JP6764755B2 - Soil quality judgment method and system - Google Patents

Soil quality judgment method and system Download PDF

Info

Publication number
JP6764755B2
JP6764755B2 JP2016204552A JP2016204552A JP6764755B2 JP 6764755 B2 JP6764755 B2 JP 6764755B2 JP 2016204552 A JP2016204552 A JP 2016204552A JP 2016204552 A JP2016204552 A JP 2016204552A JP 6764755 B2 JP6764755 B2 JP 6764755B2
Authority
JP
Japan
Prior art keywords
soil
vibration
particles
mass
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016204552A
Other languages
Japanese (ja)
Other versions
JP2018066613A (en
Inventor
真弓 田中
真弓 田中
勝利 藤崎
勝利 藤崎
一喜 小澤
一喜 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016204552A priority Critical patent/JP6764755B2/en
Publication of JP2018066613A publication Critical patent/JP2018066613A/en
Application granted granted Critical
Publication of JP6764755B2 publication Critical patent/JP6764755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Jigging Conveyors (AREA)

Description

本発明は土質判定方法及びシステムに関し,とくに粘性土が含まれる土壌の土質を判定する方法及びシステムに関する。 The present invention relates to a soil quality determination method and system, and particularly to a method and system for determining soil quality of soil containing cohesive soil.

従来から,予め選別されていない礫,砂,粘土等の土質材料(以下,土壌という)を用いて盛土,堤体等の土木構造物を構築する場合に,現場に搬入される土壌の品質(以下,土質という)を適宜判定し,搬入土壌を要求される土質に合わせて改質・管理することが行われている。例えば図5に示すように,現場付近の採取場(例えば地山)1で採取した土壌Sに土壌改質材(例えば水やセメント)を混合して土木構造物の材料とするCSG工法等では,大きな岩等を破砕装置1aで砕くことはあるが,基本的に採取土壌Sを選別せずにそのまま施工する。そのため,土木構造物の品質を確保する観点から,採取場1で採取されストックヤード2経由で現場に搬入される土壌Sを適宜抜き取って土壌Sの土質を判定し,必要な改質を施すことが求められる。 Conventionally, when constructing civil engineering structures such as embankments and embankments using soil materials such as gravel, sand, and clay that have not been sorted in advance (hereinafter referred to as soil), the quality of the soil brought into the site (hereinafter referred to as soil). (Hereinafter referred to as soil quality) is appropriately judged, and the soil brought in is reformed and managed according to the required soil quality. For example, as shown in FIG. 5, in the CSG method or the like in which a soil modifier (for example, water or cement) is mixed with soil S collected at a collection site (for example, a ground) 1 near the site and used as a material for a civil engineering structure. , Large rocks, etc. may be crushed by the crusher 1a, but basically the collected soil S is constructed as it is without sorting. Therefore, from the viewpoint of ensuring the quality of civil engineering structures, the soil S collected at the collection site 1 and brought to the site via the stockyard 2 is appropriately extracted, the soil quality of the soil S is judged, and necessary modifications are made. Is required.

土壌Sの土質は,その中に含まれる土粒子の径の分布(粒度分布)及び含水比(含水率)により判定する方法が一般的である。図5では,適宜抜き取った土壌Sの画像Gを撮像装置5で撮影して粒度分布を求めると共に,水分計7によって土壌Sの含水比を求めることにより土質を判定している。また,その判定結果に基づき添加装置8において土壌Sと混合する土壌改質材(例えば水やセメント)の添加量を調整し,混合装置9で土壌Sと改質材とを混合することにより,現場に供給される土壌Sを要求される土質となるように改質・管理している。図中の符号3はトラック等の運搬機械を示し,符号4は現場の受入れホッパーを示す。 The soil quality of soil S is generally determined by the diameter distribution (particle size distribution) and water content ratio (moisture content) of the soil particles contained therein. In FIG. 5, the image G of the soil S extracted as appropriate is photographed by the imaging device 5 to obtain the particle size distribution, and the soil quality is determined by obtaining the water content ratio of the soil S by the moisture meter 7. Further, based on the determination result, the addition amount of the soil modifier (for example, water or cement) to be mixed with the soil S is adjusted in the addition device 8, and the soil S and the modifier are mixed in the mixing device 9. The soil S supplied to the site is reformed and managed so that it has the required soil quality. In the figure, reference numeral 3 indicates a transport machine such as a truck, and reference numeral 4 indicates an on-site receiving hopper.

土壌Sの粒度分布(粒径加積曲線)を求める基本的な方法は篩い分けであるが(非特許文献1参照),手間がかかるため,図5のように土壌Sを撒き出して撮像装置5により画像Gを撮影し,その画像Gからコンピュータ(画像解析プログラム)により粒径加積曲線を作成する技術が開発されている(特許文献1〜3参照)。このような画像解析技術を用いることで,現場に搬入される土壌Sの粒度分布を15〜30分に1回程度の頻度で判定することができる。また,土壌Sを搬送するベルトコンベア上で振動させて撒き出す(分散させる)技術が開発されており(特許文献4参照),このような振動ベルトコンベアを用いて撒き出す時間を短縮ないし省略することにより,搬入される土壌Sの粒度分布の変動をほぼ連続的に判定することも可能である。 The basic method for determining the particle size distribution (particle size addition curve) of soil S is sieving (see Non-Patent Document 1), but since it takes time and effort, the soil S is sprinkled out as shown in FIG. A technique has been developed in which an image G is photographed according to No. 5 and a particle size distribution curve is created from the image G by a computer (image analysis program) (see Patent Documents 1 to 3). By using such an image analysis technique, the particle size distribution of the soil S brought into the site can be determined at a frequency of about once every 15 to 30 minutes. Further, a technique has been developed in which the soil S is vibrated and sprinkled (dispersed) on a belt conveyor that conveys the soil S (see Patent Document 4), and the time for sprinkling using such a vibrating belt conveyor is shortened or omitted. Therefore, it is possible to determine the fluctuation of the particle size distribution of the soil S to be carried in almost continuously.

また,土壌Sの含水比(含水率)を求める基本的な方法は電子レンジ法又はフライパン法であるが(非特許文献2,3参照),やはり計測に30分以上の時間を要するため,近赤外光を用いて土壌Sの含水比を連続的に計測する技術が開発されている(特許文献5,6参照)。従って,このような近赤外光による含水比の計測技術と上述した画像解析による粒度分布の測定技術とを適用し,現場に搬入される土壌Sを振動ベルトコンベアで搬送しながら土質(粒度分布及び含水比)を連続的に判定し,その判定結果に基づいて土壌Sに対して必要な改質を施すことにより,要求される土質が常に満足されるような土壌Sを現場に供給することが期待できる。 The basic method for determining the water content (moisture content) of soil S is the microwave oven method or the frying pan method (see Non-Patent Documents 2 and 3), but it also takes 30 minutes or more to measure, so it is close. A technique for continuously measuring the water content of soil S using infrared light has been developed (see Patent Documents 5 and 6). Therefore, by applying such a technique for measuring the water content ratio by near-infrared light and the technique for measuring the particle size distribution by the above-mentioned image analysis, the soil quality (particle size distribution) while transporting the soil S carried into the site by a vibrating belt conveyor. And the water content ratio) is continuously determined, and the soil S is subjected to necessary modification based on the determination result to supply the soil S to the site so that the required soil quality is always satisfied. Can be expected.

特開2010−249553号公報Japanese Unexamined Patent Publication No. 2010-249553 特開2011−163836号公報Japanese Unexamined Patent Publication No. 2011-163836 特開2013−257188号公報Japanese Unexamined Patent Publication No. 2013-257188 特開2016−124665号公報JP-A-2016-124665 特開2015−028446号公報Japanese Unexamined Patent Publication No. 2015-028446 特開2015−105898号公報JP-A-2015-105988

日本工業規格「土の粒度試験方法」JIS−A1204Japanese Industrial Standard "Soil Particle Size Test Method" JIS-A1204 社団法人地盤工学会「地盤材料試験の方法と解説」,丸善出版,2009年11月,pp.104〜105Japanese Geotechnical Society "Methods and Explanations of Ground Material Testing", Maruzen Publishing Co., Ltd., November 2009, pp. 104-105 社団法人地盤工学会「地盤材料試験の方法と解説」,丸善出版,2009年11月,pp.106〜107Japanese Geotechnical Society "Methods and Explanations of Ground Material Testing", Maruzen Publishing Co., Ltd., November 2009, pp. 106-107 鹿島建設株式会社プレスリリース「粘性土壌を素早くサラサラにする選別補助材「泥DRY(デイドライ)」を開発」2015年7月14日発行,インターネット(URL:http://www.kajima.co.jp/news/press/201507/14c1−j.htm)Kajima Corporation Press Release "Development of" Mud DRY ", a sorting aid that quickly smoothes viscous soil," published on July 14, 2015, on the Internet (URL: http: //www.kajima.co.jp /News/press/201507/14c1-j.html)

しかし,上述した従来の土質判定方法は,粘性土が含まれる土壌の土質を適切に判定できない問題点がある。すなわち,上述したCSG工法における搬入土壌の土質判定は,例えば現場付近の単一の採取場で採取される土壌が対象であり,通常は礫質土,砂質土が対象であって粘性土を多く含むものではなく,土質(粘性,含水状態等)の範囲も予め想定できる範囲内のものであった。それに対し,例えば原子力発電所の事故により発生した放射能汚染土壌の中間貯蔵施設の建設(埋め立て)工事では,広い地域の除染処理で発生した除去土壌を受入れて埋め立てる必要があり,農耕地や森林からの除去土壌も対象となるので,多くの粘性土が含まれている場合があり,しかも土質(粘性,含水状態等)が大きく異なる土壌が対象となる。 However, the above-mentioned conventional soil quality determination method has a problem that the soil quality of soil containing cohesive soil cannot be appropriately determined. That is, the soil quality judgment of the carried-in soil in the above-mentioned CSG method is, for example, the soil collected at a single collection site near the site, and usually the target is gravel soil and sandy soil, and cohesive soil is used. It did not contain much, and the range of soil quality (viscosity, water content, etc.) was within the range that could be assumed in advance. On the other hand, for example, in the construction (landfill) of an interim storage facility for radioactively contaminated soil generated by the accident at a nuclear power plant, it is necessary to accept and reclaim the removed soil generated by decontamination treatment in a wide area. Since the soil removed from the forest is also targeted, soil that may contain a large amount of cohesive soil and that has significantly different soil qualities (viscosity, water content, etc.) is targeted.

中間貯蔵施設の建設工事では,土壌が有機物(草,木,根等)と混ざった状態で搬入され,そのまま埋め立てると有機物の腐敗によって埋め立て土壌の表面が沈下したり,嫌気状態となった埋め立て土壌内に硫化水素ガスが発生したりするおそれがあるため,埋め立て前に土壌から有機物を選別する必要がある。他方で,中間貯蔵施設に搬入される粘性土を多く含む土壌は,選別装置に投入しても効率よく有機物と選別できないため,効率的な選別ができる程度に土壌を改質したうえで有機物を選別する必要がある(非特許文献4参照)。中間貯蔵施設に搬入される土壌全てを対象として一律に改質を施すことは不合理・不経済であり,受入れ許容量にも限りがあるので,中間貯蔵施設を適切に建設するためには,搬入土壌の土質に基づいて改質が必要であるか否か,必要な場合にどのような改質が必要であるかを判定することが重要となる。 In the construction work of the interim storage facility, the soil is brought in in a state of being mixed with organic matter (grass, trees, roots, etc.), and if it is buried as it is, the surface of the landfill soil will sink due to the decay of the organic matter, or the landfill soil will become anaerobic. Since hydrogen sulfide gas may be generated inside, it is necessary to sort organic matter from the soil before landfill. On the other hand, soil containing a large amount of cohesive soil carried into the interim storage facility cannot be efficiently sorted from organic matter even if it is put into a sorting device. Therefore, the soil is reformed to the extent that efficient sorting is possible before organic matter is selected. It is necessary to sort (see Non-Patent Document 4). It is irrational and uneconomical to uniformly modify all the soil brought into the interim storage facility, and the allowable amount of acceptance is limited. Therefore, in order to properly construct the interim storage facility, It is important to determine whether or not reform is necessary based on the soil quality of the imported soil, and if so, what kind of reform is necessary.

本発明者は,従来の画像解析による粒度分布測定と近赤外光による含水比計測とを用いて,粘性土が含まれる土壌の土質(粒度分布及び含水比)の判定したところ,粘性土は含水比が高くなると土塊(団粒)になりやすく,土粒子(以下,単に粒子という)の径を精度よく測定することが難しくなり,土塊になった粘性土(改質の必要がある土壌)を粒径の大きい礫質土(改質の必要ない土壌)と誤って判定してしまうことも経験された。また,同じく土塊になった粘性土であっても,硬さ(固化の程度)が相違しており,比較的緩やかに固まった粘性土(通常の改質が必要な土壌)と硬く固化した粘性土(高度な改質が必要な土壌)とを粒度分布と含水比とから適切に判別できないことも経験された。粘性土が含まれる土壌の土質を適切に判定するためには,従来のように粒度分布及び含水比に基づく土質の判定では足りず,土塊の有無や土塊の硬さを考慮した土質の判定が必要である。 The present inventor determined the soil quality (grain size distribution and water content ratio) of the soil containing cohesive soil by using the particle size distribution measurement by conventional image analysis and the water content ratio measurement by near infrared light. When the water content ratio is high, it tends to become a soil mass (aggregate), and it becomes difficult to accurately measure the diameter of soil particles (hereinafter, simply referred to as particles), and the soil becomes a soil mass (soil that needs to be reformed). It was also experienced that erroneous judgment was made as gravel soil with a large particle size (soil that does not require modification). In addition, even cohesive soil that has become a mass of soil has a different hardness (degree of solidification), and is relatively loosely solidified cohesive soil (soil that requires normal reforming) and hard solidified viscosity. It has also been experienced that soil (soil that requires a high degree of reforming) cannot be properly distinguished from the particle size distribution and water content ratio. In order to properly judge the soil quality of soil containing cohesive soil, it is not enough to judge the soil quality based on the particle size distribution and water content ratio as in the past, but it is necessary to judge the soil quality considering the presence or absence of soil mass and the hardness of the soil mass. is necessary.

そこで本発明の目的は,土塊(団粒)になりうる粘性土が含まれる土壌の土質を判定できる方法及びシステムを提供することにある。 Therefore, an object of the present invention is to provide a method and a system capable of determining the soil quality of soil containing cohesive soil that can become a soil mass (aggregate).

図1の実施例及び図2の流れ図を参照するに,本発明による土質判定方法は,土壌Sに振動を加えると共に(図2のステップS05参照),その振動の前後における土壌Sの画像Ga,Gbを撮影し,振動前後の画像Ga,Gbからそれぞれ粒子及び土塊の径の分布Pa,Pbを測定し(図2のステップS04,S06参照),振動前後における粒子及び土塊の径の分布Pa,Pbの変化Vから土壌Sの土質を判定してなるものである。 With reference to the embodiment of FIG. 1 and the flow chart of FIG. 2, the soil quality determination method according to the present invention applies vibration to the soil S (see step S05 of FIG. 2), and images Ga of the soil S before and after the vibration. Gb was photographed, and the distributions Pa and Pb of the diameters of the particles and the soil mass were measured from the images Ga and Gb before and after the vibration, respectively (see steps S04 and S06 in FIG. 2). The soil quality of the soil S is determined from the change V of Pb.

また図1の実施例を参照するに,本発明による土質判定システムは,土壌Sを搬送すると共に中間部20に振動エリアを設けたベルトコンベア10,ベルトコンベア10の上流部19a及び下流部19bにおいてそれぞれ搬送中の土壌Sの画像Ga,Gbを撮影して粒子及び土塊の径の分布Pa,Pbを測定する測定手段43,44,及び上流部19a及び下流部19bにおける粒子及び土塊の径の分布Pa,Pbの変化Vから土壌Sの土質を判定する判定手段47を備えてなるものである。 Further, referring to the embodiment of FIG. 1, the soil quality determination system according to the present invention transports the soil S and provides a vibration area in the intermediate portion 20 in the belt conveyor 10, the upstream portion 19a and the downstream portion 19b of the belt conveyor 10. Distribution of particles and soil mass diameters by photographing images Ga and Gb of soil S being transported, respectively. Distribution of particle and soil mass diameters in measuring means 43 and 44 for measuring Pa and Pb, and upstream portion 19a and downstream portion 19b. It is provided with a determination means 47 for determining the soil quality of the soil S from the change V of Pa and Pb.

好ましい実施例では,図4に示すように,ベルトコンベア10に,中間部20のキャリアローラ15を支持する第1支持体21,その第1支持体21から縁切りされて中間部20の上流部19a及び下流部19bのキャリアローラ16を支持する第2支持体25,及び第1支持体21を振動させる振動装置22を含める。 In a preferred embodiment, as shown in FIG. 4, the belt conveyor 10 has a first support 21 that supports the carrier roller 15 of the intermediate portion 20, and an upstream portion 19a of the intermediate portion 20 that is cut off from the first support 21. A second support 25 that supports the carrier roller 16 of the downstream portion 19b, and a vibrating device 22 that vibrates the first support 21 are included.

望ましい実施例では,図1の判定手段47に示すように,下流部19bの粒子及び土塊の径の分布Pbと上流部19a及び下流部19bにおける粒子及び土塊の径の分布Pa,Pbの変化Vとから土壌Sの土質を判定する。更に望ましい実施例では,図1に示すように,振動エリア20の前後の少なくとも一方において土壌Sの含水比Wa,Wbを計測する水分計7a,7bを設け,判定手段47により,下流部19bの粒子及び土塊の径の分布Pbと上流部19a及び下流部19bにおける粒子及び土塊の径の分布Pa,Pbの変化Vと含水比Wa,Wbとから土壌Sの土質を判定する。 In a desirable embodiment, as shown in the determination means 47 of FIG. 1, the distribution Pb of the diameters of the particles and the soil mass in the downstream portion 19b and the distributions Pa and Pb of the diameters of the particles and the soil mass in the upstream portion 19a and the downstream portion 19b V. The soil quality of the soil S is determined from the above. In a more desirable embodiment, as shown in FIG. 1, moisture meters 7a and 7b for measuring the water content ratios Wa and Wb of the soil S are provided in at least one of the front and rear of the vibration area 20, and the determination means 47 provides the downstream portion 19b. The soil quality of the soil S is determined from the distribution Pb of the diameters of the particles and the soil mass and the changes V of the diameter distributions Pa and Pb of the particles and the soil mass in the upstream portion 19a and the downstream portion 19b and the water content ratios Wa and Wb.

本発明による土質判定方法及びシステムは,土壌Sに振動を加えると共に,その振動の前後における土壌Sの画像Ga,Gbを撮影し,振動前後の画像Ga,Gbからそれぞれ粒子及び土塊の径の分布Pa,Pbを測定し,振動前後における粒子及び土塊の径の分布Pa,Pbの変化Vから土壌Sの土質を判定,次の効果を奏する。なお,以下の説明では,粒子及び土塊の径の分布Pa,Pbを,単に粒度分布Pa,Pbということがある。 In the soil quality determination method and system according to the present invention, vibration is applied to the soil S, images Ga and Gb of the soil S are taken before and after the vibration, and the diameter distribution of particles and soil mass is distributed from the images Ga and Gb before and after the vibration, respectively. Pa and Pb are measured, and the soil quality of the soil S is determined from the change V of the diameter distribution Pa and Pb of the particles and the soil mass before and after the vibration, and the following effects are obtained. In the following description, the diameter distributions Pa and Pb of particles and soil mass may be simply referred to as particle size distributions Pa and Pb.

(イ)土壌Sの振動前後における粒度分布Pa,Pbの変化Vがある場合は土塊(団粒)となった粘性土が多く含まれており,変化Vがない場合は土塊となりにくい砂質土,礫質土,低含水の粘性土,泥状の粘性土,又は土塊となっている粘性土が多く含まれていると判定することができる。
(ロ)土壌Sの振動前後の少なくとも一方における土壌Sの含水比Wa,Wbを考慮することにより,砂質土が多い土壌と礫質土が多い土壌と低含水の粘性土とを判別することができる。
(ハ)また,土壌Sの振動前後における粒度分布Pa,Pbが変化していない場合は,振動前後の少なくとも一方における土壌Sの含水比Wa,Wbを考慮することにより,砂質土・礫質土と低含水の粘性土と泥状の粘性土と土塊となっている粘性土とを判別することができる。
(B) If there is a change V in the particle size distribution Pa and Pb before and after the vibration of the soil S, it contains a lot of cohesive soil that has become a soil mass (aggregate), and if there is no change V, it is a sandy soil that is unlikely to become a soil mass. , It can be judged that a large amount of gravel soil, low water content cohesive soil, muddy cohesive soil, or cohesive soil forming a mass is contained.
(B) By considering the water content ratios Wa and Wb of the soil S before and after the vibration of the soil S, it is possible to distinguish between the soil with a large amount of sandy soil, the soil with a large amount of gravel soil, and the cohesive soil with a low water content. Can be done.
(C) If the particle size distributions Pa and Pb of the soil S before and after the vibration do not change, the water content ratios Wa and Wb of the soil S before and after the vibration are taken into consideration to obtain sandy soil and gravel. It is possible to distinguish between soil, low water content cohesive soil, muddy cohesive soil, and cohesive soil that is a mass of soil.

(ニ)更に,振動前後における粒度分布Pa,Pbの変化Vと共に,振動後の粒度分布Pbと含水比Wa,Wbとを考慮することにより,同様に粘性土であっても,比較的緩やかに固まった粘性土と泥状の粘性土と硬く固化した粘性土とを判別することもできる。
(ホ)振動ベルトコンベアで搬送しながら振動前後における粒度分布Pa,Pb及び含水比Wa,Wbを計測することにより,現場に搬入される土壌Sに粘性土が多く含まれている場合でも,粘性土の固化の程度を含めて,土壌Sの土質を連続的に判定することができる。
(へ)また,ベルトコンベア10の下流側に土質判定結果に応じた量の土壌改質材を土壌Sに添加する改質材添加装置8c〜8fを設け,現場に搬入される土壌Sに対して必要な改質を施すことにより,土壌Sに粘性土が多く含まれている場合でも,要求される土質を満足するような土壌Sを現場に供給することができる。
(D) Furthermore, by considering the change V of the particle size distributions Pa and Pb before and after the vibration and the particle size distribution Pb and the water content ratios Wa and Wb after the vibration, even if the soil is cohesive, it is relatively gentle. It is also possible to distinguish between solidified cohesive soil, muddy cohesive soil, and hard solidified cohesive soil.
(E) By measuring the particle size distribution Pa, Pb and the water content ratios Wa, Wb before and after vibration while transporting by a vibrating belt conveyor, even if the soil S carried into the site contains a large amount of cohesive soil, it is viscous. The soil quality of soil S can be continuously determined, including the degree of soil solidification.
(F) Further, on the downstream side of the belt conveyor 10, a modifier adding device 8c to 8f for adding an amount of soil modifier corresponding to the soil quality determination result to the soil S is provided for the soil S carried into the site. By performing the necessary reforming, even if the soil S contains a large amount of cohesive soil, the soil S that satisfies the required soil quality can be supplied to the site.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
は,本発明の土質判定システムの一実施例のブロック図である。 は,本発明の土質判定方法を示す流れ図の一例である。 は,本発明において土壌の振動前後における粒度分布(粒子及び土塊の径の分布)の変化の一例を示す説明図である。 は,本発明で用いる振動ベルトコンベアの一実施例の説明図である。 は,従来の土壌の土質判定及び改質方法の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
Is a block diagram of an embodiment of the soil quality determination system of the present invention. Is an example of a flow chart showing the soil quality determination method of the present invention. Is an explanatory diagram showing an example of a change in particle size distribution (distribution of diameters of particles and soil mass) before and after vibration of soil in the present invention. Is an explanatory view of an embodiment of the vibrating belt conveyor used in the present invention. Is an explanatory diagram of the conventional soil quality determination and reforming method.

図1は,原子力発電所事故後の除染処理で発生した除去土壌を広い地域から受入れて埋め立てる中間貯蔵施設の建設現場に本発明の土質判定システムを適用した実施例を示す。図5を参照して説明したCSG工法の工事現場と同様に,現場に搬入された土壌Sは先ず原土ホッパー4に投入され,ホッパー4から改質のための混合装置9(ミキサー等)に搬送して土壌改質材と混合し,更に有機物との選別装置(図示せず)に通したうえで埋め立てに供される。図示例の土質判定システムは,ホッパー4から混合装置9まで土壌Sを搬送しながら土質を連続的に判定するものである。 FIG. 1 shows an example in which the soil quality determination system of the present invention is applied to the construction site of an interim storage facility where the removed soil generated in the decontamination treatment after the nuclear power plant accident is received from a wide area and buried. Similar to the construction site of the CSG method described with reference to FIG. 5, the soil S carried into the site is first put into the raw soil hopper 4 and then transferred from the hopper 4 to the mixing device 9 (mixer or the like) for reforming. It is transported, mixed with a soil modifier, passed through a sorting device for organic matter (not shown), and then used for landfill. The soil quality determination system of the illustrated example continuously determines the soil quality while transporting the soil S from the hopper 4 to the mixing device 9.

図示例の土質判定システムは,土壌Sを搬送すると共に中間部20に振動エリアを設けたベルトコンベア(振動ベルトコンベア)10と,そのベルトコンベア10の上流部19a及び下流部19bにおいてそれぞれ搬送中の土壌Sの画像Ga,Gbを撮影するデジタルカメラ等の撮像装置5a,5bとを有する。また,その画像Ga,Gbを入力して上流部19a及び下流部19bの振動前後における粒度分布Pa,Pbを測定すると共に,その振動前後における粒度分布Pa,Pbの変化Vから土壌Sの土質を判定するコンピュータ40を有している。 In the soil quality determination system of the illustrated example, the soil S is conveyed and the belt conveyor (vibration belt conveyor) 10 having a vibration area in the intermediate portion 20 is being conveyed, and the upstream portion 19a and the downstream portion 19b of the belt conveyor 10 are being conveyed, respectively. It has image pickup devices 5a and 5b such as a digital camera for capturing images Ga and Gb of soil S. In addition, the images Ga and Gb are input to measure the particle size distributions Pa and Pb of the upstream portion 19a and the downstream portion 19b before and after the vibration, and the soil quality of the soil S is determined from the change V of the particle size distributions Pa and Pb before and after the vibration. It has a computer 40 for determining.

図4(A)は,本発明に適したベルトコンベア10の一例の拡大図を示す。図示例のベルトコンベア10は,通常のベルトコンベアと同様に駆動プーリ11とテールプーリ13との間に環状ベルト14を架け渡したものである。駆動装置12により駆動プーリ11を駆動し,駆動プーリ11とテールプーリ13との間でベルト14を回転させることにより,ベルト14の載置面に載置した土壌Sを搬送する。図4の符号17は,駆動プーリ11に巻き付けるベルト14の角度を変更して張力を調整するスナッププーリを示す。 FIG. 4A shows an enlarged view of an example of the belt conveyor 10 suitable for the present invention. The belt conveyor 10 in the illustrated example has an annular belt 14 bridged between the drive pulley 11 and the tail pulley 13 in the same manner as a normal belt conveyor. The drive pulley 11 is driven by the drive device 12, and the belt 14 is rotated between the drive pulley 11 and the tail pulley 13 to convey the soil S placed on the mounting surface of the belt 14. Reference numeral 17 in FIG. 4 indicates a snap pulley for adjusting the tension by changing the angle of the belt 14 wound around the drive pulley 11.

図4(A)のベルトコンベア10の載置面の下方には,搬送方向に沿って複数のキャリアローラ15,16が並べられており,載置面の中間部20のキャリアローラ15は第1支持体21によって連結支持され,載置面の上流部19a及び下流部19bのキャリアローラ16は第1支持体21から縁切りされた第2支持体25によって連結支持されている。第1支持体21及び第2支持体25は,それぞれ支持脚によって工事現場の基盤上に支持されている。 A plurality of carrier rollers 15 and 16 are arranged along the transport direction below the mounting surface of the belt conveyor 10 in FIG. 4A, and the carrier roller 15 in the intermediate portion 20 of the mounting surface is the first. The carrier rollers 16 on the upstream portion 19a and the downstream portion 19b of the mounting surface are connected and supported by the support 21, and are connected and supported by the second support 25 cut off from the first support 21. The first support 21 and the second support 25 are each supported on the base of the construction site by the support legs.

図4(A)のベルトコンベア10において,載置面の荷重はキャリアローラ15,16を介して第1支持体21及び第2支持体25により支持されるが,両支持体21,25は相互に縁切りされているので,第1支持台21にはキャリアローラ15の荷重のみが伝達され,他のキャリアローラ16の荷重は伝達されない。また,ベルトコンベア10は第1支持体21を振動させる振動装置22を有しているが,第1支持体21と第2支持体25とは相互に縁切りされているので,振動装置22の振動は第2支持体25に伝達されることはなく,第1支持体21とそれに連結されたキャリアローラ15のみを振動させる。 In the belt conveyor 10 of FIG. 4A, the load on the mounting surface is supported by the first support 21 and the second support 25 via the carrier rollers 15 and 16, but both supports 21 and 25 are mutually supported. Since the edges are cut off, only the load of the carrier roller 15 is transmitted to the first support base 21, and the load of the other carrier rollers 16 is not transmitted. Further, the belt conveyor 10 has a vibrating device 22 that vibrates the first support 21, but since the first support 21 and the second support 25 are mutually cut off, the vibrating device 22 vibrates. Is not transmitted to the second support 25, and vibrates only the first support 21 and the carrier roller 15 connected to the first support 21.

図示例の振動装置22は振動制御装置31を介してコンピュータ40に接続されており,必要に応じてコンピュータ40により振動装置22の振動条件(例えば振動数,振幅,起振出力等)を適宜切り替えることができる。すなわち,図4(A)のベルトコンベア10は,振動装置22を振動させることにより,第2支持体25で支持された載置面の上流部19a及び下流部19bを振動させることなく,第1支持体21により支持された載置面の中間部20のみを振動させ,載置面上を搬送方向に沿って無振動エリア,振動エリア,3つの部分に区分けすることができる。 The vibration device 22 in the illustrated example is connected to the computer 40 via a vibration control device 31, and the vibration condition (for example, frequency, amplitude, vibration output, etc.) of the vibration device 22 is appropriately switched by the computer 40 as needed. be able to. That is, in the belt conveyor 10 of FIG. 4A, the first vibration device 22 is vibrated without vibrating the upstream portion 19a and the downstream portion 19b of the mounting surface supported by the second support 25. Only the intermediate portion 20 of the mounting surface supported by the support 21 can be vibrated, and the mounting surface can be divided into a vibration-free area, a vibration area, and three parts along the transport direction.

図示例の撮像装置5a,5bは,ベルトコンベア10の上流部19a及び下流部19bの無振動エリアにそれぞれ配置されている。土壌Sを振動させながら画像Gを撮影すると,撮影のたびに土壌S中の粒子や土塊が異なる形として写り込み,画像Gから測定する粒度分布の精度が低下するおそれがある。図4(A)のように,土壌Sを振動エリアにおいて振動させて分散させると共に,その前後の無振動エリアにおいて振動させずに画像Ga,Gbを撮影することにより,画像Ga,Gbから粒度分布を精度よく測定することができる。なお,無振動エリアでベルトコンベア10の搬送を一時停止することも可能である。また,振動エリアである中間部20の長さ(搬送方向長さ)は,土壌Sを十分に分散できるように適宜選択することができる。 The imaging devices 5a and 5b of the illustrated example are arranged in vibration-free areas of the upstream portion 19a and the downstream portion 19b of the belt conveyor 10, respectively. If the image G is photographed while the soil S is vibrated, the particles and the soil mass in the soil S are reflected as different shapes each time the image G is photographed, and the accuracy of the particle size distribution measured from the image G may decrease. As shown in FIG. 4A, the soil S is vibrated and dispersed in the vibrating area, and the images Ga and Gb are photographed without vibrating in the non-vibrating areas before and after the soil S, whereby the particle size distribution is distributed from the images Ga and Gb. Can be measured accurately. It is also possible to temporarily stop the transportation of the belt conveyor 10 in the vibration-free area. Further, the length of the intermediate portion 20 (length in the transport direction), which is the vibration area, can be appropriately selected so that the soil S can be sufficiently dispersed.

ベルトコンベア10上に搭載された土壌Sは搬送されながら撮像装置5a,5bの下方へ進み,撮像装置5a,5bにより振動前画像Ga及び振動後画像Gbが連続的に撮影される。なお,図示例では,ベルトコンベア10の上流部19a及び下流部19bにそれぞれ遮光板及び遮光カーテンで覆われた撮影建屋6a,6bを設け,その撮影建屋6a,6b内に照明装置(図示せず)と共に撮像装置5a,5bを配置し,撮影建屋6a,6bの内部に進入した土壌Sを所定照度に維持した状態で撮像装置5a,5bにより撮影する。ただし,撮影建屋6及び照明装置は本発明に必須のものではなく,省略可能である。 The soil S mounted on the belt conveyor 10 advances below the image pickup devices 5a and 5b while being conveyed, and the pre-vibration image Ga and the post-vibration image Gb are continuously photographed by the image pickup devices 5a and 5b. In the illustrated example, the photographing buildings 6a and 6b covered with the light-shielding plate and the light-shielding curtain are provided on the upstream portion 19a and the downstream portion 19b of the belt conveyor 10, respectively, and a lighting device (not shown) is provided in the photographing buildings 6a and 6b. ), And the soil S that has entered the inside of the photographing buildings 6a and 6b is maintained at a predetermined illuminance and photographed by the imaging devices 5a and 5b. However, the photographing building 6 and the lighting device are not essential to the present invention and can be omitted.

図示例のコンピュータ40は,内蔵プログラムとして,画像Ga,Gbを入力する入力手段41と,画像Ga,Gbから土壌Sの振動前後における粒度分布Pa,Pbを測定する測定手段43,44を有する。粒度分布測定手段43,44の一例は,土壌Sの画像Gからその中に含まれる粒子の径の分布(粒度分布)を測定して粒径加積曲線画像Gを作成する従来の画像解析プログラムであるが,粒子の径だけでなく,粒子が団子状になった土塊(団粒)の径を合わせて測定し,その粒度分布(粒子及び土塊の径の分布)を測定するものである。 The computer 40 of the illustrated example has input means 41 for inputting images Ga and Gb as built-in programs, and measuring means 43 and 44 for measuring particle size distributions Pa and Pb from the images Ga and Gb before and after vibration of soil S. An example of the particle size distribution measuring means 43 and 44 is a conventional image analysis program that measures the distribution of the diameters (particle size distribution) of the particles contained therein from the image G of the soil S and creates a particle size product curve image G. However, not only the diameter of the particles but also the diameter of the soil mass (aggregate) in which the particles are aggregated is measured, and the particle size distribution (distribution of the diameters of the particles and the soil mass) is measured.

また図示例のコンピュータ40は,振動前後の粒度分布Pa,Pbの変化Vを検出する粒度分布変化検出手段45と,粒度分布Pa,Pbの変化Vに基づいて土壌Sの土質を判定する判定手段47とを有する。判定手段47は,振動前後の粒度分布Pa,Pbの変化Vだけでなく,その変化Vと共に上流部19a又は下流部19bの粒度分布Pbに基づいて土壌Sの土質を判定することができる。なお,中間貯蔵施設において所定径未満の粒子及び土塊は改質せずにそのまま埋め立てることが認められている場合は,測定手段43,44において,所定径以上の粒度分布Pa,Pbを測定すれば足りる。 Further, the computer 40 of the illustrated example is a particle size distribution change detecting means 45 for detecting the change V of the particle size distribution Pa and Pb before and after the vibration, and a determining means for determining the soil quality of the soil S based on the change V of the particle size distribution Pa and Pb. It has 47 and. The determination means 47 can determine the soil quality of the soil S based not only on the change V of the particle size distributions Pa and Pb before and after the vibration but also on the particle size distribution Pb of the upstream portion 19a or the downstream portion 19b together with the change V. If particles and soil lumps with a diameter smaller than the specified diameter are allowed to be buried as they are without modification in the interim storage facility, the particle size distributions Pa and Pb with a predetermined diameter or more can be measured with the measuring means 43 and 44. Sufficient.

また,図示例の土質判定システムは,ベルトコンベア10の振動エリア20の前後において土壌Sの含水比Wa,Wbを計測する水分計7a,7bを有し,その水分計7a,7bの計測値をコンピュータ40に入力している。水分計7の一例は,所定波長範囲(例えば0.7μm〜2.5μm)の近赤外光を土壌Sに照射し,その反射光又は透過光の特定波長λi(例えば1.2μm,1.45μm,1.94μm等)における減衰から土壌Sの水分量(含水比)を算出するものである。 Further, the soil quality determination system of the illustrated example has moisture meters 7a and 7b for measuring the water content ratios Wa and Wb of the soil S before and after the vibration area 20 of the belt conveyor 10, and measures the measured values of the moisture meters 7a and 7b. Input to computer 40. An example of the moisture meter 7 irradiates the soil S with near-infrared light in a predetermined wavelength range (for example, 0.7 μm to 2.5 μm), and the reflected light or transmitted light has a specific wavelength λi (for example, 1.2 μm, 1. The water content (moisture content ratio) of the soil S is calculated from the attenuation at 45 μm, 1.94 μm, etc.).

図示例のコンピュータ40は,内蔵プログラムとして,水分計7a,7bの計測値から土壌Sの水分量(含水比)を算出する含水比計測手段46を有し,判定手段47において,土壌Sの振動前後の粒度分布Pa,Pbの変化Vと土壌Sの含水比bとから土壌Sの土質を判定している。例えば,水分計7a,7bにより土壌Sに照射した近赤外光の反射光又は透過光を計測し,その計測値をコンピュータ40の含水比計測手段46に入力して特定波長λiの減衰から土壌Sの水分量(含水比)を算出する。なお,振動前後において土壌Sの含水比Wが変化しないような場合は,振動エリア20の前後の少なくとも一方に水分計7a又は7bを設ければ足りる。 The computer 40 of the illustrated example has, as a built-in program, a water content ratio measuring means 46 for calculating the water content (water content ratio) of the soil S from the measured values of the moisture meters 7a and 7b, and the vibration of the soil S in the determining means 47. The soil quality of soil S is determined from the changes V of the particle size distributions Pa and Pb before and after and the water content ratio b of soil S. For example, the reflected light or transmitted light of the near infrared light irradiated to the soil S is measured by the moisture meters 7a and 7b, and the measured value is input to the water content ratio measuring means 46 of the computer 40 to attenuate the soil at a specific wavelength λi. The water content (water content ratio) of S is calculated. If the water content ratio W of the soil S does not change before and after the vibration, it is sufficient to provide a moisture meter 7a or 7b at least one of the front and rear of the vibration area 20.

なお,図示例では,ホッパー4の土壌Sをベルトコンベア10へ直接投入するのではなく,ベルトコンベア10の上流側に搬入ベルトコンベア26を設け,その搬入ベルトコンベア26に振動前の土壌Sの含水比Waを計測する水分計7aを設けている。そして,搬入ベルトコンベア26とベルトコンベア10との間に分別装置36を設け,水分計7aで計測した土壌Sの含水比Waに基づき,改質を必要とする土壌Sと必要としない土壌Sとを識別し,改質を必要とする土壌Sのみを分別装置36によりベルトコンベア10へ導き,改質を必要としない土壌Sは搬出ベルトコンベア27へ導いている。ただし,水分計7aの設置位置は図示例に限定されるわけではなく,ベルトコンベア10の上流側での分別を必要としない場合は,搬入ベルトコンベア26及び分別装置36を省略し,ベルトコンベア10の上流部19aに水分計7aを設置することもできる。 In the illustrated example, the soil S of the hopper 4 is not directly charged to the belt conveyor 10, but a carry-in belt conveyor 26 is provided on the upstream side of the belt conveyor 10, and the carry-in belt conveyor 26 contains water in the soil S before vibration. A moisture meter 7a for measuring the ratio Wa is provided. Then, a sorting device 36 is provided between the carry-in belt conveyor 26 and the belt conveyor 10, and based on the water content ratio Wa of the soil S measured by the moisture meter 7a, the soil S that requires reforming and the soil S that does not require reforming Is identified, and only the soil S that requires reforming is guided to the belt conveyor 10 by the sorting device 36, and the soil S that does not require reforming is guided to the carry-out belt conveyor 27. However, the installation position of the moisture meter 7a is not limited to the illustrated example, and when sorting on the upstream side of the belt conveyor 10 is not required, the carry-in belt conveyor 26 and the sorting device 36 are omitted, and the belt conveyor 10 is omitted. A moisture meter 7a can also be installed in the upstream portion 19a of the above.

また,図示例では,ベルトコンベア10から吐出された土壌Sを現場へ直接搬入するのではなく,ベルトコンベア10の下流側に分別装置37及び改質材添加装置8c〜8fを設け,コンピュータ40による土質判定結果に基づき土壌Sの改質の必要度合いを識別し,分別装置37によってベルトコンベア10から吐出された土壌Sを改質材添加装置8c〜8fの何れかへと導いている。分別装置36,37は,コンピュータ40の判定手段47に接続された出力手段48からの信号により制御することができ,コンピュータ40により土壌Sの土質を連続的に判定すると共に,その土質判定結果に応じた改質処理を土壌Sに対して連続的に施すことができる。例えば,改質材添加装置8c〜8fにおいて土質判定結果に応じた量の土壌改質材を土壌Sに投入し,混合装置9c〜9fにおいて土壌Sと改質材と混合することにより,土壌Sを常に要求される土質に調整したうえで現場へ搬入することができる。 Further, in the illustrated example, the soil S discharged from the belt conveyor 10 is not directly carried to the site, but a sorting device 37 and a modifier adding device 8c to 8f are provided on the downstream side of the belt conveyor 10 and are operated by a computer 40. The degree of necessity of reforming the soil S is identified based on the soil quality determination result, and the soil S discharged from the belt conveyor 10 by the sorting device 37 is guided to any of the reforming material adding devices 8c to 8f. The sorting devices 36 and 37 can be controlled by a signal from the output means 48 connected to the determination means 47 of the computer 40, and the computer 40 continuously determines the soil quality of the soil S and uses the soil quality determination result as the result. The corresponding reforming treatment can be continuously applied to the soil S. For example, in the modifier adding devices 8c to 8f, an amount of soil modifier corresponding to the soil quality determination result is put into the soil S, and in the mixing devices 9c to 9f, the soil S and the modifier are mixed to form the soil S. Can be delivered to the site after adjusting the soil quality to the required one at all times.

図2は,図1のシステムを用いた土壌Sの土質判定方法の流れ図の一例を示す。以下,図2の流れ図を参照して,本発明の土質判定方法を説明する。先ずステップS01において,ホッパー4から搬入ベルトコンベア26へ土壌Sを搬入する。次いでステップS02において,搬入ベルトコンベア26上の水分計7aにより含水比(振動前含水比)Waを計測してコンピュータ40に計測値を入力し,含水比計測手段46による土壌Sの含水比Waに基づいて判定手段47により土質を判定する。具体的には,含水比Waが低い(例えば40%未満)場合には,土壌Sが土塊となりにくい土壌Sa(砂質土,礫質土,又は低含水の粘性土)であると判定する。 FIG. 2 shows an example of a flow chart of a soil quality determination method for soil S using the system of FIG. Hereinafter, the soil quality determination method of the present invention will be described with reference to the flow chart of FIG. First, in step S01, the soil S is carried from the hopper 4 to the carry-in belt conveyor 26. Next, in step S02, the water content ratio (moisture content before vibration) Wa is measured by the moisture meter 7a on the carry-in belt conveyor 26, the measured value is input to the computer 40, and the water content ratio Wa of the soil S by the water content ratio measuring means 46 is obtained. Based on this, the soil quality is determined by the determination means 47. Specifically, when the water content ratio Wa is low (for example, less than 40%), it is determined that the soil S is soil Sa (sandy soil, gravel soil, or low water content cohesive soil) that is unlikely to form a soil mass.

図2のステップS03において,判定手段47の土質判定結果を出力手段48経由で分別装置36へ出力し,分別装置36により土塊となりにくい土壌Saを搬出ベルトコンベア27へ分別し,土塊となりやすい土壌Sb〜Sfをベルトコンベア10へ導く。次いで,ステップS04においてベルトコンベア10の上流部19aの撮像装置5aにより振動前画像Gaを撮影し,ステップS05においてベルトコンベア10の中間部20により土壌Sを所要振動条件で振動させたのち,ステップS06においてベルトコンベア10の下流部19bの撮像装置5bにより振動後画像Gaを撮影する。必要に応じて,ステップS07において,ベルトコンベア10の下流部19bに設置した水分計7bにより,振動後の土壌Sの含水比(振動前含水比)Wbを計測してもよい。 In step S03 of FIG. 2, the soil quality determination result of the determination means 47 is output to the sorting device 36 via the output means 48, and the soil Sa that is unlikely to become a soil mass is separated by the sorting device 36 into the carry-out belt conveyor 27, and the soil Sb that easily becomes a soil mass ~ Sf is guided to the belt conveyor 10. Next, in step S04, the pre-vibration image Ga is taken by the image pickup device 5a of the upstream portion 19a of the belt conveyor 10, and in step S05, the soil S is vibrated by the intermediate portion 20 of the belt conveyor 10 under the required vibration conditions, and then in step S06. The image Ga after vibration is photographed by the image pickup device 5b at the downstream portion 19b of the belt conveyor 10. If necessary, in step S07, the water content ratio (pre-vibration water content ratio) Wb of the soil S after vibration may be measured by a moisture meter 7b installed in the downstream portion 19b of the belt conveyor 10.

撮像装置5a,5bで撮影した画像Ga,Gbはコンピュータ40に入力し,測定手段43,44により振動前画像Ga及び振動後画像Gbからそれぞれ土壌Sの振動前粒度分布Pa及び振動後粒度分布Pbを測定し,粒度分布変化検出手段45により振動前後の粒度分布Pa,Pbの変化Vを検出する。その粒度分布Pa,Pbの変化Vを判定手段47に入力し,判定手段47において,振動前後の粒度分布Pa,Pbの変化Vと振動後の粒度分布PbとステップS02(又はステップS06)で計測した含水比Wa(又はWb)に基づいて土壌Sの土質を判定する。 The images Ga and Gb captured by the image pickup devices 5a and 5b are input to the computer 40, and the pre-vibration particle size distribution Pa and the post-vibration particle size distribution Pb of the soil S are obtained from the pre-vibration image Ga and the post-vibration image Gb by the measuring means 43 and 44, respectively. Is measured, and the change V of the particle size distributions Pa and Pb before and after the vibration is detected by the particle size distribution change detecting means 45. The change V of the particle size distributions Pa and Pb is input to the determination means 47, and the determination means 47 measures the change V of the particle size distributions Pa and Pb before and after the vibration, the particle size distribution Pb after the vibration, and step S02 (or step S06). The soil quality of the soil S is determined based on the water content ratio Wa (or Wb).

図2のステップS08は,コンピュータ40の判定手段47において,図3(A)に示すように振動前後の粒度分布Pa,Pbの変化Vが検出された場合に,土壌S中に土塊となった粘性土が含まれているが,振動により大きな土塊が小さく崩れたことから,改質を必要としない土壌Sbであると判定することを示す。判定手段47の土質判定結果を出力手段48経由で分別装置37へ出力し,分別装置37により粘性土を含むが改質を必要としない粘性土Sbを搬出ベルトコンベア27へ分別する。 In step S08 of FIG. 2, when the change V of the particle size distributions Pa and Pb before and after the vibration was detected by the determination means 47 of the computer 40 as shown in FIG. 3 (A), it became a soil mass in the soil S. Although cohesive soil is contained, a large soil mass collapsed due to vibration, indicating that the soil Sb does not require reforming. The soil quality determination result of the determination means 47 is output to the sorting device 37 via the output means 48, and the cohesive soil Sb containing cohesive soil but not requiring modification is sorted by the sorting device 37 to the carry-out belt conveyor 27.

図2のステップS09〜S12は,コンピュータ40の判定手段47により,振動前後の粒度分布Pa,Pbの変化Vが検出されない場合に,土壌S中に高粘性の土塊となった粘性土と低粘性の粘性土とが含まれており,振動によっても土塊が崩れない又は元々土塊となっていないことから,改質を必要とする粘性土が含まれる土壌Sc〜Sfであると判定することを示す。このような粘性土Sc〜Sfは,振動後の粒度分布Pbと含水比Waとに基づき,更に土質を細かく判定して必要とする改質処理を切り分けることができる。 In steps S09 to S12 of FIG. 2, when the change V of the particle size distributions Pa and Pb before and after the vibration is not detected by the determination means 47 of the computer 40, the cohesive soil and the low viscosity soil which became a highly viscous soil mass in the soil S It is shown that the soil is Sc to Sf containing the cohesive soil that needs to be reformed because the soil mass is not collapsed or originally formed as a soil mass even by vibration. .. For such cohesive soils Sc to Sf, the soil quality can be further finely determined based on the particle size distribution Pb after vibration and the water content ratio Wa, and the required reforming treatment can be separated.

すなわち,図2のステップS09は,図3(B)に示すように土塊となっている粘性土の粒径が比較的小さく(例えば粒径の平均値が20mm未満),含水比が中程度(例えば40〜55%未満)である場合に,コンピュータ40の判定手段47において,土塊となっているが粘性が比較的低い土壌Scであると判定することを示す。このような土壌Scは改質を必要としないことも多いが,判定手段47の土質判定結果を出力手段48経由で分別装置37へ出力し,分別装置37により粘性土Scを改質材添加装置8cへと導き,改質材添加装置8cにおいて土質判定結果に応じた量の土壌改質材を土壌Sに投入し,混合装置9cにおいて土壌Sと改質材と混合することにより改質することができる。 That is, in step S09 of FIG. 2, as shown in FIG. 3 (B), the particle size of the cohesive soil forming the soil mass is relatively small (for example, the average value of the particle size is less than 20 mm), and the water content ratio is medium (for example, For example, when it is less than 40 to 55%), it is shown that the determination means 47 of the computer 40 determines that the soil Sc is a soil mass but has a relatively low viscosity. Such soil Sc often does not require reforming, but the soil quality determination result of the determination means 47 is output to the sorting device 37 via the output means 48, and the cohesive soil Sc is added to the modifier addition device by the sorting device 37. Leading to 8c, in the modifier adding device 8c, the amount of soil modifier corresponding to the soil quality judgment result is put into the soil S, and in the mixing device 9c, the soil S and the modifier are mixed to reform. Can be done.

図2のステップS10は,図3(C)に示すように土塊となっている粘性土の粒径が比較的大きく(例えば粒径の平均値が20mm以上),含水比が高い(例えば55%未満)場合に,コンピュータ40の判定手段47において,土塊となっているが湿潤しており,比較的軟らかい土壌Sdであると判定することを示す。このような土壌Sdは,判定手段47の土質判定結果を出力手段48経由で分別装置37へ出力し,分別装置37により粘性土Sdを改質材添加装置8dへと導き,改質材添加装置8dにおいて通常量の土壌改質材を土壌Sに投入し,混合装置9dにおいて土壌Sと改質材と混合することにより改質する。 In step S10 of FIG. 2, as shown in FIG. 3 (C), the particle size of the cohesive soil forming the soil mass is relatively large (for example, the average value of the particle size is 20 mm or more), and the water content ratio is high (for example, 55%). In the case of less than), it is shown that the determination means 47 of the computer 40 determines that the soil is a mass but is moist and the soil Sd is relatively soft. Such soil Sd outputs the soil quality determination result of the determination means 47 to the sorting device 37 via the output means 48, guides the cohesive soil Sd to the modifier adding device 8d by the sorting device 37, and guides the cohesive soil Sd to the modifier adding device 8d. In 8d, a normal amount of the soil modifier is put into the soil S, and the soil S and the modifier are mixed in the mixing device 9d to reform the soil.

図3のステップS11は,図3(D)に示すように粘性土の粒径が比較的小さく(例えば粒径の平均値が20mm未満),含水比が高い(例えば55%未満)場合に,コンピュータ40の判定手段47において,泥土状の土壌Seであると判定することを示す。このような土壌Seは,粘性が非常に低いので,判定手段47の土質判定結果を出力手段48経由で分別装置37へ出力し,分別装置37により粘性土Seを改質材添加装置8eへと導き,改質材添加装置8eにおいて通常より多い土壌改質材を土壌Sに投入し,混合装置9eにおいて土壌Sと改質材と混合することにより改質する。 Step S11 of FIG. 3 shows that when the particle size of the cohesive soil is relatively small (for example, the average value of the particle size is less than 20 mm) and the water content ratio is high (for example, less than 55%) as shown in FIG. 3 (D). It is shown that the determination means 47 of the computer 40 determines that the soil is muddy soil Se. Since such soil Se has a very low viscosity, the soil quality determination result of the determination means 47 is output to the sorting device 37 via the output means 48, and the cohesive soil Se is transferred to the modifier adding device 8e by the sorting device 37. In the guide, the modifier adding device 8e puts more soil modifier than usual into the soil S, and the mixing device 9e mixes the soil S with the modifier to reform the soil.

図3のステップS12は,図3(E)に示すように固化した粘性土の粒径が比較的多く(例えば粒径の平均値が20mm以上),含水比が中程度(例えば40〜55%未満)である場合に,コンピュータ40の判定手段47において,硬く固化した土壌Sfであると判定することを示す。このような土壌Sfは,非常に強固に固まっていることが多いので,判定手段47の土質判定結果を出力手段48経由で分別装置37へ出力し,分別装置37により粘性土Sfを改質材添加装置8fへと導き,改質材添加装置8fにおいて通常より多い土壌改質材を土壌Sに投入し,又は土塊となっている粘性土を崩すことに適した改質材添加装置8fに土壌Sを土質改良材と共に投入し,混合装置9fにおいて土壌Sと改質材と混合することにより改質することが望ましい。 In step S12 of FIG. 3, as shown in FIG. 3 (E), the solidified cohesive soil has a relatively large particle size (for example, the average particle size is 20 mm or more) and the water content ratio is medium (for example, 40 to 55%). If it is less than), it is shown that the determination means 47 of the computer 40 determines that the soil Sf is hard and solidified. Since such soil Sf is often very firmly solidified, the soil quality determination result of the determination means 47 is output to the sorting device 37 via the output means 48, and the cohesive soil Sf is modified by the sorting device 37. Soil to the modifier 8f, which is suitable for injecting more soil modifier than usual in the modifier addition device 8f into the soil S, or breaking the cohesive soil that is a mass of soil. It is desirable to add S together with the soil conditioner and reform it by mixing the soil S and the modifier in the mixing device 9f.

図2のステップS09〜S12において,改質を必要とする固化した粘性土が含まれる土壌Sc〜Sfを判定したのち,ステップS01へ戻り,上述したステップS01〜S12を繰り返す。中間貯蔵施設において現場に搬入される土壌Sについて,図2の流れ図に沿って土壌Sa〜Sfの土質を連続的に判定し,その土質判定結果に基づいて土壌Sa〜Sfに対して必要な改質を施すことにより,搬入される土壌Sに粘性土が多く含まれている場合でも,要求される土質を常に満足するような土壌Sを現場に連続的に供給することができる。 In steps S09 to S12 of FIG. 2, after determining soils Sc to Sf containing solidified cohesive soil requiring reforming, the process returns to step S01 and the above-mentioned steps S01 to S12 are repeated. Regarding the soil S brought into the site at the intermediate storage facility, the soil quality of the soil Sa to Sf is continuously determined according to the flow chart of FIG. 2, and the necessary modification for the soil Sa to Sf is performed based on the soil quality determination result. By applying the quality, even if the soil S to be brought in contains a large amount of cohesive soil, the soil S that always satisfies the required soil quality can be continuously supplied to the site.

こうして本発明の目的である「土塊(団粒)になりうる粘性土が含まれる土壌の土質を判定できる方法及びシステム」を提供することができる。 In this way, it is possible to provide a "method and system capable of determining the soil quality of soil containing cohesive soil that can be a mass (aggregate)", which is an object of the present invention.

図4(B)は,本発明に適した振動ベルトコンベア10の他の実施例を示す。図示例の振動ベルトコンベア10は,上述した中間部20の第1支持体21と下流部19bの第2支持体25との間に,両支持体21,25から縁切りされてキャリアローラ15の荷重を支持する第3支持体23を設けると共に,その第3支持体23を振動させる振動装置24を設けたものである。第3支持体23は工事現場の基盤上に支持されている。振動装置22によって第1支持体21を振動させると同時に,振動装置24によって第3支持体23を振動させる。 FIG. 4B shows another embodiment of the vibrating belt conveyor 10 suitable for the present invention. In the vibration belt conveyor 10 of the illustrated example, the load of the carrier roller 15 is cut off from both the supports 21 and 25 between the first support 21 of the intermediate portion 20 and the second support 25 of the downstream portion 19b described above. A third support 23 is provided to support the third support 23, and a vibrating device 24 for vibrating the third support 23 is provided. The third support 23 is supported on the base of the construction site. The vibrating device 22 vibrates the first support 21, and at the same time, the vibrating device 24 vibrates the third support 23.

図4(B)の振動ベルトコンベア10においても,各支持体21,23,25は相互に縁切りされているので,第3支持台23の直上のキャリアローラ15の荷重が他の支持台21,25に伝達されることはなく,第3支持体23の振動が他の支持体21,25に伝達されることもない。第3支持体23は,第1支持体21と同じ振動条件(例えば振動周波数,振幅,起振出力が何れも同じ条件)で振動させてもよいが,第1支持体21と異なる振動条件(例えば振動周波数,振幅,起振出力の何れかが異なる条件)で振動させることができる。図示例の振動装置24は振動制御装置32を介してコンピュータ40に接続されており,必要に応じてコンピュータ40により振動装置24の振動条件(例えば振動周波数,振幅,起振出力等)を適宜切り替えることができる。 Also in the vibrating belt conveyor 10 of FIG. 4B, since the supports 21, 23, and 25 are cut off from each other, the load of the carrier roller 15 directly above the third support base 23 is applied to the other support base 21, It is not transmitted to the 25, and the vibration of the third support 23 is not transmitted to the other supports 21 and 25. The third support 23 may be vibrated under the same vibration conditions as the first support 21 (for example, the vibration frequency, amplitude, and vibration output are all the same), but the vibration conditions are different from those of the first support 21 (for example, the vibration frequency, amplitude, and vibration output are all the same). For example, it can be vibrated under different conditions such as vibration frequency, amplitude, and vibration output). The vibration device 24 of the illustrated example is connected to the computer 40 via a vibration control device 32, and the vibration condition (for example, vibration frequency, amplitude, vibration output, etc.) of the vibration device 24 is appropriately switched by the computer 40 as needed. be able to.

すなわち,図4(B)の振動ベルトコンベア10においても,振動装置22,24を振動させることにより,第1支持体21及び第3支持体23で支持された中間部20のみを振動させ,載置面上を搬送方向に沿って無振動エリア,振動エリア,無振動エリアの3つの部分に区分けすることができる。また,振動装置22,24を異なる振動条件で振動させることにより,土壌Sの性状に応じて振動条件を変化させることができる。 That is, also in the vibrating belt conveyor 10 of FIG. 4B, by vibrating the vibrating devices 22 and 24, only the intermediate portion 20 supported by the first support 21 and the third support 23 is vibrated and mounted. The surface can be divided into three parts along the transport direction: a vibration-free area, a vibration-free area, and a vibration-free area. Further, by vibrating the vibrating devices 22 and 24 under different vibration conditions, the vibration conditions can be changed according to the properties of the soil S.

1…採取場(地山) 1a…破砕装置
2…ストックヤード 3…運搬装置(トラック等)
4…ホッパー 5,5a,5b…撮像装置
6…撮影建屋 7,7a,7b…水分計
8…改質剤添加装置 9…混合装置
10…振動ベルトコンベア 11…駆動プーリ(ドライブプーリ)
12…駆動装置 13…テールプーリ
14…コンベアベルト 15,16…キャリアローラ
17…スナッププーリ
19a…上流部(無振動エリア) 19b…下流部(無振動エリア)
20…中間部(振動エリア)
21…第1支持体 22…振動装置
23…第3支持体 24…振動装置
25…第2支持体
26…搬入ベルトコンベア 27…搬出ベルトコンベア
31,32…振動制御装置 33…駆動制御装置
36,37…分別装置
40…コンピュータ 41…入力手段
42…測定手段 43…振動前粒度分布の測定手段
44…振動後粒度分布の測定手段 45…粒度分布変化検出手段
46…含水比計測手段 47…判定手段
48…出力手段
G,Ga,Gb…画像
S…土壌(原土)
P,Pa,Pb…粒度分布(粒子及び土塊の径の分布)
V…粒度分布(粒子及び土塊の径の分布)の変化
W…含水比
1 ... Collection site (ground) 1a ... Crushing device 2 ... Stockyard 3 ... Transport device (truck, etc.)
4 ... Hopper 5,5a, 5b ... Imaging device 6 ... Photography building 7,7a, 7b ... Moisture meter 8 ... Modifier addition device 9 ... Mixing device 10 ... Vibration belt conveyor 11 ... Drive pulley (drive pulley)
12 ... Drive device 13 ... Tail pulley 14 ... Conveyor belt 15, 16 ... Carrier roller 17 ... Snap pulley 19a ... Upstream part (vibration-free area) 19b ... Downstream part (vibration-free area)
20 ... Middle part (vibration area)
21 ... 1st support 22 ... Vibration device 23 ... 3rd support 24 ... Vibration device 25 ... 2nd support 26 ... Carry-in belt conveyor 27 ... Carry-out belt conveyor 31, 32 ... Vibration control device 33 ... Drive control device 36, 37 ... Separation device 40 ... Computer 41 ... Input means 42 ... Measuring means 43 ... Pre-vibration particle size distribution measuring means 44 ... Post-vibration particle size distribution measuring means 45 ... Particle size distribution change detecting means 46 ... Water content ratio measuring means 47 ... Judgment means 48 ... Output means G, Ga, Gb ... Image S ... Soil (raw soil)
P, Pa, Pb ... Particle size distribution (distribution of particle and soil mass diameter)
V ... Change in particle size distribution (distribution of particle and soil mass diameter) W ... Water content ratio

Claims (7)

土壌に振動を加えると共に振動の前後における当該土壌の画像を撮影し,前記振動前後の画像からそれぞれ粒子及び土塊の径の分布を測定し,前記振動前後における粒子及び土塊の径の分布の変化から土壌の土質を判定してなる土質判定方法。 While applying vibration to the soil, images of the soil before and after the vibration are taken, the distribution of the diameters of the particles and the soil mass is measured from the images before and after the vibration, and the changes in the diameter distribution of the particles and the soil mass before and after the vibration are used. A soil quality determination method that determines the soil quality of the soil. 請求項1の方法において,前記振動後の粒子及び土塊の径の分布と前記振動前後における粒子及び土塊の径の分布の変化とから前記土壌の土質を判定してなる土質判定方法。 The soil quality determination method according to claim 1, wherein the soil quality of the soil is determined from the distribution of the diameters of the particles and the soil mass after the vibration and the change in the diameter distribution of the particles and the soil mass before and after the vibration. 請求項2の方法において,前記振動前後の少なくとも一方において前記土壌の含水比を計測し,前記振動後の粒子及び土塊の径の分布と前記振動前後における粒子及び土塊の径の分布の変化と含水比とから前記土壌の土質を判定してなる土質判定方法。 In the method of claim 2, the water content ratio of the soil is measured at least one before and after the vibration, and the distribution of the diameters of the particles and the soil mass after the vibration, the change in the diameter distribution of the particles and the soil mass before and after the vibration, and the water content. A soil quality determination method for determining the soil quality of the soil from the ratio. 土壌を搬送すると共に中間部に振動エリアを設けたベルトコンベア,前記ベルトコンベアの上流部及び下流部においてそれぞれ搬送中の前記土壌の画像を撮影して粒子及び土塊の径の分布を測定する測定手段,及び前記上流部及び下流部における粒子及び土塊の径の分布の変化から前記土壌の土質を判定する判定手段を備えてなる土質判定システム。 A belt conveyor that transports soil and has a vibrating area in the middle, and a measuring means that measures the distribution of the diameters of particles and soil mass by taking images of the soil being transported at the upstream and downstream parts of the belt conveyor, respectively. , And a soil quality determination system including a determination means for determining the soil quality of the soil from changes in the diameter distribution of particles and soil masses in the upstream and downstream portions. 請求項のシステムにおいて,前記ベルトコンベアに,前記中間部のキャリアローラを支持する第1支持体,前記第1支持体から縁切りされて前記中間部の上流部及び下流部のキャリアローラを支持する第2支持体,及び前記第1支持体を振動させる振動装置を含めてなる土質判定システム。 In the system of claim 4 , the belt conveyor supports the first support that supports the carrier roller in the intermediate portion, and the carrier rollers in the upstream and downstream portions of the intermediate portion that are trimmed from the first support. A soil quality determination system including a second support and a vibrating device that vibrates the first support. 請求項4又は5のシステムにおいて,前記判定手段により,前記下流部の粒子及び土塊の径の分布と前記上流部及び下流部における粒子及び土塊の径の分布の変化とから前記土壌の土質を判定してなる土質判定システム。 In the system of claim 4 or 5 , the soil quality of the soil is determined from the changes in the diameter distribution of the particles and the soil mass in the downstream portion and the diameter distribution of the particles and the soil mass in the upstream portion and the downstream portion by the determination means. Soil quality judgment system. 請求項のシステムにおいて,前記振動エリアの前後の少なくとも一方において前記土壌の含水比を計測する水分計を設け,前記判定手段により,前記下流部の粒子及び土塊の径の分布と前記上流部及び下流部における粒子及び土塊の径の分布の変化と含水比とから前記土壌の土質を判定してなる土質判定システム。 In the system of claim 6 , a moisture meter for measuring the water content ratio of the soil is provided at least one before and after the vibration area, and the distribution of the diameters of the particles and the soil mass in the downstream portion and the upstream portion and the soil mass are provided by the determination means. A soil quality determination system for determining the soil quality of the soil from changes in the diameter distribution of particles and soil masses in the downstream portion and the water content ratio.
JP2016204552A 2016-10-18 2016-10-18 Soil quality judgment method and system Active JP6764755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204552A JP6764755B2 (en) 2016-10-18 2016-10-18 Soil quality judgment method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204552A JP6764755B2 (en) 2016-10-18 2016-10-18 Soil quality judgment method and system

Publications (2)

Publication Number Publication Date
JP2018066613A JP2018066613A (en) 2018-04-26
JP6764755B2 true JP6764755B2 (en) 2020-10-07

Family

ID=62087042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204552A Active JP6764755B2 (en) 2016-10-18 2016-10-18 Soil quality judgment method and system

Country Status (1)

Country Link
JP (1) JP6764755B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137801B2 (en) * 2018-09-06 2022-09-15 株式会社安藤・間 SOIL IMPROVEMENT DETERMINATION DEVICE AND FORMAT REMOVAL METHOD
JP7300403B2 (en) * 2020-01-27 2023-06-29 東亜建設工業株式会社 Sediment Property Estimation Method and Property Estimation System

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570999B1 (en) * 1998-08-17 2003-05-27 Ag-Chem Equipment Co., Inc. Soil particle and soil analysis system
WO2008032363A1 (en) * 2006-09-12 2008-03-20 Kotobuki Engineering & Manufacturing Co., Ltd. Method of measuring grain size and apparatus for measuring grain size
JP5896465B2 (en) * 2012-06-12 2016-03-30 鹿島建設株式会社 Method and system for measuring particle size distribution of granular material
JP6173894B2 (en) * 2013-11-30 2017-08-02 鹿島建設株式会社 Surface water volume management method and system for ground material
JP6415974B2 (en) * 2014-12-28 2018-10-31 鹿島建設株式会社 Vibration method of belt conveyor and vibrating belt conveyor

Also Published As

Publication number Publication date
JP2018066613A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6521367B2 (en) Method and system for measuring particle size distribution of ground material
CN101532967B (en) Device for detecting ash content at coal bypass on line and method thereof
JP6764755B2 (en) Soil quality judgment method and system
JP6173894B2 (en) Surface water volume management method and system for ground material
JP6415974B2 (en) Vibration method of belt conveyor and vibrating belt conveyor
JP2011163836A (en) Grain size measuring system for granular material and program
JP5896465B2 (en) Method and system for measuring particle size distribution of granular material
CN108993669A (en) A kind of civil engineering waste treatment device
US20170107675A1 (en) Systems and methods for mixing an asphalt composition
US6885904B2 (en) Control feedback system and method for bulk material industrial processes using automated object or particle analysis
CN107402153A (en) A kind of coal sample reduction division equipment
JP2014009998A (en) Debris selection system and debris selection method
KR100861394B1 (en) A device for sorting and mixing circulating aggregate
JP2017189940A (en) Production system and production method for cement-based mixed material
CN108787148A (en) Method for comprehensive treatment of construction refuse
JP2014020909A (en) Selection/removal system for radioactive contaminated aggregate
JP6634183B1 (en) Soil reforming system and soil reforming method
EP1910620B1 (en) Plant and method for treating loamy debris
Masad et al. Application of imaging technology to improve the laboratory and field compaction of HMA.
JP6319791B2 (en) Method and system for measuring particle size of ground material
JP7207842B2 (en) Grain size determination method and system for ground material
CN113813863A (en) Method and system for regulating and controlling water content of tailing mixture, electronic equipment and medium
EP1146172A2 (en) Reuse of soil arisings from excavations
JP6156852B2 (en) Method and system for measuring particle size distribution of granular material
KR102209627B1 (en) Real-time gradation combination system in process of producing aggregate and mixing method using that

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6764755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250