations”, Maruzen Publishing, November 2009, pp. 104-105 社団法人地盤工学会「地盤材料試験の方法と解説」,丸善出版,2009年11月,pp.106〜107Geotechnical Society of Japan “Ground Material Testing Methods and Explanations”, Maruzen Publishing, November 2009, pp. 106-107 財団法人ダム技術センター「台形CSGダム施工・品質管理技術資料」,平成19年9月,pp.4〜19Dam Technology Center, “Taraki CSG Dam Construction and Quality Control Technical Data”, September 2007, pp. 4-19 JISA1109 細骨材の密度及び吸水率試験方法JIS A1109 Fine aggregate density and water absorption test method JISA1110 粗骨材の密度及び吸水率試験方法JISA1110 Coarse aggregate density and water absorption test method

図6のステップS206〜S207において,前述したように画像解析法で地盤材料Sの粒度分布Dを計測し,電子レンジ法又はフライパン法で含水率を計測すれば,地盤材料Sの表面水量Wの変動を1回/30分程度の頻度で確認しながら給水量を調整することができる。しかし,従来の方法では,地盤材料Sの表面水量を連続的に確認することができない問題点がある。地盤材料Sを用いた大量且つ高速な施工では,例えば地盤材料Sの表面水量Wが30分未満の短時間で想定外に変動する場合も報告されており,品質管理の観点から地盤材料Sの表面水量Wのバラツキをできるだけ細かく計測・確認することが求められている。地盤材料Sを用いた構造物の品質の安定性を確保するため,工事現場に継続的に供給される地盤材料Sの表面水量を連続的に確認して要求品質が常に満足されていることを監視できる技術の開発が望まれている。   In steps S206 to S207 of FIG. 6, if the particle size distribution D of the ground material S is measured by the image analysis method as described above, and the water content is measured by the microwave method or the frying pan method, the surface water amount W of the ground material S is calculated. It is possible to adjust the amount of water supply while checking the fluctuation at a frequency of about once / 30 minutes. However, the conventional method has a problem that the surface water amount of the ground material S cannot be continuously confirmed. In large-scale and high-speed construction using the ground material S, for example, the surface water amount W of the ground material S has been reported to change unexpectedly in a short time of less than 30 minutes. It is required to measure and confirm the variation in the surface water amount W as finely as possible. In order to ensure the stability of the quality of the structure using the ground material S, the required quality is always satisfied by continuously checking the surface water volume of the ground material S continuously supplied to the construction site. Development of technology that can be monitored is desired.

そこで本発明の目的は,地盤材料の表面水量をリアルタイムで精度よく管理することができる方法及びシステムを提供することにある。   Accordingly, an object of the present invention is to provide a method and system capable of accurately managing the surface water amount of the ground material in real time.

本発明者は,近赤外光等を用いて含水率を連続的に計測できる技術に着目した(特許文献6,7参照)。例えば図10に示すように,0.7μm〜2.5μm程度の波長範囲の近赤外光を含水対象物に照射すると所定波長λi(例えばλ1=1.2μm,λ2=1.45μm,λ3=1.94μm)において吸収がおこり,その所定波長λiの反射光又は透過光が対象中の含水率(水分量)に応じて減衰するので,その反射率又は透過率Siから対象中の含水率を求めることができる。   The inventor of the present invention paid attention to a technique capable of continuously measuring the moisture content using near infrared light or the like (see Patent Documents 6 and 7). For example, as shown in FIG. 10, when near-infrared light in a wavelength range of about 0.7 μm to 2.5 μm is irradiated onto a water-containing object, predetermined wavelengths λi (for example, λ1 = 1.2 μm, λ2 = 1.45 μm, λ3 = 1.94 μm) absorption occurs, and the reflected light or transmitted light of the predetermined wavelength λi attenuates according to the moisture content (moisture content) in the object. Therefore, the moisture content in the object is determined from the reflectance or transmittance Si. Can be sought.

具体的には,(11)式に示すように所定波長λiの反射率又は透過率Si(以下,単に反射率Siということがある)と対象中の含水率w0との比例パラメタP((11)式の係数a,b,c,d)を予めキャリブレーションにより検出し,計測対象の所定波長λiの吸収量Siを(11)式へ代入することにより含水率w0を算出する。或いは,特許文献7が記載するように,水分の影響を受けにくい特定波長(参照波長)の反射率又は透過率R(以下,単に反射率Rということがある)を併せて求め,(12)式に示すように所定波長λiの反射率Siと参照波長の反射率Rとの差に基づき比例パラメタP((12)式の係数a,b,c,d)をキャリブレーションする。なお,(11)式及び(12)式では3つの波長λiの吸収量Siから含水率w0を算出しているが,算出に用いる波長λiの数は1つ,2つ,又は4つ以上としてもよい。   Specifically, as shown in the equation (11), a proportional parameter P ((11) between the reflectance or transmittance Si of a predetermined wavelength λi (hereinafter, simply referred to as reflectance Si) and the moisture content w0 in the object. The moisture content w0 is calculated by detecting the coefficients a, b, c, d) of the equation (1) in advance by calibration and substituting the absorption amount Si of the predetermined wavelength λi to be measured into the equation (11). Alternatively, as described in Patent Document 7, the reflectance or transmittance R (hereinafter sometimes simply referred to as reflectance R) of a specific wavelength (reference wavelength) that is not easily affected by moisture is also obtained. (12) As shown in the equation, the proportional parameter P (coefficients a, b, c, d in equation (12)) is calibrated based on the difference between the reflectance Si of the predetermined wavelength λi and the reflectance R of the reference wavelength. In the equations (11) and (12), the water content w0 is calculated from the absorption amounts Si of the three wavelengths λi. The number of wavelengths λi used for the calculation is one, two, or four or more. Also good.

w0=a・S1+b・S2+c・S3+d ………………………………………(11)
w0=a・ln(R/S1)+b・ln(R/S2)
+c・ln(R/S3)+d ……………………(12)
w0 = a · S1 + b · S2 + c · S3 + d ……………………………………… (11)
w0 = a · ln (R / S1) + b · ln (R / S2)
+ C · ln (R / S3) + d (12)

例えば,近赤外光を用いた含水率計測装置を工事現場の地盤材料Sの搬送路(コンベアベルト等)に設置し,継続的に供給される地盤材料Sに近赤外光を照射し続ければ,その反射率Si,Rから地盤材料Sの含水率w0を連続的に計測することができる。ただし,地盤材料Sの表面水量は,前述した(1)〜(3)式に基づき粒度別の含水率wiから粒度分布Dに応じて計算する必要があるのに対し,近赤外光の照射等によって連続的に計測できる含水率w0は全ての粒度を対象としたものであり,全粒径範囲にわたる含水率w0から表面水量を計算すると誤差が大きくなってしまう問題点がある。様々な粒径の混在する地盤材料Sの表面水量の変動を精度よく求めるためには,全粒径の含水率w0を粒度別の含水率wiに変換したうえで表面水量Wを計算することが必要である。本発明は,この着想に基づく研究開発の結果,完成に至ったものである。   For example, a moisture content measuring device using near-infrared light can be installed in the conveyance path (conveyor belt, etc.) of the ground material S at the construction site, and the continuously supplied ground material S can be irradiated with near-infrared light. For example, the moisture content w0 of the ground material S can be continuously measured from the reflectances Si and R. However, the surface water amount of the ground material S needs to be calculated according to the particle size distribution D from the moisture content wi for each particle size based on the above-mentioned formulas (1) to (3), whereas irradiation with near infrared light The water content w0 that can be continuously measured by the above method is intended for all particle sizes, and there is a problem that the error increases when the surface water amount is calculated from the water content w0 over the entire particle size range. In order to accurately determine the fluctuation of the surface water content of the ground material S with various particle sizes, it is necessary to calculate the surface water content W after converting the water content w0 of all particle sizes into the water content wi for each particle size. is necessary. The present invention has been completed as a result of research and development based on this idea.

図1の実施例及び図2の流れ図を参照するに,本発明による地盤材料の表面水量管理方法は,工事現場に継続的に供給される様々な粒径の混在する地盤材料Sの所定粒径φ1〜φ6別の含水率w1〜w6を予め求めて記憶し(図2のステップS101),供給される地盤材料Sの全粒径範囲の含水率w0を連続的に計測し(ステップS106),供給される地盤材料Sの一部を所定時間tおきに抜き取って粒度分布Dを検出し(ステップS109),地盤材料Sの全粒径範囲の含水率w0と記憶した粒径別含水率中の所定粒径φ6以上の含水率w1〜w5とから粒度分布Dに応じて所定粒径φ6以下の含水率w6を算出し(ステップS111),記憶した所定粒径φ6以上の含水率w1〜w5と算出した所定粒径φ6以下の含水率w6とに基づき地盤材料Sの表面水量Wをリアルタイムで推定してなるものである(ステップS112)。 Referring to the embodiment of FIG. 1 and the flow chart of FIG. 2, the surface water volume management method of the ground material according to the present invention is a predetermined particle size of the ground material S mixed with various particle sizes continuously supplied to the construction site. The water content w1 to w6 for each of φ1 to φ6 is obtained in advance and stored (step S101 in FIG. 2), and the water content w0 of the entire particle size range of the ground material S to be supplied is continuously measured (step S106). Part of the supplied ground material S is extracted every predetermined time t to detect the particle size distribution D (step S109), and the water content w0 of the entire particle size range of the ground material S and the stored water content by particle size The water content w6 of the predetermined particle diameter φ6 or less is calculated from the water content w1 to w5 of the predetermined particle diameter φ6 or more according to the particle size distribution D (step S111), and the stored water content w1 to w5 of the predetermined particle diameter φ6 or more is calculated. based calculated in a predetermined particle diameter φ6 following moisture content w6 In which by comprising estimating the surface water W of the board material S in real time (step S112).

また,図1のブロック図を参照するに,本発明による地盤材料の表面水量管理システムは,工事現場に継続的に供給される様々な粒径の混在する地盤材料Sの全粒径範囲の含水率w0を連続的に計測する含水率計測装置20,供給される地盤材料Sの一部を所定時間tおきに抜き取って粒度分布Dを検出する粒度分布検出装置30,地盤材料Sの予め求めた所定粒径φ1〜φ6別の含水率w1〜w6を記憶する記憶手段16,地盤材料Sの全粒径範囲の含水率w0と記憶した粒径別含水率中の所定粒径φ6以上の含水率w1〜w5とから粒度分布Dに応じて所定粒径φ6以下の含水率wiを算出する算出手段21,及び記憶した所定粒径φ6以上の含水率w1〜w5と算出した所定粒径φ6以下の含水率w6とに基づき地盤材料Sの表面水量Wをリアルタイムで推定する推定手段24を備えてなるものである。 In addition, referring to the block diagram of FIG. 1, the ground material surface water volume management system according to the present invention has a water content in the entire particle size range of the ground material S mixed with various particle sizes continuously supplied to the construction site. The moisture content measuring device 20 for continuously measuring the rate w0, the particle size distribution detecting device 30 for detecting a particle size distribution D by extracting a part of the supplied ground material S every predetermined time t, and the ground material S were obtained in advance. Storage means 16 for storing the moisture content w1 to w6 for each predetermined particle size φ1 to φ6, the moisture content w0 for the entire particle size range of the ground material S and the moisture content for the predetermined particle size φ6 or more in the stored moisture content for each particle size The calculating means 21 for calculating the moisture content wi of the predetermined particle diameter φ6 or less from the w1 to w5 according to the particle size distribution D, and the stored moisture content w1 to w5 of the predetermined particle diameter φ6 or more and the calculated predetermined particle diameter φ6 or less. the surface water W of the ground material S based on the water content w6 It is made comprising an estimation means 24 for estimating in real time.

好ましくは,含水率計測装置20を,地盤材料Sに近赤外光を照射したときの所定波長λiの反射率又は透過率Si,Rから地盤材料Sの含水率w0を計測する計測装置とする。   Preferably, the moisture content measuring device 20 is a measuring device that measures the moisture content w0 of the ground material S from the reflectance or transmittance Si, R of the predetermined wavelength λi when the ground material S is irradiated with near infrared light. .

更に好ましくは,算出手段21において,地盤材料Sの全粒径範囲の含水率w0から前記所定時間tにおける含水率w0の平均値を求め,その含水率w0の平均値と前記記憶した所定粒径φ6以上の含水率w1〜w5とから粒度分布Dに応じた所定粒径φ6以下の含水率w6を算出する。望ましい実施例では,地盤材料Sの表面水量Wの管理基準値Cを記憶する記憶手段16を設け,地盤材料Sの表面水量推定値Wと管理基準値Cとを比較して地盤材料Sの適否を判定する判定手段25を設けることができる。 More preferably, the calculation means 21 obtains an average value of the moisture content w0 at the predetermined time t from the moisture content w0 of the entire particle size range of the ground material S, and the average value of the moisture content w0 and the stored predetermined particle size A water content w6 having a predetermined particle diameter φ6 or less corresponding to the particle size distribution D is calculated from the water contents w1 to w5 having φ6 or more . In a preferred embodiment, storage means 16 is provided for storing the management reference value C of the surface water amount W of the ground material S, and the appropriateness of the ground material S is compared by comparing the estimated surface water amount W of the ground material S with the management reference value C. It is possible to provide a determination means 25 for determining the above.

本発明による地盤材料の表面水量管理方法及びシステムは,様々な粒径の混在する地盤材料Sの全粒径範囲の含水率w0を連続的に計測し,供給される地盤材料Sの一部を所定時間tおきに抜き取って粒度分布Dを検出し,地盤材料Sの全粒径範囲の含水率w0と予め記憶した地盤材料Sの所定粒径φ6以上の含水率w1〜w5とから粒度分布Dに応じて所定粒径φ6以下の含水率w6を算出し,記憶した所定粒径φ6以上の含水率w1〜w5と算出した所定粒径φ6以下の含水率w6とに基づき地盤材料Sの表面水量Wをリアルタイムで推定するので,次の効果を奏する。 The ground material surface water volume management method and system according to the present invention continuously measures the water content w0 of the entire particle size range of the ground material S having various particle sizes, and a part of the supplied ground material S is measured. The particle size distribution D is detected by sampling every predetermined time t, and the particle size distribution D is determined from the water content w0 of the entire particle size range of the ground material S and the water content w1 to w5 of the ground material S stored in advance having a predetermined particle diameter φ6 or more. surface water of a predetermined particle diameter φ6 following to calculate the water content w6, ground material S based on a predetermined particle diameter φ6 following moisture content w6 calculated with a predetermined diameter φ6 more water content w1~w5 stored in accordance with the Since W is estimated in real time, the following effects are obtained.

(イ)地盤材料Sの含水率w0の連続的な計測値を所定粒径別の含水率wiに変換し,その粒径別の含水率wiに基づき地盤材料Sの表面水量Wを推定するので,継続的に供給される地盤材料Sの表面水量Wを精度よく推定することができる。
(ロ)地盤材料Sの含水率w0を連続的に計測できるRI(ラジオアイソトープ)計器等を用いることも可能であるが,近赤外光を用いた含水率計測装置を用いることにより,地盤材料Sの搬送路(ベルトコンベア等)において含水率w0をリアルタイムに且つ精度よく計測することが可能となる。
(ハ)地盤材料Sの含水量は,粒径の大きい部分は含水率が比較的小さく,粒径の小さい部分の含水率が支配的である特徴を有しているので,地盤材料Sの含水率w0から所定粒径(例えば粒径5mm)以下の含水率wnを算出し,その所定粒径以下の含水率wnによって地盤材料Sの表面水量Wを推定することにより,簡易・迅速に表面水量Wを管理することができる。
(B) Since the continuous measurement value of the moisture content w0 of the ground material S is converted into the moisture content wi for each predetermined particle size, the surface water amount W of the ground material S is estimated based on the moisture content wi for each particle size. , The surface water amount W of the ground material S that is continuously supplied can be accurately estimated.
(B) Although it is possible to use a RI (radioisotope) instrument that can continuously measure the moisture content w0 of the ground material S, the ground material can be obtained by using a moisture content measuring device using near-infrared light. It is possible to accurately measure the water content w0 in real time on the S transport path (belt conveyor or the like).
(C) The water content of the ground material S is characterized in that the water content of the portion with a large particle size is relatively small and the water content of the portion with a small particle size is dominant. By calculating the water content wn of a predetermined particle size (for example, particle size 5 mm) or less from the rate w0 and estimating the surface water amount W of the ground material S from the water content wn of the predetermined particle size or less, the surface water amount is simply and quickly W can be managed.

(ニ)地盤材料Sの含水率w0の連続的な計測値は細かく変動することもあるが,例えば粒度分布Dを検出する所定時間tにおける移動平均値を含水率w0とすることにより,含水率w0の計測精度の低下を抑えることができる。
(ホ)順次供給される地盤材料Sの表面水量Wをリアルタイムで推定しつつ管理基準値Cと比較することにより,要求品質を満足しない地盤材料Sの混入を監視し,既往の技術では把握することが困難であった構造物の品質不良を減少させることができる。
(ヘ)また,地盤材料Sの表面水量Wをリアルタイムで把握することで変動傾向を迅速に把握し,供給水の調整等の対策を早期に講じることが可能となり,ひいては土木構造物の品質の安定性を飛躍的に向上させることができる。
(D) Although the continuous measurement value of the moisture content w0 of the ground material S may fluctuate finely, for example, by setting the moving average value at a predetermined time t for detecting the particle size distribution D as the moisture content w0, A decrease in the measurement accuracy of w0 can be suppressed.
(E) The contamination of the ground material S that does not satisfy the required quality is monitored by grasping the surface water amount W of the ground material S to be sequentially supplied and compared with the management reference value C while grasping it with the existing technology. It is possible to reduce the quality defect of the structure which has been difficult to do.
(F) In addition, by grasping the surface water amount W of the ground material S in real time, it is possible to quickly grasp the fluctuation tendency and take measures such as adjustment of the supply water at an early stage. Stability can be dramatically improved.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明の表面水量管理システムの一実施例のブロック図である。 本発明の表面水量管理方法の流れ図の一例である。 地盤材料Sの含水率w0から所定粒径別の含水率wiを算出する方法の説明図である。 地盤材料Sの所定時間tにわたる含水率w0の平均値から所定粒径別の含水率wiを算出する方法の説明図である。 地盤材料Sの含水率w0と近赤外光の反射率Siとの比例パラメタPを検出する方法の説明図である。 地盤材料Sを用いた構造材料を製造する従来方法の流れ図である。 地盤材料Sを用いた構造材料を製造する従来方法の説明図である。 地盤材料Sの最粗粒標本及び最細粒標本の粒径加積曲線Pr,Psを示すグラフの一例である。 従来の地盤材料Sを用いた工法(CSG工法)における表面水量管理方法の説明図である。 近赤外光を用いた含水率計測の原理を示す説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is a block diagram of one Example of the surface water amount management system of this invention. It is an example of the flowchart of the surface water amount management method of this invention. It is explanatory drawing of the method of calculating the moisture content wi for every predetermined particle size from the moisture content w0 of the ground material S. It is explanatory drawing of the method of calculating the moisture content wi for every predetermined particle size from the average value of the moisture content w0 over the predetermined time t of the ground material S. It is explanatory drawing of the method of detecting the proportional parameter P of the moisture content w0 of the ground material S, and the reflectance Si of near-infrared light. It is a flowchart of the conventional method which manufactures the structural material using the ground material S. It is explanatory drawing of the conventional method of manufacturing the structural material using the ground material S. It is an example of the graph which shows the particle size accumulation curve Pr and Ps of the coarsest grain sample of the ground material S, and the finest grain sample. It is explanatory drawing of the surface water amount management method in the construction method (CSG construction method) using the conventional ground material S. FIG. It is explanatory drawing which shows the principle of the moisture content measurement using near-infrared light.

図1は,工事現場付近で調達し又は発生した地盤材料Sを原材料として構造材料(CSG,セメント改良土,コンクリート等)を製造する工事現場に本発明の表面水量管理システムを適用した実施例を示す。図示例のシステムは,地盤材料Sの全粒径範囲の含水率w0を連続的に計測する含水率計測装置20aと,地盤材料Sの一部を所定時間tおきに抜き取って粒度分布Dを検出する粒度分布検出装置30と,計測装置20の計測値及び検出装置30の検出値を入力して地盤材料Sの表面水量Wを推定するコンピュータ10とを有する。   FIG. 1 shows an embodiment in which the surface water amount management system of the present invention is applied to a construction site where a structural material (CSG, cement-improved soil, concrete, etc.) is manufactured using the ground material S procured or generated near the construction site as a raw material. Show. The system of the illustrated example detects the particle size distribution D by extracting a portion of the ground material S every predetermined time t with a moisture content measuring device 20a that continuously measures the moisture content w0 of the entire particle size range of the ground material S. And a computer 10 that estimates the surface water amount W of the ground material S by inputting the measurement value of the measurement device 20 and the detection value of the detection device 30.

図6及び図7を参照して前述したように,現場付近で調達された地盤材料Sは運搬機械3により工事現場に順次搬入されて現場のホッパー4に投入されるが,例えば,そのホッパー4から混合装置5(ミキサー,図7参照)までの地盤材料Sの搬送路(例えばベルトコンベア)41〜43上に含水率計測装置20aを設置し,その搬送路41,43の間に搬送路42と並行に設けた抜き取り路(例えばベルトコンベア)45上に粒度分布検出装置30を設置し,それらの計測値及び検出値をコンピュータ10に入力して地盤材料Sの表面水量Wをリアルタイムに推定する。   As described above with reference to FIGS. 6 and 7, the ground material S procured in the vicinity of the site is sequentially carried into the construction site by the transport machine 3 and is put into the hopper 4 at the site. For example, the hopper 4 To the mixing device 5 (mixer, see FIG. 7), the moisture content measuring device 20a is installed on the conveying paths (for example, belt conveyors) 41 to 43 of the ground material S, and the conveying path 42 between the conveying paths 41 and 43 is installed. The particle size distribution detection device 30 is installed on an extraction path (for example, a belt conveyor) 45 provided in parallel with the sensor, and the measured value and the detected value are input to the computer 10 to estimate the surface water amount W of the ground material S in real time. .

図示例の含水率計測装置20aは,図10を参照して前述したように,近赤外光を照射したときの所定波長λiの反射率Si,Rから含水率を連続的に計測する装置とすることができる。例えば所定波長範囲の近赤外光を出力する光源ランプと,その出力光を地盤材料Sに照射する光学系と,地盤材料Sからの反射光中の所定波長(及び参照波長)λiの光量を電気信号(反射率)Si,Rに変換する受光素子と,地盤材料Sの反射光を受光素子まで導く光学系とを備え,変換された電気信号Si,Rをコンピュータ10の算出手段21に入力して含水率を求める。   The moisture content measuring apparatus 20a in the illustrated example is an apparatus that continuously measures the moisture content from the reflectances Si and R of a predetermined wavelength λi when irradiated with near infrared light, as described above with reference to FIG. can do. For example, a light source lamp that outputs near-infrared light in a predetermined wavelength range, an optical system that irradiates the ground material S with the output light, and a light amount of a predetermined wavelength (and reference wavelength) λi in the reflected light from the ground material S. A light receiving element that converts electrical signals (reflectances) into Si and R, and an optical system that guides the reflected light of the ground material S to the light receiving elements, and the converted electrical signals Si and R are input to the calculation means 21 of the computer 10. To obtain the moisture content.

近赤外光を用いた含水率計測装置20aに代えて,例えばホッパー4にRI(ラジオアイソトープ)計器を設置し,地盤材料Sに放射線(中性子線)を照射したときの反射放射線から含水率を連続的に計測することも可能である(特許文献4,5参照)。ただし,RI計器は材料投入ホッパーなどの隅角部において含水率を計測するため,その隅角部の内側に地盤材料Sが閉塞又は付着しやすく,その閉塞又は付着した地盤材料Sの含水率が常に計測されて誤差が大きくなりうる。近赤外光を用いた含水率計測装置20aは,地盤材料Sの含水率w0をリアルタイムに且つ精度よく計測できる利点を有している。   Instead of the moisture content measuring device 20a using near infrared light, for example, an RI (radioisotope) instrument is installed in the hopper 4, and the moisture content is calculated from the reflected radiation when the ground material S is irradiated with radiation (neutron rays). It is also possible to measure continuously (see Patent Documents 4 and 5). However, since the RI meter measures the moisture content at the corners of the material input hopper, etc., the ground material S tends to clog or adhere inside the corners, and the moisture content of the clogged or adhered ground material S is It is always measured and the error can be large. The moisture content measuring device 20a using near-infrared light has an advantage that the moisture content w0 of the ground material S can be accurately measured in real time.

図示例の粒度分布検出装置30は,抜き取った地盤材料Sを薄く撒き出して画像を撮影し,その撒き出し画像から画像解析技術により地盤材料Sの粒径加積曲線P(d)を作成するものとすることができる。例えば地盤材料Sの撒き出し画像Gを撮像装置で撮影し,その撒き出し画像をコンピュータ10の検出手段31に入力して粒径加積曲線P(d)を作成する。   The particle size distribution detection device 30 in the illustrated example squeezes the extracted ground material S thinly to photograph an image, and creates a particle size accumulation curve P (d) of the ground material S from the squeezed image by image analysis technology. Can be. For example, a squeezed image G of the ground material S is photographed by an imaging device, and the squeezed image is input to the detection means 31 of the computer 10 to create a particle size accumulation curve P (d).

好ましくは,特許文献3が開示するように,コンピュータ10の検出手段31において,撒き出し画像から地盤材料S中の各粒状材の輪郭を検出し,そのうち複数の所定粒径diについて地盤材料Sの全体面積Eに対するその粒径di以上の粒状材の面積割合(=Σe/E)を粒度インデクスIiとして算出し,その各粒径diの粒度インデクスIiを加積通過率P(di)に変換して粒径加積曲線P(d)を作成する。このように粒度インデクスIiを加積通過率P(di)に変換するため,コンピュータ10の記憶手段16に,地盤材料Sの複数の所定粒径diの粒度インデクスIiとその粒径di以下の粒状材の加積通過率P(di)との関係式Kを記憶しておく。この粒度インデクスIiについての詳細は特許文献3に記載されている。   Preferably, as disclosed in Patent Document 3, the detection means 31 of the computer 10 detects the contour of each granular material in the ground material S from the rolled-out image, and among them, the ground material S of a plurality of predetermined particle diameters di is detected. The area ratio (= Σe / E) of the granular material with the particle size di or larger with respect to the total area E is calculated as the particle size index Ii, and the particle size index Ii of each particle size di is converted into a product passage rate P (di). Thus, a particle size accumulation curve P (d) is created. Thus, in order to convert the particle size index Ii into the accumulation passage rate P (di), the storage means 16 of the computer 10 stores the particle size index Ii of a plurality of predetermined particle diameters di of the ground material S and the particles having the particle diameters di or less. A relational expression K with the accumulated passing rate P (di) of the material is stored. Details of the granularity index Ii are described in Patent Document 3.

図示例のコンピュータ10は,キーボード等の入力装置11と,ディスプレイ等の出力装置12と,一次又は二次記憶装置等の記憶手段16とを有する。記憶装置16には,後述する地盤材料Sの表面水量Wを算出するための粒径i別の密度(表乾密度ρi・絶乾密度Gi),吸水率Qi等を記憶し,必要に応じて前述した地盤材料Sの粒度インデクスIiを加積通過率P(di)に変換するための関係式K等を記憶する。   The computer 10 in the illustrated example includes an input device 11 such as a keyboard, an output device 12 such as a display, and storage means 16 such as a primary or secondary storage device. The storage device 16 stores the density (surface dry density ρi, absolute dry density Gi) for each particle size i for calculating the surface water amount W of the ground material S, which will be described later, the water absorption rate Qi, and the like. A relational expression K or the like for converting the above-described grain size index Ii of the ground material S into a cumulative passage rate P (di) is stored.

また図示例のコンピュータ10は,内蔵プログラムとして,入力装置11から必要なデータを入力する入力手段14と,地盤材料Sの含水率w0から粒度分布Dに応じて所定粒径別の含水率wiを算出する算出手段21と,その粒径別の含水率wiに基づき地盤材料Sの表面水量Wをリアルタイムで推定する推定手段24と,推定された表面水量W等を出力装置12に表示する出力手段15とを有する。前述したように画像解析技術により地盤材料Sの粒径加積曲線P(d)を作成する粒度分布検出装置30を用いる場合は,コンピュータ10に地盤材料Sの撒き出し画像から粒径加積曲線P(d)を作成する検出手段31を含め,必要に応じて撒き出し画像から粒度インデクスIiを算出する算出手段32を含めることができる。   Further, the computer 10 in the illustrated example has an input unit 14 for inputting necessary data from the input device 11 as a built-in program, and a moisture content wi for each predetermined particle size according to the particle size distribution D from the moisture content w0 of the ground material S. The calculating means 21 for calculating, the estimating means 24 for estimating the surface water amount W of the ground material S in real time based on the water content wi for each particle size, and the output means for displaying the estimated surface water amount W and the like on the output device 12 15. As described above, in the case of using the particle size distribution detector 30 that creates the particle size accumulation curve P (d) of the ground material S by the image analysis technique, the particle size accumulation curve is obtained from the ground image of the ground material S in the computer 10. A detection means 31 for creating P (d) can be included, and a calculation means 32 for calculating the granularity index Ii from the extracted image can be included as necessary.

図2は,図1のシステムを用いて地盤材料Sの表面水量Wを管理する方法の流れ図を示す。以下,図2の流れ図を参照して図1のシステムを説明する。図2のステップS101〜S104は,ストックヤード2(図7参照)等において構造材料の製造開始前(前日等)に行う地盤材料Sの試験を示している。先ずステップS101において,1回/1日程度の頻度で地盤材料Sの粒度分布D(粒径別の重量比Mi),粒径別の密度(表乾密度ρi・絶乾密度Gi),吸水率Qi,含水率wi等を計測し,ステップS102において,所要品質の構造材料を得るために確保すべき単位水量を設定する(図6のステップS201〜S202と同様)。   FIG. 2 shows a flow chart of a method for managing the surface water amount W of the ground material S using the system of FIG. The system of FIG. 1 will be described below with reference to the flowchart of FIG. Steps S101 to S104 in FIG. 2 show a test of the ground material S that is performed in the stock yard 2 (see FIG. 7) or the like before the start of manufacturing the structural material (the day before, etc.). First, in step S101, the particle size distribution D (weight ratio Mi for each particle size), the density for each particle size (surface dry density ρi, absolute dry density Gi), and the water absorption rate at a frequency of once per day. Qi, moisture content wi, and the like are measured, and in step S102, a unit water amount to be secured in order to obtain a structural material having a required quality is set (similar to steps S201 to S202 in FIG. 6).

ステップS101における粒度分布Dの計測は,時間をかけることが可能であるから,最も基本的な篩い分け法で計測することが望ましい(非特許文献2参照)。また,ステップS101における含水率wiの計測も,時間をかけることが可能であるから,恒温乾燥炉法(非特許文献3参照)で計測することが望ましいが,電子レンジ法(非特許文献4参照)又はフライパン法(非特許文献5参照)で計測することも可能である。   Since the measurement of the particle size distribution D in step S101 can take time, it is desirable to measure by the most basic sieving method (see Non-Patent Document 2). Moreover, since measurement of the moisture content wi in step S101 can also take time, it is desirable to measure by the constant temperature drying furnace method (refer nonpatent literature 3), but the microwave oven method (refer nonpatent literature 4). ) Or a frying pan method (see Non-Patent Document 5).

図3は,ステップS101で計測する地盤材料Sの計測値テーブルの一例を示す。図示例のテーブルは,地盤材料Sのサンプルを適当な篩い分け装置によって所定粒径範囲別(粒径80mm以上,40〜80mm,20〜40mm,10〜20mm,5〜10mm,5mm以下)の6つの粒径別材料φ1〜φ6に分割し,各粒径範囲別に粒度分布Dに基づく重量比Mi,表乾密度ρi,絶乾密度Gi,吸水率Qi,含水率wiを計測したものである。計測結果は,コンピュータ10の記憶手段16に記憶しておく。これらの計測値から,ステップS102で確保すべき単位水量を設定することができる。また,前述した(1)〜(3)式により地盤材料Sの各粒径範囲別の表面水率ω及び表面水量Wを計算することがもできる。   FIG. 3 shows an example of a measurement value table of the ground material S measured in step S101. The table of the illustrated example is a sample of the ground material S 6 according to a predetermined particle size range (particle size 80 mm or more, 40 to 80 mm, 20 to 40 mm, 10 to 20 mm, 5 to 10 mm, 5 mm or less) by an appropriate sieving device. The material is divided into two particle size materials φ1 to φ6, and the weight ratio Mi, surface dry density ρi, absolute dry density Gi, water absorption rate Qi, and moisture content wi based on the particle size distribution D are measured for each particle size range. The measurement result is stored in the storage unit 16 of the computer 10. From these measured values, the unit water amount to be secured in step S102 can be set. Further, the surface water ratio ω and the surface water amount W for each particle size range of the ground material S can be calculated by the above-described equations (1) to (3).

図3のテーブルのうち,粒度分布Dに基づく粒径別の重量比Miは後述するステップS109において所定時間t(例えば5〜10分)おきに更新される。また,各粒径別の含水率wiは後述するステップS111において連続的に更新される。なお,各粒径別の粒径範囲は図示例に限定されるわけではなく,表面水量の推定精度向上等の観点から任意に設定可能である。   In the table of FIG. 3, the weight ratio Mi for each particle size based on the particle size distribution D is updated every predetermined time t (for example, 5 to 10 minutes) in step S109 described later. Further, the moisture content wi for each particle size is continuously updated in step S111 described later. The particle size range for each particle size is not limited to the illustrated example, and can be arbitrarily set from the viewpoint of improving the estimation accuracy of the surface water amount.

図2のステップS103は,近赤外光を照射する含水率計測装置20aを用いる場合に,地盤材料Sの所定波長λiの反射率Si,Rからその地盤材料Sの全粒径の含水率w0を算出するためのパラメタPを検出する処理を示す。好ましい実施例では,図3の各粒径別材料φ1〜φ6の各々に近赤外光を照射し,所定波長λiの反射率Si,Rと粒径別材料φiの含水率Wiとの比例パラメタPi((11)式又は(12)式を満たす係数ai,bi,ci,di)を検出する。そのうえで,図5及び(21)式に示すように,その各粒径別材料φiの比例パラメタPiを,粒径別材料φi毎の粒径範囲に応じて重み付け(Ii)して合成パラメタP(図5及び(21)式の合成パラメタΣ(Ii・ai),Σ(Ii・bi),Σ(Ii・ci),Σ(Ii・di)=係数A,B,C,D)を作成する。   In step S103 of FIG. 2, when the moisture content measuring device 20a that irradiates near infrared light is used, the moisture content w0 of the total particle size of the ground material S from the reflectance Si, R of the ground material S at a predetermined wavelength λi. The process which detects the parameter P for calculating A is shown. In the preferred embodiment, each of the particle size materials φ1 to φ6 in FIG. 3 is irradiated with near infrared light, and the proportionality parameter between the reflectance Si, R of the predetermined wavelength λi and the moisture content Wi of the particle size material φi. Pi (coefficients ai, bi, ci, di) satisfying equation (11) or equation (12) is detected. 5 and (21), the proportional parameter Pi of each particle size-specific material φi is weighted (Ii) according to the particle size range for each particle size-specific material φi, and the composite parameter P ( The synthesis parameters Σ (Ii · ai), Σ (Ii · bi), Σ (Ii · ci), and Σ (Ii · di) = coefficients A, B, C, and D) in FIG. .

w0=Σ(Ii・wi)
=Σ(Ii・(ai・Sx+bi・Sy+ci・Sz+di)
=Σ(Ii・ai)・Sx+Σ(Ii・bi)・Sy
+Σ(Ii・ci)・Sz+Σ(Ii・di) ……………………………(21)
w0 = Σ (Ii · wi)
= Σ (Ii · (ai · Sx + bi · Sy + ci · Sz + di)
= Σ (Ii · ai) · Sx + Σ (Ii · bi) · Sy
+ Σ (Ii · ci) · Sz + Σ (Ii · di) …………………………… (21)

例えばステップS103において,各粒径別材料φiの粒度分布Dに応じた重量比を重み付けIiとして粒径別材料φi毎の比例パラメタPiから合成パラメタPを作成することにより,恒温乾燥炉法(或いは電子レンジ法又はフライパン法)を用いた含水率試験と高い相関性のある含水率w0を求めることができる。また,重量比に代えて,粒度分布Dに応じた体積比,表面積比,平均粒径,その何れかと当該構成材料の吸水率との積,又はそれらの逆数を重み付けIiとして合成パラメタPを作成することも可能である。このような合成パラメタPの詳細は,本出願人の先願である特願2013−158093に記載されている。   For example, in step S103, the composition parameter P is created from the proportional parameter Pi for each particle size-specific material φi with the weight ratio corresponding to the particle size distribution D of the particle size-specific material φi as a weight Ii. A moisture content w0 having a high correlation with a moisture content test using a microwave oven method or a frying pan method can be obtained. Also, instead of the weight ratio, a composite parameter P is created with the weight Ii as the weight ratio Ii, which is the volume ratio, the surface area ratio, the average particle diameter, or the product of the water absorption rate of the constituent material, or the inverse of them. It is also possible to do. Details of such a synthesis parameter P are described in Japanese Patent Application No. 2013-158093 which is a prior application of the present applicant.

図2のステップS104は,画像解析技術により地盤材料Sの粒径加積曲線P(d)を作成する粒度分布検出装置30を用いる場合に,地盤材料Sの粒度インデクスIiとその粒径di以下の粒状材の加積通過率P(di)との関係式Kを検出する処理を示す。具体的には,先ず地盤材料Sのサンプル中の複数の粒径di(例えば図3の各粒径別材料φiの境界である5mm,10mm,20mm,40mm,80mm)について,各々の粒径di以下の粒状材の加積通過率P(di)を篩い分け法により求める。次いで,地盤材料Sのサンプルの撒き出し画像から各粒状材の輪郭を検出し,その複数の粒径di(例えば5mm,10mm,20mm,40mm,80mm)について,それぞれ各粒径di以上の粒状材の面積の総和Σeを求め,撒き出し画像全体の面積Eに対する粒径di以上の粒状材の面積割合(=Σe/E)を各粒径diの粒度インデクスIiとして算出する。そのうえで,各粒径diの加積通過率P(di)と粒度インデクスIiとを二次平面上にプロットし,加積通過率P(di)を目的変数(従属変数)とし粒度インデクスIiを説明変数(独立変数)とする適切な回帰モデル(例えば粒度インデックスの多項式(多次元回帰モデル),対数関数,べき関数,指数関数等)を設定して関係式Kを検出する。検出した関係式Kはコンピュータ10の記憶手段16に記憶しておく。このような関係式Kの作成方法の詳細は特許文献3に記載されている。   Step S104 in FIG. 2 is the particle size index Ii of the ground material S and its particle size di or less when using the particle size distribution detector 30 that creates the particle size accumulation curve P (d) of the ground material S by image analysis technology. The process which detects the relational expression K with the accumulation passage rate P (di) of the granular material of is shown. Specifically, first, for each of a plurality of particle diameters di (for example, 5 mm, 10 mm, 20 mm, 40 mm, and 80 mm, which are boundaries of each particle diameter material φi in FIG. 3) in the sample of the ground material S, each particle diameter di. The following accumulation passage rate P (di) of the granular material is obtained by a sieving method. Next, the contour of each granular material is detected from the spread image of the sample of the ground material S, and for each of the plurality of particle diameters di (for example, 5 mm, 10 mm, 20 mm, 40 mm, and 80 mm), the granular materials each having a particle diameter di or larger. Is calculated, and the area ratio (= Σe / E) of the granular material having the particle size di or more with respect to the area E of the entire rolled-out image is calculated as the particle size index Ii of each particle size di. After that, the cumulative passage rate P (di) and the particle size index Ii of each particle size di are plotted on the secondary plane, and the granularity index Ii is explained with the cumulative passage rate P (di) as an objective variable (dependent variable). An appropriate regression model (for example, a polynomial with a granularity index (multidimensional regression model), a logarithmic function, a power function, an exponential function, etc.) is set as a variable (independent variable), and the relational expression K is detected. The detected relational expression K is stored in the storage unit 16 of the computer 10. Details of the method of creating such a relational expression K are described in Patent Document 3.

なお,ステップS103〜S104のパラメタP及び関係式Kの検出は,必ずしも毎日行う必要はなく,例えば適当な期間毎に地盤材料Sのサンプルを用いて検出し,検出したパラメタP及び関係式Kを現場のコンピュータ10に入力して記憶手段16に記憶しておけば足りる。この場合は,ステップS103〜S104は省略可能であり,ステップS101に先立ってパラメタP及び関係式Kをコンピュータ10に入力するステップを設ければ足りる。   The detection of the parameter P and the relational expression K in steps S103 to S104 is not necessarily performed every day. For example, the parameter P and the relational expression K are detected by using a sample of the ground material S at appropriate intervals. It suffices if it is input to the on-site computer 10 and stored in the storage means 16. In this case, steps S103 to S104 can be omitted, and it is sufficient to provide a step for inputting the parameter P and the relational expression K to the computer 10 prior to step S101.

図2のステップS105〜S112は,採取場1から現場に継続的に供給される地盤材料Sの表面水量Wをリアルタイムで連続的に求める処理を示す。先ずステップS105において現場に搬入された地盤材料Sをホッパー4へ投入し,ステップS106において搬送路(例えばベルトコンベア)41〜43上に設置した含水率計測装置20aにより地盤材料Sの含水率w0を連続的に計測する。例えば,搬送路41〜43上を移動する地盤材料Sに近赤外光を照射したときの所定波長λiの反射率Si,Rを求めてコンピュータ10の算出手段21に入力し,算出手段21の計測手段22により,その反射率Si,RとステップS103で求めた比例パラメタ(図5及び(21)式の合成パラメタ)Pとから含水率w0を算出することができる。   Steps S <b> 105 to S <b> 112 in FIG. 2 indicate processing for continuously obtaining the surface water amount W of the ground material S continuously supplied from the collection site 1 to the site in real time. First, in step S105, the ground material S carried into the site is put into the hopper 4, and in step S106, the moisture content measuring device 20a installed on the conveyance paths (for example, belt conveyors) 41 to 43 sets the moisture content w0 of the ground material S. Measure continuously. For example, the reflectance Si, R of a predetermined wavelength λi when the ground material S moving on the transport paths 41 to 43 is irradiated with near-infrared light is obtained and input to the calculating means 21 of the computer 10. The moisture content w0 can be calculated by the measuring means 22 from the reflectances Si and R and the proportional parameter (combined parameter in the equations (5) and (21)) P obtained in step S103.

次いでステップS107において,所定時間tおきに地盤材料Sの粒度分布Dを検出するか否かを判断し,前回の検出から所定時間tが経過している場合はステップS108〜109へ進み,搬送路41〜43から抜き取り路45へ地盤材料Sの一部を抜き取って粒度分布検出装置30により粒度分布Dを検出する。図示例の抜き取り路45は,地盤材料Sを積載する容器46が移動可能に設けられており,その容器46を積載位置47a,起振位置47b,重量計測位置47c,撮影位置47d,返送位置47eに順番に移動させる。   Next, in step S107, it is determined whether or not the particle size distribution D of the ground material S is detected every predetermined time t. If the predetermined time t has passed since the previous detection, the process proceeds to steps S108 to S109. A part of the ground material S is extracted from 41 to 43 to the extraction path 45, and the particle size distribution detection device 30 detects the particle size distribution D. In the illustrated extraction path 45, a container 46 on which the ground material S is loaded is movably provided. The container 46 is placed at a loading position 47a, a vibration position 47b, a weight measurement position 47c, a photographing position 47d, and a return position 47e. Move in order.

ステップS108では,先ず抜き取り路45の積載位置47aにおいて,搬送路41〜43から抜き取った地盤材料Sを容器46に積載し,起振位置47bにおいて,容器46に適当な振動を加えることにより地盤材料Sを敷き均して薄く撒き出す。撒き出しの厚さは,撒き出し画像から地盤材料S中の所定粒径(例えば5mm)以上の粒径が検出できるように,その所定粒径以上の粒状材が埋もれない厚さとすることが望ましい。更に重量計測位置47cにおいて,撒き出した地盤材料Sの重量を計測し,撮影位置47dにおいて,粒度分布検出装置30により地盤材料Sの撒き出し画像を撮影する。撮影後の地盤材料Sは,返送位置47eから搬送路41〜43に返送して構造材料の原料に戻す。   In step S108, first, the ground material S extracted from the transport paths 41 to 43 is loaded on the container 46 at the loading position 47a of the extraction path 45, and the ground material is applied by applying appropriate vibration to the container 46 at the oscillating position 47b. Spread S and spread thinly. It is desirable that the thickness of the squeeze is such that the granular material having the predetermined particle size or larger is not buried so that a particle size of the predetermined particle size (for example, 5 mm) or more in the ground material S can be detected from the squeezed image. . Further, the weight of the ground material S that has been squeezed out is measured at the weight measurement position 47c, and a squeezed image of the ground material S is photographed by the particle size distribution detector 30 at the photographing position 47d. The ground material S after photographing is returned from the return position 47e to the transport paths 41 to 43 and returned to the raw material of the structural material.

次いでステップS109において,地盤材料Sの撒き出し画像Gをコンピュータ10の検出手段31に入力し,地盤材料Sの粒径加積曲線P(d)を作成して粒度分布Dを検出する。例えば,検出手段31の粒度インデクス算出手段32により,撒き出し画像から複数の粒径diの粒度インデクスIiを算出し,その粒度インデクスIiを関係式Kにより加積通過率P(di)に変換し,変換した加積通過率P(di)を粒径di別にプロットして連結することにより粒径加積曲線P(d)を作成する。この粒径加積曲線P(d)から,図3に示す各粒径範囲別の重量比Miを求めて更新することができる。ステップS108〜S109のように地盤材料Sの抜き取り及び撒き出し画像の撮影を自動化することにより,例えば1回/5〜10分程度の頻度で地盤材料Sの粒度分布D,すなわち粒径別の重量比Miを計測・更新することが可能となる。   Next, in step S109, the rolled-out image G of the ground material S is input to the detection means 31 of the computer 10, a particle size accumulation curve P (d) of the ground material S is created, and the particle size distribution D is detected. For example, the granularity index calculating means 32 of the detecting means 31 calculates the granularity index Ii of a plurality of particle diameters di from the extracted image, and converts the granularity index Ii into a product passage rate P (di) by the relational expression K. , The particle size accumulation curve P (d) is created by plotting and connecting the converted product passage rate P (di) for each particle size di. From this particle size accumulation curve P (d), the weight ratio Mi for each particle size range shown in FIG. 3 can be obtained and updated. By automating the extraction of the ground material S and the taking out of the ground image as in steps S108 to S109, the particle size distribution D of the ground material S, that is, the weight for each particle size, for example, once every 5 to 10 minutes. It becomes possible to measure and update the ratio Mi.

ステップS110は,ステップS109において作成した地盤材料Sの粒径加積曲線P(d)をコンピュータ10の判定手段25へ入力し,粒径加積曲線P(d)が正常であるか否かを判定する処理を示す。例えば,図8を参照して前述した最粗粒標本及び最細粒標本の粒径加積曲線Pr(d),Ps(d)と地盤材料Sの粒径加積曲線P(d)とを比較することにより,地盤材料Sが想定された基準(「ひし形」)の範囲内にあるか否かを判定し,範囲内にない場合はステップS101へ戻り,単位水量の設定からやり直すことができる。なお,粒径加積曲線P(d)の判定処理の詳細も特許文献3に記載されている。粒径加積曲線P(d)が正常であるときは,ステップS110からステップS111へ進む。ステップS107において地盤材料Sの粒度分布Dを検出しない場合も,ステップS111へ進む。   In step S110, the particle size accumulation curve P (d) of the ground material S created in step S109 is input to the determination means 25 of the computer 10, and whether or not the particle size accumulation curve P (d) is normal. The process to determine is shown. For example, the particle size accumulation curves Pr (d) and Ps (d) of the coarsest grain sample and the finest grain sample described above with reference to FIG. 8 and the particle size accumulation curve P (d) of the ground material S are obtained. By comparing, it is determined whether or not the ground material S is within the range of the assumed standard ("diamond"), and if not, the process returns to step S101, and the unit water volume can be set again. . Details of the determination processing of the particle size accumulation curve P (d) are also described in Patent Document 3. When the particle size accumulation curve P (d) is normal, the process proceeds from step S110 to step S111. Even when the particle size distribution D of the ground material S is not detected in step S107, the process proceeds to step S111.

図2のステップS111は,コンピュータ10の算出手段21により,地盤材料Sの含水率w0から粒度分布Dに応じて所定粒径別の含水率wiを算出する処理を示す。前述したように,ステップS106において含水率計測装置20aにより連続的に計測される地盤材料Sの含水率w0は全粒径を対象としたものであるのに対し,地盤材料Sの表面水量を計算するためには粒径別の含水率wiが必要である。本発明者は,例えばステップS109で検出された粒径別の重量比Miを用いることにより,全粒径の含水率w0と粒径別の含水率wiとの間に(31)式に示す関係が成立することに着目した。すなわち,全粒径の含水率w0は,粒径別材料φiの含水率wiを,粒径別材料φi毎の重量比Miにより重み付けして合算したものと考えることができる。   Step S111 in FIG. 2 shows a process of calculating the moisture content wi for each predetermined particle size according to the particle size distribution D from the moisture content w0 of the ground material S by the calculation means 21 of the computer 10. As described above, the water content w0 of the ground material S continuously measured by the moisture content measuring device 20a in step S106 is for all particle sizes, whereas the surface water amount of the ground material S is calculated. In order to achieve this, a moisture content wi for each particle size is required. The present inventor, for example, uses the weight ratio Mi for each particle size detected in step S109, and thereby shows the relationship shown in the equation (31) between the water content w0 for all particle sizes and the water content wi for each particle size. We focused on the fact that That is, the water content w0 of all the particle sizes can be considered as the sum of the water content wi of the particle size-specific material φi weighted by the weight ratio Mi for each particle size-specific material φi.

w0=Σ(Mi・wi)
=M1・w1+M2・w2+M3・w3+M4・w4
+M5・w5+M6・w6 ……………………(31)
w0 = Σ (Mi · wi)
= M1 ・ w1 + M2 ・ w2 + M3 ・ w3 + M4 ・ w4
+ M5 ・ w5 + M6 ・ w6 …………………… (31)

(31)式において,全粒径の含水率w0の変動は,一般的に粒径の最も小さい粒径別材料φ6(粒径5mm以下)の含水率w6の影響が支配的であり,それより粒径の大きい粒径別材料φ1〜φ5の含水率w1〜w5の影響は相対的に小さい。すなわち,全粒径の含水率w0の変動は,主に粒径別材料φ6(粒径5mm以下)の含水率w6に変化に起因する場合が多い。この場合はステップS111において,(31)式の含水率w1〜w5を変動しない(一定値)と仮定したうえで,ステップS106で連続的に計測される全粒径の含水率w0と,図3の計測値テーブルの含水率w1〜w5と,ステップS109で検出した各粒径の重量比Miを代入することにより,含水率w6を算出することができる。表面水量の変動の主な要因である粒径別材料φ6の含水率w6に基づいて,ステップS112においてコンピュータ10の推定手段24により(1)〜(3)式から地盤材料Sの表面水量を算出すれば,不所望に変動する地盤材料Sの表面水量をリアルタイムで精度よく推定することができる。   In the equation (31), the fluctuation of the water content w0 of the total particle size is generally influenced by the water content w6 of the smallest particle size material φ6 (particle size of 5 mm or less). The influence of the water content w1 to w5 of the material by diameter Φ1 to Φ5 having a large particle size is relatively small. That is, the variation in the water content w0 of the total particle size is often caused mainly by a change in the water content w6 of the particle size-specific material φ6 (particle size of 5 mm or less). In this case, in step S111, it is assumed that the water contents w1 to w5 of the equation (31) do not vary (constant value), and then the water content w0 of all the particle diameters continuously measured in step S106 and FIG. The moisture content w6 can be calculated by substituting the moisture content w1 to w5 in the measurement value table and the weight ratio Mi of each particle size detected in step S109. On the basis of the water content w6 of the particle size-specific material φ6 that is the main factor of the fluctuation of the surface water amount, the surface water amount of the ground material S is calculated from the equations (1) to (3) by the estimation means 24 of the computer 10 in step S112. If so, the surface water amount of the ground material S that fluctuates undesirably can be accurately estimated in real time.

また,(31)式において,粒径別材料φ6の含水率w6だけでなく,粒径別材料φ5(粒径5〜10mm)の含水率w5の影響も無視できない場合がある。この場合はステップS111において,(31)式の含水率w1〜w4が変化しない(一定値)と仮定したうえで,全粒径の含水率w0と,図3の計測値テーブルの含水率w1〜w4と,各粒径の重量比Miとを代入することにより,含水率w6及び含水率w5の合計(M5・w5+M6・w6)を算出することができる。ステップS112において,表面水量の変動に影響を与える含水率w5,w6に基づいて地盤材料Sの表面水量を算出することにより,地盤材料Sの表面水量の推定精度を高めることが期待できる。   In the equation (31), not only the water content w6 of the particle size-specific material φ6 but also the influence of the water content w5 of the particle size-specific material φ5 (particle size 5 to 10 mm) may not be ignored. In this case, in step S111, it is assumed that the moisture content w1 to w4 of the equation (31) does not change (constant value), and then the moisture content w0 of all particle sizes and the moisture content w1 to w1 of the measurement value table of FIG. By substituting w4 and the weight ratio Mi of each particle size, the sum of the moisture content w6 and the moisture content w5 (M5 · w5 + M6 · w6) can be calculated. In step S112, by calculating the surface water amount of the ground material S based on the moisture contents w5 and w6 that affect the fluctuation of the surface water amount, it can be expected to improve the estimation accuracy of the surface water amount of the ground material S.

なお(31)式は,各粒径の重量比Miを重み付けとして,地盤材料Sの粒径別の含水率wiから全粒径の含水率w0を求めているが,重量比Miに代えて前述した(21)式の合成パラメタの重み付けを用いることも可能である。すなわち,重量比に代えて,粒度分布Dに応じた体積比,表面積比,平均粒径,その何れかと当該構成材料の吸水率との積,又はそれらの逆数を重み付けIiとして,粒径別の含水率wiから全粒径の含水率w0を求めることもできる。地盤材料Sにおいて適当な重み付けIiを選択することにより,ステップS112における表面水量の推定精度を高めることが期待できる。   In the equation (31), the weight ratio Mi of each particle size is weighted, and the water content w0 of all the particle diameters is obtained from the water content wi for each particle diameter of the ground material S. It is also possible to use the weighting of the synthesis parameter in equation (21). That is, instead of the weight ratio, the volume ratio according to the particle size distribution D, the surface area ratio, the average particle diameter, the product of any one of them and the water absorption rate of the constituent material, or the reciprocal thereof is weighted Ii. The water content w0 of all the particle sizes can also be obtained from the water content wi. By selecting an appropriate weight Ii in the ground material S, it can be expected that the estimation accuracy of the surface water amount in step S112 is improved.

図2のステップS111では,ステップS106で連続的に計測される地盤材料Sの含水率w0を直接的に(31)式へ代入するのではなく,算出手段21の平準化手段23に入力して所定時間tにおける含水率w0の平均値(=Σw0/t)を求め,所定時間tの含水率w0の平均値(=Σw0/t)を(31)式に代入して粒径別の含水率wiを算出している。様々な粒径が混在する地盤材料Sは計測部位によって含水率w0の計測値のバラツキが避けられず,例えば従来の含水率試験では一定量以上の地盤材料Sを対象とすることで計測値のバラツキの影響を避けている。近赤外光を照射する含水率計測装置20aを用いた場合も,図4に示すように,近赤外光の照射部位によって含水率w0の計測値に大きなバラツキが生じうる。連続的に計測される地盤材料Sの含水率w0の計測値を平準化手段23において所定時間tの移動平均又は区間平均とし,その平均値(=Σw0/t)を用いて粒径別の含水率wiを算出して表面水量を推定することにより,計測値のバラツキの影響を避けることができる。   In step S111 of FIG. 2, the moisture content w0 of the ground material S continuously measured in step S106 is not directly substituted into the equation (31), but is input to the leveling means 23 of the calculating means 21. Obtain the average value (= Σw0 / t) of the moisture content w0 at the predetermined time t, and substitute the average value (= Σw0 / t) of the moisture content w0 at the predetermined time t into the equation (31) to determine the moisture content by particle size. wi is calculated. The ground material S in which various particle sizes coexist cannot avoid variations in the measured value of the moisture content w0 depending on the measurement site. For example, in the conventional moisture content test, the measured value can be measured by targeting the ground material S of a certain amount or more. Avoiding the effects of variation. Even when the moisture content measuring device 20a that irradiates near infrared light is used, as shown in FIG. 4, the measured value of the moisture content w0 may vary greatly depending on the irradiated portion of the near infrared light. The measured value of the moisture content w0 of the ground material S that is continuously measured is set as a moving average or a section average for a predetermined time t in the leveling means 23, and the average value (= Σw0 / t) is used to determine the moisture content for each particle size. By calculating the rate wi and estimating the surface water amount, it is possible to avoid the influence of variation in measured values.

平準化手段23において移動平均又は区間平均を求める所定時間tは,例えばステップS107〜109において地盤材料Sの一部を抜き取って粒度分布Dを検出する期間(例えば5〜10分)と一致させることができる。図4に示すように,地盤材料Sの含水率w0を平準化する時間と,地盤材料Sの粒度分布Dを検出する時間とを一致させることにより,図3の計測値テーブルにおいて各粒径の粒度分布Dと粒径別の含水率wiとの更新のタイミングを一致させ,それらに基づき推定する地盤材料Sの表面水量の精度を高めることが期待できる。ただし,含水率w0を平準化時間は粒度分布Dの検出時間と一致させることに限定されず,例えば平準化手段23によって地盤材料Sの10mないし100m当たりの平均値として含水率w0を算出し,その1m当たりの含水率Wと10mないし100m当たりの含水率Wとの両者を同時に出力装置12へ出力・表示することにより,地盤材料Sの含水率w0の長期的変動傾向と短期的変動傾向との両者を同時に確認し,その両面から地盤材料Sの品質を管理,監視することも可能である。 The predetermined time t for obtaining the moving average or section average in the leveling means 23 is made to coincide with the period (for example, 5 to 10 minutes) in which a part of the ground material S is extracted in steps S107 to 109 and the particle size distribution D is detected. Can do. As shown in FIG. 4, by matching the time for leveling the water content w0 of the ground material S with the time for detecting the particle size distribution D of the ground material S, each particle size in the measured value table of FIG. It can be expected that the update timings of the particle size distribution D and the moisture content wi for each particle size are matched, and the accuracy of the surface water amount of the ground material S estimated based on them is improved. However, leveling time the moisture content w0 is not limited to be matched with the detection time of the particle size distribution D, for example, calculates a water content w0 to 10 m 3 without the ground material S by leveling means 23 as an average value per 100 m 3 By simultaneously outputting and displaying the moisture content W per 1 m 3 and the moisture content W per 10 m 3 to 100 m 3 to the output device 12, the long-term fluctuation tendency of the moisture content w0 of the ground material S It is also possible to confirm both the short-term fluctuation tendency at the same time, and to manage and monitor the quality of the ground material S from both sides.

ステップS113は,ステップS112でリアルタイムに推定された地盤材料Sの表面水量Wをコンピュータ10の判定手段25へ入力し,表面水量Wを管理基準値Cと比較して正常か否か(地盤材料Sの品質)を判定する処理を示す。このような管理基準値Cとして,例えば図9を参照して前述したように,表面水量Wの異なる地盤材料Sを用いて構築した土木構造物が所要品質(強度)を満足する表面水量Wの下限値及び上限値をステップS101において記憶手段16に登録しておくことができる。強度だけでなく,構造材料の密度,施工性(トラフィカビリティなど)等に基づき管理基準値Cを設定することも可能である。   In step S113, the surface water amount W of the ground material S estimated in real time in step S112 is input to the determination means 25 of the computer 10, and the surface water amount W is compared with the management reference value C to determine whether it is normal (soil material S The process of determining the quality of the image is shown. As such a management reference value C, for example, as described above with reference to FIG. 9, the civil engineering structure constructed using the ground material S having a different surface water amount W satisfies the required quality (strength). The lower limit value and the upper limit value can be registered in the storage unit 16 in step S101. The management reference value C can be set based not only on the strength but also on the density of the structural material, workability (trafficability, etc.), and the like.

ステップS113において地盤材料Sの表面水量Wが管理基準値Cの範囲内であると判定された場合はステップS115へ進み,ステップS102において設定された単位水量と表面水量Wと差に応じた給水量(=単位水量−表面水量)及びセメント量を混合装置5(ミキサー)に投入して地盤材料Sに添加する。ステップS113において地盤材料Sの表面水量Wが管理基準値Cから外れたときは,例えばステップS114において構造材料を得るために添加すべき単位水量を再設定したうえでステップS115へ進む。   If it is determined in step S113 that the surface water amount W of the ground material S is within the range of the management reference value C, the process proceeds to step S115, and the water supply amount corresponding to the difference between the unit water amount and the surface water amount W set in step S102. (= Unit water amount−surface water amount) and cement amount are added to the mixing device 5 (mixer) and added to the ground material S. When the surface water amount W of the ground material S deviates from the management reference value C in step S113, for example, the unit water amount to be added to obtain the structural material is reset in step S114, and then the process proceeds to step S115.

ステップS115において,必要に応じて推定された表面水量Wをコンピュータ10の記憶手段16に累積記憶したのち,ステップS116において,地盤材料Sの表面水量の管理を継続するか否かを判断する。継続する場合はステップS105へ戻り,継続的に供給される地盤材料Sについて前述したステップS105〜S115を繰り返す。ステップS115においてリアルタイムで連続的に推定される地盤材料Sの表面水量Wを記憶手段16に累積記憶しておくことにより,次回以降のステップS113の判定処理において,判定手段24により供給材料Nの表面水量Wの経時的変化(移動平均又は区間平均)を判定し,地盤材料Sの品質の変化を迅速に把握することが可能となる。   In step S115, the surface water amount W estimated as necessary is accumulated and stored in the storage means 16 of the computer 10, and then in step S116, it is determined whether or not to continue the management of the surface water amount of the ground material S. When continuing, it returns to step S105 and repeats step S105-S115 mentioned above about the ground material S supplied continuously. By accumulating the surface water amount W of the ground material S estimated continuously in real time in step S115 in the storage means 16, the surface of the supply material N is determined by the determination means 24 in the determination processing of the next step S113. It is possible to determine the change over time (moving average or section average) of the water amount W and quickly grasp the change in the quality of the ground material S.

こうして本発明の目的である「地盤材料の表面水量をリアルタイムで精度よく管理することができる方法及びシステム」の提供を達成できる。   Thus, it is possible to provide the “method and system capable of accurately managing the surface water amount of the ground material in real time” which is the object of the present invention.

1…採取場(地山) 1a…破砕装置
2…ストックヤード 3…運搬装置
4…母材ホッパー 5…混合装置
6…セメント供給装置 7…水供給装置
8…粒度試験装置 9…含水率試験装置
10…コンピュータ 11…入力装置
12…出力装置 14…入力手段
15…出力手段 16…記憶手段
20…含水率計測装置 21…(粒径別含水率)算出手段
22…(含水率)計測手段 23…平滑化手段
24…(表面水量)推定手段 25…判定手段
30…粒度分布計測装置 31…(粒度分布)検出手段
32…(粒度インデクス)算出手段
41,42,43,44…搬送ベルトコンベア
45…起振装置付きベルトコンベア 46…撒き出し容器
47a…積載位置 47b…起振位置
47c…重量計測位置 47d…撮影位置
47e…返送位置
C…セメント W…水
M…重量比 ρ…表関密度
G…絶乾密度 Q…吸水率
w…含水率 ω…表面水率
W…表面水量 C…管理基準値
K…関係式 E…面積
I…粒度インデクス t…所定時間
D…粒度分布 P(d)…粒径加積曲線
S…地盤材料 Si,R…反射率
P…パラメタ
DESCRIPTION OF SYMBOLS 1 ... Sampling ground (natural ground) 1a ... Crushing device 2 ... Stockyard 3 ... Transport device 4 ... Base material hopper 5 ... Mixing device 6 ... Cement supply device 7 ... Water supply device 8 ... Particle size test device 9 ... Moisture content test device DESCRIPTION OF SYMBOLS 10 ... Computer 11 ... Input device 12 ... Output device 14 ... Input means 15 ... Output means 16 ... Memory | storage means 20 ... Water content measuring device 21 ... (Water content according to particle size) Calculation means 22 ... (Water content) measuring means 23 ... Smoothing means 24 ... (surface water amount) estimating means 25 ... determining means 30 ... particle size distribution measuring device 31 ... (particle size distribution) detecting means 32 ... (particle size index) calculating means 41, 42, 43, 44 ... conveying belt conveyor 45 ... Belt conveyor 46 with vibration generator 46 ... unloading container 47a ... loading position 47b ... vibration generation position 47c ... weight measurement position 47d ... photographing position 47e ... return position C ... cement W ... water M ... heavy Quantity ratio ρ ... Table density G ... Dry density Q ... Water absorption rate w ... Water content ω ... Surface water rate W ... Surface water amount C ... Management standard value K ... Relationship E ... Area I ... Granularity index t ... Predetermined time D ... Particle size distribution P (d) ... Particle size accumulation curve S ... Ground material Si, R ... Reflectance P ... Parameters

Claims (8)

工事現場に継続的に供給される様々な粒径の混在する地盤材料の所定粒径別の含水率を予め求めて記憶し,前記供給される地盤材料の全粒径範囲の含水率を連続的に計測し,前記供給される地盤材料の一部を所定時間おきに抜き取って粒度分布を検出し,前記地盤材料の全粒径範囲の含水率と前記記憶した粒径別含水率中の所定粒径以上の含水率とから粒度分布に応じて所定粒径以下の含水率を算出し,前記記憶した所定粒径以上の含水率と前記算出した所定粒径以下の含水率とに基づき前記地盤材料の表面水量をリアルタイムで推定してなる地盤材料の表面水量管理方法。 The moisture content for each predetermined particle size of the ground material mixed with various particle sizes continuously supplied to the construction site is obtained and stored in advance, and the moisture content in the entire particle size range of the supplied ground material is continuously stored. To measure a particle size distribution by extracting a part of the supplied ground material at predetermined time intervals, and determining the moisture content of the entire particle size range of the ground material and the stored moisture content by particle size. the ground material on the basis of the water content of larger than the diameter on the particle size distribution is calculated moisture content below a predetermined particle diameter or less, depending on the water content of the predetermined particle diameter or less under which the calculated and the moisture content of the predetermined particle diameter or less with the stored A method for managing the surface water volume of ground materials by estimating the surface water volume in real time. 請求項1の管理方法において,前記地盤材料の全粒径範囲の含水率を,前記地盤材料に近赤外光を照射したときの所定波長の反射率又は透過率により計測してなる地盤材料の表面水量管理方法。 In the management method of Claim 1, the moisture content of the whole particle size range of the said ground material is measured by the reflectance or transmittance | permeability of a predetermined wavelength when near-infrared light is irradiated to the said ground material. Surface water volume management method. 請求項1又は2の管理方法において,前記地盤材料の全粒径範囲の含水率から前記所定時間における含水率の平均値を求め,その含水率の平均値と前記記憶した所定粒径以上の含水率とから前記粒度分布に応じた所定粒径以下の含水率を算出してなる地盤材料の表面水量管理方法。 The management method according to claim 1 or 2 , wherein an average value of the moisture content at the predetermined time is obtained from the moisture content of the entire particle size range of the ground material, and the average value of the moisture content and the moisture content greater than the stored predetermined particle size. The surface water content management method of the ground material which calculates the moisture content below the predetermined particle size according to the said particle size distribution from a rate . 請求項1から3の何れかの管理方法において,前記地盤材料の表面水量の管理基準値を定め,前記地盤材料の表面水量推定値と管理基準値とを比較して地盤材料の適否を判定してなる地盤材料の表面水量管理方法。 In the management method in any one of Claim 1 to 3 , the management reference value of the surface water quantity of the said ground material is defined, The surface water quantity estimated value of the said ground material is compared with a management reference value, and the propriety of ground material is determined. The surface water volume management method of the ground material. 工事現場に継続的に供給される様々な粒径の混在する地盤材料の全粒径範囲の含水率を連続的に計測する含水率計測装置,前記供給される地盤材料の一部を所定時間おきに抜き取って粒度分布を検出する粒度分布検出装置,前記地盤材料の予め求めた所定粒径別の含水率を記憶する記憶手段,前記地盤材料の全粒径範囲の含水率と前記記憶した粒径別含水率中の所定粒径以上の含水率とから粒度分布に応じて所定粒径以下の含水率を算出する算出手段,及び前記記憶した所定粒径以上の含水率と前記算出した所定粒径以下の含水率とに基づき前記地盤材料の表面水量をリアルタイムで推定する推定手段を備えてなる地盤材料の表面水量管理システム。 Moisture content measuring device that continuously measures the moisture content of the entire particle size range of the ground material with various particle sizes that are continuously supplied to the construction site, and a part of the supplied ground material every predetermined time A particle size distribution detecting device for detecting the particle size distribution by sampling, storage means for storing the moisture content for each predetermined particle size obtained in advance of the ground material, the moisture content of the entire particle size range of the ground material and the stored particle size Calculation means for calculating a water content not more than a predetermined particle size according to a particle size distribution from a water content not less than a predetermined particle size in another water content , and a water content not less than the stored predetermined particle size and the calculated predetermined particle size A ground material surface water amount management system comprising an estimation means for estimating the surface water amount of the ground material in real time based on the following moisture content . 請求項の管理システムにおいて,前記含水率計測装置を,前記地盤材料に近赤外光を照射したときの所定波長の反射率又は透過率から当該地盤材料の含水率を計測する計測装置としてなる地盤材料の表面水量管理システム。 6. The management system according to claim 5 , wherein the moisture content measuring device is a measuring device that measures the moisture content of the ground material from reflectance or transmittance of a predetermined wavelength when the ground material is irradiated with near infrared light. Surface water volume management system for ground materials. 請求項5又は6の管理システムにおいて,前記算出手段において,前記地盤材料の全粒径範囲の含水率から前記所定時間における含水率の平均値を求め,その含水率の平均値と前記記憶した所定粒径以上の含水率とから前記粒度分布に応じた所定粒径以下の含水率を算出してなる地盤材料の表面水量管理システム。 The management system according to claim 5 or 6 , wherein in the calculation means, an average value of the moisture content in the predetermined time is obtained from the moisture content of the entire particle size range of the ground material, and the average value of the moisture content and the stored predetermined value are stored. surface water management system of the particle size ground material formed by calculating a predetermined grain size or less water content in accordance with the distribution of the moisture content of the grain diameter or more. 請求項5から7の何れかの管理システムにおいて,前記地盤材料の表面水量の管理基準値を記憶する記憶手段,及び前記地盤材料の表面水量推定値と管理基準値とを比較して地盤材料の適否を判定する判定手段を設けてなる地盤材料の表面水量管理システム。 The management system according to any one of claims 5 to 7 , wherein the storage means for storing the management reference value of the surface water amount of the ground material, and the estimated value of the surface water amount of the ground material and the management reference value are compared. A surface water volume management system for a ground material provided with a determination means for determining suitability.
JP2013248776A 2013-11-30 2013-11-30 Surface water volume management method and system for ground material Active JP6173894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248776A JP6173894B2 (en) 2013-11-30 2013-11-30 Surface water volume management method and system for ground material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248776A JP6173894B2 (en) 2013-11-30 2013-11-30 Surface water volume management method and system for ground material

Publications (2)

Publication Number Publication Date
JP2015105898A JP2015105898A (en) 2015-06-08
JP6173894B2 true JP6173894B2 (en) 2017-08-02

Family

ID=53436079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248776A Active JP6173894B2 (en) 2013-11-30 2013-11-30 Surface water volume management method and system for ground material

Country Status (1)

Country Link
JP (1) JP6173894B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725916B2 (en) * 2016-04-14 2020-07-22 株式会社大林組 Cement-based mixed material manufacturing system and cement-based mixed material manufacturing method
JP6764755B2 (en) * 2016-10-18 2020-10-07 鹿島建設株式会社 Soil quality judgment method and system
JP7075787B2 (en) * 2017-03-14 2022-05-26 株式会社フジタ Trafficability estimator and program
CN110476053B (en) 2017-03-30 2022-07-26 杰富意钢铁株式会社 Raw material particle size distribution measuring device, particle size distribution measuring method, and porosity measuring device
JP6823522B2 (en) * 2017-03-30 2021-02-03 前田建設工業株式会社 Water content evaluation method for construction materials
JP7377484B2 (en) * 2018-04-25 2023-11-10 株式会社大林組 Detection device and detection method
JPWO2021075309A1 (en) * 2019-10-15 2021-04-22
JP7445253B2 (en) 2020-01-31 2024-03-07 国立大学法人京都大学 Measuring device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266878A (en) * 1978-12-26 1981-05-12 Norlin Industries, Inc. Apparatus for measurement of soil moisture content
JP2849626B2 (en) * 1988-10-14 1999-01-20 株式会社ジオトップ Ready-mixed concrete production equipment
JP5658613B2 (en) * 2011-05-16 2015-01-28 鹿島建設株式会社 Method and system for dividing particle size of granular material

Also Published As

Publication number Publication date
JP2015105898A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP6173894B2 (en) Surface water volume management method and system for ground material
JP5582806B2 (en) Granule size measurement system and program
Clayton et al. The application of powder rheology in additive manufacturing
JP6976369B2 (en) Measurement of porous film
Mineo et al. The use of infrared thermography for porosity assessment of intact rock
CN101806730B (en) Vinegar residue organic matrix moisture content detection method
JP2013257188A (en) Particle size distribution measurement method and system for granular material
CA2952551A1 (en) Method and system for characterizing an aggregate sample by using laser-induced breakdown spectroscopy
CN104111264A (en) Methods for quickly detecting content of heavy metal elements in rice and evaluating comprehensive pollution index of heavy metal elements
CN101082595B (en) Cigarette package denseness on-line detection device and method
Xavier et al. Variation of transverse and shear stiffness properties of wood in a tree
CN111033246A (en) Quantitative crystal phase analysis device, quantitative crystal phase analysis method, and quantitative crystal phase analysis program
JP5658613B2 (en) Method and system for dividing particle size of granular material
JP2017189940A (en) Production system and production method for cement-based mixed material
Rodriguez et al. Case of study on particle shape and friction angle on tailings
JP6050729B2 (en) Method and system for measuring moisture content of ground material
Peetermans et al. Quantification of the material composition of historical copper alloys by means of neutron transmission measurements
JP6764755B2 (en) Soil quality judgment method and system
Mousavi et al. Rapid determination of soil unconfined compressive strength using reflectance spectroscopy
Hassan et al. Study some optical properties of different total suspended solids in media filters by using He–Ne laser
JP6916640B2 (en) Particle size measuring method, particle size measuring device and quality control method using it
JP6319791B2 (en) Method and system for measuring particle size of ground material
Teixeira et al. Exploring the applicability of low-cost capacitive and resistive water content sensors on compacted soils
Laumer et al. Analysis of the influence of different flowability on part characteristics regarding the simultaneous laser beam melting of polymers
KR102209627B1 (en) Real-time gradation combination system in process of producing aggregate and mixing method using that

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6173894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250