JP5582806B2 - Granule size measurement system and program - Google Patents

Granule size measurement system and program Download PDF

Info

Publication number
JP5582806B2
JP5582806B2 JP2010024909A JP2010024909A JP5582806B2 JP 5582806 B2 JP5582806 B2 JP 5582806B2 JP 2010024909 A JP2010024909 A JP 2010024909A JP 2010024909 A JP2010024909 A JP 2010024909A JP 5582806 B2 JP5582806 B2 JP 5582806B2
Authority
JP
Japan
Prior art keywords
granular material
particle size
sample
accumulation curve
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010024909A
Other languages
Japanese (ja)
Other versions
JP2011163836A (en
Inventor
出 黒沼
道孝 岡本
勝利 藤崎
健一 川野
悦久 高田
紀夫 滝口
隆幸 神戸
昭 武井
聰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2010024909A priority Critical patent/JP5582806B2/en
Publication of JP2011163836A publication Critical patent/JP2011163836A/en
Application granted granted Critical
Publication of JP5582806B2 publication Critical patent/JP5582806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Description

本発明は粒状材料の粒度計測システム及びプログラムに関し、とくに特定の採取場又は破砕装置から供給される粒状材料の粒度を簡易に計測するシステム及びプログラムに関する。   The present invention relates to a granular material particle size measurement system and program, and more particularly to a system and program for simply measuring the particle size of a granular material supplied from a specific collection site or crushing apparatus.

ダム・堤防・路体・路盤・路床・コンクリート・舗装・植栽基盤等の土木構造物を構築する場合に、粒度が調整された骨材や砕石ではなく、現場付近の地山等の採取場で調達された地盤材料、原石を破砕装置等で砕いただけの岩砕材料その他の粒状材料S(異なる粒径の粒状材が混在する土木材料)を用いる工法を採用する場合がある(例えば非特許文献1のCSG(Cemented Sand and Gravel)工法等)。例えばCSG工法では、材料合理化の観点から、調達した粒状材料S(CSG材)に水及びセメントを混合してそのまま構造物の材料(CSG)とするので、構造物の品質(とくに強度)を確保するために粒状材料Sの粒度が規定範囲内にあるか否かを確認・管理することが必要となる。   When constructing civil engineering structures such as dams, embankments, road bodies, roadbeds, roadbeds, concrete, pavements, planting bases, etc. In some cases, a method using a ground material or raw material procured on the ground, or a rock-crushing material obtained by crushing a rough stone with a crushing device or the like, or other granular material S (a civil engineering material in which granular materials having different particle diameters are mixed) may be employed. CSG (Cemented Sand and Gravel) method of Patent Document 1). For example, in the CSG method, from the viewpoint of material rationalization, water and cement are mixed with the procured granular material S (CSG material) to make the structure material (CSG) as it is, thus ensuring the quality (particularly strength) of the structure. In order to do this, it is necessary to confirm and manage whether or not the particle size of the granular material S is within the specified range.

図11は、CSG工法によって構築する土木構造物の強度管理方法の一例を示す(ひし形理論、非特許文献1参照)。先ず、粒状材料S(CSG材)の粒度について数多くの粒度試験を行い、粒度が最も粗い標本Tr(大径粒状材の含有率が最も多い標本。以下、最粗粒標本ということがある。)と粒度が最も細かい標本Ts(小径粒状材の含有率が最も多い標本。以下、最細粒標本ということがある。)とを選定する。次いで、最粗粒標本Tr及び最細粒標本Tsの範囲内の粒状材料Sを用いたCSGについて単位水量を変えながら強度試験を行い、強度不足となる下限値と施工に不向きな上限値とを検出する。そのうえでCSGの製造時ないし打設時に、CSGの粒度及び単位水量を、最粗粒標本Trの粒度−強度曲線(図中の点線)と最細粒標本Tsの粒度−強度曲線(図中の実線)と2本の許容単位水量範囲を示す縦線とで囲まれた「ひし形」(斜線部分)の規定範囲内となるように管理する。図示例のひし形の規定範囲内で最も低い強度はCSG強度と呼ばれ、このひし形の範囲内にあるCSGを用いることで構造物にCSG強度以上の強度を確保することができる。   FIG. 11 shows an example of a strength management method for civil engineering structures constructed by the CSG method (see rhombus theory, Non-Patent Document 1). First, a number of particle size tests are performed on the particle size of the granular material S (CSG material), and the sample Tr having the coarsest particle size (the sample having the largest content of the large-diameter granular material. Hereinafter, it may be referred to as the most coarse particle sample). And the sample Ts having the finest particle size (the sample having the largest content of the small-diameter granular material, hereinafter sometimes referred to as the finest sample). Next, a strength test is performed on the CSG using the granular material S within the range of the coarsest grain sample Tr and the finest grain sample Ts while changing the unit water amount, and a lower limit value that is insufficient in strength and an upper limit value that is unsuitable for construction are obtained. To detect. In addition, when the CSG is manufactured or placed, the particle size and unit water amount of the CSG are determined according to the particle size-strength curve (dotted line in the figure) of the coarsest specimen Tr and the particle size-intensity curve of the finest specimen Ts (solid line in the figure). ) And two vertical lines indicating the permissible unit water amount range, and manage them so that they are within the specified range of “diamonds” (shaded area). The lowest strength within the specified range of the rhombus in the illustrated example is referred to as CSG strength. By using CSG within the range of the rhombus, strength higher than the CSG strength can be secured in the structure.

一般に粒状材料Sの粒度は、混在している各粒状材の粒径dを横軸(対数軸)とし、その粒径d以下の粒状材の全体に対する質量百分率P(d)(粒径dの粒状材より小径の粒状材の総質量/粒状材全体の総質量×100。以下、加積通過率ということがある。)を縦軸(線形軸)とした片対数グラフ、すなわち図10に示すような粒径加積曲線P(d)によって表される。従って、図10に示すように粒状材料Sの最粗粒標本Trの粒径加積曲線Pr(d)と最細粒標本Tsの粒径加積曲線Ps(d)とを予め求めておき、継続的に供給される粒状材料Sの粒径加積曲線P(d)を求めて粒径加積曲線Pr(d)と粒径加積曲線Ps(d)とで囲まれた範囲(規定範囲)内にあるか否かを確認すれば、図11のひし形理論に基づく粒度の品質管理が実現できる。   In general, the particle size of the granular material S is such that the particle diameter d of each mixed granular material is the horizontal axis (logarithmic axis), and the mass percentage P (d) (the particle diameter d FIG. 10 shows a semi-logarithmic graph with the vertical axis (linear axis) as the vertical axis (linear axis), that is, the total mass of the granular material having a smaller diameter than the granular material / the total mass of the entire granular material × 100. It is represented by such a particle size accumulation curve P (d). Therefore, as shown in FIG. 10, the particle size accumulation curve Pr (d) of the coarsest sample Tr of the granular material S and the particle size accumulation curve Ps (d) of the finest sample Ts are obtained in advance. A range surrounded by the particle size accumulation curve Pr (d) and the particle size accumulation curve Ps (d) by obtaining the particle size accumulation curve P (d) of the continuously supplied granular material S (specified range) ), It is possible to realize quality control with granularity based on the rhombus theory of FIG.

しかし、様々な粒径dの粒状材が混在している粒状材料Sの粒径加積曲線Pを作成するためには、例えばダム等の土木工事においては1回当たり数百kgにもなる大量の粒状材料Sを何度も篩分けする作業と、篩い分け毎(篩目のサイズ毎)に通過率(通過質量)を求める作業とが必要であり、しかも現段階ではそれらを全て人力で行う必要があるため、多大な労力と時間を要する問題点がある。CSG工法の品質管理では、とくに施工開始当初において使用する粒状材料Sの粒度をできるだけ頻繁に(例えば1回/1時間で)確認することが求められているが(非特許文献1参照)、粒径加積曲線の作成作業を頻繁に繰り返すことは多大な労力を要する。   However, in order to create the particle size accumulation curve P of the granular material S in which granular materials with various particle diameters d are mixed, for example, in civil engineering work such as dams, a large amount of several hundred kg per time It is necessary to screen the granular material S many times, and to calculate the passing rate (passing mass) for each sieving (each screen size), and at the present stage, all these are performed manually. Because it is necessary, there is a problem that requires a lot of labor and time. In the quality control of the CSG method, it is required to check the particle size of the granular material S used at the beginning of the construction as frequently as possible (for example, once per hour) (see Non-Patent Document 1). Frequent repetition of the work of creating a radial product curve requires a great deal of labor.

これに対し、特許文献1及び2が開示するように、画像解析技術を用いて粒状材料Sの粒度を求める方法が提案されている。例えば特許文献1は、岩砕材料の全体又は一部の画像を画像処理することで材料中の各粒状材の輪郭を特定し、その輪郭と同一面積の等価径で各粒状材を単純立体(球又は立方体)にモデル化し、その単純立体モデルの体積に岩砕材料(原石)の比重を乗じて質量を算出して粒度分布曲線を作成する方法を提案している。また特許文献2は、砂礫が堆積している観測域を複数の異なる方向の照明で照射しながら陰影位置の異なる複数の画像を撮影し、陰影位置の異なる画像を合成することにより観測域内の個々の礫を分離識別すると共に、各礫の粒度(半径)を計測してその分布を分析する方法を提案している。特許文献1及び2のような画像解析技術を用いて粒状材料Sの粒度を管理できれば、従来の篩い分け方法に比して土木構造物の品質管理の簡単化及び精度向上を図ることができる。   On the other hand, as disclosed in Patent Documents 1 and 2, a method for obtaining the particle size of the granular material S using an image analysis technique has been proposed. For example, Patent Document 1 specifies the outline of each granular material in the material by performing image processing on the whole or a part of the image of the crushed material, and each granular material has a simple solid (with the equivalent diameter of the same area as the outline). Spheres or cubes), and a method of creating a particle size distribution curve by calculating the mass by multiplying the volume of the simple solid model by the specific gravity of the crushed material (raw stone) is proposed. Further, Patent Document 2 captures a plurality of images with different shadow positions while irradiating an observation area where gravel is accumulated with a plurality of illuminations in different directions, and synthesizes images with different shadow positions, thereby combining individual images in the observation area. In addition to separating and identifying pebbles, we propose a method to measure the particle size (radius) of each gravel and analyze its distribution. If the particle size of the granular material S can be managed using image analysis techniques such as Patent Documents 1 and 2, the quality control of the civil engineering structure can be simplified and the accuracy can be improved as compared with the conventional sieving method.

特開2003−010726号公報JP 2003-010726 A 特開2006−078234号公報JP 2006-078234 A 特開昭61−061623号公報Japanese Patent Laid-Open No. 61-061623 特開2009−036533号公報JP 2009-036533 A

柳川城二「ダム事業における新技術−台形CSGダム−」建設工業調査会出版、ベース設計資料、No.136土木編、2008年3月20日発行、インターネット(URL:http://www.kenkocho.co.jp/html/136/sa_136.html)Jyuji Yanagawa “New technology in dam business-trapezoidal CSG dam” published by Construction Industry Research Committee, Base Design Material, No. 136 Civil Engineering, published on March 20, 2008, Internet (URL: http://www.kenkocho.co.jp/html/136/sa_136.html) 岡野康彦「破砕・粉砕・篩分け(その2)」骨材資源、通巻No.122、1999年Yasuhiko Okano “Crushing / Crushing / Sieving (Part 2)” Aggregate Resources, Volume No. 122, 1999

しかし特許文献1及び2の方法は、粒状材料Sの画像から輪郭が検出できる範囲の各粒状材の粒度分布を求めるのみであり、輪郭が検出された各粒状材の粒状材料S全体に対する割合、すなわち加積通過率を求めることができない問題点がある。図10を参照して上述したように、CSG工法等で用いる粒状材料Sの粒度を管理するためには、粒状材料S中の粒径d毎に全体に対する加積通過率P(d)を求めて粒径加積曲線P(d)を作成し、その粒径加積曲線P(d)を最粗粒標本Trの粒径加積曲線Pr(d)と最細粒標本Tsの粒径加積曲線Ps(d)とで囲まれた規定範囲と比較して粒度品質を確認しなければならないが、特許文献1及び2の画像解析方法では輪郭が検出できる粒状材の粒径に限界があり、輪郭が検出できない粒状材を考慮して輪郭が検出された粒状材の加積通過量Pを把握することは困難である。粒状材料Sの粒度管理に画像解析方法を適用するためには、粒状材料Sの画像から各粒状材の全体に対する加積通過率Pを把握して最粗粒標本Tr及び最細粒標本Tsと比較できる技術が必要である。   However, the methods of Patent Documents 1 and 2 only determine the particle size distribution of each granular material in a range in which the contour can be detected from the image of the granular material S, and the ratio of each granular material in which the contour is detected to the entire granular material S, That is, there is a problem that the cumulative passage rate cannot be obtained. As described above with reference to FIG. 10, in order to manage the particle size of the granular material S used in the CSG method or the like, the cumulative passage rate P (d) is obtained for each particle size d in the granular material S. Then, a particle size accumulation curve P (d) is created, and the particle size accumulation curve P (d) is obtained by adding the particle size accumulation curve Pr (d) of the coarsest sample specimen Tr and the particle size addition curve of the finest sample Ts. Although the particle size quality must be confirmed in comparison with the specified range surrounded by the product curve Ps (d), the image analysis methods of Patent Documents 1 and 2 have limitations on the particle size of the granular material that can detect the contour. It is difficult to grasp the accumulated passing amount P of the granular material whose contour is detected in consideration of the granular material whose contour cannot be detected. In order to apply the image analysis method to the particle size management of the granular material S, the accumulation pass rate P for the entire granular material is grasped from the image of the granular material S, and the coarsest sample Tr and the finest sample Ts are obtained. A comparable technology is needed.

そこで本発明の目的は、粒状材料の画像から粒径加積曲線を作成することができるシステム及びプログラムを提供することにある。   Therefore, an object of the present invention is to provide a system and program capable of creating a particle size accumulation curve from an image of a granular material.

本発明者は、粒状材料S中の粒径d以下の粒状材の全体に対する加積通過率P(d)と、その粒状材料Sの画像Gにおける粒径d以上の粒状材の全体に対する面積割合との関係に注目した。例えば図6(A)に示すような粒状材料Sの画像Gから、特定の粒径di(例えば10mm)以下の全ての粒状材を検出することは画像解析上困難であるが、その粒径di(例えば10mm)以上の全ての粒状材は比較的簡単に検出することができ、画像Gの全体面積Eに対する粒径di以上の粒状材の面積eの総和(Σe)の面積割合Σe/E(以下、粒度インデクスIiということがある。)を算出することができる。図5は、同じ地山から採取された複数の粒状材料Sについて、それぞれ篩分け作業等の従来方法により粒径di=10mm、20mm、30mm、40mm以下の粒状材の加積通過率P(di)を求めると共に、その撒き出し画像Gから各粒径di=10mm、20mm、30mm、40mm以上の粒状材の粒度インデクスIiを算出し、それらの結果を二次平面(加積通過率P(d)を縦軸とし面積割合(Σe/E)を横軸とした平面)上にプロットしたものである。   The inventor of the present invention has a cumulative passage rate P (d) with respect to the entire granular material having a particle diameter d or less in the granular material S and an area ratio with respect to the entire granular material having a particle diameter d or more in the image G of the granular material S. I paid attention to the relationship. For example, it is difficult to detect all the granular materials having a specific particle size di (for example, 10 mm) or less from the image G of the granular material S as shown in FIG. All the granular materials (for example, 10 mm) or more can be detected relatively easily, and the area ratio Σe / E () of the sum (Σe) of the area e of the granular materials having a particle diameter di or more with respect to the entire area E of the image G Hereinafter, the granularity index Ii may be calculated. FIG. 5 shows a plurality of granular materials S collected from the same ground, and a cumulative passage rate P (di of granular materials having a particle size of di = 10 mm, 20 mm, 30 mm, 40 mm or less by a conventional method such as sieving work, respectively. ) And the particle size index Ii of the granular material having a particle size of di = 10 mm, 20 mm, 30 mm, 40 mm or more is calculated from the rolled-out image G, and the result is obtained as a secondary plane (additional passage rate P (d ) On the vertical axis and the area ratio (Σe / E) on the horizontal axis).

図5のグラフは、各粒状材料Sの異なる粒径diにおける加積通過率P(di)がそれぞれ、粒度インデクスIiの多次元回帰モデル(y=Σa・x)で表わせることを示している。また、同図は特定の地山から採取した複数の粒状材料Sを対象としたものであるが、本発明者は更なる実験により、他の地山から採取した粒状材料Sについても、地山毎に適切な回帰モデルを用いることにより、その地山から採取した粒状材料Sの異なる粒径diにおける加積通過率P(d)とその粒径di以上の粒状材の粒度インデクスとの間に関係式を設定できることを見出した。図5のような関係式(例えば多次元回帰モデル)を利用すれば、粒状材料Sの画像Gから複数の粒径dの加積通過率P(d)を推定することができ、その加積通過率P(d)を用いて粒状材料Sの粒径加積曲線P(d)を作成することできる。本発明は、この知見に基づく研究開発の結果、完成に至ったものである。 Graph in Figure 5 shows that expressed in different particle sizes di in pressurized product passage rates P (di) respectively, multidimensional regression model granularity index Ii (y = Σa n · x n) of each particulate material S ing. Although the figure is intended for a plurality of granular materials S collected from a specific ground, the present inventor also conducted a further experiment on the granular materials S collected from other grounds. By using an appropriate regression model every time, between the accumulation passage rate P (d) at different particle diameters di of the granular material S collected from the natural ground and the particle size index of the granular material having the particle diameters di or larger. We found that the relational expression can be set. If a relational expression (for example, a multidimensional regression model) as shown in FIG. 5 is used, the accumulated passage rate P (d) of a plurality of particle diameters d can be estimated from the image G of the granular material S. The particle diameter accumulation curve P (d) of the granular material S can be created using the passage rate P (d). The present invention has been completed as a result of research and development based on this finding.

図1のブロック図を参照するに,本発明による粒状材料の粒度品質管理システムは,所定採取場1又は破砕装置2から供給される粒状材料Sの撒き出し画像G(図6(A)参照)を撮影する撮像装置5,画像G中の各粒状材の輪郭を検出する検出手段17,各粒状材の輪郭から粒径d及び面積eを求め且つ複数の粒径diについて画像G中の粒状材料Sの全体面積Eに対するその粒径di以上の粒状材の面積割合(=Σe/E)を粒度インデクスIiとして算出する算出手段18,粒状材料Sの標本Tから求めた各粒径diの粒度インデクスIiとその標本Tの全体質量に対する標本T中の粒径di以下の粒状材の質量割合である加積通過率P(di)との関係式K(図5参照)を記憶する記憶手段16,並びに算出した各粒径diの粒度インデクスIiを関係式Kにより粒状材料Sの全体質量に対する質量割合である加積通過率P(di)に変換して粒径加積曲線P(d)を作成する作成手段20を備えてなるものである。 Referring to the block diagram of FIG. 1, the granular material quality control system according to the present invention is a spear image G of a granular material S supplied from a predetermined sampling site 1 or a crushing device 2 (see FIG. 6A). An image pickup device 5 for detecting the contour of each granular material in the image G, a particle diameter d and an area e from the contour of each granular material, and a granular material in the image G for a plurality of particle diameters di The calculating means 18 for calculating the area ratio (= Σe / E) of the granular material with the particle size di or more with respect to the total area E of S as the particle size index Ii, the particle size index of each particle size di obtained from the sample T of the granular material S Storage means 16 for storing a relational expression K (see FIG. 5) between Ii and a cumulative passage rate P (di) which is a mass ratio of a granular material having a particle size di or less in the sample T to the total mass of the sample T; In addition, the calculated particle size of each particle size di Made comprise creating means 20 for creating a particle size accumulation curve P (d) converting the dexfenfluramine Ii by equation K a pressurized volume passage rate is the mass fraction of the full weight of the particulate material S P (di) It is.

また,図1及び図2の流れ図を参照するに,本発明による粒状材料の粒度計測プログラムは,所定採取場1又は破砕装置2から供給される粒状材料Sの粒度を計測するためコンピュータ10を,粒状材料Sの撒き出し画像G(図6(A)参照)を入力する入力手段14,画像G中の各粒状材の輪郭を検出する検出手段17,各粒状材の輪郭から粒径d及び面積eを求め且つ複数の粒径diについて画像G中の粒状材料Sの全体面積Eに対するその粒径di以上の粒状材の面積割合(=Σe/E)を粒度インデクスIiとして算出する算出手段18,粒状材料Sの標本Tから求めた各粒径diの粒度インデクスIiとその標本Tの全体質量に対する標本T中の粒径di以下の粒状材の質量割合である加積通過率P(di)との関係式K(図5参照)を記憶する記憶手段16,並びに算出した各粒径diの粒度インデクスIiを関係式Kにより粒状材料Sの全体質量に対する質量割合である加積通過率P(di)に変換して粒径加積曲線P(d)を作成する作成手段20として機能させるものである。 1 and 2, the granular material particle size measurement program according to the present invention includes a computer 10 for measuring the particle size of the granular material S supplied from the predetermined sampling site 1 or the crushing device 2, The input means 14 for inputting the rolled-out image G (see FIG. 6A) of the granular material S, the detecting means 17 for detecting the contour of each granular material in the image G, the particle diameter d and the area from the contour of each granular material calculating means 18 for obtaining e and calculating an area ratio (= Σe / E) of a granular material having a particle diameter di or larger with respect to the total area E of the granular material S in the image G for a plurality of particle diameters di as a particle size index Ii; The particle size index Ii of each particle size di obtained from the sample T of the granular material S and the cumulative passage rate P (di) which is the mass ratio of the granular material having a particle size di or less in the sample T to the total mass of the sample T Equation K (see Fig. 5) ) Is converted to a mass ratio to the total mass of pressurized product passage rates P of the particulate material S by equation K granularity index Ii of each particle size di storing unit 16, and calculates and stores (di) a particle径加It functions as the creation means 20 for creating the product curve P (d).

好ましくは、図1に示すように、粒状材料Sから所定粒径D未満の微小粒状材を分離する分離装置6を設け、コンピュータ10の入力手段14に所定粒径D未満の微小粒状材が分離された粒状材料Sの撒き出し画像Gを入力し、記憶手段16に微小粒状材分離後の粒状材料標本Tから求めた粒度インデクスIiと加積通過率P(di)との関係式Kを記憶し、作成手段20により所定粒径D以上の粒径加積曲線P(d≧D)を作成する。   Preferably, as shown in FIG. 1, a separation device 6 for separating a fine granular material having a particle diameter less than a predetermined particle size D from the granular material S is provided, and the fine granular material having a particle diameter less than the predetermined particle diameter D is separated in the input means 14 of the computer 10. The squeezed image G of the granular material S is input, and the storage unit 16 stores a relational expression K between the particle size index Ii obtained from the granular material sample T after separation of the fine granular material and the accumulated passage rate P (di). Then, the creation means 20 creates a particle size accumulation curve P (d ≧ D) having a predetermined particle size D or more.

更に好ましくは、微小粒状材を分離する前後の粒状材料Sの重量M及び含水率Zを計測する計測器7、8を設け、コンピュータ10の入力手段14に微小粒状材を分離する前後の粒状材料Sの重量M及び含水率Zを入力し、コンピュータ10に重量M及び含水率Zの計測値から粒状材料S中の微小粒状材の加積通過率P(D)を求める演算手段25とを設け、作成手段20により、微小粒状材分離後の粒状材料Sの各粒径diの加積通過率P(di)とその粒状材料S中の微小粒状材の加積通過率P(D)とから粒径加積曲線P(d)を作成する。   More preferably, measuring instruments 7 and 8 for measuring the weight M and moisture content Z of the granular material S before and after separating the fine granular material are provided, and the granular material before and after separating the fine granular material in the input means 14 of the computer 10. The computer 10 is provided with a calculation means 25 for inputting the weight M and moisture content Z of S and calculating the accumulated passage rate P (D) of the fine granular material in the granular material S from the measured values of the weight M and moisture content Z. From the accumulated passage rate P (di) of each particle size di of the granular material S after separation of the fine granular material by the creating means 20 and the accumulated passage rate P (D) of the fine granular material in the granular material S. A particle size accumulation curve P (d) is created.

或いは、コンピュータ10の記憶手段16に粒状材料Sの標本Tから求めた所定粒径D未満の微小粒状材の粒径加積曲線P(d≦D)をその標本T中の微小粒状材の加積通過率P(D)の関数U、Rとして記憶し、コンピュータ10に粒状材料S中の微小粒状材の加積通過率P(D)から関数U、Rにより微小粒状材の粒径加積曲線P(d≦D)を推定する推定手段27を設け、作成手段20により、微小粒状材分離後の粒状材料Sの粒径加積曲線P(d≧D)と粒状材料の微小粒状材の粒径加積曲線P(d≦D)とを合成して粒径加積曲線P(d)を作成してもよい。   Alternatively, the particle size accumulation curve P (d ≦ D) of the fine granular material having a particle diameter less than the predetermined particle diameter D obtained from the sample T of the granular material S is stored in the storage means 16 of the computer 10 and the fine granular material in the sample T is added. The product passing rate P (D) is stored as functions U and R, and the particle size addition of the fine granular material is performed by the functions U and R from the accumulated passing rate P (D) of the fine granular material in the granular material S in the computer 10. Estimating means 27 for estimating the curve P (d ≦ D) is provided, and by the creating means 20, the particle size accumulation curve P (d ≧ D) of the granular material S after separation of the fine granular material and the fine granular material of the granular material The particle size accumulation curve P (d) may be created by combining the particle size accumulation curve P (d ≦ D).

望ましくは、コンピュータ10の記憶手段16に粒状材料Sの最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr、Psを記憶し、コンピュータ10に、粒状材料Sの粒径加積曲線P(d)と最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr(d)、Ps(d)とを比較して粒度品質を判定する判定手段24を設ける。或いは、それに代えて又は加えて、コンピュータ16の記憶手段16に継続的に供給される粒状材料Sから作成した粒度インデクスI又は粒径加積曲線P(d)を累積記憶し、今回供給材料の粒度インデクスI又は粒径加積曲線P(d)と前回供給材料の粒度インデクスIt−1又は粒径加積曲線P(d)t−1とを比較して粒状材料Sの粒度変動を判定する判定手段24を設けてもよい。 Desirably, the storage means 16 of the computer 10 stores the particle size accumulation curves Pr and Ps of the coarsest grain sample Tr and the finest grain sample Ts of the granular material S, and the computer 10 stores the particle diameter accumulation of the granular material S. A determination unit 24 is provided for comparing the curve P (d) with the particle size accumulation curves Pr (d) and Ps (d) of the coarsest sample Tr and the finest sample Ts to determine the particle quality. Alternatively or in addition, the particle size index I or the particle size accumulation curve P (d) created from the granular material S continuously supplied to the storage means 16 of the computer 16 is accumulated and stored. the particle size variation in the particle size index I t or grain size accumulation curve P (d) t and particle size index I t-1 or grain size accumulation curve P (d) is compared with the t-1 particulate material S previous feed A determination means 24 for determining the above may be provided.

本発明による粒状材料の粒度品質管理システム及びプログラムは,粒状材料Sの撒き出し画像Gから検出手段17により各粒状材の輪郭を検出し,算出手段18において各粒状材の輪郭から各粒状材の粒径d及び面積eを求め且つ複数の粒径diについて撒き出し画像G中の粒状材料Sの全体面積Eに対するその粒径di以上の粒状材の面積割合(=Σe/E)を粒度インデクスIiとして算出し,予め粒状材料Sの標本Tから求めた各粒径diの粒度インデクスIiとその標本Tの全体質量に対する標本T中の粒径di以下の粒状材の質量割合である加積通過率P(di)との関係式Kに基づき,作成手段20において各粒径diの粒度インデクスIiを粒状材料Sの全体質量に対する質量割合である加積通過率P(di)に変換して粒径加積曲線P(d)を作成するので,次の有利な効果を奏する。 The granular material quality control system and program according to the present invention detects the outline of each granular material from the rolled-out image G of the granular material S by the detecting means 17, and the calculating means 18 detects the outline of each granular material from the outline of each granular material. The particle size d and the area e are obtained, and the ratio (= Σe / E) of the granular material equal to or larger than the particle size di to the total area E of the granular material S in the rolled-out image G is obtained for the particle size di. And the accumulated passage rate which is the mass ratio of the granular material having a particle size di or less in the sample T to the total mass of the sample T and the particle size index Ii of each particle size di previously calculated from the sample T of the granular material S P based on the relationship K between the (di), the particle size converted at creating unit 20 to the pressurized product passage rates P (di) is the mass fraction of the full mass of the particle size index Ii particulate material S for each particle size di Since creating a product curve P (d), it exhibits the following advantageous effects.

(イ)粒状材料Sの画像から粒径加積曲線P(d)を短時間で簡易に作成することができ、労力や時間を要する篩い分け作業等を必要としないので、例えばCSG工法等の粒状材料Sを用いた建設工事(フィルダム等の建設工事)に適用した場合に、粒状材料Sの品質管理の容易化を図ると共に粒径加積曲線の作成頻繁を増やすことで品質管理の高精度化を図ることができる。
(ロ)また、予め粒状材料Sの最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr、Psを求めておけば、作成した粒径加積曲線P(d)をその径加積曲線Pr(d)、Ps(d)とを比較することにより、粒状材料Sの粒度品質を簡易に判定することができる。
(ハ)更に、継続的に供給される粒状材料Sの粒度インデクスI又は粒径加積曲線P(d)を累積記憶しておけば、そのインデクスI又は曲線Pの変動から粒状材料Sの粒度の経時的変動を迅速に把握することができ、例えばCSG工法等の粒状材料Sを用いた建設工事において品質管理の更なる精度向上に貢献できる。
(ニ)また、粒状材料S中に画像から輪郭が検出できない微小粒状材が含まれている場合でも、予め微小粒状材を分離した粒状材料Sの標本Tから粒度インデクスIiと加積通過率P(di)との関係式Kを求めておけば、微小粒状材を分離した粒状材料Sの撒き出し画像Gから微小粒状材の粒径D以上の粒径加積曲線P(d≧D)を作成することができる。
(A) Since the particle size accumulation curve P (d) can be easily created from the image of the granular material S in a short time and does not require sieving work requiring labor or time, for example, the CSG method or the like When applied to construction work using granular material S (construction work such as fill dams), the quality control of granular material S is facilitated and the creation frequency of the particle size accumulation curve is increased, resulting in high quality control. Can be achieved.
(B) If the particle diameter accumulation curves Pr and Ps of the coarsest grain sample Tr and the finest grain specimen Ts of the granular material S are obtained in advance, the created particle diameter accumulation curve P (d) is the diameter thereof. By comparing the accumulation curves Pr (d) and Ps (d), the particle quality of the granular material S can be easily determined.
(C) Furthermore, if the particle size index I or the particle size accumulation curve P (d) of the granular material S that is continuously supplied is stored in a cumulative manner, the particle size of the granular material S can be determined from the fluctuation of the index I or the curve P. Can be quickly grasped, and can contribute to further improvement of quality control in construction work using a granular material S such as CSG method.
(D) Even if the granular material S contains a fine granular material whose contour cannot be detected from the image, the granularity index Ii and the cumulative passage rate P are obtained from the sample T of the granular material S from which the fine granular material has been separated in advance. If the relational expression K with (di) is obtained, a particle size accumulation curve P (d ≧ D) equal to or larger than the particle size D of the fine granular material is obtained from the rolled-out image G of the granular material S obtained by separating the fine granular material. Can be created.

以下、添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明の粒度計測システムの一実施例のブロック図である。 本発明の粒度計測プログラムの流れ図の一例である。 微小粒状材の加積通過率の算出方法(図2のステップS108)の詳細な流れ図の一例である。 粒状材料の撒き出し画像の各粒状材の輪郭から面積を算出する方法の一例の説明図である。 粒状材料の各粒径diの粒度インデクスIiとその粒状材料中の粒径di以下の粒状材の加積通過率P(di)との関係式を示すグラフの一例である。 粒状材料の撒き出し画像から各粒状材の輪郭を検出する方法の一例の説明図である。 本発明のシステムで作成した粒状材料の粒径加積曲線を示すグラフの一例である。 本発明のシステムで作成した粒状材料の粒径加積曲線を示すグラフの他の一例である。 本発明のシステムで作成した粒状材料の粒径加積曲線を示すグラフの更にの一例である。 粒状材料の最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr、Psを示すグラフの一例である。 従来のCSG工法における粒度管理方法の一例の説明図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is a block diagram of one Example of the particle size measurement system of this invention. It is an example of the flowchart of the particle size measurement program of this invention. It is an example of the detailed flowchart of the calculation method (step S108 of FIG. 2) of the accumulation passage rate of a minute granular material. It is explanatory drawing of an example of the method of calculating an area from the outline of each granular material of the rolled-out image of a granular material. It is an example of the graph which shows the relational expression between the particle size index Ii of each particle size di of granular material, and the accumulation passage rate P (di) of the granular material below the particle size di in the granular material. It is explanatory drawing of an example of the method of detecting the outline of each granular material from the rolled-out image of a granular material. It is an example of the graph which shows the particle size accumulation curve of the granular material produced with the system of this invention. It is another example of the graph which shows the particle size accumulation curve of the granular material produced with the system of this invention. It is a further example of the graph which shows the particle size accumulation curve of the granular material produced with the system of this invention. It is an example of the graph which shows the particle size accumulation curve Pr and Ps of the coarsest grain sample Tr and the finest grain sample Ts of a granular material. It is explanatory drawing of an example of the particle size management method in the conventional CSG construction method.

図1は、本発明の粒度計測システムのブロック図を示す。図示例のシステムは、粒状材料Sの撒き出し画像Gを撮影する撮像装置5と、その撒き出し画像Gを入力して粒状材料Sの粒径加積曲線P(d)を作成するコンピュータ10とを有する。例えばCSG工法で土木構造物を構築する場合に、現場付近の所定採取場(地山や地層)1で調達してダンプトラック等の運搬機械3で工事現場へ継続的に供給される地盤材料等の全体又は一部を品質管理用の粒状材料Sとし、その粒径加積曲線P(d)を運搬単位毎に作成して粒状材料Sの粒度品質を管理する。運搬機械3で搬送する材料が均質とみなせる場合は、運搬機械3上の一部を管理対象の粒状材料Sとすれば足りる。なお、本発明の適用対象は地山等から調達される地盤材料等に限らず、例えば原石を所定破砕装置2で破砕して継続的に供給される岩砕材料等のように、種類や起源に応じてほぼ同様の粒径加積曲線(粒度分布)で近似できる粒状材料Sに広く適用できる。   FIG. 1 shows a block diagram of the particle size measurement system of the present invention. The system of the illustrated example includes an imaging device 5 that captures a rolled-out image G of the granular material S, and a computer 10 that inputs the rolled-out image G and creates a particle size accumulation curve P (d) of the granular material S. Have For example, when a civil engineering structure is constructed by the CSG method, the ground material, etc. that is procured at a predetermined collection site (ground and geological layer) 1 near the site and continuously supplied to the construction site by a transporting machine 3 such as a dump truck Is used as a granular material S for quality control, and its particle size accumulation curve P (d) is created for each transport unit to manage the particle quality of the granular material S. When the material conveyed by the transporting machine 3 can be regarded as homogeneous, it is sufficient that a part of the transporting machine 3 is the granular material S to be managed. Note that the application target of the present invention is not limited to the ground material procured from the ground, etc., but the type and origin, for example, the rock material that is continuously supplied by crushing the raw stone with the predetermined crushing device 2 Accordingly, the present invention can be widely applied to the granular material S that can be approximated by substantially the same particle size accumulation curve (particle size distribution).

図示例の撮像装置5は、粒状材料Sを、例えば地表に敷設したシート上に薄く撒き出して画像G(図6(A)参照)を撮像する。後述するように撒き出し画像Gから所定粒径D(例えば5mm)以上の粒状材の輪郭を全て検出可能とするため、所定粒径D以上の粒状材が埋もれない厚さに粒状材料Sを撒き出して撮影することが望ましい。また、後述する算出手段18によって算出する粒度インデクスIiが撒き出しの厚さや広さ(面積)によって変動しうるため、粒状材料Sは常に同じ方法(厚さや広さ)で撒き出すことが望ましい。シート上に撒き出す方法に代えて、ベルトコンベア等の移動式運搬機械3上に薄く載置した粒状材料Sを撮像して撒き出し画像Gとしてもよい。また、撮像装置5に照明装置(図示せず)を含め、照明装置により照明方向を変えながら粒状材料Sの複数の撒き出し画像Gを撮影することが望ましい。照明方向を変えて陰影の異なる複数の撒き出し画像Gを用いることで、画像Gから粒状材の輪郭を検出する際に、陰影の影響を避けて粒状材の輪郭の検出精度を高めることが期待できる。   The imaging device 5 in the illustrated example captures an image G (see FIG. 6A) by thinly rolling out the granular material S on, for example, a sheet laid on the ground surface. As will be described later, in order to make it possible to detect the outline of the granular material having a predetermined particle diameter D (for example, 5 mm) or more from the rolled-out image G, the granular material S is spread to a thickness that does not bury the granular material having the predetermined particle diameter D or larger. It is desirable to shoot out. In addition, since the particle size index Ii calculated by the calculation means 18 described later can vary depending on the thickness and width (area) of the start, it is desirable that the granular material S is always started in the same manner (thickness and width). Instead of the method of rolling out on the sheet, the granular material S thinly placed on the mobile conveyance machine 3 such as a belt conveyor may be imaged to form a rolled-out image G. In addition, it is desirable to include a lighting device (not shown) in the imaging device 5 and take a plurality of rolled-out images G of the granular material S while changing the lighting direction by the lighting device. Expected to improve the accuracy of detecting the contour of the granular material by avoiding the influence of the shadow when detecting the contour of the granular material from the image G by using a plurality of squeezed images G having different shadows by changing the illumination direction it can.

また、図示例のコンピュータ10は、キーボード等の入力装置11と、ディスプレイ等の出力装置12と、一次又は二次記憶装置等の記憶手段16とを有する。記憶装置16には、後述するように粒状材料Sの粒度インデクスIiを加積通過率P(di)に変換する関係式Kその他のパラメタを記憶する。また内蔵プログラムとして、撮像装置5や入力装置11から撒き出し画像Gその他のデータを入力する入力手段14と、その撒き出し画像Gから粒状材料S中の各粒状材の輪郭を検出する検出手段17と、各粒状材の輪郭から粒状材料Sの粒度インデクスIiを算出する算出手段18と、算出した粒度インデクスIiを加積通過率P(di)に変換して粒径加積曲線P(d)を作成する作成手段20と、作成した粒径加積曲線P(d)等を出力装置12に出力する出力手段13とを有する。なお、図示例のコンピュータ10は、内臓プログラムとして関係式Kを設定する関係式設定手段26を有しているが、後述するように本発明は関係式Kが記憶手段16に記憶されていれば足り、関係式設定手段26は本発明に必須のものではない。   The computer 10 in the illustrated example includes an input device 11 such as a keyboard, an output device 12 such as a display, and storage means 16 such as a primary or secondary storage device. The storage device 16 stores a relational expression K and other parameters for converting the particle size index Ii of the granular material S into a product passage rate P (di), as will be described later. Further, as the built-in program, an input unit 14 that inputs a rolled-out image G and other data from the imaging device 5 and the input device 11, and a detecting unit 17 that detects the contour of each granular material in the granular material S from the rolled-out image G. And calculating means 18 for calculating the particle size index Ii of the granular material S from the contour of each granular material, and converting the calculated particle size index Ii into a product passage rate P (di), and a particle size accumulation curve P (d) And an output means 13 for outputting the created particle size accumulation curve P (d) and the like to the output device 12. The computer 10 in the illustrated example has the relational expression setting means 26 for setting the relational expression K as a built-in program. However, as will be described later, in the present invention, if the relational expression K is stored in the storage means 16. The relational expression setting means 26 is not essential for the present invention.

好ましくは、図示例のように、粒状材料Sから所定粒径D(例えば5mm)未満の微小粒状材(シルト・粘土等)を分離する分離装置6を粒径計測システムに含め、分離装置6により粒状材料Sから微小粒状材を分離したうえで撒き出し画像Gを撮像してコンピュータ10に入力する。例えば、粒状材料S中に画像Gから輪郭を検出することが困難な粒径D未満の微小粒状材が多量に含まれていると、その粒径D以上の粒状材が微小粒状材に埋もれてしまい、検出手段17において撒き出し画像Gから必要な粒状材の輪郭を正確に検出することが難しくなる。また、微小粒状材が団子状に固まり又は大径の粒子にこびり付くことによって、検出手段17が粒状材の粒径を誤認識し、算出手段18で算出する粒度インデクスIiに誤差を生じるおそれがある。予め分離装置6によって粒状材料Sから微小粒状材を分離しておくことにより、検出手段17における各粒状材の輪郭検出精度を高め、算出手段18における粒度インデクスIiの算出精度の向上を図ることができる。使用する分離装置6は粒状材料S中の微小粒状材の状態に応じて異なりうるが、例えば微小粒状材が乾燥している場合は篩い分け装置とし、微小粒状材が湿潤して他の粒状材にこびり付いている場合は水洗い装置等とすることができる。ただし、分離装置6は本発明のシステムに必須のものではなく、例えば粒状材料S中に含まれる微小粒状材が少なく、検出手段17において粒状材の粒径を誤認識するおそれが小さいときは、分離装置6は省略可能である。   Preferably, as shown in the drawing, a separation device 6 for separating a fine granular material (silt, clay, etc.) having a predetermined particle size D (for example, 5 mm) from the granular material S is included in the particle size measurement system. A fine granular material is separated from the granular material S, and then a rolled-out image G is captured and input to the computer 10. For example, if the granular material S contains a large amount of fine granular material having a particle size less than D, which is difficult to detect the contour from the image G, the granular material having the particle size D or larger is buried in the fine granular material. Therefore, it becomes difficult for the detection means 17 to accurately detect the outline of the necessary granular material from the rolled-out image G. Further, when the fine granular material is agglomerated or stuck to a large particle, the detection means 17 may erroneously recognize the particle diameter of the granular material, and an error may occur in the particle size index Ii calculated by the calculation means 18. There is. By separating the fine granular material from the granular material S by the separating device 6 in advance, it is possible to improve the accuracy of detecting the contour of each granular material in the detecting means 17 and to improve the accuracy of calculating the particle size index Ii in the calculating means 18. it can. The separation device 6 to be used may differ depending on the state of the fine granular material in the granular material S. For example, when the fine granular material is dry, a sieving device is used, and the fine granular material is wetted to other granular material. If you are stuck, you can use a washing machine. However, the separation device 6 is not essential for the system of the present invention. For example, when the particulate material S has a small amount of fine particulate material, and the detection means 17 is less likely to misrecognize the particle size of the particulate material, The separating device 6 can be omitted.

図2は、図1のシステムを用いて粒状材料Sの粒径加積曲線P(d)を作成する方法の流れ図を示す。以下、図2の流れ図を参照して図1のシステムを説明する。図2のステップS101〜S104は、コンピュータ10の関係式設定手段26により、粒状材料Sの各粒径diの粒度インデクスIiとその粒径di以下の粒状材の加積通過率P(di)との関係式Kを設定する初期処理を示す。先ずステップS101において、粒状材料Sの標本Tを用い、図1の場合は分離装置6により標本Tから所定粒径D(例えば5mm)未満の微小粒状材を分離したうえで、撮像装置5により標本Tの撒き出し画像Gを撮像してコンピュータ10に入力する。また、その微小粒状材分離後の標本Tについて、標本T中の複数の粒径di(例えば図5に示す10mm、20mm、30mm、40mm等)以下の粒状材の加積通過率P(di)を篩い分けその他の従来方法により求め、求めた各粒径diの加積通過率P(di)を入力装置11からコンピュータ10に入力する。   FIG. 2 shows a flow chart of a method for creating a particle size accumulation curve P (d) of the granular material S using the system of FIG. The system of FIG. 1 will be described below with reference to the flowchart of FIG. Steps S101 to S104 in FIG. 2 are performed by the relational expression setting means 26 of the computer 10 and the particle size index Ii of each particle size di of the granular material S and the accumulated passage rate P (di) of the granular material having the particle size di or less. An initial process for setting the relational expression K is shown. First, in step S101, the sample T of the granular material S is used. In the case of FIG. 1, the separation device 6 separates a minute granular material having a predetermined particle diameter D (for example, 5 mm) from the sample T, and the imaging device 5 then samples the sample. A rolled-out image G of T is captured and input to the computer 10. Further, with respect to the sample T after the separation of the fine granular material, the accumulation passage rate P (di) of the granular material having a plurality of particle diameters di (for example, 10 mm, 20 mm, 30 mm, and 40 mm shown in FIG. 5) in the sample T or less. Is obtained by sieving or other conventional methods, and the accumulated passing rate P (di) of each obtained particle diameter di is input from the input device 11 to the computer 10.

ステップS102において、撒き出し画像Gをコンピュータ10の検出手段17に入力し、図6(C)に示すように画像G中の個々の粒状材の輪郭を検出する。例えば画像Gを画素の明暗に基づいて二値化処理し、その二値化画像からラベリングやパターンマッチング等の手法を用いて各粒子の輪郭を抽出する(図6(B)参照)。好ましくは撮像装置5で撮影した陰影の異なる複数の標本Tの撒き出し画像Gを入力し、その複数の画像Gを検出手段17で合成して粒状材の輪郭を強調した合成画像を作成し、その合成画像から各粒子の輪郭を抽出する。画像G中の全ての粒状材の輪郭を検出することが難しい場合でも、輪郭が検出できる限界の微小粒径D(例えば5mm)以上の粒状材の輪郭を全て検出することが望ましく、少なくともステップS101において加積通過率P(di)を求めた最小の粒径di(例えば10mm)以上の粒状材の輪郭を全て検出する。   In step S102, the rolled-out image G is input to the detection means 17 of the computer 10, and the contours of the individual granular materials in the image G are detected as shown in FIG. For example, the image G is binarized based on the brightness of the pixels, and the contour of each particle is extracted from the binarized image using a technique such as labeling or pattern matching (see FIG. 6B). Preferably, an image G of a plurality of specimens T with different shadows photographed by the imaging device 5 is input, and a composite image in which the outline of the granular material is emphasized by synthesizing the plurality of images G by the detection means 17; The contour of each particle is extracted from the synthesized image. Even when it is difficult to detect the contours of all the granular materials in the image G, it is desirable to detect all the contours of the granular materials having a fine particle diameter D (for example, 5 mm) that is the limit that the contour can be detected, and at least step S101. All the contours of the granular material having the minimum particle diameter di (for example, 10 mm) for which the accumulated passage rate P (di) is obtained are detected.

ステップS103において、検出手段17で検出した標本T中の各粒状材の輪郭を算出手段18に入力し、各粒状材の粒径di及び面積eを求める。例えば、図4(A)のように粒状材が球体とみなせる場合は、その粒状材の面積等価径を粒径diとし、その球体の断面積を面積eとする。或いは図4(B)に示すように、各粒状材の輪郭に楕円形を(例えば最小二乗近似により)フィッティングさせて長径b・短径aを求め、その短径aを粒状材の粒径di(篩い径)とし、近似した楕円形の面積を粒状材の面積eとする。楕円近似に代えて各粒状材の輪郭に外接する最小矩形を求め、その最小矩形の短径aを粒径diとし、その最小矩形の面積を粒状材の面積eとしてもよい。或いは各粒状材の輪郭内部の画素数を面積に換算して各粒状材の面積eを算出することも可能である。   In step S103, the contour of each granular material in the sample T detected by the detecting means 17 is input to the calculating means 18, and the particle diameter di and area e of each granular material are obtained. For example, when the granular material can be regarded as a sphere as shown in FIG. 4A, the area equivalent diameter of the granular material is the particle diameter di, and the cross-sectional area of the sphere is the area e. Alternatively, as shown in FIG. 4B, an ellipse is fitted to the contour of each granular material (for example, by least square approximation) to obtain a major axis b and a minor axis a, and the minor axis a is determined as the grain size di of the granular material. (Sieving diameter), and the approximate elliptical area is defined as the area e of the granular material. Instead of elliptical approximation, a minimum rectangle circumscribing the contour of each granular material may be obtained, the short axis a of the minimum rectangle may be defined as the particle size di, and the area of the minimum rectangle may be defined as the area e of the granular material. Alternatively, the area e of each granular material can be calculated by converting the number of pixels inside the contour of each granular material into an area.

またステップS103において、各粒状材の粒径di及び面積eを求めたのち、標本T中の複数の粒径di(例えば10mm、20mm、30mm、40mm等)について、それぞれ各粒径di以上の粒状材の面積の総和Σeを求め、撒き出し画像Gの撮影領域全体の面積Eに対する粒径di以上の粒状材の面積割合(=Σe/E)を各粒径diの粒度インデクスIiとして算出する。撮影領域全体の面積Eに代えて、撒き出し画像G中の輪郭検出限界の微小粒径D(例えば5mm)以上の全粒状材の面積の総和E(画像G内の輪郭が検出できない粒状材を含まない面積)を求め、その全粒状材の面積合計Eに対する各粒径di以上の粒状材の面積の総和Σeを算出して粒径diの粒度インデクスIiとしてもよい。   In step S103, the particle diameter di and the area e of each granular material are obtained, and then a plurality of particle diameters di (for example, 10 mm, 20 mm, 30 mm, 40 mm, etc.) in the specimen T are respectively larger than each particle diameter di. The total area Σe of the material areas is obtained, and the area ratio (= Σe / E) of the granular material having a particle size di or larger with respect to the area E of the entire shooting region of the rolled-out image G is calculated as the particle size index Ii of each particle size di. Instead of the area E of the entire imaging region, the total E of the areas of all the granular materials having a fine particle diameter D (for example, 5 mm) of the contour detection limit in the rolled-out image G or more (a granular material whose contour in the image G cannot be detected) It is also possible to obtain the particle size index Ii of the particle diameter di by calculating the sum Σe of the areas of the granular materials having the particle diameters di or larger with respect to the total area E of all the granular materials.

次いで、ステップS104において、算出手段18で求めた複数の粒径diの粒度インデクスIiを関係式設定手段26に入力し、関係式設定手段26においてステップS101で入力した各粒径diの加積通過率P(di)と算出手段18で求めた粒度インデクスIiとの関係式Kを設定する。例えば図5に示すように、標本T中の各粒径diの加積通過率P(di)及び粒度インデクスIiを二次平面上にプロットし、加積通過率P(di)を目的変数(従属変数)とし粒度インデクスIiを説明変数(独立変数)とする適切な回帰モデル(例えば粒度インデックスの多項式(多次元回帰モデル)、対数関数、べき関数、指数関数等)を設定して関係式Kとし、設定した関係式Kを記憶手段16に記憶する。   Next, in step S104, the particle size index Ii of the plurality of particle diameters di obtained by the calculation means 18 is input to the relational expression setting means 26, and the accumulated passage of each particle diameter di input in step S101 by the relational expression setting means 26 A relational expression K between the rate P (di) and the granularity index Ii obtained by the calculation means 18 is set. For example, as shown in FIG. 5, the product passage rate P (di) and the particle size index Ii of each particle size di in the sample T are plotted on a quadratic plane, and the product passage rate P (di) is set as an objective variable ( Set an appropriate regression model (for example, a granularity index polynomial (multidimensional regression model), logarithmic function, power function, exponential function, etc.) with the granularity index Ii as the explanatory variable (independent variable) as the dependent variable) and the relational expression K And the set relational expression K is stored in the storage means 16.

好ましくは、ステップS101において複数の標本Tの撒き出し画像Gを撮像すると共にその複数の標本Tからそれぞれ加積通過率P(di)を求め、ステップS104において複数の標本Tから求めた加積通過率P(di)及び粒度インデクスIiに基づき関係式Kを設定する。図5から分かるように、同じ採取場で採取した粒状材料Sの標本Tから求めた各粒径diの加積通過率P(di)及び粒度インデクスIiは概ね近似しているが、標本T毎に多少の変動がみられるので、複数の標本Tに基づき相関係数rのできるだけ大きい関係式Kを設定することにより、後述する粒度インデクスIiから加積通過率P(di)を推定する精度を高めることができる。本発明者の実験によれば、例えば粒状材料Sの5〜10程度の標本Tを用いることにより、相関係数rが0.995程度の関係式Kを設定することが可能である。   Preferably, in step S101, a spread image G of a plurality of specimens T is imaged, and an accumulation passing rate P (di) is obtained from each of the plurality of specimens T, and the accumulated passage obtained from the plurality of specimens T in step S104. A relational expression K is set based on the rate P (di) and the granularity index Ii. As can be seen from FIG. 5, the accumulation passage rate P (di) and the particle size index Ii of each particle size di obtained from the sample T of the granular material S collected at the same collection site are approximately approximated. Therefore, by setting a relational expression K having a correlation coefficient r as large as possible based on a plurality of samples T, the accuracy of estimating the product passage rate P (di) from the granularity index Ii described later can be improved. Can be increased. According to the experiment of the present inventor, for example, by using a sample T of about 5 to 10 of the granular material S, it is possible to set the relational expression K having a correlation coefficient r of about 0.995.

なお、ステップS101〜S104の関係式Kの設定は、必ずしも工事現場で行う必要はなく、例えば実験室等において粒状材料Sの複数の標本Tを用いて予め関係式Kを設定し、その関係式Kを現場のコンピュータ10に入力して記憶手段16に記憶することも可能である。この場合は、ステップS101〜S104に代えて関係式Kをコンピュータ10に入力するステップを設ければ足り、粒状材料Sの標本Tから関係式Kを求めるコンピュータ10の関係式設定手段26は省略可能である。   Note that the setting of the relational expression K in steps S101 to S104 is not necessarily performed at the construction site. For example, the relational expression K is set in advance using a plurality of samples T of the granular material S in a laboratory or the like, and the relational expression is set. It is also possible to input K to the on-site computer 10 and store it in the storage means 16. In this case, it is sufficient to provide a step of inputting the relational expression K to the computer 10 instead of steps S101 to S104, and the relational expression setting means 26 of the computer 10 for obtaining the relational expression K from the sample T of the granular material S can be omitted. It is.

図2のステップS105〜S110は、記憶手段16に記憶された関係式Kに基づき、採取場1又は破砕装置2から継続的に供給される粒状材料Sの粒径加積曲線P(d)を作成する処理を示す。先ずステップS105において、上述したステップS101と同様に、図1の場合は粒状材料Sから分離装置6により所定粒径D(例えば5mm)未満の微小粒状材を分離したうえで、撮像装置5により粒状材料Sの撒き出し画像Gを撮像してコンピュータ10に入力する。またステップS106〜107において、上述したステップS102〜103と同様に、コンピュータ10の検出手段17により撒き出し画像G中の個々の粒状材の輪郭を検出し、算出手段18によって粒状材料S中の複数の粒径di(例えば10mm、20mm、40mm等)の粒度インデクスIiを算出する。   Steps S105 to S110 in FIG. 2 are based on the relational expression K stored in the storage unit 16, and calculate the particle size accumulation curve P (d) of the granular material S continuously supplied from the sampling site 1 or the crushing device 2. Indicates the process to create. First, in step S105, similarly to step S101 described above, in the case of FIG. 1, after the particulate material S is separated from the particulate material S by the separating device 6 and the particulate material having a particle diameter less than a predetermined particle size D (for example, 5 mm) is separated, the imaging device 5 A rolled-out image G of the material S is captured and input to the computer 10. In steps S106 to S107, as in steps S102 to 103 described above, the detection means 17 of the computer 10 detects the contours of the individual granular materials in the rolled-out image G, and the calculation means 18 detects a plurality of granular materials in the granular material S. The particle size index Ii of the particle size di (for example, 10 mm, 20 mm, 40 mm, etc.) is calculated.

ステップS110において、粒状材料S中の複数の粒径diの粒度インデクスIiを作成手段20に入力し、作成手段20において関係式Kにより各粒径diの粒度インデクスIiを加積通過率P(di)に変換して粒径加積曲線P(d)を作成する。図7は、分離装置5で所定粒径D未満の微小粒状材分離後の粒状材料Sについて、作成手段20において作成した所定粒径D以上の粒径加積曲線P(d≧D)の一例を示す。図示例の粒径加積曲線Pは、算出手段18により複数の粒径di(図示例では10mm、20mm、40mm)の粒度インデクスIiを算出し、それらの粒度インデクスIiを作成手段20において図5の関係式Kにより加積通過率P(di)に変換し、変換した加積通過率P(di)を粒径di別にプロットして連結したものである。   In step S110, the particle size index Ii of a plurality of particle sizes di in the granular material S is input to the creation unit 20, and the creation unit 20 calculates the particle size index Ii of each particle size di using the relational expression K and the cumulative passage rate P (di ) To create a particle size accumulation curve P (d). FIG. 7 shows an example of the particle size accumulation curve P (d ≧ D) of the predetermined particle diameter D or more created by the creating means 20 for the granular material S after separation of the fine granular material having a particle diameter of less than the predetermined particle diameter D by the separating device 5. Indicates. In the particle size accumulation curve P in the illustrated example, the particle size index Ii of a plurality of particle sizes di (10 mm, 20 mm, and 40 mm in the illustrated example) is calculated by the calculating unit 18, and the particle size index Ii is generated by the creating unit 20 in FIG. Is converted into a product passage rate P (di) by the relational expression K, and the converted product passage rate P (di) is plotted and connected for each particle size di.

ステップS111〜112は、ステップS110で作成した粒状材料Sの粒径加積曲線P(d)を判定手段24に入力し、判定手段24において、粒状材料Sの粒径加積曲線P(d)を最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr(d)、Ps(d)と比較して粒度品質を判定する処理を示す。このような最粗粒標本Tr及び最細粒標本Tsは、上述したように粒状材料Sの数多くの粒度試験によって予め選定し、その粒度試験で求めた粒径加積曲線Pr(d)、Ps(d)を例えばステップS101において記憶手段16に登録しておくことができる。或いは、図7に示すように所定粒径D未満の微小粒状材を分離した粒状材料Sの粒径加積曲線P(d≧D)と対比する場合は、最粗粒標本Tr及び最細粒標本Tsから微小粒状材を分離した所定粒径D以上の粒径加積曲線Pr(d≧D)、Ps(d≧D)を作成して記憶手段16に登録しておくことができる(図10も参照)。例えば、判定手段24により粒状材料の粒径加積曲線P(d≧D)が粒径加積曲線Pr(d≧D)、Ps(d≧D)の間の規定範囲内にあるか否か(正常か否か)、何れの粒径加積曲線Pr、Psの側に変動しているか(変動の傾向)等を確認することにより、粒状材料Sの粒度品質を判定する。   In steps S111 to 112, the particle diameter accumulation curve P (d) of the granular material S created in step S110 is input to the determination means 24. In the determination means 24, the particle diameter accumulation curve P (d) of the granular material S is input. Is compared with the grain size accumulation curves Pr (d) and Ps (d) of the coarsest grain sample Tr and the finest grain sample Ts, and the process of determining the particle size quality is shown. The coarsest grain sample Tr and the finest grain sample Ts are selected in advance by a number of particle size tests of the granular material S as described above, and the particle size accumulation curves Pr (d) and Ps obtained by the particle size test are selected. For example, (d) can be registered in the storage unit 16 in step S101. Alternatively, as shown in FIG. 7, when comparing with the particle size accumulation curve P (d ≧ D) of the granular material S obtained by separating the fine granular material having a particle size smaller than the predetermined particle size D, the coarsest sample Tr and the finest particle Particle size accumulation curves Pr (d ≧ D) and Ps (d ≧ D) of a predetermined particle size D or more obtained by separating the microparticulate material from the sample Ts can be created and registered in the storage means 16 (FIG. 10). For example, whether or not the particle size accumulation curve P (d ≧ D) of the granular material is within a specified range between the particle size accumulation curves Pr (d ≧ D) and Ps (d ≧ D) by the determination unit 24. The particle size quality of the granular material S is determined by checking (normal or not), which particle size accumulation curve Pr, Ps is fluctuating (trend of variation), and the like.

図2のステップS113は、ステップS111〜112において粒状材料Sの粒度品質が規定範囲外であると判定された場合に、必要に応じて粒状材料Sの粒度を調整する処理を示す。粒度の調整方法は、例えば図7において粒状材料Sの粒径加積曲線P(d≧D)が最粗粒標本Tr及び最細粒標本Tsの何れの側に外れているかによって相違するが、粒径加積曲線Pの判定結果を総合的に考慮して粒状材料Sの粒度を調整することができる。粒度調整後にステップS105へ戻り、上述したステップS105〜S112の処理をやり直す。ただし、ステップS113の粒度調整は本発明に必須の処理ではなく、ステップS113において図11のひし形の規定範囲内となるように粒状材料Sに混合する単位水量を調整することも可能であり、規定範囲外であると判定された粒状材料Sを土木工事に使用しない場合はステップS113を省略できる。   Step S113 in FIG. 2 shows processing for adjusting the particle size of the granular material S as necessary when it is determined in steps S111 to 112 that the granular material quality is outside the specified range. The particle size adjustment method differs depending on, for example, whether the particle size accumulation curve P (d ≧ D) of the granular material S in FIG. 7 is out of the coarsest sample Tr or the finest sample Ts. The particle size of the granular material S can be adjusted by comprehensively considering the determination result of the particle size accumulation curve P. After adjusting the particle size, the process returns to step S105, and the above-described steps S105 to S112 are performed again. However, the particle size adjustment in step S113 is not essential to the present invention, and the unit water amount mixed into the granular material S can be adjusted in step S113 so as to be within the specified range of the rhombus in FIG. When the granular material S determined to be out of the range is not used for civil engineering work, step S113 can be omitted.

ステップS111〜112で粒状材料Sの粒度品質が規定範囲内であると判定された場合はステップS114へ進み、例えば図7の今回供給された粒状材料Sの各粒径diの粒度インデクスI及び/又は粒径加積曲線P(d≧D)を記憶手段16に累積記憶したのち、ステップS115において粒状材料Sの粒度計測を継続するか否かを判断する。継続する場合はステップS105へ戻り、次回供給される粒状材料St+1について上述したステップS105〜S112を繰り返し、各粒径のdiの粒度インデクスIt+1を算出して粒径加積曲線Pt+1を作成する。ステップS114において粒状材料Sの粒度インデクスI及び/又は粒径加積曲線Pを記憶手段16に累積記憶しておくことにより、次回以降のステップS111〜112の判定処理において、判定手段24により今回供給材料Sの粒度インデクスI又は粒径加積曲線P(d)と前回供給材料St−1の粒度インデクスIt−1又は粒径加積曲線P(d)t−1とを比較して粒状材料Sの粒度の経時的変化(粒度変動)を判定し、粒状材料Sの粒度品質の変化を迅速に把握することが可能となる。 If the particle size quality of the granular material S is determined to be within the prescribed range at Step S111~112 proceeds to step S114, for example, the particle size index I t of each particle size di of the current supplied particulate material S t in FIG. 7 In addition, after accumulating the particle size accumulation curve P t (d ≧ D) in the storage unit 16, it is determined whether or not to continue the particle size measurement of the granular material S in step S115. When continuing, it returns to step S105, repeats step S105-S112 mentioned above about the granular material St t + 1 supplied next time, calculates the particle size index I t + 1 of di of each particle size, and creates the particle size accumulation curve P t + 1 To do. In step S114, the particle size index I and / or the particle size accumulation curve P of the granular material S is accumulated and stored in the storage unit 16, so that the determination unit 24 supplies the current time in the determination processing of the next steps S111 to 112. comparing the particle size index I t or grain size accumulation curve P (d) t and particle size index of the previous feed S t-1 I t-1 or grain size accumulation curve P (d) t-1 of the material S t Thus, it is possible to determine a change with time in the particle size of the granular material S (particle size variation) and quickly grasp the change in the particle size quality of the granular material S.

本発明は、粒状材料Sの撒き出し画像Gから比較的容易に検出できる各粒径diの粒度インデクスIiとその粒径diの加積通過率P(d)との関係式を用いることにより、粒状材料Sの撒き出し画像Gから複数の粒径dの加積通過率P(d)を推定し、その加積通過率P(d)を用いて粒状材料Sの粒径加積曲線Pを簡易に作成することができる。また、その粒径加積曲線Pを最粗粒標本Tr及び最細粒標本Tsの径加積曲線Pr、Psと比較することで、継続的に供給される粒状材料Sが最粗粒試料Trと最細粒標本Tsとで囲まれた規定範囲内にあるか否かという粒度品質も簡単に行うことができる。従って、粒状材料Sの粒度管理が必要とされる土木工事に本発明を適用することで、従来方法に比して粒状材料Sの粒度管理の頻度を大幅に増やすことができ、粒状材料を用いて構築する土木構造物の品質管理の精度向上に貢献することができる。   The present invention uses a relational expression between the particle size index Ii of each particle size di that can be detected relatively easily from the rolled-out image G of the granular material S and the accumulated passage rate P (d) of the particle size di, The accumulated passage rate P (d) of a plurality of particle sizes d is estimated from the rolled-out image G of the granular material S, and the particle size accumulation curve P of the granular material S is obtained using the accumulated passage rate P (d). It can be created easily. Further, by comparing the particle size accumulation curve P with the diameter accumulation curves Pr and Ps of the coarsest grain sample Tr and the finest grain sample Ts, the continuously supplied granular material S becomes the coarsest grain sample Tr. And the granularity quality of whether or not it is within a specified range surrounded by the finest specimen Ts. Therefore, by applying the present invention to the civil engineering work that requires the granularity control of the granular material S, the frequency of the granularity management of the granular material S can be greatly increased as compared with the conventional method. Can contribute to improving the quality control of civil engineering structures.

こうして本発明の目的である「粒状材料の画像から粒径加積曲線を作成することができるシステム及びプログラム」の提供を達成できる。   Thus, the provision of a “system and program capable of creating a particle size accumulation curve from an image of a granular material”, which is an object of the present invention, can be achieved.

図7を参照して上述したように、本発明では図2の流れ図により微小粒状材分離後の粒状材料Sから所定粒径D(例えば5mm)以上の粒径加積曲線P(d≧D)を作成し、その粒径加積曲線P(d≧D)を最粗粒標本Tr及び最細粒標本Tsの所定粒径D以上の粒径加積曲線Pr(d≧D)、Ps(d≧D)と対比することで粒度品質を簡易に判定することができる。しかし、図7の粒径加積曲線P(d≧D)には所定粒径D未満の微小粒状材の含有率が反映されておらず、とくに粒状材料S中に所定粒径D未満の微小粒状材が多量に含まれている場合は、所定粒径Dの近傍において粒状材料Sの粒径加積曲線P(d≧D)と最粗粒標本Tr及び最細粒標本Tsとを対比し、その何れの側に変動しているか(変動の傾向)等を確認することが難しくなる。最粗粒標本Tr及び最細粒標本Tsとの対比を簡単化するためには、所定粒径D未満の微小粒状材の含有率を考慮した粒径加積曲線P(d≧D)を作成することが有用である。   As described above with reference to FIG. 7, in the present invention, a particle size accumulation curve P (d ≧ D) of a predetermined particle size D (for example, 5 mm) or more from the granular material S after separation of the fine granular material according to the flowchart of FIG. 2. And the particle size accumulation curve P (d ≧ D) is equal to or larger than the predetermined particle size D of the coarsest sample Tr and the finest sample Ts, and Ps (d ≧ D). By comparing with ≧ D), it is possible to easily determine the particle size quality. However, the particle size accumulation curve P (d ≧ D) in FIG. 7 does not reflect the content of the fine granular material having a particle size less than the predetermined particle size D. When a large amount of granular material is included, the particle size accumulation curve P (d ≧ D) of the granular material S is compared with the coarsest sample Tr and the finest sample Ts in the vicinity of the predetermined particle size D. It becomes difficult to confirm to which side it is fluctuating (trend of fluctuation). In order to simplify the comparison between the coarsest grain sample Tr and the finest grain sample Ts, a particle size accumulation curve P (d ≧ D) is created in consideration of the content of the fine granular material having a particle size less than the predetermined particle size D. It is useful to do.

図1の実施例では、粒径計測システムに微小粒状材を分離する分離装置6を含めると共に、微小粒状材を分離する前後の粒状材料Sの重量M及び含水率Zを計測する計測器7、8を含め、その重量M及び含水率Zの計測値から粒状材料S中の微小粒状材の加積通過率P(D)を求める演算手段25をコンピュータ10に設けている。図2のステップS108は、コンピュータ10の演算手段25において、微小粒状材を分離する前後の粒状材料Sの重量M及び含水率Zの計測値から粒状材料S中の微小粒状材の含有率すなわち加積通過率P(D)を求める処理を示す。ステップS110において演算手段25で求めた微小粒状材の加積通過率P(D)を作成手段20へ入力し(図1も参照)、作成手段20において図7の粒状材料Sの粒径加積曲線P(d≧D)を微小粒状材の加積通過率P(D)に応じて調整することにより、例えば図8に示すような微小粒状材の含有率を考慮した粒状材料Sの粒径加積曲線P(d≧D)を作成する。   In the embodiment of FIG. 1, the particle size measuring system includes a separation device 6 that separates the fine granular material, and a measuring device 7 that measures the weight M and moisture content Z of the granular material S before and after separating the fine granular material, 8, the computer 10 is provided with computing means 25 for obtaining the accumulated passage rate P (D) of the fine granular material in the granular material S from the measured values of the weight M and the moisture content Z. In step S108 of FIG. 2, the calculation means 25 of the computer 10 determines the content of the fine granular material in the granular material S, that is, the addition from the measured values of the weight M and the moisture content Z of the granular material S before and after separating the fine granular material. The process which calculates | requires the product passage rate P (D) is shown. In step S110, the accumulated passage rate P (D) of the fine granular material obtained by the computing means 25 is input to the creating means 20 (see also FIG. 1), and the creating means 20 performs the particle size accumulation of the granular material S in FIG. By adjusting the curve P (d ≧ D) according to the accumulation passage rate P (D) of the fine granular material, for example, the particle size of the granular material S in consideration of the content of the fine granular material as shown in FIG. An accumulation curve P (d ≧ D) is created.

図3は、図2のステップS108の演算手段25による処理の詳細な流れ図を示す。先ず、ステップS201〜S202において分離装置6で所定粒径D(例えば5mm)未満の微小粒状材を分離する前の粒状材料Sの重量Mb及び含水率Zbを重量計測器7b及び含水率計測器8bにより計測し、ステップS203において微小粒状材分離前の粒状材料Sの乾燥重量Mdbを算出する。次いで、ステップS204〜S205において分離装置6で微小粒状材を分離した後の粒状材料Sの重量Ma及び含水率Zaを重量計測器7a及び含水率計測器8aにより計測し、ステップS206において微小粒状材分離後の粒状材料Sの乾燥重量Mdaを算出する。重量計測器7b、7aの一例は、天秤、ロードセル等の粒状材料Sの質量測定で従来使用される装置であり、含水率計測器8b、8aの一例は、粒状材料Sに近赤外線を照射して透過光又は反射光の減衰量から粒状材料Sの含水率を非接触的に計測する近赤外線水分計(特許文献3参照)やRI水分計である。ステップS207において、微小粒状材分離前後の粒状材料Sの乾燥重量Mdb、Mdaから、粒状材料S中の所定粒径D未満の微小粒状材の質量百分率すなわち加積通過率P(D)を算出する。   FIG. 3 shows a detailed flowchart of the processing by the computing means 25 in step S108 of FIG. First, in steps S201 to S202, the weight Mb and the moisture content measuring instrument 8b are used to determine the weight Mb and moisture content Zb of the granular material S before separating the fine particulate material having a particle diameter of less than a predetermined particle size D (for example, 5 mm) by the separation device 6. In step S203, the dry weight Mdb of the granular material S before separation of the fine granular material is calculated. Next, the weight Ma and moisture content Za of the granular material S after separation of the fine granular material by the separation device 6 in steps S204 to S205 are measured by the weight measuring device 7a and the moisture content measuring device 8a, and in step S206, the fine granular material is measured. The dry weight Mda of the granular material S after separation is calculated. An example of the weight measuring devices 7b and 7a is a device conventionally used for measuring the mass of the granular material S such as a balance or a load cell. An example of the moisture content measuring devices 8b and 8a irradiates the granular material S with near infrared rays. Thus, a near-infrared moisture meter (see Patent Document 3) or an RI moisture meter that measures the moisture content of the granular material S in a non-contact manner from the attenuation amount of transmitted light or reflected light. In step S207, from the dry weights Mdb and Mda of the granular material S before and after the separation of the fine granular material, the mass percentage of the fine granular material having a particle diameter less than D in the granular material S, that is, the cumulative passage rate P (D) is calculated. .

図2のステップS110において、作成手段20により、演算手段25から入力した粒状材料S中の所定粒径D未満の微小粒状材の加積通過率P(D)と、算出手段18で算出した粒度インデクスIiを関係式Kにより変換した各粒径diの加積通過率P(di)とから、図8に示すような微小粒状材の加積通過率P(D)を考慮した粒径加積曲線P(d≧D)を作成する。具体的には、微小粒状材の加積通過率P(D)から所定粒径D以上の質量割合を求め(100−P(D))、その質量割合と関係式Kから変換した加積通過率P(di)(所定粒径D以上の粒状材全体に占める粒径di以上の粒状材の質量割合)を乗算することで各粒径diの加積通過率P´(di)(=P(D)+(100−P(D))×P(di))を再計算する。再計算後の各粒径diの加積通過率P´(di)と微小粒状材の加積通過率P(D)とを粒径di別にプロットして連結することにより、図8のような粒径加積曲線P(d≧D)を作成することができる。   In step S110 of FIG. 2, the creation means 20 inputs the accumulated passage rate P (D) of the fine granular material having a particle diameter less than the predetermined particle diameter D in the granular material S input from the calculating means 25 and the particle size calculated by the calculating means 18. The particle size accumulation considering the accumulation passage rate P (D) of the fine granular material as shown in FIG. 8 from the accumulation passage rate P (di) of each particle size di obtained by converting the index Ii by the relational expression K. A curve P (d ≧ D) is created. Specifically, a mass ratio of a predetermined particle diameter D or more is obtained from the accumulation passage ratio P (D) of the fine granular material (100-P (D)), and the accumulation passage converted from the mass ratio and relational expression K is obtained. Multiplying by the rate P (di) (mass ratio of the granular material having the particle size di or more in the entire granular material having the predetermined particle size D or more), the accumulated passage rate P ′ (di) (= P (D) + (100−P (D)) × P (di)) is recalculated. By plotting and connecting the accumulation passage rate P ′ (di) of each particle size di after recalculation and the accumulation passage rate P (D) of the fine granular material for each particle size di, as shown in FIG. A particle size accumulation curve P (d ≧ D) can be created.

微小粒状材の加積通過率P(D)を考慮して作成した粒状材料Sの粒径加積曲線P(d≧D)は、ステップS111〜112において、図8に示すように最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr(d)、Ps(d)と直接比較して粒度品質を判定することができる。例えば、図8において粒状材料Sの粒径加積曲線P(d≧D)は、粒径加積曲線Pr、Psの規定範囲内にあるが、所定粒径Dの近傍において最粗粒標本Tr側よりも最細粒標本Ts側に近接しており、平均粒径よりも若干細かい粒径分布であると判定できる。また、図8のような粒径加積曲線P(d≧D)を累積記憶しておけば、ステップS111〜112において今回と前回の粒径加積曲線Pとを比較することにより、粒状材料Sの粒度の正確な経時的変化(粒度変動)を迅速に把握することができる。   The particle diameter accumulation curve P (d ≧ D) of the granular material S prepared in consideration of the accumulation passage rate P (D) of the fine granular material is the coarsest particle as shown in FIG. The particle size quality can be determined by directly comparing with the particle size accumulation curves Pr (d) and Ps (d) of the sample Tr and the finest sample Ts. For example, in FIG. 8, the particle size accumulation curve P (d ≧ D) of the granular material S is within the specified range of the particle size accumulation curves Pr and Ps, but in the vicinity of the predetermined particle size D, the coarsest sample Tr It can be determined that the particle size distribution is closer to the finest sample Ts side than the side and slightly finer than the average particle size. In addition, if the particle size accumulation curve P (d ≧ D) as shown in FIG. 8 is accumulated and stored, by comparing the current particle size accumulation curve P with the previous one in steps S111 to S112, the granular material is obtained. It is possible to quickly grasp an accurate change with time in the particle size of S (particle size variation).

なお、図3のステップS208〜S211は、本発明の粒径計測システムに粒状材料Sの粒径di毎の吸水率q及び表乾密度ρを計測する計測器(図示せず)を含め、コンピュータ10の演算手段25により、その吸水率q及び表乾密度ρの計測値から粒状材料Sの表面水量Wを算出する処理を示す。図11を参照して上述したように、CSG工法では粒状材料Sの粒度と共に単位水量を管理する必要があり(図11のひし形(斜線部分)の規定範囲を参照)、粒状材料Sの表面水量Wが求まれば単位水量の管理に利用できる。図3の流れ図ではステップS208〜209において粒状材料Sの吸水率qを計測器から入力し、ステップS202で計測した含水率Zbに基づき粒状材料Sの表面水率ωを算出する。そして、ステップS210において粒状材料Sの表乾密度ρを計測器から入力し、ステップS211において粒状材料Sの表面水率ωと表乾密度ρとから表面水量Wを算出する。例えば、図3のステップS113において、ステップS211で求めた表面水量Wに基づき、粒状材料Sに混合する水量を図11の「ひし形」の規定範囲内となるように調整・管理する。   Steps S208 to S211 in FIG. 3 include a measuring instrument (not shown) for measuring the water absorption q and the surface dry density ρ for each particle diameter di of the granular material S in the particle diameter measuring system of the present invention. 10 shows a process of calculating the surface water amount W of the granular material S from the measured values of the water absorption rate q and the surface dry density ρ by 10 arithmetic means 25. As described above with reference to FIG. 11, in the CSG method, it is necessary to manage the unit water amount together with the particle size of the granular material S (see the prescribed range of the rhombus (hatched portion) in FIG. 11), and the surface water amount of the granular material S If W is obtained, it can be used to manage the unit water volume. In the flowchart of FIG. 3, the water absorption rate q of the granular material S is input from the measuring instrument in steps S208 to S209, and the surface water content ω of the granular material S is calculated based on the moisture content Zb measured in step S202. In step S210, the surface dry density ρ of the granular material S is input from the measuring instrument, and in step S211, the surface water amount W is calculated from the surface water ratio ω and the surface dry density ρ of the granular material S. For example, in step S113 in FIG. 3, based on the surface water amount W obtained in step S211, the amount of water mixed in the granular material S is adjusted and managed so as to be within the prescribed range of “diamonds” in FIG.

また、図2のステップS114において、今回供給材料Sの各粒径diの粒度インデクスI及び粒径加積曲線P(d)と共にステップS211で求めた表面水量Wを記憶手段16に累積記憶しておけば、次回以降のステップS111〜112の判定処理において、判定手段24により今回及び前回の粒度インデクスIと粒径加積曲線P(d)と表面水量Wとを比較して粒度及び表面水量の変動を迅速に判定することができる。粒状材料Sの粒度及び表面水量の変動を迅速に把握することにより、CSG工法等の粒状材料Sを用いた建設工事における詳細な品質管理が可能となり、管理精度の更なる向上が期待できる。 Further, in step S114 of FIG. 2, the current feed S particle size of each particle size di of t index I t and particle size accumulation curve P t (d) together with the surface water W t obtained in step S211 in the storage unit 16 Once you have accumulatively stored, compared in the determination process of the next subsequent step S111~112, the determination means 24 of the current and the previous and granularity index I t and grain size accumulation curve P (d) t and surface water W t Thus, fluctuations in particle size and surface water amount can be quickly determined. By quickly grasping the change in the particle size and surface water amount of the granular material S, detailed quality control in construction work using the granular material S such as the CSG method can be performed, and further improvement in management accuracy can be expected.

また、図1の実施例においてコンピュータ10の記憶手段16に、粒状材料Sの標本Tから求めた所定粒径D未満の微小粒状材の粒径加積曲線P(d≦D)を、その標本T中の微小粒状材の加積通過率P(D)の関数U、Rとして記憶しておけば、コンピュータ10の推定手段27において、上述した演算手段25で求めた粒状材料S中の微小粒状材の加積通過率P(D)から関数U、Rにより微小粒状材の粒径加積曲線P(d≦D)を推定することができる。更に、作成手段20において、例えば図8に示すような微小粒状材分離後の粒状材料Sの粒径加積曲線P(d≧D)と、推定手段27で推定した粒状材料Sの微小粒状材の粒径加積曲線P(d≦D)とを合成することにより、例えば図9に示すような全粒径範囲にわたる粒径加積曲線P(d)を作成することができる。   Further, in the embodiment of FIG. 1, the storage means 16 of the computer 10 stores the particle size accumulation curve P (d ≦ D) of the fine granular material having a particle size less than the predetermined particle size D obtained from the sample T of the granular material S. If stored as functions U and R of the cumulative passage rate P (D) of the fine granular material in T, the fine granularity in the granular material S obtained by the calculating means 25 described above in the estimating means 27 of the computer 10 is stored. The particle size accumulation curve P (d ≦ D) of the fine granular material can be estimated from the material passing rate P (D) by the functions U and R. Further, in the creating means 20, for example, as shown in FIG. 8, the particle size accumulation curve P (d ≧ D) of the granular material S after separation of the fine granular material, and the fine granular material of the granular material S estimated by the estimating means 27 The particle size accumulation curve P (d) over the entire particle size range as shown in FIG. 9, for example, can be created by synthesizing the particle size accumulation curve P (d ≦ D).

従来から、地盤材料等の粒状材料Sの粒径加積曲線(粒度分布)を正規分布関数、対数正規分布関数、Talbot(Gates−Gaudin−Schuhmann)関数、Gaudin−Meloy関数、Rosin−Rammler関数等で近似できることが知られている(非特許文献2参照)。また本発明者らは、粒状材料Sの複数の標本Tから所定粒径D(例えば50mm)未満の微小粒状材の粒径加積曲線P(d<D)の近似関数を推定し、粒状材料Sの撒き出し画像Gから所定粒径D以上の粒径加積曲線P(d≧D)を画像解析技術を用いて作成し、粒径加積曲線P(d≧D)と粒径加積曲線P(d<D)の近似関数とを所定粒径Dの加積通過率P(D)で一致するように合成して粒状材料Sの全粒径範囲にわたる粒径加積曲線P(d)を作成するシステムを開発し、特許文献4に開示した。   Conventionally, a particle size accumulation curve (particle size distribution) of a granular material S such as a ground material is represented by a normal distribution function, a log normal distribution function, a Talbot (Gates-Gaudin-Schuhmann) function, a Gaudin-Meloy function, a Rosin-Rammeler function, and the like. It is known that can be approximated by (see Non-Patent Document 2). In addition, the present inventors estimate an approximate function of a particle size accumulation curve P (d <D) of a fine granular material having a predetermined particle size D (for example, 50 mm) from a plurality of specimens T of the granular material S, and the granular material A particle size accumulation curve P (d ≧ D) having a predetermined particle size D or more is created from the rolled-out image G of S using an image analysis technique, and the particle size accumulation curve P (d ≧ D) and the particle size accumulation are created. The approximate function of the curve P (d <D) is synthesized so as to coincide with the accumulation passage rate P (D) of the predetermined particle size D, and the particle size accumulation curve P (d over the entire particle size range of the granular material S is obtained. ) Was developed and disclosed in Patent Document 4.

本発明においても、予め粒状材料Sの標本Tから所定粒径D未満の微小粒状材の粒径加積曲線P(d≦D)の近似関数Uを求めておけば、特許文献4の場合と同様に、作成手段20において粒度インデクスIiから求めた所定粒径D以上の粒径加積曲線P(d≧D)と微小粒状材の粒径加積曲線P(d≦D)の近似関数Uとを合成することにより、粒状材料Sの全粒径範囲にわたる粒径加積曲線P(d)を作成することができる。粒状材料Sの所定粒径D未満の粒径加積曲線P(d≦D)は、例えば微小粒状材の所定粒径Dに対する粒径比(=d/D)の所定指数関数U{(d/D)}として近似することができる。そのような指数関数Pの一例は、Talbot関数(P/P(D)=(d/D))、Gaudin−Meloy関数(P/P(D)=1−(1−d/D))、又はRosin−Rammler関数(P/P(D)=1−exp(−d/D)))である。 Also in the present invention, if an approximate function U of a particle size accumulation curve P (d ≦ D) of a fine granular material having a particle size less than a predetermined particle size D is obtained in advance from the sample T of the granular material S, Similarly, an approximate function U of a particle size accumulation curve P (d ≧ D) of a predetermined particle size D or more obtained from the particle size index Ii in the creating means 20 and a particle size accumulation curve P (d ≦ D) of a fine granular material. And a particle size accumulation curve P (d) over the entire particle size range of the granular material S can be created. The particle size accumulation curve P (d ≦ D) of the granular material S less than the predetermined particle size D is, for example, a predetermined exponential function U {(d / D) n }. Examples of such an exponential function P are Talbot function (P / P (D) = (d / D) n ), Gaudin-Meloy function (P / P (D) = 1− (1-d / D) n ) Or Rosin-Rammler function (P / P (D) = 1−exp (−d / D) n )).

図2のステップS109は、コンピュータ10の推定手段27により、粒状材料S中の微小粒状材の加積通過率P(D)から関数Uにより微小粒状材の粒径加積曲線P(d≦D)を推定する処理を示す。例えば、上述した所定指数関数U{(d/D)}の指数nが微小粒状材の加積通過率P(D)に拘わらず一定であれば、演算手段25で求めた微小粒状材の加積通過率P(D)を指定関数U{(d/D)}へ代入することにより、微小粒状材の粒径加積曲線P(d≦D)を推定することができる。図2のステップS110において、推定手段27で推定した微小粒状材の粒径加積曲線P(d≦D)を作成手段20に入力し、その粒径加積曲線P(d≦D)と所定粒径D以上の粒径加積曲線P(d≧D)とを連結することにより、図9に示すような全粒径範囲にわたる粒径加積曲線P(d)を作成することができる。 In step S109 of FIG. 2, the particle size accumulation curve P (d ≦ D) of the fine granular material is calculated by the function U from the cumulative passage rate P (D) of the fine granular material in the granular material S by the estimating means 27 of the computer 10. ) Is shown. For example, if the index n of the above-mentioned predetermined exponential function U {(d / D) n } is constant regardless of the cumulative passage rate P (D) of the fine granular material, the fine granular material obtained by the calculating means 25 By substituting the accumulation passage rate P (D) into the designated function U {(d / D) n }, the particle size accumulation curve P (d ≦ D) of the fine granular material can be estimated. In step S110 of FIG. 2, the particle diameter accumulation curve P (d ≦ D) of the fine granular material estimated by the estimating means 27 is input to the creating means 20, and the particle diameter accumulation curve P (d ≦ D) and a predetermined value are inputted. By connecting the particle size accumulation curve P (d ≧ D) of the particle size D or more, the particle size accumulation curve P (d) over the entire particle size range as shown in FIG. 9 can be created.

また、特許文献4が開示するように、微小粒状材の粒径加積曲線P(d≦D)を所定指数関数U{(d/D)}で近似した場合に、その指数関数U{(d/D)}の指数nが粒状材料S中の微小粒状材の加積通過率P(D)に依存して変化する場合がある。その場合は、粒状材料Sの複数の標本Tから指数関数U{(d/D)}を求めると共に、その指数nと粒状材料S中の微小粒状材の加積通過率P(D)との関係式Rを検出し、その関係式Rをコンピュータ10の記憶手段16に記憶しておく。図2のステップS109において、先ず演算手段25で求めた微小粒状材の加積通過率P(D)から指数nを求めて指数関数U{(d/D)}を定めたうえで、その指数関数U{(d/D)}に微小粒状材の加積通過率P(D)を代入することにより、微小粒状材の粒径加積曲線P(d≦D)を推定する。ステップS110において、図9のような全粒径範囲にわたる粒径加積曲線P(d)を作成しておけば、ステップS111〜112において最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr(d)、Ps(d)と全粒径範囲にわたり比較することができ、粒状材料Sの粒度品質を高精度で判定することが可能となる。 Further, as disclosed in Patent Document 4, when the particle size accumulation curve P (d ≦ D) of a fine granular material is approximated by a predetermined exponential function U {(d / D) n }, the exponential function U { The index n of (d / D) n } may vary depending on the cumulative passage rate P (D) of the fine granular material in the granular material S. In this case, an exponential function U {(d / D) n } is obtained from a plurality of samples T of the granular material S, and the exponent n and the cumulative passage rate P (D) of the fine granular material in the granular material S are obtained. The relational expression R is detected, and the relational expression R is stored in the storage unit 16 of the computer 10. In step S109 of FIG. 2, first, an exponent n is obtained from the accumulated passage rate P (D) of the fine granular material obtained by the computing means 25, and an exponential function U {(d / D) n } is determined. By substituting the cumulative passage rate P (D) of the fine granular material into the exponential function U {(d / D) n }, the particle size accumulation curve P (d ≦ D) of the fine granular material is estimated. If the particle size accumulation curve P (d) over the entire particle size range as shown in FIG. 9 is created in step S110, the particle size addition of the coarsest sample Tr and the finest sample Ts is performed in steps S111 to 112. The product curves Pr (d) and Ps (d) can be compared over the entire particle size range, and the particle size quality of the granular material S can be determined with high accuracy.

1…採取場(地山) 2…破砕装置
3…運搬装置 5…撮像装置
6…分離装置6、8…計測器
7a、8a…重量計測器 7b、8b…含水率計測器
10…コンピュータ 11…入力装置
12…出力装置 14…入力手段
15…出力手段 16…記憶手段
17…検出手段 18…算出手段
20…作成手段 21…調整手段
22…合成手段 24…判定手段
25…演算手段 26…関係式設定手段
27…推定手段
S…粒状材料 T…粒状材料標本
P…加積通過率、粒径加積曲線 I…粒度インデクス
Di…粒径 Ei…面積
G…撒き出し画像 M…重量
Z…含水率
DESCRIPTION OF SYMBOLS 1 ... Collection place (natural ground) 2 ... Crushing device 3 ... Conveying device 5 ... Imaging device 6 ... Separation device 6, 8 ... Measuring instrument 7a, 8a ... Weight measuring instrument 7b, 8b ... Water content measuring instrument 10 ... Computer 11 ... Input device 12 ... Output device 14 ... Input means 15 ... Output means 16 ... Storage means 17 ... Detection means 18 ... Calculation means 20 ... Create means 21 ... Adjustment means 22 ... Synthesis means 24 ... Determining means 25 ... Calculation means 26 ... Relational expression Setting means 27 ... Estimating means S ... Granular material T ... Granular material specimen P ... Accumulation passage rate, particle size accumulation curve I ... Particle size index Di ... Particle size Ei ... Area G ... Extruded image M ... Weight Z ... Water content

Claims (12)

所定採取場又は破砕装置から供給される粒状材料の撒き出し画像を撮影する撮像装置,前記画像中の各粒状材の輪郭を検出する検出手段,前記各粒状材の輪郭から粒径及び面積を求め且つ複数の粒径diについて画像中の粒状材料の全体面積に対する当該粒径di以上の粒状材の面積割合を粒度インデクスIiとして算出する算出手段,前記粒状材料の標本から求めた各粒径diの粒度インデクスIiと当該標本の全体質量に対する当該標本中の粒径di以下の粒状材の質量割合である加積通過率P(di)との関係式を記憶する記憶手段,並びに前記算出した各粒径diの粒度インデクスIiを前記関係式により粒状材料の全体質量に対する質量割合である加積通過率P(di)に変換して粒径加積曲線P(d)を作成する作成手段を備えてなる粒状材料の粒度計測システム。 An imaging device that captures a sputtered image of granular material supplied from a predetermined collection site or crushing device, detection means for detecting the contour of each granular material in the image, and obtaining the particle size and area from the contour of each granular material In addition, for a plurality of particle diameters di, calculation means for calculating, as a particle size index Ii, an area ratio of the granular material having the particle diameter di or larger with respect to the entire area of the granular material in the image, each particle diameter di obtained from the sample of the granular material Storage means for storing a relational expression between the particle size index Ii and the cumulative passage rate P (di) which is the mass ratio of the granular material having a particle size di or less in the sample to the total mass of the sample, and each calculated particle A creation means for creating a particle size accumulation curve P (d) by converting the particle size index Ii of the diameter di into a product passage rate P (di) which is a mass ratio with respect to the total mass of the granular material by the relational expression is provided. Particle size measurement system comprising particulate material. 請求項1のシステムにおいて,前記粒状材料から所定粒径D未満の微小粒状材を分離する分離装置を設け,前記記憶手段に微小粒状材分離後の粒状材料標本から求めた粒度インデクスIiと加積通過率P(di)との関係式を記憶し,前記作成手段により所定粒径D以上の粒径加積曲線P(d≧D)を作成してなる粒状材料の粒度計測システム。 2. The system according to claim 1, wherein a separation device for separating a fine granular material having a particle size less than a predetermined particle size D from the granular material is provided, and a particle size index Ii obtained from the granular material sample after separation of the fine granular material is added to the storage means. A granular material particle size measurement system that stores a relational expression with a passing rate P (di) and creates a particle size accumulation curve P (d ≧ D) of a predetermined particle size D or more by the creation means. 請求項2のシステムにおいて,前記微小粒状材を分離する前後の粒状材料の重量及び含水率を計測する計測器,並びに前記重量及び含水率の計測値から粒状材料中の微小粒状材の加積通過率P(D)を求める演算手段を設け,前記作成手段により,前記微小粒状材分離後の粒状材料の各粒径diの加積通過率P(di)と当該粒状材料中の微小粒状材の加積通過率P(D)とから粒径加積曲線P(d≧D)を作成してなる粒状材料の粒度計測システム。 3. The system according to claim 2, wherein the measuring device measures the weight and moisture content of the granular material before and after separating the fine granular material, and the accumulated passage of the fine granular material in the granular material from the measured value of the weight and moisture content. An arithmetic means for obtaining a rate P (D) is provided, and by the creation means, the cumulative passage rate P (di) of each particle diameter di of the granular material after separation of the fine granular material and the fine granular material in the granular material are determined. A particle size measurement system for a granular material obtained by creating a particle size accumulation curve P (d ≧ D) from the accumulation passage rate P (D). 請求項3のシステムにおいて,前記記憶手段に粒状材料の標本から求めた所定粒径D未満の微小粒状材の粒径加積曲線P(d≦D)を当該標本中の微小粒状材の加積通過率P(D)の関数として記憶し,前記粒状材料中の微小粒状材の加積通過率P(D)から前記関数により微小粒状材の粒径加積曲線P(d≦D)を推定する推定手段を設け,前記作成手段により,前記微小粒状材分離後の粒状材料の粒径加積曲線P(d≧D)と当該粒状材料の微小粒状材の粒径加積曲線P(d≦D)とを合成して粒径加積曲線P(d)を作成してなる粒状材料の粒度計測システム。 4. The system according to claim 3, wherein a particle size accumulation curve P (d ≦ D) of a fine granular material having a particle diameter less than a predetermined particle size D obtained from a granular material sample is stored in the storage means. This is stored as a function of the passage rate P (D), and the particle size accumulation curve P (d ≦ D) of the fine granular material is estimated by the above function from the cumulative passage rate P (D) of the fine granular material in the granular material. The estimation means is provided, and by the creation means, the particle size accumulation curve P (d ≧ D) of the granular material after separation of the fine granular material and the particle size accumulation curve P (d ≦ D) of the fine granular material of the granular material are determined. D) and a particle size measurement system for a granular material obtained by creating a particle size accumulation curve P (d). 請求項1から4の何れかのシステムにおいて,前記記憶手段に粒状材料の最粗粒標本及び最細粒標本の粒径加積曲線Pr,Psを記憶し,前記粒状材料の粒径加積曲線Pと最粗粒標本及び最細粒標本の粒径加積曲線Pr,Psとを比較して粒度品質を判定する判定手段を設けてなる粒状材料の粒度計測システム。 The system according to any one of claims 1 to 4 , wherein the storage means stores particle size accumulation curves Pr, Ps of the coarsest sample and the finest sample of granular material, and the particle size accumulation curve of the granular material. A granular material particle size measurement system provided with a determining means for comparing P with the particle size accumulation curves Pr and Ps of the coarsest sample and the finest sample to determine the particle quality. 請求項1から4の何れかのシステムにおいて,前記記憶手段に継続的に供給される粒状材料から作成した粒度インデクスI又は粒径加積曲線Pを累積記憶し,今回供給材料の粒度インデクスI又は粒径加積曲線Pと前回供給材料の粒度インデクスIt−1又は粒径加積曲線Pt−1とを比較して粒状材料の粒度変動を判定する判定手段を設けてなる粒状材料の粒度計測システム。 5. The system according to claim 1, wherein the particle size index I or the particle size accumulation curve P created from the granular material continuously supplied to the storage means is accumulated and stored, and the particle size index I t of the current supply material is stored. or grain size accumulation curve P t and particulate material formed by providing a determining means for determining a particle size variation of particulate material by comparing the particle size index I t-1 or grain size accumulation curve P t-1 of the previous feed Particle size measurement system. 所定採取場又は破砕装置から供給される粒状材料の粒度を計測するためコンピュータを,前記粒状材料の撒き出し画像を入力する入力手段,前記画像中の各粒状材の輪郭を検出する検出手段,前記各粒状材の輪郭から粒径及び面積を求め且つ複数の粒径diについて画像中の粒状材料の全体面積に対する当該粒径di以上の粒状材の面積割合を粒度インデクスIiとして算出する算出手段,前記粒状材料の標本から求めた各粒径diの粒度インデクスIiと当該標本の全体質量に対する当該標本中の粒径di以下の粒状材の質量割合である加積通過率P(di)との関係式を記憶する記憶手段,並びに前記算出した各粒径diの粒度インデクスIiを前記関係式により粒状材料の全体質量に対する質量割合である加積通過率P(di)に変換して粒径加積曲線P(d)を作成する作成手段として機能させる粒状材料の粒度計測プログラム。 A computer for measuring the particle size of the granular material supplied from a predetermined sampling site or a crushing device; input means for inputting a spear image of the granular material; detection means for detecting the contour of each granular material in the image; Calculating means for calculating a particle size and an area from an outline of each granular material and calculating an area ratio of the granular material equal to or larger than the particle size di with respect to the total area of the granular material in the image for a plurality of particle sizes di as the particle size index Ii; Relational expression between the particle size index Ii of each particle size di obtained from the sample of the granular material and the cumulative passage rate P (di) which is the mass ratio of the granular material having the particle size di or less in the sample to the total mass of the sample And a particle size index Ii of each calculated particle size di is converted into a product passage rate P (di) which is a mass ratio with respect to the total mass of the granular material by the relational expression. Grain 径加 granularity measurement program of the particulate material to function as a creating means for creating a product curve P (d) Te. 請求項7のプログラムにおいて,前記撒き出し画像を所定粒径D未満の微小粒状材が分離された粒状材料の撒き出し画像とし,前記記憶手段に微小粒状材分離後の粒状材料標本から求めた粒度インデクスIiと加積通過率P(di)との関係式を記憶し,前記作成手段により所定粒径D以上の粒径加積曲線P(d≧D)を作成してなる粒状材料の粒度計測プログラム。 8. The program according to claim 7, wherein the squeezed image is a squeezed image of a granular material from which a fine granular material having a particle diameter less than a predetermined particle size D is separated, and the particle size obtained from the granular material sample after separation of the fine granular material in the storage means. The relational expression between the index Ii and the cumulative passage rate P (di) is stored, and the particle size measurement of the granular material formed by creating the particle diameter accumulation curve P (d ≧ D) of the predetermined particle diameter D or more by the creating means. program. 請求項8のプログラムにおいて,前記入力手段に微小粒状材を分離する前後の粒状材料の重量及び含水率を入力し,前記コンピュータを,前記重量及び含水率の入力値から粒状材料中の微小粒状材の加積通過率P(D)を求める演算手段として機能させ,前記作成手段により,前記微小粒状材分離後の粒状材料の各粒径diの加積通過率P(di)と当該粒状材料中の微小粒状材の加積通過率P(D)とから粒径加積曲線P(d≧D)を作成してなる粒状材料の粒度計測プログラム。 9. The program according to claim 8, wherein the weight and moisture content of the granular material before and after separating the fine granular material are input to the input means, and the computer detects the fine granular material in the granular material from the input values of the weight and moisture content. The cumulative passage rate P (di) of each particle size di of the granular material after separation of the fine granular material is determined by the creation means so as to calculate the cumulative passage rate P (D) of the granular material. Is a particle size measurement program for a granular material obtained by creating a particle size accumulation curve P (d ≧ D) from the accumulated passage rate P (D) of the fine granular material. 請求項9のプログラムにおいて,前記記憶手段に粒状材料の標本から求めた所定粒径D未満の微小粒状材の粒径加積曲線P(d≦D)を当該標本中の微小粒状材の加積通過率P(D)の関数として記憶し,前記コンピュータを,前記粒状材料中の微小粒状材の加積通過率P(D)から前記関数により微小粒状材の粒径加積曲線P(d≦D)を推定する推定手段として機能させ,前記作成手段により,前記微小粒状材分離後の粒状材料の粒径加積曲線P(d≧D)と当該粒状材料の微小粒状材の粒径加積曲線P(d≦D)とを合成して粒径加積曲線P(d)を作成してなる粒状材料の粒度計測プログラム。 10. The program according to claim 9, wherein a particle size accumulation curve P (d ≦ D) of a fine granular material having a particle size less than a predetermined particle size D obtained from a granular material sample is stored in the storage means. It is stored as a function of the passage rate P (D), and the computer calculates the particle size accumulation curve P (d ≦ d) of the fine granular material according to the function from the accumulated passage rate P (D) of the fine granular material in the granular material. D) functions as an estimation means for estimating the particle diameter accumulation curve P (d ≧ D) of the granular material after separation of the fine granular material and the particle diameter accumulation of the fine granular material of the granular material. A particle size measurement program for a granular material obtained by synthesizing a curve P (d ≦ D) to create a particle size accumulation curve P (d). 請求項7から10の何れかのプログラムにおいて,前記記憶手段に粒状材料の最粗粒標本及び最細粒標本の粒径加積曲線Pr,Psを記憶し,前記コンピュータを,前記粒状材料の粒径加積曲線Pと最粗粒標本及び最細粒標本の粒径加積曲線Pr,Psとを比較して粒度品質を判定する判定手段として機能させてなる粒状材料の粒度計測プログラム。 11. The program according to claim 7 , wherein the storage means stores the coarsest grain sample of the granular material and the particle size accumulation curves Pr and Ps of the finest grain sample, and the computer stores the grain of the granular material. A particle size measurement program for a granular material that functions as a determination means for determining the particle size quality by comparing the diameter accumulation curve P with the particle size accumulation curves Pr and Ps of the coarsest sample and the finest sample. 請求項7から10の何れかのプログラムにおいて,前記記憶手段に継続的に供給される粒状材料の粒度インデクスI又は粒径加積曲線Pを累積記憶し,前記コンピュータを,今回供給材料の粒度インデクスI又は粒径加積曲線Pと前回供給材料の粒度インデクスIt−1又は粒径加積曲線Pt−1とを比較して粒状材料の粒度変動を判定する判定手段として機能させてなる粒状材料の粒度計測プログラム。 11. The program according to claim 7 , wherein the particle size index I or the particle size accumulation curve P of the granular material continuously supplied to the storage means is accumulated and stored, and the computer stores the particle size index of the current supply material. to function as a judging means for judging particle size variation of I t or grain size accumulation curve P t and particle size index I t-1 or grain size accumulation curve P t-1 and the particulate material by comparing the previous feed Particle size measurement program for granular materials.
JP2010024909A 2010-02-06 2010-02-06 Granule size measurement system and program Active JP5582806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024909A JP5582806B2 (en) 2010-02-06 2010-02-06 Granule size measurement system and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024909A JP5582806B2 (en) 2010-02-06 2010-02-06 Granule size measurement system and program

Publications (2)

Publication Number Publication Date
JP2011163836A JP2011163836A (en) 2011-08-25
JP5582806B2 true JP5582806B2 (en) 2014-09-03

Family

ID=44594706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024909A Active JP5582806B2 (en) 2010-02-06 2010-02-06 Granule size measurement system and program

Country Status (1)

Country Link
JP (1) JP5582806B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658613B2 (en) * 2011-05-16 2015-01-28 鹿島建設株式会社 Method and system for dividing particle size of granular material
JP5896465B2 (en) * 2012-06-12 2016-03-30 鹿島建設株式会社 Method and system for measuring particle size distribution of granular material
JP6189059B2 (en) * 2013-03-15 2017-08-30 五洋建設株式会社 Soil size analysis method
JP6243640B2 (en) * 2013-06-28 2017-12-06 大成建設株式会社 Particle size distribution measurement system and weight conversion coefficient calculation system
KR101426496B1 (en) * 2013-11-08 2014-08-06 김갑부 Material for improving ground, aggregate for asphalt concrete and method for manufacturing the sames
JP6489912B2 (en) * 2015-04-14 2019-03-27 前田建設工業株式会社 Particle size distribution analysis method and quality control method for construction materials
JP6156852B2 (en) * 2015-11-01 2017-07-05 鹿島建設株式会社 Method and system for measuring particle size distribution of granular material
JP6696290B2 (en) * 2016-04-28 2020-05-20 株式会社大林組 Quality control method of rock zone in rock fill dam
JP6823522B2 (en) * 2017-03-30 2021-02-03 前田建設工業株式会社 Water content evaluation method for construction materials
JP7267056B2 (en) * 2019-03-26 2023-05-01 一般財団法人ダム技術センター CSG material quality measurement and control method and quality measurement and control system
SE2050883A1 (en) * 2020-07-10 2022-01-11 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337028A (en) * 2000-05-30 2001-12-07 Nikkiso Co Ltd Method and apparatus for measuring particle size distribution
JP2003010726A (en) * 2001-07-03 2003-01-14 Osaka Saiseki Kogyosho Co Ltd Method and apparatus for manufacturing crushed sand
JP4296260B2 (en) * 2003-01-29 2009-07-15 独立行政法人産業技術総合研究所 Sieving method of granular material and evaluation method using it
JP2008268051A (en) * 2007-04-23 2008-11-06 Zenkoku Nama Concrete Kogyo Kumiai Rengokai Method and system for measuring freshly mixed concrete aggregate particle size
JP4883799B2 (en) * 2007-07-31 2012-02-22 鹿島建設株式会社 Ground material particle size measurement system and program

Also Published As

Publication number Publication date
JP2011163836A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5582806B2 (en) Granule size measurement system and program
JP4883799B2 (en) Ground material particle size measurement system and program
Erdoğan et al. Shape and size of microfine aggregates: X-ray microcomputed tomography vs. laser diffraction
Kumara et al. Image analysis techniques on evaluation of particle size distribution of gravel
Benedetto et al. Railway ballast condition assessment using ground-penetrating radar–An experimental, numerical simulation and modelling development
JP5896465B2 (en) Method and system for measuring particle size distribution of granular material
JP5658613B2 (en) Method and system for dividing particle size of granular material
JP6173894B2 (en) Surface water volume management method and system for ground material
JP5234649B2 (en) Granular quality control system and program for granular materials
JP6651945B2 (en) Soil classification device and soil classification method
Alramahi et al. Effect of fine particle migration on the small-strain stiffness of unsaturated soils
Barus et al. Laboratory and field evaluation of modulus-suction-moisture relationship for a silty sand subgrade
Engin et al. Size distribution analysis of aggregates using LiDAR scan data and an alternate algorithm
Rodriguez et al. Case of study on particle shape and friction angle on tailings
Shi et al. Image processing of aggregate skeleton structure of asphalt mixture for aggregate uniformity quantification
Fladvad et al. Large-size aggregates for road construction—a review of standard specifications and test methods
Ghasemi et al. Shape-dependent calculation of specific surface area of aggregates versus X-ray microtomography
Arvanitidis et al. Peak friction angle of soils as a function of grain size
Shen et al. Particle breakage and shape analysis of calcareous sand under consolidated-undrained triaxial shear
CN101855021B (en) Automatic waste treatment process
JP6696290B2 (en) Quality control method of rock zone in rock fill dam
Engin et al. Investigation on the processing of LiDAR point cloud data for particle size measurement of aggregates as an alternative to image analysis
Engin Comparison of the different mathematical methods performed in determining the size distribution of aggregates using LiDAR point cloud data and suggested algorithm
JP6156852B2 (en) Method and system for measuring particle size distribution of granular material
JP7426659B2 (en) Particle size distribution measuring method, particle size distribution measuring device, and calculation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5582806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250