JP5347750B2 - Flame retardant deodorizing filter - Google Patents

Flame retardant deodorizing filter Download PDF

Info

Publication number
JP5347750B2
JP5347750B2 JP2009146129A JP2009146129A JP5347750B2 JP 5347750 B2 JP5347750 B2 JP 5347750B2 JP 2009146129 A JP2009146129 A JP 2009146129A JP 2009146129 A JP2009146129 A JP 2009146129A JP 5347750 B2 JP5347750 B2 JP 5347750B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon layer
particles
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009146129A
Other languages
Japanese (ja)
Other versions
JP2011000547A (en
Inventor
恵子 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009146129A priority Critical patent/JP5347750B2/en
Publication of JP2011000547A publication Critical patent/JP2011000547A/en
Application granted granted Critical
Publication of JP5347750B2 publication Critical patent/JP5347750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器に組み込んで、有害ガス成分を除去するための難燃性脱臭フィルタに関する。ここで言う有毒ガス成分とは、人体や環境へ影響を与える有害ガス成分だけでなく、電子機器内部での問題を引き起こすガス等も含める。   The present invention relates to a flame retardant deodorizing filter that is incorporated in electronic devices such as a copying machine, a printer, a multi-function OA machine, a computer, a projector, and a POD printing machine to remove harmful gas components. The toxic gas component referred to here includes not only harmful gas components that affect the human body and the environment, but also gases that cause problems inside the electronic equipment.

コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器は、近年集積化、小型化が進み、機器内部に熱がこもるのを避けるために、ファン等による排熱が欠かせなくなってきている。そして、インク、トナー等といった印字の際に用いられる成分、電子機器の本体を構成するプラスチック、および、各種接合部に使用されているゴム等に含まれている各種成分がガス化し、有害ガス成分として排熱と共に室内へと排出されている。また、コピー機、レーザープリンター等では高電圧を使用するため、前記ガス成分だけでなく、オゾンといった有害ガス成分も排出されている。近年、環境問題への意識の高まりから、有害ガス成分に関して、排出規制が行われるようになった。例えば、ドイツでは、「BAM(ブルーエンジェルマーク)」という環境ラベルが制定されており、電子機器毎に果たすべき環境性能基準が定められている。   In recent years, electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers have been increasingly integrated and miniaturized. It is becoming indispensable. In addition, various components contained in components such as ink, toner, etc. used for printing, plastics constituting the main body of electronic equipment, rubber used in various joints, etc. are gasified, and harmful gas components It is discharged into the room along with exhaust heat. In addition, since a high voltage is used in a copying machine, a laser printer, and the like, not only the gas components but also harmful gas components such as ozone are discharged. In recent years, due to increased awareness of environmental issues, emission regulations have been implemented for harmful gas components. For example, in Germany, an environmental label “BAM (Blue Angel Mark)” has been established, and environmental performance standards to be achieved for each electronic device are defined.

電子機器から排出される有害ガス成分を低減する目的で、前記電子機器内部に脱臭フィルタが組み込まれている。前記脱臭フィルタは電子機器内部に組み込まれるため、有害ガス成分の除去に優れるだけではなく、難燃規格UL(Underwriters Laboratories Inc.)の取得が必須である(非特許文献1参照)。   In order to reduce harmful gas components discharged from the electronic apparatus, a deodorizing filter is incorporated in the electronic apparatus. Since the deodorizing filter is incorporated in an electronic device, it not only excels in removing harmful gas components, but it is essential to acquire a flame retardant standard UL (Underwriters Laboratories Inc.) (see Non-Patent Document 1).

レーザープリンターをはじめとする電子機器や、種々の空調機器等に組み込んでオゾン及びVOCを除去するための難燃性オゾンVOC除去フィルタについてはよく知られている。例えば、特許文献1には、難燃剤を含有し、かつ布帛からなるカバー材に、炭酸カリウムを添着した活性炭粒子を担持してなる難燃性オゾンVOC除去フィルタが開示されている。しかしながら、特許文献1のフィルタは、活性炭層が活性炭粒子と熱可塑性樹脂バインダーから構成されるため、燃焼時には活性炭層に含有される熱可塑性樹脂バインダー粒子が溶融し、発炎物質として活性炭粒子が滴下してしまい、難燃性が不十分という問題がある。   A flame-retardant ozone VOC removal filter for removing ozone and VOC by being incorporated in electronic devices such as laser printers and various air conditioners is well known. For example, Patent Document 1 discloses a flame retardant ozone VOC removal filter in which activated carbon particles loaded with potassium carbonate are supported on a cover material containing a flame retardant and made of fabric. However, in the filter of Patent Document 1, since the activated carbon layer is composed of activated carbon particles and a thermoplastic resin binder, the thermoplastic resin binder particles contained in the activated carbon layer melt at the time of combustion, and the activated carbon particles are dripped as a flaming substance. Therefore, there is a problem that the flame retardancy is insufficient.

上述のとおり、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器に組み込んで、有害ガス成分を除去するための脱臭フィルタに関して、燃焼時に十分な難燃性を有する脱臭フィルタは見当たらないのが現状である。   As described above, deodorizing filters for removing harmful gas components incorporated in electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers have sufficient flame retardance during combustion. At present, there is no deodorizing filter.

特開2008−114109号公報JP 2008-114109 A

UL 94:Standard for Safety Tests for Flammability of Plastic Materials for Parts in Devices and Appliances.UL 94: Standard for Safety Tests for Flammability of Plastic Materials for Parts in Devices and Applications. UL 94: Standard for Safety Tests for Flammability of Plastic Materials for Parts in Devices and Applications.

本発明は、上記従来技術の現状に鑑み創案されたものであり、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器に組み込んで、有害ガス成分を除去することができ、しかも燃焼時に十分な難燃性を有する脱臭フィルタを提供することを目的とする。   The present invention was devised in view of the above-described state of the art, and is incorporated into electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers to remove harmful gas components. An object of the present invention is to provide a deodorizing filter that can be used and that has sufficient flame retardancy during combustion.

本発明者は、上記目的を達成するために鋭意研究した結果、活性炭層中に熱可塑性樹脂バインダー粒子と熱硬化性樹脂粒子を含有させることにより通常使用時及び燃焼時の両方において活性炭層からの活性炭粒子の脱落を抑制できることを見出し、本発明の完成に到達した。   As a result of diligent research to achieve the above object, the present inventor has included the thermoplastic resin binder particles and the thermosetting resin particles in the activated carbon layer, thereby allowing the activated carbon layer to be separated from the activated carbon layer during both normal use and combustion. The inventors have found that the activated carbon particles can be prevented from falling off, and have completed the present invention.

即ち、本発明は、活性炭層と、その片面又は両面に設けられた布帛とを重ねてヒートプレスして得られる難燃性脱臭フィルタであって、前記活性炭層が活性炭粒子、熱硬化性樹脂粒子、および熱可塑性樹脂バインダー粒子を混合して含有し、前記活性炭層において熱硬化性樹脂粒子が活性炭粒子100重量部に対して4〜50重量部の割合で存在すること、及び前記活性炭層の熱硬化性樹脂が前記ヒートプレスによって硬化されないが、燃焼により硬化されることを特徴とする難燃性脱臭フィルタである。 That is, the present invention includes activated carbon layer, a flame retardant deodorizing filter obtained by heat pressing overlapping a fabric provided on one or both sides, wherein the activated carbon layer is activated carbon particles, thermosetting resin particles And thermoplastic resin binder particles mixed therein , the thermosetting resin particles in the activated carbon layer being present in a ratio of 4 to 50 parts by weight with respect to 100 parts by weight of the activated carbon particles , and the heat of the activated carbon layer The flame-retardant deodorizing filter is characterized in that the curable resin is not cured by the heat press but is cured by combustion .

本発明の難燃性脱臭フィルタの好ましい態様では、前記活性炭層が難燃剤をさらに含有する。   In a preferred embodiment of the flame retardant deodorizing filter of the present invention, the activated carbon layer further contains a flame retardant.

本発明の難燃性脱臭フィルタは、活性炭層中に含まれる熱可塑性樹脂バインダー粒子によって−20〜80℃の通常使用時の活性炭粒子の脱落を防止して電子機器等から発生する有害ガス成分を有効に除去できるだけでなく、活性炭層中に含まれる熱硬化性樹脂粒子によって燃焼時に活性炭粒子が発炎物質として滴下することもなく、十分な難燃性が得られるという効果を有する。   The flame retardant deodorizing filter of the present invention prevents harmful gas components generated from electronic devices by preventing the activated carbon particles from falling off during normal use at −20 to 80 ° C. by the thermoplastic resin binder particles contained in the activated carbon layer. Not only can it be effectively removed, the thermosetting resin particles contained in the activated carbon layer have the effect that the activated carbon particles do not drop as a flaming substance during combustion and that sufficient flame retardancy is obtained.

本発明の難燃性脱臭フィルタの概略的断面図を示し、(a)は活性炭層の片面だけに布帛を設けた例を示し、(b)は活性炭層の両面に布帛を設けた例を示す。The schematic sectional drawing of the flame-retardant deodorizing filter of this invention is shown, (a) shows the example which provided the fabric only in the single side | surface of the activated carbon layer, (b) shows the example which provided the fabric in both surfaces of the activated carbon layer .

以下、本発明の難燃性脱臭フィルタを詳細に説明する。
本発明の難燃性脱臭フィルタは、図1(a),(b)に示すように、活性炭層Aと、その片面又は両面に設けられた布帛Bとからなり、活性炭層Aが活性炭粒子1と、熱硬化性樹脂粒子2と、熱可塑性樹脂バインダー粒子3と、所望により難燃剤4とを含有することを特徴とする。
Hereinafter, the flame-retardant deodorizing filter of the present invention will be described in detail.
As shown in FIGS. 1 (a) and 1 (b), the flame-retardant deodorizing filter of the present invention comprises an activated carbon layer A and a fabric B provided on one or both surfaces thereof. And thermosetting resin particles 2, thermoplastic resin binder particles 3, and optionally flame retardant 4.

活性炭層に使用される活性炭粒子は、有害ガス成分を除去できれば特に限定されないが、例えば、石炭系活性炭、ヤシガラ系活性炭、木質系活性炭等を使用することができる。活性炭粒子の比表面積は、好ましくは500g/m以上、更に好ましくは800〜2500g/mである。比表面積が500g/m未満ではトルエンの除去性能が低くなる可能性がある。 The activated carbon particles used in the activated carbon layer are not particularly limited as long as harmful gas components can be removed. For example, coal-based activated carbon, coconut shell activated carbon, wood-based activated carbon, and the like can be used. The specific surface area of the activated carbon particles preferably 500 g / m 2 or more, more preferably from 800~2500g / m 2. If the specific surface area is less than 500 g / m 2 , toluene removal performance may be lowered.

活性炭粒子の平均粒子直径は、特に限定されないが、50〜800μmであることが好ましい。平均粒子直径が50μm未満では、粉塵等が生じるため取り扱い性が悪くなり、800μmを越えると、活性炭層の形成が困難になる可能性がある。   The average particle diameter of the activated carbon particles is not particularly limited, but is preferably 50 to 800 μm. When the average particle diameter is less than 50 μm, dust and the like are generated, so that the handleability is deteriorated, and when it exceeds 800 μm, formation of the activated carbon layer may be difficult.

活性炭層に使用される熱硬化性樹脂粒子は、燃焼過程で硬化することにより、活性炭層を硬化し、燃焼物としての活性炭粒子の脱落を抑制する役割を有するものであり、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ウレタン樹脂等の公知の熱硬化性樹脂を使用することができる。これらの樹脂の中では、取り扱い性の面からフェノール樹脂が好ましい。   The thermosetting resin particles used in the activated carbon layer have a role of curing the activated carbon layer by curing in the combustion process and suppressing the falling off of the activated carbon particles as a combustion product. For example, a phenol resin, Known thermosetting resins such as epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, and urethane resins can be used. Among these resins, a phenol resin is preferable from the viewpoint of handleability.

熱硬化性樹脂粒子の平均粒子直径は、特に限定されないが、1.0〜100μmであることが好ましい。更に好ましくは5.0〜50μmである。平均粒子直径が上記範囲未満では、粉塵等が生じるため取り扱い性が悪くなり、上記範囲を越えると、活性炭粒子と均一に混合しない可能性がある。   The average particle diameter of the thermosetting resin particles is not particularly limited, but is preferably 1.0 to 100 μm. More preferably, it is 5.0-50 micrometers. When the average particle diameter is less than the above range, dusts and the like are generated, so that the handleability is deteriorated.

活性炭層中の熱硬化性樹脂粒子の含有量は、活性炭粒子100重量部に対して4〜50重量部であることが必要である。より好ましくは、5〜30重量部である。熱硬化性樹脂粒子の含有量が上記範囲未満では、燃焼時の活性炭粒子の滴下を防ぐことが困難になり、上記範囲を越えると、熱硬化性樹脂粒子自体が燃焼し、UL規格を満足することができない可能性がある。   The content of the thermosetting resin particles in the activated carbon layer needs to be 4 to 50 parts by weight with respect to 100 parts by weight of the activated carbon particles. More preferably, it is 5 to 30 parts by weight. If the content of the thermosetting resin particles is less than the above range, it becomes difficult to prevent the activated carbon particles from dripping during combustion. If the content exceeds the above range, the thermosetting resin particles themselves burn and satisfy the UL standard. It may not be possible.

活性炭層に使用される熱可塑性樹脂バインダー粒子は、活性炭層の各成分を互いに接着し、通常使用時の活性炭の脱落を防止したり活性炭層形成時の取り扱い性を向上させる役割を有するものであり、例えば、ポリオレフィン樹脂(ポリエチレン樹脂、ポロプロピレン樹脂など)、ポリエステル樹脂、ポリスチレン樹脂、ポリ酢酸ビニル、尿素系樹脂、アクリル樹脂等の公知の熱可塑性樹脂を使用することができる。これらの樹脂の中では、経済性及び入手容易性の面からポリオレフィン樹脂、ポリエステル樹脂が好ましい。   The thermoplastic resin binder particles used for the activated carbon layer have the role of bonding the components of the activated carbon layer to each other to prevent the activated carbon from falling off during normal use and to improve the handling properties when forming the activated carbon layer. For example, known thermoplastic resins such as polyolefin resins (polyethylene resins, polypropylene resins, etc.), polyester resins, polystyrene resins, polyvinyl acetate, urea resins, acrylic resins, and the like can be used. Among these resins, polyolefin resins and polyester resins are preferable from the viewpoints of economy and availability.

熱可塑性樹脂バインダー粒子の平均粒子直径は、特に限定されないが、1.0〜100μmであることが好ましい。更に好ましくは、5.0〜50μmである。平均粒子直径が上記範囲未満であると、粉塵等が生じるため取り扱い性が悪くなり、上記範囲を越えると、活性炭と均一に混合しない可能性がある。   The average particle diameter of the thermoplastic resin binder particles is not particularly limited, but is preferably 1.0 to 100 μm. More preferably, it is 5.0-50 micrometers. When the average particle diameter is less than the above range, dust and the like are generated, so that the handleability is deteriorated. When the average particle diameter exceeds the above range, there is a possibility that the activated carbon is not uniformly mixed with the activated carbon.

活性炭層中の熱可塑性樹脂バインダー粒子の含有量は、活性炭粒子100重量部に対して1〜50重量部であることが好ましい。より好ましくは、5〜30重量部である。熱可塑性樹脂バインダー粒子の含有量が上記範囲未満では、活性炭層の固着が弱く取り扱い性が悪くなり、上記範囲を越えると、燃焼時に熱可塑性樹脂バインダーが燃焼物として作用するため、UL規格を満足することができない可能性がある。   The content of the thermoplastic resin binder particles in the activated carbon layer is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the activated carbon particles. More preferably, it is 5 to 30 parts by weight. When the content of the thermoplastic resin binder particles is less than the above range, the activated carbon layer is weakly fixed and the handleability is deteriorated. When the content exceeds the above range, the thermoplastic resin binder acts as a combustion product at the time of combustion. You may not be able to.

本発明の難燃性脱臭フィルタは、活性炭層の少なくとも片面に、好ましくは両面に布帛を有することが必要である。かかる積層構造により、通常使用時に活性炭粒子の脱落を低減させることができる。使用する布帛は、特に限定されないが、例えば、不織布、編物、又は織物からなることができ、通常使用時の活性炭粒子の脱落防止の観点から、活性炭粒子の粒径よりも小さい目合いのものが好ましい。不織布は、例えば、レーヨン繊維、ポリプロピレン繊維、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維から作られることができ、製造コストや入手容易性の面から、ポリエステル繊維、ポリオレフィン繊維から作られることが好ましい。また、不織布の製造法としては、乾式法、スパンボンド法、メルトブロー法、サーマルボンド法、ケミカルボンド法、ニードルパンチ法、スパンレース法(水流絡合法)等が使用できる。布帛には、少なくとも片面に難燃剤を添着することができる。また、布帛は、難燃剤を練りこんで紡糸された繊維からなることができる。   The flame-retardant deodorizing filter of the present invention needs to have a fabric on at least one side, preferably both sides, of the activated carbon layer. With such a laminated structure, falling off of the activated carbon particles can be reduced during normal use. The fabric to be used is not particularly limited, but can be made of, for example, a nonwoven fabric, a knitted fabric, or a woven fabric. preferable. Nonwoven fabric can be made from, for example, rayon fiber, polypropylene fiber, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, and polyester fiber in terms of manufacturing cost and availability. It is preferably made from polyolefin fibers. Moreover, as a manufacturing method of a nonwoven fabric, a dry method, a spun bond method, a melt blow method, a thermal bond method, a chemical bond method, a needle punch method, a spun lace method (water flow entanglement method) and the like can be used. A flame retardant can be attached to at least one side of the fabric. In addition, the fabric can be made of fibers spun by kneading a flame retardant.

布帛の目付と厚みは、特に限定されないが、目付は10g/m〜100g/m、厚みは0.05mm〜3mmであることが好ましい。目付が10g/m未満では、シート加工時に活性炭粒子が布帛から脱落してしまい、100g/mを越えると、活性炭層形成時の加工性が悪くなる可能性がある。また、厚みが3mmを越えると、活性炭層形成時の取り扱い性が悪くなる可能性がある。ここで布帛の厚みは、7g/cm荷重で測定した厚みを指す。 The fabric weight and thickness of the fabric are not particularly limited, but the fabric weight is preferably 10 g / m 2 to 100 g / m 2 and the thickness is preferably 0.05 mm to 3 mm. If the basis weight is less than 10 g / m 2 , the activated carbon particles fall off from the fabric during sheet processing, and if it exceeds 100 g / m 2 , the workability during formation of the activated carbon layer may be deteriorated. Moreover, when thickness exceeds 3 mm, the handleability at the time of activated carbon layer formation may worsen. Here, the thickness of the fabric refers to the thickness measured at a load of 7 g / cm 3 .

活性炭層中の活性炭粒子の含有量は、50〜500g/mであることが好ましい。より好ましくは、70〜400g/mである。活性炭粒子の含有量が上記範囲未満では、トルエン等の有害ガスの除去性能が低く、上記範囲を越えると、活性炭層形成時の取り扱い性が悪くなる可能性がある。 The content of the activated carbon particles in the activated carbon layer is preferably 50 to 500 g / m 2 . More preferably, it is 70-400 g / m < 2 >. If the content of the activated carbon particles is less than the above range, the performance of removing harmful gases such as toluene is low, and if it exceeds the above range, the handleability during formation of the activated carbon layer may be deteriorated.

本発明の脱臭フィルタは、活性炭層中の活性炭粒子、熱可塑性樹脂バインダー粒子、熱硬化性樹脂粒子の三成分だけでもUL規格を満たす十分な難燃性を有するが、さらに高い難燃効果を求める場合には活性炭層に難燃剤を含有することが好ましい。使用する難燃剤は、特に限定されないが、リン酸アルミニウム、縮合リン酸アミド、ポリリン酸メラミン等のリン系難燃剤、メラミンシアヌレート等の窒素系難燃剤、水酸化アルミニウム等の金属水酸化物等を使用することができる。これらの中では難燃効果の面からリン系難燃剤が好ましい。   The deodorizing filter of the present invention has sufficient flame retardancy satisfying the UL standard even with only three components of activated carbon particles, thermoplastic resin binder particles, and thermosetting resin particles in the activated carbon layer, but requires a higher flame retardant effect. In some cases, the activated carbon layer preferably contains a flame retardant. Although the flame retardant to be used is not particularly limited, phosphorus-based flame retardants such as aluminum phosphate, condensed phosphate amide, and melamine polyphosphate, nitrogen-based flame retardants such as melamine cyanurate, metal hydroxides such as aluminum hydroxide, and the like Can be used. Among these, a phosphorus-based flame retardant is preferable from the viewpoint of the flame retardant effect.

難燃剤の平均粒子直径は、特に限定されないが、1.0〜100μmであることが好ましい。更に好ましくは、1.0〜50μmである。平均粒子直径が上記範囲未満では、粉塵等が生じるため取り扱い性が悪くなり、上記範囲を越えると、活性炭と均一に混合しない可能性がある。   Although the average particle diameter of a flame retardant is not specifically limited, It is preferable that it is 1.0-100 micrometers. More preferably, it is 1.0-50 micrometers. If the average particle diameter is less than the above range, dusts and the like are generated, so that the handleability is deteriorated. If the average particle diameter exceeds the above range, there is a possibility that the activated carbon is not uniformly mixed with the activated carbon.

活性炭層中の難燃剤の含有量は、活性炭粒子100重量部に対して1〜50重量部であることが好ましい。より好ましくは、3〜20重量部である。難燃剤の含有量が少ないと、難燃剤の効果を十分に発揮できず、多すぎると活性炭層形成時の取り扱い性が悪くなる可能性がある。   The content of the flame retardant in the activated carbon layer is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the activated carbon particles. More preferably, it is 3 to 20 parts by weight. If the content of the flame retardant is small, the effect of the flame retardant cannot be sufficiently exhibited, and if it is too large, the handleability during formation of the activated carbon layer may be deteriorated.

上記のように構成された本発明の脱臭フィルタは、通常使用時も燃焼時も活性炭層中の活性炭粒子を脱落させることがないので、有害ガス成分を効果的に除去できるだけでなく、UL規格94HF−1を満足する高い難燃性を持つ。   The deodorizing filter of the present invention configured as described above does not drop off activated carbon particles in the activated carbon layer during normal use or combustion, so it can not only effectively remove harmful gas components but also UL standard 94HF. High flame resistance satisfying -1.

以下、実施例によって本発明の脱臭フィルタの作用効果を具体的に示すが、本発明はこれらによって何ら限定されるものではない。なお、実施例中で測定した特性値の評価方法を以下に示す。   Hereinafter, although an example shows an operation effect of a deodorizing filter of the present invention concretely, the present invention is not limited at all by these. In addition, the evaluation method of the characteristic value measured in the Example is shown below.

(難燃性)
非特許文献1に記載されている水平燃焼試験により評価を実施した。この水平燃焼試験では、所定の高さに試験片を配置しておくことができる支持用金網を用い、この金網の下方に175±25mmの距離で脱脂綿(標識綿)を配置しておく。この金網に、長さ150±1mm、幅50±1mmの短冊状に裁断され、しかも長さ方向の一方の端部から、60mm、125mmの各位置に合計2つの標線を予め書き込んだ試験片を設置する。燃焼試験では、試験片を水平に載置した状態で上述した端部に金網の下方から炎を60±1秒間当てたのち、炎を試験片から離す。この時点から計時し、
[a]炎が消えた(残炎)時間
[b]炎と赤熱が消えた(残じん)時間
[c]炎又は赤熱の前線が125mm標線に達した時間、もしくは試験片が125mm標線の手前で燃焼又は赤熱が止まった時間
の3種類の時間を記録する。このような評価試験を5回実施し、下記の表1に示すような「94HF−1」又は「94HF−2」の2つの分類に応じて評価する。
(Flame retardance)
Evaluation was carried out by a horizontal combustion test described in Non-Patent Document 1. In this horizontal combustion test, a supporting wire mesh that can place a test piece at a predetermined height is used, and absorbent cotton (marked cotton) is placed under the wire mesh at a distance of 175 ± 25 mm. A test piece that is cut into a strip shape of 150 ± 1 mm in length and 50 ± 1 mm in width on this wire mesh, and in addition, a total of two marked lines are written in advance from one end in the length direction to each position of 60 mm and 125 mm. Is installed. In the combustion test, after the test piece is placed horizontally, a flame is applied to the end portion described above from below the wire mesh for 60 ± 1 second, and then the flame is separated from the test piece. Timing from this point,
[A] Time when flame disappeared (residual flame) [b] Time when flame and red heat disappeared (residual dust) [c] Time when flame or red heat front reached 125 mm mark, or test specimen marked 125 mm Record three types of time, the time when combustion or red heat stopped before. Such an evaluation test is performed five times, and evaluation is performed according to two classifications of “94HF-1” or “94HF-2” as shown in Table 1 below.

Figure 0005347750
Figure 0005347750

(平均粒子直径)
各粒子を走査型電子顕微鏡(SEM)で観察し、100個の粒子の直径を測定し、それから平均直径を算出した。
(Average particle diameter)
Each particle was observed with a scanning electron microscope (SEM), the diameter of 100 particles was measured, and the average diameter was calculated therefrom.

(トルエンの除去率)
フィルタ試料に、トルエン濃度5ppmの空気を風速10cm/秒で通し、カラムの入口側と出口側のトルエン濃度を測定した。測定条件は、温度25℃、湿度50%とした。これらの測定値を下記式に代入してトルエン除去率(%)を算出した。尚、初期効率を求めるため、測定開始後1分でのトルエン除去率を求めた。

Figure 0005347750
(Toluene removal rate)
Air having a toluene concentration of 5 ppm was passed through the filter sample at a wind speed of 10 cm / second, and the toluene concentrations at the inlet and outlet sides of the column were measured. The measurement conditions were a temperature of 25 ° C. and a humidity of 50%. These measured values were substituted into the following equation to calculate the toluene removal rate (%). In addition, in order to obtain | require initial efficiency, the toluene removal rate in 1 minute after the measurement start was calculated | required.
Figure 0005347750

(実施例1)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)22重量部を混合したものを散布して活性炭層を形成し、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は133g/mであった。
Example 1
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), A mixture of 22 parts by weight of thermosetting resin particles (average particle diameter 20 μm, phenol resin) is sprayed to form an activated carbon layer, which is sandwiched between iron plates heated to 140 ° C. and heat pressed for 1 minute. Then, the activated carbon layer was fixed with thermoplastic resin binder particles to prepare a filter. At this time, the basis weight of the activated carbon layer was 133 g / m 2 .

(実施例2)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)22重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は133g/mであった。
(Example 2)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), An activated carbon layer is formed by spraying a mixture of 22 parts by weight of thermosetting resin particles (average particle diameter: 20 μm, phenol resin), and a polyester spunbond nonwoven fabric (weight per unit: 25 g / m 2 , thickness). 0.16 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed by thermoplastic resin binder particles to produce a filter. At this time, the basis weight of the activated carbon layer was 133 g / m 2 .

(実施例3)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)7重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は118g/mであった。
(Example 3)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), An activated carbon layer is formed by spraying a mixture of 7 parts by weight of thermosetting resin particles (average particle diameter 20 μm, phenol resin), and a polyester spunbonded nonwoven fabric (weight per unit: 25 g / m 2 , thickness) 0.16 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed by thermoplastic resin binder particles to produce a filter. At this time, the basis weight of the activated carbon layer was 118 g / m 2 .

(実施例4)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)28重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は139g/mであった。
Example 4
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), An activated carbon layer is formed by spraying a mixture of 28 parts by weight of thermosetting resin particles (average particle diameter 20 μm, phenol resin), and a polyester spunbond nonwoven fabric (25 g / m 2 basis weight, thickness) on the activated carbon layer. 0.16 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed by thermoplastic resin binder particles to produce a filter. At this time, the basis weight of the activated carbon layer was 139 g / m 2 .

(実施例5)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)22重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は399g/mであった。
(Example 5)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), An activated carbon layer is formed by spraying a mixture of 22 parts by weight of thermosetting resin particles (average particle diameter: 20 μm, phenol resin), and a polyester spunbond nonwoven fabric (weight per unit: 25 g / m 2 , thickness). 0.16 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed by thermoplastic resin binder particles to produce a filter. The basis weight of the activated carbon layer at this time was 399 g / m 2 .

(実施例6)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)7重量部、難燃剤(平均粒子直径20μm、ポリリン酸メラミン)15重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は399g/mであった。
(Example 6)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), An activated carbon layer is formed by spraying a mixture of 7 parts by weight of thermosetting resin particles (average particle diameter 20 μm, phenol resin) and 15 parts by weight of a flame retardant (average particle diameter 20 μm, melamine polyphosphate). A polyester spunbonded non-woven fabric (25 g / m 2 basis weight, 0.16 mm thickness) is laminated on top, and then sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to produce thermoplastic resin binder particles. Then, the activated carbon layer was fixed to prepare a filter. The basis weight of the activated carbon layer at this time was 399 g / m 2 .

(実施例7)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)22重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)22重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は432g/mであった。
(Example 7)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 22 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 basis weight, thickness 0.16 mm), An activated carbon layer is formed by spraying a mixture of 22 parts by weight of thermosetting resin particles (average particle diameter: 20 μm, phenol resin), and a polyester spunbond nonwoven fabric (weight per unit: 25 g / m 2 , thickness). 0.16 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed by thermoplastic resin binder particles to produce a filter. At this time, the basis weight of the activated carbon layer was 432 g / m 2 .

(実施例8)
ポリエステル製スパンボンド不織布(目付65g/m、厚み0.31mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)22重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付65g/m、厚み0.31mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は399g/mであった。
(Example 8)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (65 g / m 2 in basis weight, thickness 0.31 mm), An activated carbon layer is formed by spraying a mixture of 22 parts by weight of thermosetting resin particles (average particle diameter 20 μm, phenol resin), and a polyester spunbond nonwoven fabric (weight per unit: 65 g / m 2 , thickness) 0.31 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed with thermoplastic resin binder particles to produce a filter. The basis weight of the activated carbon layer at this time was 399 g / m 2 .

(比較例1)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、難燃剤(平均粒子直径20μm、ポリリン酸メラミン)18重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は387g/mであった。
(Comparative Example 1)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), An activated carbon layer is formed by spraying a mixture of 18 parts by weight of a flame retardant (average particle diameter 20 μm, melamine polyphosphate), and a polyester spunbond nonwoven fabric (basis weight 25 g / m 2 , thickness 0. 16 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed with thermoplastic resin binder particles to produce a filter. The basis weight of the activated carbon layer at this time was 387 g / m 2 .

(比較例2)
ポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)11重量部、熱硬化性樹脂粒子(平均粒子直径20μm、フェノール樹脂)3重量部を混合したものを散布して活性炭層を形成し、この活性炭層の上にポリエステル製スパンボンド不織布(目付25g/m、厚み0.16mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。この時の活性炭層の目付は342g/mであった。
(Comparative Example 2)
100 parts by weight of activated carbon particles (average particle diameter 500 μm), 11 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on a polyester spunbonded nonwoven fabric (25 g / m 2 in basis weight, thickness 0.16 mm), A mixture of 3 parts by weight of thermosetting resin particles (average particle diameter 20 μm, phenol resin) is sprayed to form an activated carbon layer. A polyester spunbonded nonwoven fabric (weight per unit 25 g / m 2 , thickness) is formed on the activated carbon layer. 0.16 mm), and this was sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the activated carbon layer was fixed by thermoplastic resin binder particles to produce a filter. At this time, the basis weight of the activated carbon layer was 342 g / m 2 .

実施例1〜8、比較例1〜2で得られたフィルタの構成の詳細と難燃性の評価結果を表2に示す。   Table 2 shows details of the configurations of the filters obtained in Examples 1 to 8 and Comparative Examples 1 and 2 and evaluation results of flame retardancy.

Figure 0005347750
Figure 0005347750

また、実施例5〜6、比較例2で得られたフィルタのトルエン除去率の評価結果を表3に示す。   Table 3 shows the evaluation results of the toluene removal rates of the filters obtained in Examples 5 to 6 and Comparative Example 2.

Figure 0005347750
Figure 0005347750

表2から明らかなように、実施例1〜8は難燃性試験においてUL94HF−1の評価が得られているのに対して、熱硬化性樹脂粒子が含まれない比較例1は難燃剤を含有していても劣った難燃性しか得られず、また熱硬化性樹脂粒子が少ない比較例2も同様に劣った難燃性しか得られていない。さらに、表3から明らかなように、実施例5〜6、比較例2はいずれもトルエン除去率が極めて高く、有害ガスの除去性に優れている。   As is clear from Table 2, Examples 1 to 8 were evaluated for UL94HF-1 in the flame retardancy test, whereas Comparative Example 1 containing no thermosetting resin particles contained a flame retardant. Even if it is contained, only inferior flame retardancy can be obtained, and Comparative Example 2 with a small amount of thermosetting resin particles similarly has only inferior flame retardancy. Further, as is apparent from Table 3, Examples 5 to 6 and Comparative Example 2 all have a very high toluene removal rate and are excellent in removing harmful gases.

本発明の難燃性脱臭フィルタは、有害ガス成分の除去性と難燃性に優れるので、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器の排出ガス中に含まれる有害ガス成分を除去するための難燃性脱臭フィルタ、冷蔵庫やトイレ脱臭機などに用いられる難燃性脱臭フィルタ等に好適に使用できる。   Since the flame-retardant deodorizing filter of the present invention is excellent in the removal of harmful gas components and flame retardancy, it is included in the exhaust gas of electronic devices such as copiers, printers, multifunctional OA machines, computers, projectors, and POD printing machines. It can be suitably used for a flame retardant deodorizing filter for removing contained harmful gas components, a flame retardant deodorizing filter used for a refrigerator, a toilet deodorizer, and the like.

1 活性炭粒子
2 熱硬化性樹脂粒子
3 熱可塑性バインダー粒子
4 難燃剤
A 活性炭層
B 布帛
DESCRIPTION OF SYMBOLS 1 Activated carbon particle 2 Thermosetting resin particle 3 Thermoplastic binder particle 4 Flame retardant A Activated carbon layer B Fabric

Claims (2)

活性炭層と、その片面又は両面に設けられた布帛とを重ねてヒートプレスして得られる難燃性脱臭フィルタであって、前記活性炭層が活性炭粒子、熱硬化性樹脂粒子、および熱可塑性樹脂バインダー粒子を混合して含有し、前記活性炭層において熱硬化性樹脂粒子が活性炭粒子100重量部に対して4〜50重量部の割合で存在すること、及び前記活性炭層の熱硬化性樹脂が前記ヒートプレスによって硬化されないが、燃焼により硬化されることを特徴とする難燃性脱臭フィルタ。 Activated carbon layer, a flame retardant deodorizing filter obtained by heat pressing overlapping a fabric provided on one or both sides, wherein the activated carbon layer is activated carbon particles, thermosetting resin particles and a thermoplastic resin binder, A mixture of particles, wherein the thermosetting resin particles are present in the activated carbon layer in a ratio of 4 to 50 parts by weight with respect to 100 parts by weight of the activated carbon particles , and the thermosetting resin of the activated carbon layer is the heat. A flame retardant deodorizing filter which is not cured by a press but is cured by combustion . 前記活性炭層が難燃剤をさらに含有することを特徴とする請求項1に記載の難燃性脱臭フィルタ。   The flame retardant deodorizing filter according to claim 1, wherein the activated carbon layer further contains a flame retardant.
JP2009146129A 2009-06-19 2009-06-19 Flame retardant deodorizing filter Active JP5347750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146129A JP5347750B2 (en) 2009-06-19 2009-06-19 Flame retardant deodorizing filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146129A JP5347750B2 (en) 2009-06-19 2009-06-19 Flame retardant deodorizing filter

Publications (2)

Publication Number Publication Date
JP2011000547A JP2011000547A (en) 2011-01-06
JP5347750B2 true JP5347750B2 (en) 2013-11-20

Family

ID=43558970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146129A Active JP5347750B2 (en) 2009-06-19 2009-06-19 Flame retardant deodorizing filter

Country Status (1)

Country Link
JP (1) JP5347750B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179504A (en) * 2011-02-28 2012-09-20 Toyobo Co Ltd Flame-retardant deodorizing filter
JP2012055879A (en) * 2010-08-11 2012-03-22 Toyobo Co Ltd Flame-retardant deodorizing filter
JP5861450B2 (en) * 2011-12-27 2016-02-16 東洋紡株式会社 Flame retardant deodorizing filter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519937B1 (en) * 1970-02-05 1976-03-31
JPS6183612A (en) * 1984-09-28 1986-04-28 Pentel Kk Production of formed activated carbon
JPH0813324B2 (en) * 1989-11-02 1996-02-14 クラレケミカル株式会社 Adsorbent filter
JP3043474B2 (en) * 1991-06-24 2000-05-22 株式会社神戸製鋼所 Honeycomb molded body
JP3124327B2 (en) * 1991-09-13 2001-01-15 三菱製紙株式会社 Heat-resistant and flame-retardant adsorbent
JPH05103979A (en) * 1991-10-17 1993-04-27 Osaka Gas Co Ltd Molded adsorbent and its production
JP2000005544A (en) * 1998-06-19 2000-01-11 Zexel Corp Deodorant and deodorizing method
JP4224334B2 (en) * 2003-03-31 2009-02-12 日本バイリーン株式会社 Powder support structure
JP2005034710A (en) * 2003-07-17 2005-02-10 Toyobo Co Ltd Waterproof filter
JP5150090B2 (en) * 2006-11-01 2013-02-20 日本バイリーン株式会社 Flame retardant ozone VOC removal filter

Also Published As

Publication number Publication date
JP2011000547A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5150524B2 (en) Flame retardant filter media for gas removal
KR102636943B1 (en) Filter material for air filter
JP5150090B2 (en) Flame retardant ozone VOC removal filter
JP5347750B2 (en) Flame retardant deodorizing filter
JP2013033197A (en) Filter for suppressing generation of ultrafine particle
JP5082292B2 (en) Adsorbent sheet
JP4815138B2 (en) Flame retardant deodorizing filter media
JP2007130632A (en) Filtering medium and filter
JP2011072911A (en) Air cleaning filter
JP5927940B2 (en) Air filter medium for air purifier having air resistance and air filter for air purifier
JP5861450B2 (en) Flame retardant deodorizing filter
WO2012008482A1 (en) Flame-retardant deodorizing filter
JP2016112493A (en) Air cleaning filter
JP5747495B2 (en) Gas adsorption sheet and air purification filter
JP6578673B2 (en) Flame retardant support
WO2012020824A1 (en) Flame-retardant deodorizing filter
JP2014100654A (en) Filter material for air cleaning, and filter unit
JP2012242722A (en) Filter for polymerization toner
JP2015044183A (en) Filter medium for deodorization filter
JP2019181463A (en) Multilayer lamination filter
US20220288560A1 (en) Electret and filter using the same
JP2012055879A (en) Flame-retardant deodorizing filter
JP2015002946A (en) Flame-retardant deodorant filter
JP2002292214A (en) Flame-retardant dust collecting filter
JP5531736B2 (en) Composite filter medium and filter formed by pleating it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R151 Written notification of patent or utility model registration

Ref document number: 5347750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350