JP5308171B2 - Absorption column for body fluid purification treatment - Google Patents

Absorption column for body fluid purification treatment Download PDF

Info

Publication number
JP5308171B2
JP5308171B2 JP2009010314A JP2009010314A JP5308171B2 JP 5308171 B2 JP5308171 B2 JP 5308171B2 JP 2009010314 A JP2009010314 A JP 2009010314A JP 2009010314 A JP2009010314 A JP 2009010314A JP 5308171 B2 JP5308171 B2 JP 5308171B2
Authority
JP
Japan
Prior art keywords
adsorbent
substance
adsorption
body fluid
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009010314A
Other languages
Japanese (ja)
Other versions
JP2010166979A (en
Inventor
正道 一本松
鴻志 白
知恵 來栖
利一 宮本
由起子 大下
理恵 金川
有希 向田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renaissance Energy Investment Co Ltd
Original Assignee
Renaissance Energy Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renaissance Energy Investment Co Ltd filed Critical Renaissance Energy Investment Co Ltd
Priority to JP2009010314A priority Critical patent/JP5308171B2/en
Publication of JP2010166979A publication Critical patent/JP2010166979A/en
Application granted granted Critical
Publication of JP5308171B2 publication Critical patent/JP5308171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorption column for body fluid purifying treatment, capable of significantly reducing the capacity of the column or significantly reducing the treatment time by eliminating the influence of a co-adsorbed substance whose molecular weight is smaller than that of a substance to be adsorbed. <P>SOLUTION: The adsorption column for body fluid purifying treatment includes adsorbers with functional groups anchored on the surface of porous carriers. The adsorption column includes an auxiliary adsorber 1 for adsorbing and removing the co-adsorbed substance from the body fluid to be treated in advance, and a main adsorber 2 for adsorbing and removing the substance to be adsorbed from the body fluid to be treated after the removal of the co-adsorbed substance by the auxiliary adsorber. The porous carrier of the respective adsorbers includes a scaffold of a three-dimensional mesh structure, three-dimensional mesh-like through holes formed in gaps of the scaffold, and pores dispersed on the surface of the scaffold and penetrating inward from the surface of the scaffold. The diameter of the center pore measured by the nitrogen adsorbing method in the porous carrier of the auxiliary adsorber is smaller than the maximum length of the substance to be adsorbed. The lower limit of the distribution range of the diameters of the pores measured by the nitrogen adsorbing method is not more than 2 nm, and the upper limit of the distribution range is larger than the maximum value of the maximum length of the co-adsorbed substance. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定してなる体液浄化処理用の吸着カラムに関し、特に、血液中のLDL(低密度リポタンパク)等の病因物質の吸着除去を目的とするアフェレシス治療用の吸着カラムに関する。   The present invention relates to an adsorption column for body fluid purification treatment in which a functional group that specifically binds to a substance to be adsorbed is immobilized on the surface of a porous carrier, and in particular, etiology such as LDL (low density lipoprotein) in blood The present invention relates to an adsorption column for apheresis treatment for the purpose of adsorption removal of substances.

アフェレシス治療は、体外循環によって血中から病気の原因となる液性因子(タンパク質やタンパクと結合して血中に存在する抗体やサイトカイン等の免疫関連物質等)や細胞(リンパ球、顆粒球、ウイルス等)を除去し、病態の改善を図る治療法である。   Apheresis treatment involves humoral factors (proteins and immune-related substances such as cytokines that are present in the blood by binding to proteins) and cells (lymphocytes, granulocytes, This is a treatment method that aims to improve the pathological condition by removing viruses, etc.).

血液中に存在するリポタンパク中のLDLはコレステロールを多く含み、LDLの血中濃度が上昇する高LDL血症が、動脈硬化のリスクを高め心筋梗塞や脳梗塞のリスクを高めることは良く知られている。以下、特に断らない限り、LDLはコレステロールを含む場合を想定し、低密度リポタンパクとコレステロールの複合体であるLDLコレステロールを意味するものとする。高LDL血症の治療法の一つとして、LDLアフェレシス治療が実用されているが、治療費が高いことと患者への負担が大きいことから、専ら家族性(遺伝性)高LDL血症、閉塞性動脈硬化症、巣状糸球体硬化症等の患者の内の薬物治療が効かない重度の患者にのみ実施されているのが現状である。   It is well known that LDL in lipoproteins present in the blood contains a high amount of cholesterol, and hyper-LDLemia in which the blood concentration of LDL increases increases the risk of arteriosclerosis and the risk of myocardial infarction and cerebral infarction. ing. Hereinafter, unless otherwise specified, LDL is assumed to include cholesterol, and means LDL cholesterol which is a complex of low density lipoprotein and cholesterol. Although LDL apheresis treatment has been put to practical use as one of the treatment methods for hyper-LDLemia, it is mainly familial (hereditary) hyper-LDLemia and obstruction because of the high treatment costs and the burden on patients. Currently, it is performed only for severe patients who are not effective for drug treatment, such as atherosclerosis and focal glomerulosclerosis.

LDLアフェレシス治療は、吸着方式のアフェレシス治療で、吸着対象物質であるLDLに対して親和性を有する官能基を担体の表面に固定してなる吸着カラムに、患者の血液または血漿を灌流させることで、体外循環させた患者の血中からLDLを吸着除去する治療法である。LDL吸着カラムとしては、株式会社カネカのリポソーバ(登録商標)(下記の特許文献1、非特許文献1参照)、フレゼニウス社(ドイツ)のDALIシステム等(下記の特許文献2参照)がある。これらのLDL吸着カラムは、多数の細孔を有するビーズ状の多孔質セルロースゲル或いはポリアクリルアミドからなる担体表面に、LDLに対して親和性を有する官能基(リガンド)としてデキストラン硫酸、ポリアクリル酸等の鎖状多価酸を表面修飾して固定化し、当該表面修飾されたビーズをカラム容器内に充填して構成される。ビーズ径は、直接血液灌流法の場合250μm程度、血漿灌流法の場合50μm程度である。   The LDL apheresis treatment is an adsorption-type apheresis treatment in which blood or plasma of a patient is perfused through an adsorption column in which a functional group having affinity for LDL, which is an adsorption target substance, is immobilized on the surface of a carrier. This is a treatment method that adsorbs and removes LDL from the blood of a patient circulated extracorporeally. Examples of LDL adsorption columns include Kaneka Liposorba (registered trademark) (see Patent Literature 1 and Non-Patent Literature 1 below), DALI System of Fresenius (Germany) and others (see Patent Literature 2 below). These LDL adsorption columns have a bead-like porous cellulose gel having a large number of pores or a support surface made of polyacrylamide, dextran sulfate, polyacrylic acid, etc. as functional groups (ligands) having affinity for LDL. The chain polyvalent acid is surface-modified and immobilized, and the surface-modified beads are packed in a column container. The bead diameter is about 250 μm for the direct blood perfusion method and about 50 μm for the plasma perfusion method.

特公平4−511430号公報Japanese Examined Patent Publication No. 4-511430 特公平3−254756号公報Japanese Patent Publication No. 3-254756 特公平3−39736号公報Japanese Examined Patent Publication No.3-39736 特開平7−41374号公報JP 7-41374 A

谷敍孝、「血液吸着装置の開発」、医器学、Vol.58、No.6、266〜273頁、1988年Takashi Tani, “Development of blood adsorption device”, Medical Instrumentation, Vol. 58, no. 6, pp. 266-273, 1988

しかし、現在実用化されている多孔質セルロースゲルビーズ等を担体として使用したLDL吸着カラムには、以下に示すような問題がある。   However, the LDL adsorption column using porous cellulose gel beads and the like that are currently in practical use as a carrier has the following problems.

第1に、多孔質セルロースゲルビーズがセルロース繊維の絡まった糸鞠状で、ビーズ内の細孔径の分布が0.1〜1μmと球状のLDL分子の直径(約26〜27μm)より4〜40倍と大きく且つブロードであるため(非特許文献1(4.1担体)参照)、細孔径の拡大とともに細孔容積当たりの表面積が小さくなり、吸着効率が低下する。また、ビーズが糸鞠状のため、細孔径の分布の制御が困難であり、細孔径がLDL分子の直径程度以下の場合には、細孔表面にはLDLが吸着されず、吸着効率が低下する。   First, the porous cellulose gel beads are thread-like with entangled cellulose fibers, and the pore size distribution in the beads is 0.1 to 1 μm, which is 4 to 40 times the diameter of spherical LDL molecules (about 26 to 27 μm). Since it is large and broad (see Non-Patent Document 1 (4.1 Support)), the surface area per pore volume decreases with the increase in pore diameter, and the adsorption efficiency decreases. In addition, since the beads are thread-like, it is difficult to control the distribution of the pore diameter. When the pore diameter is less than or equal to the diameter of the LDL molecule, LDL is not adsorbed on the pore surface and the adsorption efficiency decreases. To do.

第2に、吸着カラム内に送入された血液或いは血漿は、各ビーズ間の隙間を流路として血流によって流れるが、吸着対象物質であるLDLのビーズ内部の細孔表面への移動は拡散による移動となり、更に、担体がビーズ状でその直径が細孔径に対して大きいので、LDLはビーズ表面近傍の細孔表面にしか吸着されず、ビーズ表面近傍から深奥部に亘る細孔表面積の全てを有効に利用できない。   Secondly, the blood or plasma sent into the adsorption column flows by the blood flow through the gaps between the beads, but the movement of LDL, which is the adsorption target substance, to the pore surface inside the beads is diffused. Furthermore, since the carrier is in the form of beads and its diameter is larger than the pore diameter, LDL is adsorbed only on the pore surface near the bead surface, and all of the pore surface area extending from the bead surface to the deep part. Cannot be used effectively.

第3に、上記第2の問題点を改善するためにビーズ径を小さくすると、各ビーズ状担体間の隙間が狭窄して血流の流路抵抗が高くなって圧力損失が増加し、血流の流量を大きくできない。カラム容器内にビーズ状担体を密に充填した場合を仮定すると、各ビーズ状担体間の隙間の狭窄個所を通過する流路径がビーズ径の15%程度まで狭くなること、また、当該狭窄個所がビーズ状担体によって4方向から囲まれ、一方向から当該狭窄個所に浸入する流路が対向するビーズ状担体によって大きく屈曲すること等が、圧力損失増加の要因と考えられる。   Third, if the bead diameter is reduced in order to improve the second problem, the gap between the bead-shaped carriers is narrowed, the flow resistance of the blood flow is increased, the pressure loss is increased, and the blood flow is increased. The flow rate cannot be increased. Assuming that the bead-shaped carrier is packed tightly in the column container, the diameter of the flow path passing through the narrowed portion of the gap between each bead-shaped carrier is narrowed to about 15% of the bead diameter, and the narrowed portion is It is considered that the pressure loss increases because the channel surrounded by the bead-shaped carrier from four directions and the flow path entering the constricted portion from one direction is largely bent by the facing bead-shaped carrier.

第4に、多孔質セルロースゲル等のソフトゲルでは、更に圧力損失が高く、高流量で血液或いは血漿を送入した場合、圧密化が起こり一定流量以上では血液或いは血漿を流れなくなる。   Fourth, a soft gel such as a porous cellulose gel has a higher pressure loss. When blood or plasma is fed at a high flow rate, consolidation occurs and blood or plasma does not flow above a certain flow rate.

第5に、多孔質セルロースゲル等の高分子担体では、微量の添加剤等が含まれているため、血液中のタンパク質の吸着や血液凝固機構の活性化が起こり易くなる。   Fifth, since polymer carriers such as porous cellulose gel contain a small amount of additives, protein adsorption in the blood and activation of the blood coagulation mechanism are likely to occur.

以上を纏めると、現在実用化されている多孔質セルロースゲルビーズを担体として使用したLDL吸着カラムには、担体が多孔質セルロースゲルであることに起因する問題(第1、第4及び第5の問題)と、担体がビーズ状であることに起因する問題(第1、第2及び第3の問題)の2タイプの問題がある。   In summary, the LDL adsorption column using the porous cellulose gel beads that are currently in practical use as the carrier has problems caused by the carrier being porous cellulose gel (first, fourth, and fifth problems). ) And problems (first, second and third problems) caused by the support being in the form of beads.

担体が多孔質セルロースゲルであることに起因する第4の問題、即ち、圧力損失が高く、一定流量以上では血液或いは血漿を流れなくなる問題については、担体を無機多孔体で構成する解決法が、上記の特許文献3で提案されている。しかし、特許文献3では、担体として多孔質ガラスビーズ(粒径80〜120メッシュ)とアガロースゲルビーズ(粒径50〜100メッシュ)について、圧力と流速の関係を比較し、多孔質ガラスビーズ担体では圧密化が起こらずに、圧力の増加に伴い流速も増大するのに対して、アガロースゲルビーズでは、流速が増加しない点が明らかにされているに過ぎない(特許文献3の図1参照)。ここで、多孔質ガラスビーズ担体のビーズ径は、直接血液灌流法を想定した250μm程度と大きなものとなっており、各ビーズ状担体間の隙間の狭窄個所を通過する流路径も大きなものとなっている。従って、ビーズ径が圧力損失や流速に与える影響については考慮も評価も一切なされていない。更に、特許文献3では、「担体の形状は粒状、繊維状、膜状、ホロファイバー状等の任意の形状を選ぶことができる。」との記載はあるものの、実際の評価はビーズ状(球状)担体で行われており、担体形状が圧力損失や流速に与える影響については考慮も評価も一切なされていない。   For the fourth problem caused by the carrier being a porous cellulose gel, that is, the problem that the pressure loss is high and blood or plasma does not flow above a certain flow rate, a solution in which the carrier is composed of an inorganic porous material, This is proposed in Patent Document 3 above. However, in Patent Document 3, the relationship between pressure and flow rate is compared for porous glass beads (particle size 80 to 120 mesh) and agarose gel beads (particle size 50 to 100 mesh) as carriers. The flow rate does not increase, but the flow rate increases with increasing pressure, whereas the agarose gel beads only reveal that the flow rate does not increase (see FIG. 1 of Patent Document 3). Here, the bead diameter of the porous glass bead carrier is as large as about 250 μm assuming a direct blood perfusion method, and the diameter of the flow path passing through the narrowed portion of the gap between each bead-like carrier is also large. ing. Therefore, no consideration or evaluation is made on the influence of the bead diameter on pressure loss or flow velocity. Furthermore, in Patent Document 3, although there is a description that “any shape such as granular, fibrous, membrane, or holofiber can be selected as the shape of the carrier”, the actual evaluation is a bead shape (spherical shape). ) It is carried out on the carrier, and no consideration or evaluation is made on the influence of the carrier shape on the pressure loss or flow velocity.

また、特許文献3では、ビーズ状担体を使用したLDL吸着体としての性能評価が行われているが、現在実用化されているLDL吸着カラムの使用形態に即した血液或いは血漿を流した状態での動的吸着試験ではなく、球状の吸着体を入れた試験管に血漿を加えて攪拌し、20℃で15分間放置後に上澄みのLDL濃度を測定するという静的吸着試験であるため、ビーズ状担体のビーズ径の影響、つまり、吸着カラム内に血液或いは血漿を通流させた状態での圧力損失の影響は十分に評価されていない。また、動的吸着試験による評価が一切されていないため、ビーズ径や担体形状がLDL吸着カラムとしての実使用状態での吸着性能に与える影響についての考慮も評価も一切なされていない。   Further, in Patent Document 3, performance evaluation as an LDL adsorbent using a bead-shaped carrier is performed, but in a state where blood or plasma is flowed in accordance with the use form of an LDL adsorption column that is currently in practical use. This is not a dynamic adsorption test, but is a static adsorption test in which plasma is added to a test tube containing a spherical adsorbent, stirred and left at 20 ° C. for 15 minutes, and then the LDL concentration of the supernatant is measured. The influence of the bead diameter of the carrier, that is, the influence of the pressure loss in a state where blood or plasma is passed through the adsorption column has not been sufficiently evaluated. Moreover, since evaluation by a dynamic adsorption test has not been performed at all, no consideration has been given to the influence of the bead diameter or the carrier shape on the adsorption performance in an actual use state as an LDL adsorption column.

また、上記第1及び第2の問題により、現行のLDL吸着カラムでは、LDLの飽和吸着量が約6mg/mLに止まっており、そのため、カラム容量として非再生型の場合400〜1000mLの大きさのカラムが、また、再生型の場合150mL×2本のカラムと複雑な再生システムが必要となる。更に、飽和吸着に至るまでの時間も長いため、治療に要する時間も2〜3時間と長く、患者に与える負担が大きいものである。   In addition, due to the first and second problems described above, in the current LDL adsorption column, the saturated adsorption amount of LDL is limited to about 6 mg / mL. Therefore, the non-regenerative type column capacity is 400 to 1000 mL. In the case of the regenerative type, 150 mL × 2 columns and a complicated regeneration system are required. Furthermore, since it takes a long time to reach saturated adsorption, the time required for the treatment is as long as 2 to 3 hours, which imposes a heavy burden on the patient.

そこで、現行のLDL吸着カラムの担体の材質及び形状に改善の余地があることに着目し鋭意検討した結果、吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定してなる体液浄化処理用の吸着カラムにおいて、従来のようにカラム内にビーズ状の多孔質担体に官能基を固定してなるビーズ状の吸着剤を充填した構成に代えて、多孔質担体として、3次元網目構造のシリカゲルまたはシリカガラスからなる無機質の骨格体と、骨格体の間隙に形成された3次元網目状の貫通孔を有し、且つ、貫通孔より小径の骨格体の表面から内部まで貫通する細孔が骨格体に分散して形成されている一体型の多孔質担体を用い、貫通孔及び細孔の平均孔径を最適化することで、従来の吸着カラムの問題点を解決でき、大幅な性能向上が実現できることを見出し、本願に先行して別途特許出願を行い特許されている(特願2007−236564)。   Therefore, as a result of diligent investigation focusing on the fact that there is room for improvement in the material and shape of the carrier of the current LDL adsorption column, a functional group that specifically binds to the substance to be adsorbed is fixed on the surface of the porous carrier. In the adsorption column for body fluid purification treatment, instead of the conventional configuration in which a bead-shaped adsorbent in which a functional group is fixed to a bead-shaped porous carrier is packed in the column, a porous carrier is used as a three-dimensional porous carrier. An inorganic skeleton made of silica gel or silica glass having a network structure, and a three-dimensional network-like through hole formed in the gap between the skeleton, and penetrates from the surface to the inside of the skeleton having a smaller diameter than the through hole. By using an integrated porous carrier with pores dispersed in the skeleton, and optimizing the average pore diameter of the through-holes and pores, the problems of conventional adsorption columns can be solved. Improve performance Found that are separately patents do patent application prior to the present application (Japanese Patent Application No. 2007-236564).

本願発明者等は、更に、上記先行出願で提案した新規な吸着カラムにおいて、被処理体液中に含まれる吸着対象物質より分子量の小さい共吸着物質の影響によって吸着対象物質に対する選択的な吸着性能が低下する現象を見出し、吸着対象物質と共吸着物質を分離して吸着することで吸着対象物質に対する選択的な吸着性能が大幅に改善できることを確認した。   Further, the inventors of the present application have a selective adsorption performance for the adsorption target substance due to the influence of the co-adsorption substance having a molecular weight smaller than that of the adsorption target substance contained in the body fluid to be treated in the novel adsorption column proposed in the above prior application. It was confirmed that the selective adsorption performance for the adsorption target substance can be greatly improved by finding the decreasing phenomenon and separating and adsorbing the adsorption target substance and the co-adsorption substance.

具体的には、血漿中には大小様々な分子が存在し、LDL吸着カラムには分子量が約3500kDa(キロダルトン)のLDL以外にも分子量が約5kDa〜340kDaの範囲のペプチドや小分子蛋白質が特異的に吸着される。これらペプチドや小分子蛋白質は、LDLとともにLDL吸着カラムの共吸着物質として共に吸着されLDLの吸着を阻害するため、カラム体積当たりのLDL吸着量は減少する傾向にある。また、血漿中の共吸着物質の量は患者によって異なっているため、安定したLDL除去能力をカラムに持たせることが困難である。   Specifically, plasma has a variety of large and small molecules. In addition to LDL having a molecular weight of about 3500 kDa (kilodalton), peptides and small molecules having molecular weights in the range of about 5 kDa to 340 kDa are present in the LDL adsorption column. It is adsorbed specifically. Since these peptides and small molecule proteins are adsorbed together with LDL as a co-adsorbing substance of the LDL adsorption column and inhibit the adsorption of LDL, the amount of LDL adsorption per column volume tends to decrease. In addition, since the amount of coadsorbing substance in plasma varies depending on the patient, it is difficult to provide the column with a stable LDL removal capability.

本発明は、上述の新規な吸着カラムにおける新たに見出した問題点に鑑みてなされたものであり、その目的は、少なくとも低密度リポタンパクを含む吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定してなる吸着体を備えてなる体液浄化処理用の吸着カラムにおいて、吸着対象物質より分子量の小さい共吸着物質の影響を排除して、カラム容量を大幅に低減可能または治療時間の大幅な短縮が可能な体液浄化処理用の吸着カラムを提供することにある。   The present invention has been made in view of the newly found problems in the above-described novel adsorption column, and its purpose is to provide a functional group that specifically binds to at least a substance to be adsorbed including low-density lipoprotein. In an adsorption column for body fluid purification treatment that has an adsorbent that is fixed on the surface of a porous carrier, the effect of co-adsorbents with a molecular weight lower than that of the substance to be adsorbed can be eliminated, and the column capacity can be greatly reduced or treated. An object of the present invention is to provide an adsorption column for body fluid purification treatment that can significantly reduce the time.

上記目的を達成するための本発明に係る体液浄化処理用の吸着カラムは、少なくとも低密度リポタンパクを含む吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定してなる吸着体を備えてなる体液浄化処理用の吸着カラムであって、被処理体液から前記吸着対象物質より分子量の小さい共吸着物質を予め吸着除去する補助吸着体と、前記補助吸着体で前記共吸着物質を吸着除去した後の被処理体液から前記吸着対象物質を吸着除去する主吸着体を備え、前記補助吸着体と前記主吸着体の前記多孔質担体が、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の間隙に形成された3次元網目状の貫通孔と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有し、前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、前記吸着対象物質の最大長より小さく、且つ、前記細孔の窒素吸着法で測定した細孔直径の分布範囲の下限が2nm以下、前記細孔直径の分布範囲の上限が前記共吸着物質の最大長の最大値を超えて大きく、前記主吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、前記吸着対象物質の最大長より大きいことを第1の特徴とする。   The adsorption column for body fluid purification treatment according to the present invention for achieving the above object is an adsorption column in which a functional group that specifically binds to a substance to be adsorbed containing at least low-density lipoprotein is immobilized on the surface of a porous carrier. An adsorption column for body fluid purification treatment comprising a body, wherein an adsorbent adsorbs and removes in advance a coadsorbent having a molecular weight smaller than that of the substance to be adsorbed from a body fluid to be treated, and the coadsorbent in the auxiliary adsorbent A main adsorbent that adsorbs and removes the substance to be adsorbed from the body fluid to be adsorbed and removed. The auxiliary adsorbent and the porous carrier of the main adsorbent are made of silica gel or silica glass having a three-dimensional network structure. A skeleton body, three-dimensional network-like through-holes formed in the gaps of the skeleton body, and pores penetrating from the surface of the skeleton body to the inside formed dispersed on the surface of the skeleton body. Shi The center pore diameter measured by the nitrogen adsorption method of the pores in the porous carrier of the auxiliary adsorbent is smaller than the maximum length of the substance to be adsorbed, and the pores measured by the nitrogen adsorption method of the pores The lower limit of the diameter distribution range is 2 nm or less, the upper limit of the pore diameter distribution range is larger than the maximum value of the maximum length of the coadsorbent, and the pore nitrogen in the porous support of the main adsorbent The first feature is that the central pore diameter measured by the adsorption method is larger than the maximum length of the substance to be adsorbed.

ここで、多孔質担体の表面は、多孔質担体の貫通孔及び細孔の各内壁面に相当するものであり、また、骨格体の表面は貫通孔の内壁面と同意である。また、本発明においては、中心細孔直径は、窒素吸着法で測定した細孔分布における細孔容積(V)を細孔直径(D)の常用対数(logD)で微分した値(dV/d(logD)、以下「微分細孔容積」と称す)を細孔直径(D)に対してプロットした曲線(以下「細孔分布曲線」と称す)の最大のピークを示す細孔直径として定義される。尚、当該中心細孔直径の定義において、細孔直径(D)ではなく、常用対数(logD)を使用する理由は、細孔直径(D)が2nm〜15nm程度の比較的小さい領域において細孔容積(V)の変化が現れる場合を精度良く検出するためである。   Here, the surface of the porous carrier corresponds to the inner wall surfaces of the through holes and pores of the porous carrier, and the surface of the skeleton body agrees with the inner wall surfaces of the through holes. In the present invention, the central pore diameter is a value (dV / d) obtained by differentiating the pore volume (V) in the pore distribution measured by the nitrogen adsorption method from the common logarithm (logD) of the pore diameter (D). (LogD), hereinafter referred to as “differential pore volume”) is defined as the pore diameter showing the maximum peak of a curve (hereinafter referred to as “pore distribution curve”) plotted against pore diameter (D). The In the definition of the central pore diameter, not the pore diameter (D) but the common logarithm (logD) is used because the pore diameter (D) is in a relatively small region of about 2 nm to 15 nm. This is for accurately detecting a case where a change in volume (V) appears.

更に、本発明に係る体液浄化処理用の吸着カラムは、上記第1の特徴に加え、前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、10nm以上26nm以下であることを第2の特徴とする。   Furthermore, in addition to the first feature, the adsorption column for body fluid purification treatment according to the present invention has a central pore diameter of 10 nm measured by the nitrogen adsorption method of the pores in the porous carrier of the auxiliary adsorbent. The second feature is that the thickness is 26 nm or more.

更に、本発明に係る体液浄化処理用の吸着カラムは、上記第1または第2の特徴に加え、前記主吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、前記吸着対象物質の最大長より2倍以上大きいことを第3の特徴とする。   Furthermore, the adsorption column for body fluid purification treatment according to the present invention, in addition to the first or second feature, has a central pore diameter measured by a nitrogen adsorption method of the pores in the porous carrier of the main adsorbent. The third feature is that is at least twice as large as the maximum length of the substance to be adsorbed.

更に、本発明に係る体液浄化処理用の吸着カラムは、上記第1乃至第3の何れかの特徴に加え、単体容器内の体液が通流する経路内の上流側に前記補助吸着体を備え、下流側に前記主吸着体を備えてなることを第4の特徴とする。   Furthermore, the adsorption column for body fluid purification treatment according to the present invention includes the auxiliary adsorbent on the upstream side in the path through which the body fluid in the single container flows, in addition to any of the first to third features. The fourth feature is that the main adsorbent is provided on the downstream side.

更に、本発明に係る体液浄化処理用の吸着カラムは、上記第1乃至第3の何れかの特徴に加え、体液が通流する体液通流路の上流側に単体容器内に前記補助吸着体を充填してなる補助吸着カラムを備え、前記体液通流路の下流側に別の単体容器内に前記主吸着体を充填してなる主吸着カラムを備えてなることを第5の特徴とする。   Furthermore, in addition to any one of the first to third features, the adsorption column for body fluid purification treatment according to the present invention includes the auxiliary adsorbent in the single container upstream of the body fluid passage through which the body fluid flows. A fifth feature is that an auxiliary adsorption column is provided, and a main adsorption column is provided on the downstream side of the body fluid passage, and the main adsorbent is filled in another single container. .

更に、本発明に係る体液浄化処理用の吸着カラムは、少なくとも低密度リポタンパクを含む吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定して、被処理体液から前記吸着対象物質より分子量の小さい共吸着物質を予め吸着除去する補助吸着体を備えてなる体液浄化処理用の吸着カラムであって、前記補助吸着体の前記多孔質担体が、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の間隙に形成された3次元網目状の貫通孔と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有し、前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、前記吸着対象物質の最大長より小さく、且つ、前記細孔の窒素吸着法で測定した細孔直径の分布範囲の下限が2nm以下で、前記細孔直径の分布範囲の上限が前記共吸着物質の最大長の最大値を超えて大きいことを第6の特徴とする。   Furthermore, the adsorption column for body fluid purification treatment according to the present invention has a functional group that specifically binds to a substance to be adsorbed containing at least low-density lipoprotein fixed on the surface of a porous carrier, and the adsorbing column from the body fluid to be treated. An adsorbing column for body fluid purification treatment comprising an auxiliary adsorbent that previously adsorbs and removes a co-adsorbing substance having a molecular weight smaller than that of the target substance, wherein the porous carrier of the auxiliary adsorbent is a three-dimensional network structure silica gel or A skeleton body made of silica glass, a three-dimensional network-like through-hole formed in a gap between the skeleton bodies, and a pore penetrating from the surface of the skeleton body to the inside formed dispersed on the surface of the skeleton body A central pore diameter measured by a nitrogen adsorption method of the pores in the porous carrier of the auxiliary adsorbent is smaller than a maximum length of the substance to be adsorbed, and a nitrogen adsorption method of the pores Measured in The lower limit of the distribution range of the pore diameter of at 2nm or less, the upper limit of the distribution range of the pore diameter and the sixth aspect of the greater than the maximum value of the maximum length of the co-adsorbent material.

更に、本発明に係る体液浄化処理用の吸着カラムは、上記第6の特徴に加え、前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、10nm以上26nm以下であることを第7の特徴とする。   Furthermore, in addition to the sixth feature, the adsorption column for body fluid purification treatment according to the present invention has a central pore diameter of 10 nm measured by a nitrogen adsorption method of the pores in the porous carrier of the auxiliary adsorbent. The seventh characteristic is that the thickness is 26 nm or more.

更に、本発明に係る体液浄化処理用の吸着カラムは、上記第1乃至第7の何れかの特徴に加え、前記官能基が、低密度リポタンパクに特異的に結合する親和性を有するデキストラン硫酸またはその塩、ポリアクリル酸またはその塩、或いは、その他の鎖状多価酸またはその塩であることを第8の特徴とする。   Further, the adsorption column for body fluid purification treatment according to the present invention is a dextran sulfate having an affinity that the functional group specifically binds to low density lipoprotein in addition to any of the first to seventh features. Alternatively, the eighth feature is that it is a salt thereof, polyacrylic acid or a salt thereof, or other chain polyvalent acid or a salt thereof.

更に、本発明に係る体液浄化処理用の吸着カラムは、上記第1乃至第8の何れかの特徴に加え、前記多孔質担体が、スピノーダル分解ゾルゲル法で合成されていることを第9の特徴とする。   Furthermore, the adsorption column for body fluid purification treatment according to the present invention is characterized in that, in addition to any of the first to eighth features, the porous carrier is synthesized by a spinodal decomposition sol-gel method. And

上記第1または第2の特徴の体液浄化処理用吸着カラムによれば、被処理体液が、中心細孔直径が吸着対象物質の最大長より小さい補助吸着体を通流する際に、被処理体液中の吸着対象物質の殆どは補助吸着体の細孔内に進入できず吸着除去されないが、吸着対象物質より分子量の小さい分子量の異なる多数の共吸着物質は、補助吸着体の細孔直径の分布範囲が共吸着物質夫々の最大長(分子サイズ)をカバーするため、補助吸着体の細孔内に進入して吸着除去される。従って、補助吸着体では、分子量の大きい吸着対象物質が不必要に細孔内に進入して細孔の入口を塞ぐのが防止されるため、分子量の小さい共吸着物質が細孔深部にまで進入して吸着され易くなり、補助吸着体を通流する被処理体液から吸着対象物質より分子量の小さい共吸着物質が選択的に吸着除去されることになる。更に、補助吸着体の中心細孔直径が吸着対象物質の最大長より小さい場合と大きい場合を比較すれば、小さい場合の方が大きい場合より、官能基が固定される多孔質担体の表面積が大きくなるため、共吸着物質の吸着能力は増大することになる。また、主吸着体を通流する被処理体液からは、既に補助吸着体で共吸着物質が選択的に吸着除去されているため、共吸着物質が主吸着体の細孔内に進入して共吸着されないので、主吸着体での吸着対象物質の吸着が共吸着物質によって阻害されることが軽減され、主吸着体における吸着対象物質の吸着除去効率が向上する。   According to the adsorption column for body fluid purification processing according to the first or second feature, the body fluid to be treated flows when the body fluid flows through the auxiliary adsorbent whose central pore diameter is smaller than the maximum length of the substance to be adsorbed. Most of the adsorption target substances cannot enter the pores of the auxiliary adsorbent and are not removed by adsorption. However, many coadsorbents with different molecular weights than the adsorption target substance have different pore diameter distributions of the auxiliary adsorbents. Since the range covers the maximum length (molecular size) of each co-adsorbing substance, it enters the pores of the auxiliary adsorbent and is adsorbed and removed. Therefore, in the auxiliary adsorbent, the adsorption target substance with a large molecular weight is prevented from unnecessarily entering the pores and blocking the entrance of the pores, so that the co-adsorbed substance with a small molecular weight enters the deep pores. Thus, the co-adsorbing substance having a molecular weight smaller than that of the substance to be adsorbed is selectively adsorbed and removed from the liquid to be treated flowing through the auxiliary adsorbent. Further, comparing the case where the central pore diameter of the auxiliary adsorbent is smaller than the maximum length of the substance to be adsorbed, the surface area of the porous carrier to which the functional group is fixed is larger in the case where it is smaller than in the case where it is smaller. Therefore, the adsorption capacity of the co-adsorbing substance is increased. Further, since the co-adsorbing material has been selectively adsorbed and removed by the auxiliary adsorbing body from the liquid to be treated flowing through the main adsorbing body, the co-adsorbing material enters the pores of the main adsorbing body and is shared. Since it is not adsorbed, it is reduced that the adsorption of the adsorption target substance on the main adsorbent is hindered by the co-adsorption substance, and the adsorption removal efficiency of the adsorption target substance on the main adsorbent is improved.

補助吸着体と主吸着体の中心細孔直径と、吸着物質(吸着対象物質と共吸着物質)の最大長の関係について、より詳細に説明する。   The relationship between the central pore diameters of the auxiliary adsorbent and the main adsorbent and the maximum length of the adsorbed substances (adsorption target substance and coadsorbed substance) will be described in more detail.

補助吸着体の骨格体に分散して形成される細孔の細孔直径が、窒素吸着法の測定下限である2nm以下から共吸着物質の最大長の最大値を超えて分布しているため、細孔直径の分布範囲が分子量の異なる大小の共吸着物質の各最大長(共吸着物質が球形、楕円球形或いは円板形であれば、その直径または最大径)の全てをカバーすることになる。従って、補助吸着体は、骨格体の貫通孔に向けて露出した表面(貫通孔表面)と、骨格体の細孔に向けて露出した表面(細孔表面)の2種類の表面に固定された官能基を共吸着物質の吸着に供することが可能となる。以上の結果、補助吸着体は、細孔表面を有効に利用して、分子量の異なる大小の共吸着物質を万遍なく吸着することができる。更に、補助吸着体の中心細孔直径が、吸着対象物質の最大長より小さく設定されることで、吸着対象物質は細孔内に移動不能または極めて困難となり、吸着対象物質の吸着は専ら貫通孔表面に固定された官能基によることになり、貫通孔表面より表面積の広い細孔表面に固定された官能基は、専らに共吸着物質の吸着に供せられることとなり、補助吸着体の共吸着物質に対する吸着能力が向上する。ここで、補助吸着体の中心細孔直径を、吸着対象物質の最大長より小さい範囲内で共吸着物質の最大長の最大値以上とすると、共吸着物質は、細孔内の深部にまで移動可能となり、細孔表面に固定された官能基をより効率的に利用して吸着性能が向上するが、中心細孔直径が吸着対象物質の最大長を超えて大きくなり過ぎると、細孔表面の表面積が減少して、共吸着物質の吸着に供される官能基の数が減少するため、共吸着物質に対する吸着性能が逆に低下することになる。   Since the pore diameter of the pores formed by being dispersed in the skeleton of the auxiliary adsorbent is distributed from 2 nm or less, which is the measurement lower limit of the nitrogen adsorption method, to the maximum value of the maximum length of the coadsorbent, The distribution range of the pore diameter covers all the maximum lengths of large and small coadsorbents with different molecular weights (or the diameter or maximum diameter if the coadsorbent is spherical, elliptical spherical, or disk-shaped). . Therefore, the auxiliary adsorbent was fixed on two types of surfaces, the surface exposed toward the through-hole of the skeleton (through-hole surface) and the surface exposed toward the pore of the skeleton (pore surface). The functional group can be used for adsorption of the co-adsorbing substance. As a result, the auxiliary adsorbent can effectively adsorb large and small coadsorbents having different molecular weights by effectively utilizing the pore surface. Furthermore, since the central pore diameter of the auxiliary adsorbent is set smaller than the maximum length of the adsorption target substance, the adsorption target substance cannot move into the pore or becomes extremely difficult, and the adsorption of the adsorption target substance is exclusively through-holes. It depends on the functional group fixed on the surface, and the functional group fixed on the surface of the pore having a larger surface area than the surface of the through-hole is exclusively used for the adsorption of the co-adsorbing substance. Increases adsorption capacity for substances. Here, if the diameter of the central pore of the auxiliary adsorbent is set to be greater than or equal to the maximum value of the maximum length of the coadsorbent within a range smaller than the maximum length of the substance to be adsorbed, the coadsorbent moves to the deep part in the pore. It is possible to improve the adsorption performance by using the functional group fixed on the pore surface more efficiently, but if the central pore diameter exceeds the maximum length of the adsorption target substance, Since the surface area is reduced and the number of functional groups used for the adsorption of the co-adsorbing substance is reduced, the adsorption performance for the co-adsorbing substance is lowered.

吸着対象物質がLDLの場合、その分子量は3500kDaで分子直径が26〜27nmであるので、補助吸着体の中心細孔直径は26nm以下であることが好ましい。また、吸着対象物質がLDLの場合の共吸着物質としては、後述するように、分子量が約5kDa〜340kDa、分子の最大長が3nm〜13nm程度のペプチドや小分子蛋白質が吸着されるため(図7、図8参照)、補助吸着体の中心細孔直径は、10nm以上であることが好ましい。尚、細孔直径を窒素吸着法によって測定した場合、その細孔直径の分布は中心細孔直径の+50%程度まで広がっており、中心細孔直径が10nmの場合には、細孔直径の分布範囲の上限は15nm程度となり、分子量340kDaの共吸着物質の吸着に細孔表面が有効に利用できることになる。また、中心細孔直径が26nmの場合には、細孔直径の分布範囲の上限は40nm程度となり、斯かる大きな細孔内ではLDLがある程度吸着されることが予想されるが、後述するように、細孔容積の大部分が中心細孔直径近傍の細孔径に集中し(図5(b)参照)、細孔径が中心細孔直径近傍より大きい領域では細孔容積が小さく、吸着に供される細孔表面積も小さくなるので、大きな細孔内でのLDL吸着の影響は無視できるものと考えられる。   When the adsorption target substance is LDL, the molecular weight is 3500 kDa and the molecular diameter is 26 to 27 nm. Therefore, it is preferable that the central pore diameter of the auxiliary adsorbent is 26 nm or less. In addition, as a co-adsorption substance when the adsorption target substance is LDL, as will be described later, peptides and small molecule proteins having a molecular weight of about 5 kDa to 340 kDa and a maximum molecular length of about 3 nm to 13 nm are adsorbed (see FIG. 7, see FIG. 8), and the center pore diameter of the auxiliary adsorbent is preferably 10 nm or more. When the pore diameter is measured by the nitrogen adsorption method, the pore diameter distribution extends to about + 50% of the central pore diameter, and when the central pore diameter is 10 nm, the pore diameter distribution. The upper limit of the range is about 15 nm, and the pore surface can be effectively used for adsorption of the co-adsorbing substance having a molecular weight of 340 kDa. When the central pore diameter is 26 nm, the upper limit of the pore diameter distribution range is about 40 nm, and it is expected that LDL is adsorbed to some extent in such large pores. Most of the pore volume is concentrated in the pore diameter near the central pore diameter (see FIG. 5B), and in the region where the pore diameter is larger than the central pore diameter, the pore volume is small and is used for adsorption. Therefore, it is considered that the influence of LDL adsorption in large pores can be ignored.

次に、主吸着体の中心細孔直径が、吸着対象物質の最大長より大きく設定されることで、貫通孔表面と細孔表面の2種類の表面に固定された官能基を吸着対象物質の吸着に供することが可能となる。つまり、中心細孔直径が吸着対象物質の最大長(吸着対象物質が球形、楕円球形或いは円板形であれば、その直径または最大径、吸着対象物質がLDLの場合に相当する)より小さければ、吸着対象物質は細孔内に移動不能または極めて困難となり、吸着対象物質の吸着は専ら貫通孔表面に固定された官能基によることになる。これに対して、中心細孔直径が吸着対象物質の最大長より大きければ、吸着対象物質は少なくとも1つが細孔内に移動して、細孔表面に固定された官能基に吸着可能となり、吸着に供せられる有効な骨格体の表面積が増大する。   Next, the central pore diameter of the main adsorbent is set to be larger than the maximum length of the adsorption target substance, so that the functional groups fixed on the two kinds of surfaces, the through-hole surface and the pore surface, are absorbed by the adsorption target substance. It becomes possible to use for adsorption. That is, if the central pore diameter is smaller than the maximum length of the substance to be adsorbed (if the substance to be adsorbed is a sphere, an ellipsoidal sphere or a disk, the diameter or maximum diameter corresponds to the case where the substance to be adsorbed is LDL). The substance to be adsorbed cannot move into the pores or becomes extremely difficult, and the adsorption of the substance to be adsorbed is solely due to the functional group fixed on the surface of the through hole. On the other hand, if the central pore diameter is larger than the maximum length of the substance to be adsorbed, at least one substance to be adsorbed moves into the pore and can be adsorbed to the functional group fixed on the surface of the pore. The surface area of the effective skeletal body that is subjected to is increased.

更に、上記第1または第2の特徴の体液浄化処理用吸着カラムによれば、多孔質担体として無機質のシリカゲルまたはシリカガラスを使用しているので、上述した従来の吸着カラムにおける多孔質担体が高分子やソフトゲルであることに起因する問題と、多孔質担体がビーズ状であることに起因する問題が同時に解消される。   Furthermore, according to the adsorption column for purifying body fluid according to the first or second feature, since the inorganic silica gel or silica glass is used as the porous carrier, the porous carrier in the conventional adsorption column described above is high. The problem caused by the molecule or soft gel and the problem caused by the porous carrier being in the form of beads are solved at the same time.

具体的には、3次元網目構造の骨格体と骨格体外に形成された3次元網目状の貫通孔を有する一体型の多孔質担体を用いることで、体液浄化処理の対象となる体液(例えば、血漿)の通流路となる貫通孔が3次元網目状に連通することから、貫通孔径が、ビーズ状担体をカラム容器内に密に充填した場合の各ビーズ状担体間の隙間の狭窄個所を通過する流路径と同じであっても、流路抵抗を低く抑制でき、圧力損失をビーズ状担体と比較して低く抑えることができる。また、ビーズ状担体も3次元網目構造の骨格体も、吸着対象物質の細孔内の移動が拡散による移動であり、各担体の表面近傍の細孔に固定されている官能基が専ら有効に機能するものと仮定すれば、担体の立体形状は、単位容積当たりの表面積が大きい3次元網目構造の方が、表面積の小さいビーズ状(球状)より、官能基が有効に機能する細孔表面積を大きくできることになる。従って、同じ流路径では、3次元網目構造の方がビーズ状担体より、圧力損失が低く、有効な細孔面積も大きくなる。つまり、3次元網目構造の方がビーズ状担体より、更に、流路径を小さくして、有効な細孔面積を更に拡大することが可能となる。   Specifically, by using an integrated porous carrier having a three-dimensional network structure skeleton body and a three-dimensional network-like through-hole formed outside the skeleton body fluid (for example, body fluid purification target) Since the through-holes that serve as the flow channels for the plasma) communicate with each other in a three-dimensional network, the diameter of the through-holes is the narrowing of the gaps between the bead-like carriers when the bead-like carriers are closely packed in the column container. Even if the diameter of the passage is the same as the passage diameter, the passage resistance can be kept low, and the pressure loss can be kept low compared to the bead-shaped carrier. Moreover, in both the bead-like support and the three-dimensional network structure, the movement of the substance to be adsorbed in the pores is caused by diffusion, and the functional groups fixed to the pores near the surface of each support are exclusively effective. Assuming that it functions, the three-dimensional network structure with a larger surface area per unit volume has a pore surface area where the functional group functions more effectively than a bead shape (spherical) with a smaller surface area. You can make it bigger. Therefore, with the same flow path diameter, the three-dimensional network structure has lower pressure loss and larger effective pore area than the bead-shaped carrier. That is, the three-dimensional network structure can further reduce the channel diameter and further increase the effective pore area than the bead-like carrier.

ここで、細孔径が貫通孔径と同程度まで大きくなると、もはや細孔ではなく貫通孔と同等視され、細孔が骨格体の表面に分散しているという条件に該当しなくなる。従って、本発明の補助吸着体及び主吸着体で使用する3次元網目構造の多孔質担体の特徴は、3次元網目状の貫通孔と、それより孔径の小さい細孔の2種類の孔径による階層的な多孔質構造となっている点である。つまり、斯かる多孔質構造の特徴を利用することで、従来のビーズ状多孔体を用いた吸着カラムに対して大幅な性能向上の図れる条件設定が可能となるのである。   Here, when the pore diameter is increased to the same level as the through-hole diameter, it is no longer regarded as a pore but equivalent to a through-hole, and does not meet the condition that the pores are dispersed on the surface of the skeleton. Accordingly, the porous support having a three-dimensional network structure used in the auxiliary adsorbent and the main adsorbent of the present invention is characterized by a three-dimensional network-like through-hole and a hierarchy of two types of pore sizes smaller than that. This is a typical porous structure. In other words, by utilizing such a characteristic of the porous structure, it is possible to set conditions for greatly improving the performance of an adsorption column using a conventional bead-shaped porous body.

更に、ビーズ状担体をカラム容器内に密に充填した場合の流路径と貫通孔径が同じ場合では、3次元網目構造の骨格体の方がビーズ状担体より径を小さく作製できるため、細孔の担体表面から内部に向けて延伸する延伸長は、ビーズ状担体より3次元網目構造の骨格体の方が短く、吸着対象物質の細孔内への拡散による移動距離が短くなるので、細孔内の官能基への吸着効率が向上する。つまり、ビーズ状担体を用いた従来の吸着カラムと比較して飽和吸着に至るまでの時間も短縮され、短時間で高性能の吸着カラムを最大限に利用可能となり、治療に要する時間が短縮され、患者に与える負担を大幅に軽減できる。   In addition, when the flow path diameter and the through-hole diameter are the same when the bead-shaped carrier is closely packed in the column container, the three-dimensional network structure skeleton body can be made smaller in diameter than the bead-shaped carrier. The stretch length extending from the support surface to the inside is shorter in the three-dimensional network structure than in the bead-like support, and the movement distance due to the diffusion of the substance to be adsorbed into the pore is shortened. The adsorption efficiency to the functional group is improved. In other words, compared to conventional adsorption columns using bead-like carriers, the time to saturation adsorption is shortened, and a high-performance adsorption column can be used to the maximum in a short time, reducing the time required for treatment. The burden on the patient can be greatly reduced.

また、上記第3の特徴の体液浄化処理用の吸着カラムによれば、主吸着体の中心細孔直径が、吸着対象物質の最大長より2倍以上大きく設定されることで、細孔表面に固定された官能基をより効率的に吸着対象物質の吸着に供することが可能となる。つまり、中心細孔直径が吸着対象物質の最大長より2倍以上大きいと、細孔表面に固定された官能基に吸着した吸着対象物質によって、他の吸着対象物質が同じ細孔内に移動して他の官能基に吸着されるのが阻害されにくくなるため、細孔径が大きい程、吸着に有効に利用される細孔の深さ(骨格体表面からの距離)が大きくなり、細孔内に移動して吸着される吸着対象物質が増える。しかし、中心細孔直径が大きいと、骨格体の単位表面積当たりの細孔数が減少するため、中心細孔直径をある一定範囲を超えて大きくしても、吸着性能は増加しない。尚、当該一定範囲の上限は、貫通孔径及び吸着対象物質の大きさに依存するため一意には定まらないが、上述の先行出願(特願2007−236564)の明細書に記載の実施例の測定結果より吸着対象物質の最大長の6〜10倍程度と考えられる。但し、中心細孔直径は、吸着性能が大幅に低下しない限り当該一定範囲を超えて大きくすることは可能である。   Further, according to the adsorption column for body fluid purification processing of the third feature, the central pore diameter of the main adsorbent is set to be twice or more larger than the maximum length of the substance to be adsorbed, so that the pore surface The fixed functional group can be more efficiently used for adsorption of the adsorption target substance. In other words, if the central pore diameter is more than twice as large as the maximum length of the substance to be adsorbed, other substances to be adsorbed move into the same pore by the substance to be adsorbed by the functional group fixed on the pore surface. Therefore, the larger the pore diameter, the greater the depth of the pore (distance from the surface of the skeleton body) that is effectively used for adsorption. The substance to be adsorbed increases by being moved to. However, if the central pore diameter is large, the number of pores per unit surface area of the skeleton decreases, so even if the central pore diameter is increased beyond a certain range, the adsorption performance does not increase. Although the upper limit of the certain range depends on the through-hole diameter and the size of the substance to be adsorbed, it is not uniquely determined, but the measurement of the examples described in the specification of the above-mentioned prior application (Japanese Patent Application No. 2007-236564) From the result, it is considered to be about 6 to 10 times the maximum length of the substance to be adsorbed. However, the central pore diameter can be increased beyond the certain range as long as the adsorption performance is not significantly reduced.

更に、上記第4の特徴の体液浄化処理用の吸着カラムによれば、補助吸着体と主吸着体を単体容器内に備えることで、アフェレシス治療において主吸着体だけを備えた吸着カラムと同様に取り扱うことができる。尚、補助吸着体は主吸着体より中心細孔直径が小さいため、主吸着体と比べて小さい容量で大きな細孔表面積を確保できるので、補助吸着体の容積を主吸着体より大幅に小さくできるため、補助吸着体と主吸着体を単体容器内に収容するのに都合が良い。   Furthermore, according to the adsorption column for body fluid purification treatment of the fourth feature, the auxiliary adsorbent and the main adsorbent are provided in the single container, so that the adsorption column having only the main adsorbent in the apheresis treatment is provided. It can be handled. Since the auxiliary adsorbent has a smaller central pore diameter than the main adsorbent, a large pore surface area can be secured with a smaller capacity than the main adsorbent, so that the volume of the auxiliary adsorbent can be significantly smaller than that of the main adsorbent. Therefore, it is convenient to accommodate the auxiliary adsorbent and the main adsorbent in the single container.

更に、上記第5の特徴の体液浄化処理用の吸着カラムによれば、補助吸着体を備えた補助吸着カラムと主吸着体を備えた主吸着カラムを個別に設けてあるため、補助吸着カラムと主吸着カラムを個別に交換する等の利用方法が可能となる。一例として、補助吸着カラムと主吸着カラムの一方の吸着性能だけが他方に比べて低下した場合に、当該一方の吸着カラムだけを交換すれば良い。   Furthermore, according to the adsorption column for body fluid purification processing of the fifth feature, the auxiliary adsorption column provided with the auxiliary adsorbent and the main adsorption column provided with the main adsorbent are provided separately. Utilization methods such as exchanging the main adsorption column individually become possible. As an example, when only the adsorption performance of one of the auxiliary adsorption column and the main adsorption column is lower than that of the other, only the one adsorption column may be replaced.

上記第6または第7の特徴の体液浄化処理用の吸着カラムによれば、被処理体液が、中心細孔直径が吸着対象物質の最大長より小さい補助吸着体を通流する際に、被処理体液中の吸着対象物質の殆どは補助吸着体の細孔内に進入できず吸着除去されないが、吸着対象物質より分子量の小さい分子量の異なる多数の共吸着物質は、補助吸着体の細孔直径の分布範囲が共吸着物質夫々の最大長(分子サイズ)をカバーするため、補助吸着体の細孔内に進入して吸着除去される。従って、補助吸着体では、分子量の大きい吸着対象物質が不必要に細孔内に進入して細孔の入口を塞ぐのが防止されるため、分子量の小さい共吸着物質が細孔深部にまで進入して吸着され易くなり、補助吸着体を通流する被処理体液から吸着対象物質より分子量の小さい共吸着物質が選択的に吸着除去されることになる。更に、補助吸着体の中心細孔直径が吸着対象物質の最大長より小さい場合と大きい場合を比較すれば、小さい場合の方が大きい場合より、官能基が固定される多孔質担体の表面積が大きくなるため、共吸着物質の吸着能力は増大することになる。従って、補助吸着体を通流した後の被処理体液から共吸着物質が吸着除去されているので、当該被処理体液に対して吸着対象物質を吸着除去する処理を行うことで、吸着対象物質の吸着が共吸着物質によって阻害されることが軽減され、吸着対象物質の吸着除去効率が向上する。補助吸着体の中心細孔直径と、吸着物質(吸着対象物質と共吸着物質)の最大長の関係、及び、多孔質担体として無機質のシリカゲルまたはシリカガラスを使用する点については、上述の通りであるので、重複する説明は割愛する。   According to the adsorption column for body fluid purification treatment of the sixth or seventh feature, when the body fluid to be treated flows through the auxiliary adsorbent having a center pore diameter smaller than the maximum length of the substance to be adsorbed, Most of the adsorption target substances in the body fluid cannot enter the pores of the auxiliary adsorbent and are not removed by adsorption. However, a large number of coadsorbents having different molecular weights than the adsorption target substance have a pore diameter of the auxiliary adsorbent. Since the distribution range covers the maximum length (molecular size) of each co-adsorbing substance, it enters the pores of the auxiliary adsorbent and is removed by adsorption. Therefore, in the auxiliary adsorbent, the adsorption target substance with a large molecular weight is prevented from unnecessarily entering the pores and blocking the entrance of the pores, so that the co-adsorbed substance with a small molecular weight enters the deep pores. Thus, the co-adsorbing substance having a molecular weight smaller than that of the substance to be adsorbed is selectively adsorbed and removed from the liquid to be treated flowing through the auxiliary adsorbent. Further, comparing the case where the central pore diameter of the auxiliary adsorbent is smaller than the maximum length of the substance to be adsorbed, the surface area of the porous carrier to which the functional group is fixed is larger in the case where it is smaller than in the case where it is smaller. Therefore, the adsorption capacity of the co-adsorbing substance is increased. Therefore, since the co-adsorbed substance is adsorbed and removed from the liquid to be treated after flowing through the auxiliary adsorbent, the adsorption target substance is removed by adsorbing and removing the substance to be adsorbed on the liquid to be treated. It is reduced that the adsorption is hindered by the co-adsorbing substance, and the adsorption removal efficiency of the adsorption target substance is improved. The relationship between the center pore diameter of the auxiliary adsorbent and the maximum length of the adsorbed substances (adsorption target substance and coadsorbed substance) and the point of using inorganic silica gel or silica glass as the porous carrier are as described above. Because there is, the explanation which overlaps is omitted.

更に、上記第8の特徴の体液浄化処理用の吸着カラムによれば、吸着対象物質がLDL(分子直径が約26〜27nm)の場合において、補助吸着体において、その共吸着物質であるLDLより分子量の小さいペプチドや小分子蛋白質が効果的に吸着除去される。   Furthermore, according to the adsorption column for body fluid purification processing of the eighth feature, when the adsorption target substance is LDL (molecular diameter is about 26 to 27 nm), the auxiliary adsorbent is more than the LDL that is the co-adsorption substance. Low molecular weight peptides and small molecule proteins are effectively adsorbed and removed.

更に、上記第9の特徴の体液浄化処理用の吸着カラムによれば、スピノーダル分解ゾルゲル法を用いることで、貫通孔径及び細孔径の制御性が向上するため、貫通孔径及び細孔径を適正範囲に調整した高性能な吸着カラムを提供可能となる。   Furthermore, according to the adsorption column for body fluid purification treatment of the ninth feature, by using the spinodal decomposition sol-gel method, controllability of the through-hole diameter and the pore diameter is improved, so that the through-hole diameter and the pore diameter are within an appropriate range. An adjusted high-performance adsorption column can be provided.

本発明に係る体液浄化処理用吸着カラムの第1実施形態における概略の構成を模式的に示す構成図The block diagram which shows typically the schematic structure in 1st Embodiment of the adsorption column for bodily fluid purification processes which concerns on this invention. 本発明に係る体液浄化処理用吸着カラムの吸着体の構造を模式的に示す要部断面図Sectional drawing which shows the principal part which shows typically the structure of the adsorption body of the adsorption column for bodily fluid purification processes which concerns on this invention 本発明に係る体液浄化処理用吸着カラムの吸着体を構成する多孔質担体の構造を模式的に示す要部断面図Sectional drawing which shows the principal part which shows typically the structure of the porous support | carrier which comprises the adsorption body of the adsorption column for body fluid purification processes which concerns on this invention 本発明に係る体液浄化処理用吸着カラムの吸着体を構成する多孔質担体のSEM写真SEM photograph of the porous carrier constituting the adsorbent of the adsorption column for body fluid purification treatment according to the present invention 本発明に係る体液浄化処理用吸着カラムの吸着体の細孔直径の異なる3種類のサンプルの窒素吸着法による細孔測定結果を纏めた一覧表及び細孔直径分布範囲を示す細孔分布曲線のグラフTable of summary of pore measurement results by nitrogen adsorption method and pore distribution curve showing pore diameter distribution range of three kinds of samples having different pore diameters of the adsorbent of the adsorption column for body fluid purification treatment according to the present invention Graph 本発明に係る体液浄化処理用吸着カラムの吸着体を充填した5種類の試験用カラムのLDL吸着性能を比較評価した結果を示す図The figure which shows the result of having comparatively evaluated the LDL adsorption | suction performance of five types of test columns filled with the adsorption body of the adsorption column of the bodily fluid purification process which concerns on this invention 本発明に係る体液浄化処理用吸着カラムの補助吸着体に吸着された共吸着物質の電気泳動による分析結果を示す図The figure which shows the analysis result by the electrophoresis of the co-adsorption substance adsorbed by the auxiliary | assistant adsorption body of the adsorption column for bodily fluid purification processing which concerns on this invention 本発明に係る体液浄化処理用吸着カラムの補助吸着体に吸着された共吸着物質の質量分析結果を示す図The figure which shows the mass spectrometry result of the co-adsorption substance adsorb | sucked by the auxiliary | assistant adsorption body of the adsorption column for body fluid purification processes which concerns on this invention 本発明に係る体液浄化処理用吸着カラムの補助吸着体と主吸着体における吸着選択性の評価結果を示す表及び図Table and figure showing evaluation results of adsorption selectivity in auxiliary adsorbent and main adsorbent of adsorption column for body fluid purification treatment according to the present invention 本発明に係る体液浄化処理用吸着カラムの第2実施形態における概略の構成を模式的に示す構成図The block diagram which shows typically the schematic structure in 2nd Embodiment of the adsorption column for bodily fluid purification | cleaning processes which concerns on this invention. 本発明に係る体液浄化処理用吸着カラムの第1実施形態に対する別実施形態における概略の構成を模式的に示す構成図The block diagram which shows typically the schematic structure in another embodiment with respect to 1st Embodiment of the adsorption column for bodily fluid purification | cleaning processes which concerns on this invention. 本発明に係る体液浄化処理用吸着カラムの第2実施形態に対する別実施形態における概略の構成を模式的に示す構成図The block diagram which shows typically the schematic structure in another embodiment with respect to 2nd Embodiment of the adsorption column for bodily fluid purification | cleaning processes which concerns on this invention.

本発明に係る体液浄化処理用の吸着カラム(以下、適宜「本発明装置」という。)の実施の形態につき、図面に基づいて説明する。   An embodiment of an adsorption column for body fluid purification treatment according to the present invention (hereinafter, referred to as “the device of the present invention” as appropriate) will be described with reference to the drawings.

〈第1実施形態〉
本発明装置10は、図1に示すように、円筒型の補助吸着体1と主吸着体2が、間に仕切り板4を介して円筒容器3内に収容されて構成されている。補助吸着体1と主吸着体2は、夫々軸心部分5,6が中空の円筒状に形成されている。円筒容器3の各端面には、夫々開口部7,8が形成され、一方の開口部7が処理対象となる体液(本実施形態では、血漿を想定)の送入口となり、他方の開口部8が処理後の体液の送出口となる。尚、図1中において矢印は体液の流れを模式的に示している。本発明装置10は、開口部7から円筒容器3内に送入された体液が、仕切り板4によって進路を妨げられ、円筒容器3内において円筒型の補助吸着体1の内側から外側に向けて流れ、更に、補助吸着体1を通過した体液が、補助吸着体1と主吸着体2の各外壁と円筒容器3の内壁の間の空間に形成された外周流路9を通り、円筒型の主吸着体2の外側から内側に向けて流れ、主吸着体2を通過した体液が開口部8から送出される構造となっている。
<First Embodiment>
As shown in FIG. 1, the device 10 of the present invention is configured such that a cylindrical auxiliary adsorbent 1 and a main adsorbent 2 are accommodated in a cylindrical container 3 with a partition plate 4 interposed therebetween. The auxiliary adsorbing body 1 and the main adsorbing body 2 are formed in the shape of a hollow cylinder having axial center portions 5 and 6 respectively. Openings 7 and 8 are formed on the respective end surfaces of the cylindrical container 3, and one opening 7 serves as an inlet for a body fluid to be treated (in this embodiment, blood plasma is assumed), and the other opening 8. Becomes the outlet for the body fluid after treatment. In addition, the arrow in FIG. 1 has shown the flow of the bodily fluid typically. In the device 10 of the present invention, the body fluid fed into the cylindrical container 3 from the opening 7 is blocked by the partition plate 4 from the inside to the outside of the cylindrical auxiliary adsorbing body 1 in the cylindrical container 3. Further, the body fluid that has passed through the auxiliary adsorbent 1 passes through the outer peripheral flow path 9 formed in the space between the outer walls of the auxiliary adsorbent 1 and the main adsorber 2 and the inner wall of the cylindrical container 3, and is cylindrical. The body fluid that flows from the outside to the inside of the main adsorbent 2 and passes through the main adsorbent 2 is sent out from the opening 8.

補助吸着体1と主吸着体2は、図2に模式的に示すように、円筒状に成形された無機系の多孔質担体11の表面に吸着対象物質に特異的に結合する官能基12を表面修飾して固定化したものである。本実施形態では、吸着対象物質として血液中のLDL(分子量約3500kDa)を想定しており、官能基12として、LDLに対して親和性を有するデキストラン硫酸またはその塩、ポリアクリル酸またはその塩、或いは、その他の鎖状多価酸またはその塩を使用する。   As schematically shown in FIG. 2, the auxiliary adsorbent 1 and the main adsorbent 2 have functional groups 12 that specifically bind to the adsorption target substance on the surface of an inorganic porous carrier 11 formed into a cylindrical shape. The surface is modified and fixed. In this embodiment, LDL (molecular weight of about 3500 kDa) in blood is assumed as an adsorption target substance, and dextran sulfate or a salt thereof having affinity for LDL, polyacrylic acid or a salt thereof, as functional group 12; Alternatively, other chain polyvalent acids or salts thereof are used.

補助吸着体1と主吸着体2を構成する無機系の多孔質担体11は、図3に模式的に示すように、3次元網目状の一体構造の骨格体13と、骨格体13の間隙に形成された平均孔径が1μm以上20μm未満の範囲内の3次元網目状の貫通孔14を有してなり、更に、骨格体13の表面には、補助吸着体1と主吸着体2で夫々異なる細孔直径分布を有する細孔15が骨格体13の表面に分散して形成されている。細孔15は、骨格体13の表面から内部に向けて貫通する孔であり、補助吸着体1では、窒素吸着法で測定した中心細孔直径が吸着対象物質であるLDLの最大長(26mm〜27nm)より小さく、且つ、窒素吸着法で測定した細孔直径の分布範囲の下限が2nm以下、上限がLDLと共に主吸着体2に吸着されるLDLより分子量の小さい共吸着物質(分子量が約5kDa〜340kDaの範囲のペプチドや小分子蛋白質等)の分子の最大長(3nm〜13nm程度)の最大値(約13nm)より大きくなるよう細孔直径が調整され、主吸着体2では、窒素吸着法で測定した中心細孔直径が吸着対象物質であるLDLの最大長(27nm)より大きくなるよう細孔直径が調整されている。より具体的には、窒素吸着法で測定した各吸着体の中心細孔直径は、補助吸着体1では10nm〜26nmの範囲内に調整され、主吸着体2では、27nm〜200nm、より好ましくは、60nm〜120nmに調整される。補助吸着体1の場合、中心細孔直径が10nm〜26nmの範囲内であれば、細孔直径の分布範囲の上限は必ず、共吸着物質の最大長の最大値(約13nm)以上となり、細孔直径の分布範囲は、異なる分子量の共吸着物質の各最大長をカバーする。   An inorganic porous carrier 11 constituting the auxiliary adsorbent 1 and the main adsorbent 2 is formed in a gap between the three-dimensional network-like skeleton 13 and the skeleton 13 as schematically shown in FIG. The three-dimensional network-like through-holes 14 having an average pore diameter of 1 μm or more and less than 20 μm are formed, and the auxiliary adsorbent 1 and the main adsorbent 2 are different on the surface of the skeleton 13. The pores 15 having a pore diameter distribution are formed dispersed on the surface of the skeleton body 13. The pore 15 is a hole penetrating from the surface of the skeletal body 13 toward the inside. In the auxiliary adsorbent 1, the central pore diameter measured by the nitrogen adsorption method is the maximum length (26 mm to 27 nm), a lower limit of the distribution range of the pore diameter measured by the nitrogen adsorption method is 2 nm or less, and an upper limit is a coadsorbent having a lower molecular weight than LDL adsorbed to the main adsorbent 2 together with LDL (molecular weight is about 5 kDa). The pore diameter is adjusted to be larger than the maximum value (about 13 nm) of the maximum length (about 3 nm to 13 nm) of molecules of peptides and small molecule proteins in the range of ~ 340 kDa. The pore diameter is adjusted so that the center pore diameter measured in (1) is larger than the maximum length (27 nm) of LDL as the adsorption target substance. More specifically, the central pore diameter of each adsorbent measured by the nitrogen adsorption method is adjusted within the range of 10 nm to 26 nm for the auxiliary adsorbent 1, and 27 nm to 200 nm for the main adsorbent 2, more preferably , Adjusted to 60 nm to 120 nm. In the case of the auxiliary adsorbent 1, if the center pore diameter is in the range of 10 nm to 26 nm, the upper limit of the pore diameter distribution range is always equal to or greater than the maximum value (about 13 nm) of the maximum length of the coadsorbent substance. The pore diameter distribution range covers each maximum length of co-adsorbents of different molecular weights.

また、本発明装置10で使用する補助吸着体1と主吸着体2の多孔質担体11は、平均孔径の異なる2種類の細孔(貫通孔14と細孔15)からなる2重細孔構造となっている。従って、細孔15の細孔直径の上限は、構造的な観点より、貫通孔14の直径の分布範囲より明らかに小さい。図4に、本発明装置10で使用する多孔質担体11のSEM(走査型電子顕微鏡)写真の一例を示す。   Further, the porous carrier 11 of the auxiliary adsorbent 1 and the main adsorbent 2 used in the apparatus 10 of the present invention has a double pore structure composed of two kinds of pores (through holes 14 and 15) having different average pore diameters. It has become. Therefore, the upper limit of the pore diameter of the pores 15 is clearly smaller than the diameter distribution range of the through-holes 14 from a structural viewpoint. In FIG. 4, an example of the SEM (scanning electron microscope) photograph of the porous support | carrier 11 used with this invention apparatus 10 is shown.

次に、多孔質担体11の表面に官能基12としてデキストラン硫酸を固定化した補助吸着体1と主吸着体2の実施例及びその作製方法について説明する。先ず、多孔質担体11の合成方法について説明する。尚、本実施形態で使用する多孔質担体11の合成方法は、上記特許文献4の「無機系多孔質体の製造方法」に開示されている原理に基づくスピノーダル分解ゾルゲル法を使用するものである。   Next, examples of the auxiliary adsorbent 1 and the main adsorbent 2 in which dextran sulfate is immobilized as the functional group 12 on the surface of the porous carrier 11 and a method for producing the same will be described. First, a method for synthesizing the porous carrier 11 will be described. The method for synthesizing the porous carrier 11 used in the present embodiment uses the spinodal decomposition sol-gel method based on the principle disclosed in the above-mentioned “Method for producing an inorganic porous material” in Patent Document 4. .

〈多孔質担体の合成:補助吸着体〉
先ず、1.0M(=mol/dm)の硝酸水溶液9mlに対してポリエチレンオキサイドを0.9gから1.1gの範囲で溶かし、テトラエトキシシランを7ml加え、均一になるまで攪拌し、40℃の恒温槽で一晩放置してゲル化させる(工程1)。その後、得られたゲルを0.1Mアンモニア水に浸し、80℃の下で20時間反応させる(工程2)。その後、ゲルを乾燥させ、600℃で5時間焼成することでシリカゲルまたはシリカガラスからなる多孔質担体が得られる(工程3)。尚、この条件下で多孔質担体を製造した場合、当該多孔質担体(サンプル#1)が有する貫通孔の平均孔径は、水銀圧入法により測定すると1.5μm程度であり、細孔の窒素吸着法による細孔直径分布範囲は2nm〜30nmで、その中心細孔直径は約21nmである。
<Synthesis of porous carrier: auxiliary adsorbent>
First, polyethylene oxide was dissolved in a range of 0.9 g to 1.1 g in 9 ml of 1.0 M (= mol / dm 3 ) nitric acid aqueous solution, 7 ml of tetraethoxysilane was added, and the mixture was stirred until it became homogeneous. The gel is left overnight in a constant temperature bath (step 1). Then, the obtained gel is immersed in 0.1M aqueous ammonia and reacted at 80 ° C. for 20 hours (step 2). Thereafter, the gel is dried and calcined at 600 ° C. for 5 hours to obtain a porous carrier made of silica gel or silica glass (step 3). When a porous carrier is produced under these conditions, the average pore diameter of the through holes of the porous carrier (sample # 1) is about 1.5 μm as measured by mercury porosimetry, and the nitrogen adsorption of the pores The pore diameter distribution range by the method is 2 nm to 30 nm, and the central pore diameter is about 21 nm.

〈多孔質担体の合成:補助吸着体の比較用サンプル〉
上記補助吸着体における多孔質担体の合成の工程2におけるアンモニア水中での処理に1.0Mアンモニア水を使用する以外は、補助吸着体の合成と同じである。尚、この条件下で多孔質担体を製造した場合、当該多孔質担体(サンプル#2)が有する貫通孔の平均孔径は、水銀圧入法により測定すると1.5μm程度であり、細孔の窒素吸着法による細孔直径分布範囲は10nm〜40nmで、その中心細孔直径は約33nmである。本比較用サンプルは、補助吸着体の中心細孔直径が吸着対象物質であるLDLの最大長(26mm〜27nm)より小さいという条件から外れている。
<Synthesis of porous carrier: Sample for comparison of auxiliary adsorbent>
This is the same as the synthesis of the auxiliary adsorbent except that 1.0 M ammonia water is used for the treatment in the ammonia water in the step 2 of the synthesis of the porous carrier in the auxiliary adsorbent. When a porous carrier is produced under these conditions, the average pore diameter of the through holes of the porous carrier (sample # 2) is about 1.5 μm as measured by mercury porosimetry, and the nitrogen adsorption of the pores The pore diameter distribution range by the method is 10 nm to 40 nm, and the central pore diameter is about 33 nm. This comparative sample deviates from the condition that the center pore diameter of the auxiliary adsorbent is smaller than the maximum length (26 mm to 27 nm) of the LDL that is the adsorption target substance.

〈多孔質担体の合成:主吸着体〉
上記補助吸着体における多孔質担体の合成の工程2におけるアンモニア水中での処理温度を200℃とする以外は、補助吸着体の合成と同じである。尚、この条件下で多孔質担体を製造した場合、当該多孔質担体(サンプル#3)が有する貫通孔の平均孔径は、水銀圧入法により測定すると1μm〜5μm程度であり、細孔の窒素吸着法による細孔直径分布範囲は60nm〜120nmで、その中心細孔直径は約110nmである。
<Synthesis of porous carrier: main adsorbent>
This is the same as the synthesis of the auxiliary adsorbent except that the treatment temperature in the ammonia water in Step 2 of the synthesis of the porous carrier in the auxiliary adsorbent is 200 ° C. In addition, when a porous carrier is produced under these conditions, the average pore diameter of the through holes of the porous carrier (sample # 3) is about 1 μm to 5 μm as measured by mercury porosimetry, and the nitrogen adsorption of the pores The pore diameter distribution range by the method is 60 nm to 120 nm, and the central pore diameter is about 110 nm.

上記工程1〜工程3を経て作製されたサンプル#1〜#3の窒素吸着法による細孔測定結果を、図5(a)の一覧表及び図5(b)の細孔分布曲線のグラフに示す。BET法による細孔表面積は、サンプル#1〜#3で夫々、560m/g、195m/g、45.9m/gであった。また、BJH法による細孔容積は、サンプル#1〜#3で夫々、1.18cm/g、1.06cm/g、0.279cm/gであり、BJH法による細孔直径の分布範囲は、サンプル#1〜#3で夫々、2〜30nm、10〜40nm、60〜120nmであり、中心細孔直径は、図5(b)の細孔分布曲線より、微分細孔容積(細孔容積を細孔直径の常用対数で微分した値)が最大のピークを示す細孔直径で与えられ、サンプル#1〜#3で夫々、21nm、33nm、110nmであった。図5(b)より、中心細孔直径近傍の細孔径に細孔容積の大部分が集中していることが分かる。尚、細孔測定に窒素吸着法を使用する理由は、サンプル#1のように細孔直径の分布が窒素吸着法の測定下限(約2nm)に及ぶ細孔直径の小さい多孔質担体に対して、骨格体を破壊する危険のある水銀圧入法の使用を避けるためである。従って、本実施例では、サンプル#1〜#3の細孔測定結果を同じ条件下で比較するために窒素吸着法を使用している。尚、サンプル#3のように細孔直径の大きい多孔質担体の細孔測定では、個別に水銀圧入法を使用しても良い。 The results of pore measurement by the nitrogen adsorption method of samples # 1 to # 3 produced through the above steps 1 to 3 are shown in the list of FIG. 5A and the pore distribution curve graph of FIG. Show. Pore surface area by BET method, respectively in sample # 1~ # 3, 560m 2 / g, was 195m 2 /g,45.9m 2 / g. Further, the pore volume by the BJH method, respectively in samples # 1 to # 3, a 1.18cm 3 /g,1.06cm 3 /g,0.279cm 3 / g , the distribution of the pore diameter by the BJH method The ranges are 2 to 30 nm, 10 to 40 nm, and 60 to 120 nm for Samples # 1 to # 3, respectively, and the central pore diameter is determined from the pore distribution curve of FIG. The value obtained by differentiating the pore volume with the common logarithm of the pore diameter) was given by the pore diameter showing the maximum peak, and was 21 nm, 33 nm, and 110 nm in Samples # 1 to # 3, respectively. FIG. 5B shows that most of the pore volume is concentrated in the pore diameter near the central pore diameter. The reason why the nitrogen adsorption method is used for the pore measurement is that the porous carrier with a small pore diameter whose pore diameter distribution reaches the measurement lower limit (about 2 nm) of the nitrogen adsorption method as in sample # 1. This is to avoid the use of mercury intrusion, which can destroy the skeleton. Therefore, in this example, the nitrogen adsorption method is used to compare the pore measurement results of samples # 1 to # 3 under the same conditions. In addition, in the pore measurement of a porous carrier having a large pore diameter like sample # 3, the mercury intrusion method may be used individually.

また、上記サンプル#1〜#3の合成において、上記工程2における処理条件を変化させることで、細孔の窒素吸着法による細孔直径分布範囲を変更でき、中心細孔直径を最適範囲に調整することができる。上記サンプル#1〜#3の測定結果より、アンモニア水中での処理温度を上げるか、アンモニア水の濃度を高くすることにより細孔直径が大きくなることが分かる。   In addition, in the synthesis of samples # 1 to # 3, the pore diameter distribution range by the nitrogen adsorption method can be changed by changing the processing conditions in step 2, and the central pore diameter is adjusted to the optimum range. can do. From the measurement results of Samples # 1 to # 3, it can be seen that the pore diameter increases by increasing the treatment temperature in ammonia water or increasing the concentration of ammonia water.

更に、上記サンプル#1〜#3の合成において、上記工程1におけるポリエチレンオキサイドの添加量を0.9gから1.1gの範囲で増減させると、ポリエチレンオキサイドの添加量が少ないほど貫通孔の平均孔径は大きくなり、硝酸水溶液に添加するポリエチレンオキサイドの添加量を調整することで、貫通孔の平均孔径を調整することができる。   Furthermore, in the synthesis of Samples # 1 to # 3, when the amount of polyethylene oxide added in Step 1 is increased or decreased in the range of 0.9 g to 1.1 g, the average pore diameter of the through holes decreases as the amount of polyethylene oxide added decreases. The average pore diameter of the through holes can be adjusted by adjusting the amount of polyethylene oxide added to the aqueous nitric acid solution.

上記合成方法は、有機及び無機化合物の溶液を混合して、アルコキシドの加水分解反応と脱水縮合反応によりゲル化を進行させ、斯かるゲルを乾燥・加熱することで酸化物固体を作成するゾル−ゲル法を利用している。更に、ゾル−ゲル法の出発溶液に有機高分子を混合することで、ゲル化の進行に伴って生成したシリカ重合体と有機高分子を含む溶媒とのスピノーダル分解により形成された分相構造がゲル化により固定されてμmオーダーの細孔を有する多孔質ゲルが形成される特徴を利用したものである。即ち、上記方法によれば、ゾル−ゲル法を用いるとともにスピノーダル分解を生じさせることで、多孔質担体を製造することができる(スピノーダル分解ゾル−ゲル法)。   In the above synthesis method, a solution of organic and inorganic compounds is mixed, gelation is advanced by hydrolysis reaction and dehydration condensation reaction of alkoxide, and the gel is dried and heated to produce an oxide solid. The gel method is used. Furthermore, by mixing the organic polymer with the starting solution of the sol-gel method, the phase separation structure formed by spinodal decomposition of the silica polymer produced with the progress of gelation and the solvent containing the organic polymer is obtained. This utilizes the characteristic that a porous gel having pores of the order of μm is formed by gelation. That is, according to the above method, a porous carrier can be produced by using a sol-gel method and causing spinodal decomposition (spinodal decomposition sol-gel method).

尚、上記サンプル#3(主吸着体)の場合、工程1〜工程3を経て作製された多孔質担体の貫通孔と細孔を合わせた総空隙率(水銀圧入法により測定)は約50%〜70%の範囲内であり、従来のLDL吸着カラムである株式会社カネカのリポソーバ(型番LA−15)の空隙率(約40%)と比較して1.5倍程度大きい。   In the case of sample # 3 (main adsorbent), the total porosity (measured by the mercury intrusion method) of the through holes and the pores of the porous carrier produced through steps 1 to 3 is about 50%. It is in the range of ˜70%, and is about 1.5 times larger than the porosity (about 40%) of the Kaneka Liposorber (model number LA-15), which is a conventional LDL adsorption column.

次に、上記工程1〜工程3を経て作製された多孔質担体(上記サンプル#1〜#3)の表面に官能基としてLDLに対して親和性を有するデキストラン硫酸ナトリウムを表面修飾して固定化する方法について説明する。   Next, the surface of the porous carrier (samples # 1 to # 3) produced through the above steps 1 to 3 is surface-modified with dextran sulfate sodium having affinity for LDL as a functional group and immobilized. How to do will be described.

先ず、上記工程1〜工程3を経て作製された多孔質担体を、γ‐アミノプロピルトリエトキシランの10%トルエン溶液中で3時間還流し、エタノールで洗浄し、γ‐アミノプロピル化した多孔質担体を得る(工程4)。上記条件下での、有機微量元素分析法によるγ‐アミノプロピル基の固定化量は、0.3mmol/mLである。   First, the porous carrier prepared through the above steps 1 to 3 was refluxed in a 10% toluene solution of γ-aminopropyltriethoxylane for 3 hours, washed with ethanol, and γ-aminopropylated porous. A carrier is obtained (step 4). The amount of γ-aminopropyl group immobilized by the organic trace element analysis under the above conditions is 0.3 mmol / mL.

次に、上記工程4を経て得られたγ‐アミノプロピル化多孔質担体の5mLに対して、デキストラン硫酸ナトリウム100mg(先願では、500mg)を溶かした1/300Mリン酸緩衝水溶液10mL(pH7.0)を作製し、当該水溶液にγ‐アミノプロピル化多孔質担体を浸し、60℃で3日間振蕩する(工程5)。反応後、該多孔質担体を1%NaBH水溶液に15分間浸し、その後、純水と生理食塩水の夫々で順次(記載順で)洗浄し、多孔質担体の表面にデキストラン硫酸ナトリウムを固定化した吸着体(補助吸着体、補助吸着体の比較用サンプル、主吸着体)を得る(工程6)。上記条件下での、蛍光エックス線回折法によるデキストラン硫酸ナトリウムの固定化量は、10mg/mLである。 Next, 10 mL of 1/300 M phosphate buffer aqueous solution (pH 7. 5) in which 100 mg of dextran sulfate sodium (500 mg in the prior application) is dissolved in 5 mL of the γ-aminopropylated porous carrier obtained through the above step 4. 0), γ-aminopropylated porous carrier is immersed in the aqueous solution, and shaken at 60 ° C. for 3 days (step 5). After the reaction, the porous carrier is immersed in 1% NaBH 4 aqueous solution for 15 minutes, and then washed sequentially with pure water and physiological saline (in the order of description) to immobilize sodium dextran sulfate on the surface of the porous carrier. Thus obtained adsorbent (auxiliary adsorbent, auxiliary adsorbent comparative sample, main adsorbent) is obtained (step 6). The amount of sodium dextran sulfate immobilized by the fluorescent X-ray diffraction method under the above conditions is 10 mg / mL.

次に、上記工程1〜工程6を経て作製された3種類の吸着体(補助吸着体、比較用サンプル、主吸着体)のLDL吸着性能を比較評価するため、以下の5種類の試験#1〜#5を行ったので、その試験方法及び試験結果について説明する。   Next, in order to compare and evaluate the LDL adsorption performance of the three types of adsorbents (auxiliary adsorbent, comparative sample, main adsorbent) produced through the above steps 1 to 6, the following five types of tests # 1 Since ~ # 5 was performed, the test method and test results will be described.

試験#1:
補助吸着体の1mLをガラス製の小型カラム容器に充填した試験用カラム(カラム#1)を準備し、カラム#1に生理食塩水10mLを通液して洗浄した後、新鮮人血漿5mLを通液して、カラム#1の出口から通液した新鮮人血漿の全量を回収した。
Test # 1:
Prepare a test column (column # 1) in which 1 mL of the auxiliary adsorbent is packed in a small glass column container, wash 10 mL of physiological saline through column # 1, and then pass 5 mL of fresh human plasma. The whole amount of fresh human plasma passed through the outlet of column # 1 was collected.

試験#2:
比較用サンプル1mLをガラス製の小型カラム容器に充填した試験用カラム(カラム#2)を準備し、カラム#2に生理食塩水10mLを通液して洗浄した後、新鮮人血漿5mLを通液して、カラム#2の出口から通液した新鮮人血漿の全量を回収した。
Test # 2:
Prepare a test column (column # 2) filled with 1 mL of a sample for comparison in a small glass column container, wash 10 mL of physiological saline through column # 2, and then pass 5 mL of fresh human plasma. Then, the whole amount of fresh human plasma passed through the outlet of column # 2 was collected.

試験#3:
主吸着体の1mLをガラス製の小型カラム容器に充填した試験用カラム(カラム#3)を準備し、カラム#3に生理食塩水10mLを通液して洗浄した後、新鮮人血漿5mLを通液して、カラム#3の出口から通液した新鮮人血漿の全量を回収した。
Test # 3:
Prepare a test column (column # 3) in which 1 mL of the main adsorbent is packed in a small glass column container, wash 10 mL of physiological saline through column # 3, and then pass 5 mL of fresh human plasma. The whole amount of fresh human plasma passed through the outlet of column # 3 was collected.

試験#4:
補助吸着体と主吸着体の夫々1mLをガラス製の小型カラム容器に充填した試験用カラム(カラム#4)を準備し、カラム#4に生理食塩水10mLを通液して洗浄した後、新鮮人血漿5mLをカラム#4の補助吸着体に通液した後、引き続き主吸着体に通液し、カラム#4の出口から通液した新鮮人血漿の全量を回収した。
Test # 4:
Prepare a test column (column # 4) in which 1 mL each of the auxiliary adsorbent and the main adsorbent is packed in a small glass column container, and wash by passing 10 mL of physiological saline through column # 4. After 5 mL of human plasma was passed through the auxiliary adsorbent of column # 4, it was subsequently passed through the main adsorbent, and the total amount of fresh human plasma passed through the outlet of column # 4 was recovered.

試験#5:
比較用サンプルと主吸着体の夫々1mLをガラス製の小型カラム容器に充填した試験用カラム(カラム#5)を準備し、カラム#5に生理食塩水10mLを通液して洗浄した後、新鮮人血漿5mLをカラム#5の補助吸着体に通液した後、引き続き主吸着体に通液し、カラム#5の出口から通液した新鮮人血漿の全量を回収した。
Test # 5:
Prepare a test column (column # 5) in which 1 mL each of the sample for comparison and the main adsorbent are packed in a small glass column container, and wash by passing 10 mL of physiological saline through column # 5 and then fresh. After 5 mL of human plasma was passed through the auxiliary adsorbent of column # 5, it was subsequently passed through the main adsorbent, and the total amount of fresh human plasma passed through the outlet of column # 5 was recovered.

上記試験#1〜#5について、通液前後の血漿中のLDL濃度Ci,Co(mg/dL)を計測し、各試験用カラム(カラム#1〜#5)における各吸着体1mL当たりのLDL吸着容量A(mg/mLgel)を下記の数1に示す計算式により算出した。通液前後の血漿中のLDL濃度Ci,Co、及び、LDL吸着容量Aを、図6の一覧表に纏めて示す。   For the above tests # 1 to # 5, LDL concentrations Ci and Co (mg / dL) in plasma before and after passing were measured, and LDL per 1 mL of each adsorbent in each test column (columns # 1 to # 5) The adsorption capacity A (mg / mLgel) was calculated by the calculation formula shown in the following formula 1. The LDL concentrations Ci, Co and LDL adsorption capacity A in the plasma before and after passing through are summarized in the list of FIG.

[数1]
A=10×(Ci−Co)/100
[Equation 1]
A = 10 × (Ci-Co) / 100

図6より、試験#1及び#2において、補助吸着体だけを充填したカラム#1と比較用サンプルだけを充填したカラム#2では、LDLの吸着は確認されていない。試験#1については、補助吸着体(サンプル#1)の中心細孔直径が21nmとLDLの最大長より小さいため、細孔表面がLDLの吸着に殆ど寄与していないためと考えられる。また、試験#2については、比較用サンプル(サンプル#2)の中心細孔直径が33nmとLDLの最大長より大きく、主吸着体の中心細孔直径の条件を満たすものの、中心細孔直径がLDLの最大長に極めて近いため、一旦細孔表面に吸着されても細孔深部において吸着されないためキレート効果(挟み込み効果)が弱く、本試験条件では、貫通孔表面及び細孔入口近傍の細孔表面に吸着されたLDLはその後離脱して通液後の血漿内に含まれ回収されたものと考えられる。試験#3の主吸着体だけを充填したカラム#3では、LDL吸着量は、7.9mg/mLgelであり、試験#2と比較してLDL吸着量が大幅に増加している。これは、カラム#3の主吸着体(サンプル#3)の中心細孔直径が約110nmとLDLの最大長の4倍程度と大きいため、LDLが細孔深部まで侵入し、細孔表面がLDLの吸着に大きく寄与していると考えられる。また、試験#3においても、主吸着体の貫通孔表面及び細孔入口近傍の細孔表面に吸着されたLDLは、カラム#2と同様にその後離脱して通液後の血漿内に含まれ回収されたものと考えられるが、細孔深部まで侵入して吸着されたLDLは、キレート効果によって離脱しなかったものと考えられる。この点からも、主吸着体の中心細孔直径は、LDLの最大長の2倍〜6倍程度が好ましい。   From FIG. 6, in tests # 1 and # 2, LDL adsorption is not confirmed in column # 1 filled with only the auxiliary adsorbent and column # 2 filled with only the comparative sample. In Test # 1, the center pore diameter of the auxiliary adsorbent (sample # 1) is 21 nm, which is smaller than the maximum length of LDL, and thus it is considered that the pore surface hardly contributes to LDL adsorption. For test # 2, the center pore diameter of the comparative sample (sample # 2) is 33 nm, which is larger than the maximum length of LDL, and satisfies the condition of the center pore diameter of the main adsorbent, but the center pore diameter is Since it is very close to the maximum length of LDL, once it is adsorbed on the pore surface, it is not adsorbed in the deep part of the pore, so the chelating effect (pinching effect) is weak. It is considered that LDL adsorbed on the surface was subsequently separated and contained and recovered in the plasma after passing through. In column # 3 packed with only the main adsorbent of test # 3, the LDL adsorption amount is 7.9 mg / mLgel, and the LDL adsorption amount is significantly increased as compared with test # 2. This is because the central pore diameter of the main adsorbent of column # 3 (sample # 3) is about 110 nm, which is about four times the maximum length of LDL, so that LDL penetrates deep into the pores and the pore surface becomes LDL. It is thought that it contributes greatly to the adsorption. Also in Test # 3, LDL adsorbed on the surface of the through-hole of the main adsorbent and the pore surface near the inlet of the pore is subsequently separated and contained in the plasma after passing through, as in Column # 2. Although it is thought that it was recovered, it is considered that the LDL that penetrated and adsorbed to the deep pores did not leave due to the chelate effect. Also from this point, the central pore diameter of the main adsorbent is preferably about 2 to 6 times the maximum length of LDL.

図6より、試験#3〜#5の比較において、主吸着体だけを充填したカラム#3、補助吸着体と主吸着体を充填したカラム#4、及び、比較用サンプルと主吸着体を充填したカラム#5では、カラム#4の方が、カラム#3及びカラム#5よりLDL吸着量が多く、主吸着体の前段に設けた補助吸着体において、共吸着物質が予め吸着除去されたことにより、主吸着体においてLDL吸着量が増加していることが分かる。カラム#5においても、カラム#3と比較してLDL吸着量が僅かに増加しているが有意な差ではない。つまり、中心細孔直径がLDLの最大長より大きい比較用サンプルを充填したカラム#5の場合、一時的に比較用サンプルの細孔入口近傍の細孔表面に吸着されたLDLが、共吸着物質が細孔内部に侵入するのを妨げるため、比較用サンプルの共吸着物質の吸着量が低減し、その分、主吸着体におけるLDL吸着量が低下したものと考えられる。更に、比較用サンプルは、補助吸着体と比較して細孔直径が大きい分、細孔表面積も小さくなっており、更に、共吸着物質の吸着量は低下する。   From FIG. 6, in the comparison of tests # 3 to # 5, column # 3 filled with only the main adsorbent, column # 4 filled with the auxiliary adsorbent and main adsorbent, and the sample for comparison and main adsorbent filled In column # 5, column # 4 had a larger amount of LDL adsorption than column # 3 and column # 5, and the coadsorbent was adsorbed and removed in advance in the auxiliary adsorbent provided before the main adsorbent. This shows that the amount of LDL adsorption in the main adsorbent is increased. Also in column # 5, the amount of LDL adsorption slightly increased compared to column # 3, but this is not a significant difference. That is, in the case of column # 5 packed with a comparative sample whose central pore diameter is larger than the maximum length of LDL, LDL temporarily adsorbed on the pore surface near the pore inlet of the comparative sample is a coadsorbing substance. It is considered that the amount of adsorption of the co-adsorbing substance of the comparative sample is reduced, and the amount of LDL adsorption on the main adsorbent is reduced accordingly. Further, the comparative sample has a smaller pore surface area due to the larger pore diameter as compared with the auxiliary adsorbent, and the amount of coadsorbed substance adsorbed decreases.

尚、カラム#4のように主吸着体の前段に補助吸着体を設け、共吸着物質を予め吸着除去することの効果を検証するには、上記試験#1〜#5においてLDL吸着量を比較するのと合わせて、試験#1及び#2における共吸着物質の吸着量の差を検証するのが好ましいと考えられるが、共吸着物質は、分子量が約5kDaから約340kDaまで多種存在するため、共吸着物質の吸着量を個別にも全体としても正確に把握するのが困難である。従って、本実施形態では、試験#1〜#5におけるLDL吸着量の比較によって、補助吸着体の効果を検証している。   In addition, in order to verify the effect of providing an auxiliary adsorbent before the main adsorbent as in column # 4 and preliminarily adsorbing and removing the coadsorbent, the LDL adsorbed amounts were compared in tests # 1 to # 5 above. It is considered that it is preferable to verify the difference in the adsorption amount of the co-adsorbing substance in the tests # 1 and # 2, and the co-adsorbing substance has various molecular weights from about 5 kDa to about 340 kDa. It is difficult to accurately grasp the amount of co-adsorbed substances individually and as a whole. Therefore, in this embodiment, the effect of the auxiliary adsorbent is verified by comparing the LDL adsorption amounts in tests # 1 to # 5.

更に、上記試験#4で使用したカラム#4を1.0M食塩水で洗浄することにより、カラム#4内の補助吸着体及び主吸着体に一旦吸着した蛋白質が流出していること、また、1.0M食塩水で洗浄した後のカラム#4に再度血漿を通液すると再度LDLが吸着することが確認できた。これにより、本発明装置10は食塩水洗浄により賦活されることが分かる。   Furthermore, by washing column # 4 used in test # 4 with 1.0 M saline, the protein once adsorbed to the auxiliary adsorbent and main adsorbent in column # 4 flows out, It was confirmed that LDL was adsorbed again when plasma was passed through column # 4 after washing with 1.0 M saline. Thereby, it turns out that this invention apparatus 10 is activated by salt solution washing | cleaning.

次に、上記工程1〜工程6を経て作製された補助吸着体における共吸着物質の分析結果について説明する。   Next, the analysis result of the coadsorbed substance in the auxiliary adsorbent produced through the above steps 1 to 6 will be described.

先ず、補助吸着体に吸着された共吸着物質の2種類の分析結果について説明する。第1の分析では、上述の試験#1のカラム#1と同様の別のカラム#1Aを準備し、カラム#1Aに生理食塩水10mLを通液して洗浄し、新鮮人血漿5mLを通液した後、カラム#1Aを生理食塩水で洗浄した後、1.0M食塩水にて更に洗浄し、1.0M食塩水の洗浄液をカラム出口から回収しポリアクリルアミドゲルで電気泳動してCBB染色した。図7に当該電気泳動の結果を示す。図7において4本の電気泳動図が示されているが、右端は分子量マーカである。また、右端から2番目と3番目は、新鮮人血漿とアルブミン溶液の電気泳動を夫々、参考のために示している。アルブミン溶液の場合、66kDa付近が濃色になっており、アルブミンが確認できる。左端は、補助吸着体から回収された1.0M食塩水の洗浄液の電気泳動で、約35kDaから300kDaを超える範囲に亘って共吸着成分に相当するバンドが検出された。   First, two types of analysis results of the coadsorbed material adsorbed on the auxiliary adsorbent will be described. In the first analysis, another column # 1A similar to the column # 1 of the test # 1 described above is prepared, 10 mL of physiological saline is passed through the column # 1A and washed, and 5 mL of fresh human plasma is passed through. Then, after washing column # 1A with physiological saline, it was further washed with 1.0M saline, and the 1.0M saline solution was recovered from the column outlet and electrophoresed on a polyacrylamide gel for CBB staining. . FIG. 7 shows the result of the electrophoresis. In FIG. 7, four electropherograms are shown, and the right end is a molecular weight marker. The second and third from the right end show electrophoresis of fresh human plasma and albumin solution, respectively, for reference. In the case of an albumin solution, the vicinity of 66 kDa is dark and albumin can be confirmed. At the left end, a band corresponding to a co-adsorbed component was detected over a range of about 35 kDa to over 300 kDa by electrophoresis of a 1.0 M saline solution recovered from the auxiliary adsorbent.

第2の分析として、電気泳動分析では35kDa以下の分子量の分析が困難なため、上記第1の分析の1.0M食塩水の洗浄液を脱塩し、シナピン酸ナトリウムをマトリックスとするMALDI−TOF/MSによる質量分析を行った。図8に当該質量分析結果を示す。図8に示すように、質量分析の結果、20kDa以下に共吸着成分に相当するとみられる数多くのピークが確認された。   As the second analysis, since it is difficult to analyze a molecular weight of 35 kDa or less in the electrophoretic analysis, the 1.0 M saline washing solution of the first analysis is desalted and MALDI-TOF / sinapinate is used as a matrix. Mass spectrometry by MS was performed. FIG. 8 shows the mass spectrometry result. As shown in FIG. 8, as a result of mass spectrometry, a large number of peaks considered to correspond to the co-adsorbed component were confirmed at 20 kDa or less.

次に、上記工程1〜工程6を経て作製された補助吸着体及び主吸着体における以下の5種類の物質の分析と、各物質の吸着量の測定結果について説明する。   Next, an analysis of the following five types of substances in the auxiliary adsorbent and the main adsorbent produced through the above steps 1 to 6 and the measurement results of the adsorption amount of each substance will be described.

上述の試験#1のカラム#1と同様の別のカラム#1Bを準備し、カラム#1Bに血清5mLを通液してカラム#1Bの出口から通液した血清の全量を回収し、リポプロテイン(a)、アポリポ蛋白Bの分析(第3の分析)を行った。また、カラム#1と同様の別のカラム#1Cを準備し、別のカラム#1Cにクエン酸にて抗凝固を行った新鮮人血漿5mLを通液してカラム#1Cの出口から通液した血漿の全量を回収し、フィブリノーゲン、凝固因子第VII因子、凝固因子第VIII因子の分析(第4の分析)を行った。更に、上述の試験#2のカラム#2と同様の別のカラム#2A、カラム#2Bを準備し、上述の2つの分析(第3及び第4の分析)を夫々行った。更に、上述の試験#3のカラム#3と同様の別のカラム#3A、カラム#3Bを準備し、上述の2つの分析(第3及び第4の分析)を夫々行った。カラム#1Bとカラム#1Cに対する第3及び第4の分析結果と、カラム#2Aとカラム#2Bに対する第3及び第4の分析結果と、カラム#3Aとカラム#3Bに対する第3及び第4の分析結果を、各物質の血清中または血漿中における通液前後の濃度と通液前後の濃度比を、図9(a)の分析結果表に示す。また、各物質の通液前後の濃度比を、補助吸着体を充填したカラム(カラム#1Bとカラム#1C)と比較用サンプルを充填したカラム(カラム#2Aとカラム#2B)と主吸着体を充填したカラム(カラム#3A、カラム#3B)間で夫々比較したグラフを、図9(b)に示す。   Prepare another column # 1B similar to column # 1 of test # 1 above, collect 5 mL of serum through column # 1B, collect the total amount of serum that passed through the outlet of column # 1B, and use lipoprotein. (A) Analysis of apolipoprotein B (third analysis) was performed. Also, another column # 1C similar to column # 1 was prepared, and 5 mL of fresh human plasma anticoagulated with citric acid was passed through another column # 1C and passed through the outlet of column # 1C. The total amount of plasma was collected and analyzed for fibrinogen, coagulation factor factor VII, and coagulation factor factor VIII (fourth analysis). Furthermore, another column # 2A and column # 2B similar to the column # 2 of the test # 2 described above were prepared, and the above-described two analyzes (third and fourth analyzes) were performed, respectively. Furthermore, another column # 3A and column # 3B similar to column # 3 of test # 3 described above were prepared, and the above-described two analyzes (third and fourth analyzes) were performed, respectively. The third and fourth analysis results for column # 1B and column # 1C, the third and fourth analysis results for column # 2A and column # 2B, and the third and fourth analysis results for column # 3A and column # 3B The analysis results are shown in the analysis result table of FIG. 9 (a), which shows the concentration of each substance in serum or plasma before and after passage and the concentration ratio before and after passage. In addition, the concentration ratio of each substance before and after the liquid flow is adjusted so that the column (column # 1B and column # 1C) packed with the auxiliary adsorbent, the column (column # 2A and column # 2B) packed with the comparative sample, and the main adsorbent. FIG. 9B shows a graph comparing the columns packed with (column # 3A, column # 3B).

図9より、主吸着体では、フィブリノーゲン(分子量340kDa)以外の成分である凝固因子第VII因子(分子量50kDa)、凝固因子第VIII因子(分子量330kDa)、アポリポ蛋白B(分子量515kDa)、リポプロテイン(a)(分子量3200kDa)の巨大分子が優先的に吸着されるのに対し、補助吸着体及び比較用サンプルでは、フィブリノーゲン、凝固因子第VII、凝固因子第VIII因子は吸着されるが、アポリポ蛋白Bとリポプロテイン(a)の吸着量は少ない。   From FIG. 9, the main adsorbent has components other than fibrinogen (molecular weight 340 kDa), coagulation factor factor VII (molecular weight 50 kDa), coagulation factor factor VIII (molecular weight 330 kDa), apolipoprotein B (molecular weight 515 kDa), lipoprotein ( a) While macromolecules with a molecular weight of 3200 kDa are preferentially adsorbed, the adsorbent and the comparative sample adsorb fibrinogen, coagulation factor VII, and coagulation factor factor VIII, but apolipoprotein B And the amount of lipoprotein (a) adsorbed is small.

吸着物質の選択性は、細孔によるサイズ排除の影響と、表面修飾による静電的相互作用の強さが影響していると考えられる。アポリポ蛋白Bとリポプロテインが主吸着体には吸着されるが、補助吸着体及び比較用サンプルには吸着されないのは、アポリポ蛋白Bとリポプロテインは巨大分子であるLDL中に含まれる蛋白質であるため、補助吸着体及び比較用サンプルの細孔内には入り込めず、細孔によるサイズ排除の影響が現れていると考えられる。また、主吸着体には凝固因子第VII因子及び凝固因子第VIII因子が吸着されフィブリノーゲンが殆ど吸着されないのに対し、補助吸着体には凝固因子第VII、凝固因子第VIII因子、フィブリノーゲンが吸着される。これは、フィブリノーゲンが主吸着体の細孔直径分布範囲60nm〜120nmの細孔内に吸着された場合よりも、比較用サンプルの細孔直径分布範囲10nm〜40nmの細孔内に吸着された場合の方が、更には、補助吸着体の細孔直径分布範囲2nm〜30nmの細孔内に吸着された場合の方が、フィブリノーゲン分子が受ける吸着体表面のデキストラン硫酸との静電的相互作用が一般的には強くなるため、及び、細孔直径分布範囲が小径化するにつれ吸着サイト数が増大するために、吸着量の差として現れていると考えられる。また、凝固因子第VIII因子の吸着には、細孔のサイズが関係した吸着体表面のデキストラン硫酸による静電的相互作用の強さの影響が現れており、凝固因子第VII因子の吸着には、細孔のサイズが関係した吸着体表面のデキストラン硫酸による静電的相互作用の強さの影響は少ないと考えられる。   It is considered that the selectivity of the adsorbing material is influenced by the influence of size exclusion by pores and the strength of electrostatic interaction by surface modification. Apolipoprotein B and lipoprotein are adsorbed to the main adsorbent, but not adsorbed to the auxiliary adsorbent and the comparative sample. Apolipoprotein B and lipoprotein are proteins contained in LDL, which is a macromolecule. Therefore, it is considered that the effect of size exclusion due to the pores appears because the auxiliary adsorbent and the comparative sample cannot enter the pores. The main adsorbent adsorbs coagulation factor factor VII and coagulation factor VIII and hardly adsorbs fibrinogen, whereas the auxiliary adsorbent adsorbs coagulation factor VII, coagulation factor factor VIII, and fibrinogen. The This is because fibrinogen is adsorbed in the pores in the comparative sample having a pore diameter distribution range of 10 nm to 40 nm, rather than in the pores in the pore diameter distribution range of 60 nm to 120 nm of the main adsorbent. Furthermore, when the adsorbent is adsorbed in pores having a pore diameter distribution range of 2 nm to 30 nm, the fibrinogen molecule receives electrostatic interaction with dextran sulfate on the adsorbent surface. In general, it is considered that it appears as a difference in the amount of adsorption because it becomes stronger and the number of adsorption sites increases as the pore diameter distribution range becomes smaller. In addition, the adsorption of coagulation factor factor VIII is influenced by the strength of electrostatic interaction by dextran sulfate on the adsorbent surface related to the pore size. It is thought that the influence of the strength of the electrostatic interaction by dextran sulfate on the adsorbent surface related to the pore size is small.

以上の共吸着物質の分析結果より、補助吸着体、比較用サンプル及び主吸着体における共吸着物質は、分子量約5kDa〜340kDaの範囲の蛋白質等であることが分かる。   From the above analysis results of the coadsorbent, it can be seen that the coadsorbent in the auxiliary adsorbent, the comparative sample, and the main adsorbent is a protein having a molecular weight in the range of about 5 kDa to 340 kDa.

〈第2実施形態〉
次に、本発明装置の第2実施形態について説明する。上記第1実施形態では、本発明装置10は、補助吸着体1と主吸着体2が一つの円筒容器3内に収容された単体カラム構造であったが、例えば、第2実施形態に係る本発明装置20は、図10に示すように、補助吸着体1と主吸着体2を夫々個別の円筒容器21,22に収容して、補助吸着体1を充填した第1の円筒容器21の出口と主吸着体2を充填した第2の円筒容器22の入口をチューブ23で連結した構成としても良い。これにより、本発明装置20は、補助吸着体1が充填された補助吸着カラム24と主吸着体2が充填された主吸着カラム25の2段構成となる。尚、補助吸着体1と主吸着体2の作製方法は第1実施形態と同じであるので、重複する説明は割愛する。
Second Embodiment
Next, a second embodiment of the device of the present invention will be described. In the first embodiment, the device 10 of the present invention has a single column structure in which the auxiliary adsorbent 1 and the main adsorbent 2 are accommodated in one cylindrical container 3, but for example, the book according to the second embodiment. As shown in FIG. 10, the inventive device 20 accommodates the auxiliary adsorbent 1 and the main adsorbent 2 in separate cylindrical containers 21 and 22, respectively, and the outlet of the first cylindrical container 21 filled with the auxiliary adsorbent 1. The inlet of the second cylindrical container 22 filled with the main adsorbent 2 may be connected by a tube 23. As a result, the device 20 of the present invention has a two-stage configuration of the auxiliary adsorption column 24 filled with the auxiliary adsorbent 1 and the main adsorption column 25 filled with the main adsorbent 2. In addition, since the production method of the auxiliary | assistant adsorption body 1 and the main adsorption body 2 is the same as 1st Embodiment, the overlapping description is omitted.

第2実施形態においても、先に補助吸着体1を通液した血漿が主吸着体2に通液される構造である点は、第1実施形態と同様であるので、第1実施形態と同様に共吸着物質の影響を低減して主吸着体2におけるLDL吸着量が増加することは明らかである。   Also in the second embodiment, since the structure in which the plasma previously passed through the auxiliary adsorbent body 1 is passed through the main adsorbent body 2 is the same as in the first embodiment, it is the same as in the first embodiment. It is clear that the amount of LDL adsorption on the main adsorbent 2 is increased by reducing the influence of the coadsorbing substance.

次に、本発明装置の別実施形態について説明する。   Next, another embodiment of the device of the present invention will be described.

〈1〉上記各実施形態では、補助吸着体1と主吸着体2として、夫々軸心部分5,6が中空の円筒状に形成されていたが、軸心部分5,6が中空でない円柱状であっても構わず、また、円筒状や円柱状でなく、角筒状や角柱状であっても構わない。補助吸着体1と主吸着体2が円柱状に成型されている場合は、上記各実施形態の吸着カラムは、例えば、図11(第1実施形態の別実施形態)、図12(第2実施形態の別実施形態)に示すようになり、夫々の体液(血漿)の通流方向は、上記各実施形態とは異なり、各カラムの軸心方向となる。   <1> In each of the embodiments described above, the axial center portions 5 and 6 are formed as hollow cylinders as the auxiliary adsorbing body 1 and the main adsorbing body 2, respectively. Also, it may be a rectangular tube shape or a prismatic shape instead of a cylindrical shape or a columnar shape. In the case where the auxiliary adsorbent 1 and the main adsorbent 2 are formed in a cylindrical shape, the adsorption column of each of the above embodiments is, for example, FIG. 11 (another embodiment of the first embodiment), FIG. Unlike the above embodiments, the flow direction of each body fluid (plasma) is the axial direction of each column.

〈2〉更に、上記第2実施形態では、補助吸着体1が充填された補助吸着カラム24と主吸着体2が充填された主吸着カラム25の2段構成であったが、補助吸着体1が充填された補助吸着カラム24は、主吸着カラム25の前段に配して使用する形態に限定されるものではなく、単独で使用することも可能である。補助吸着カラム24を単独で使用する場合、第1実施形態の図9に示した第3及び第4の分析結果より明らかなように、フィブリノーゲンや凝固因子等の血中蛋白質除去用の吸着カラムとして使用できる。   <2> Furthermore, in the second embodiment, the auxiliary adsorption column 24 filled with the auxiliary adsorbent 1 and the main adsorption column 25 filled with the main adsorbent 2 have a two-stage configuration. The auxiliary adsorption column 24 filled with is not limited to the form used by being arranged in the previous stage of the main adsorption column 25, and can be used alone. When the auxiliary adsorption column 24 is used alone, as is apparent from the third and fourth analysis results shown in FIG. 9 of the first embodiment, as an adsorption column for removing blood proteins such as fibrinogen and coagulation factors. Can be used.

〈3〉上記各実施形態では、補助吸着体1と主吸着体2を構成する多孔質担体11の表面に官能基12としてデキストラン硫酸を固定する場合を説明したが、多孔質担体の表面に固定する官能基としては、デキストラン硫酸及びその塩、ポリアクリル酸またはその塩、ポリカルボン酸またはその塩、SDS(ドデシル硫酸ナトリウム)、ヘパリン等の陰性電荷を持つ化合物を始めとして、吸着対象物質に特異的に結合する官能基であれば種々のものが利用できる。   <3> In each of the above embodiments, the case where dextran sulfate is fixed as the functional group 12 on the surface of the porous carrier 11 constituting the auxiliary adsorbent 1 and the main adsorbent 2 has been described. Specific functional groups include dextran sulfate and its salt, polyacrylic acid or its salt, polycarboxylic acid or its salt, SDS (sodium dodecyl sulfate), heparin and other negatively charged compounds. Various functional groups can be used as long as they are functionally bonded.

本発明に係る体液浄化処理用吸着カラムは、血液中のLDL等の病因物質の吸着除去を目的とするアフェレシス治療用の吸着カラムに利用可能である。   The adsorption column for body fluid purification treatment according to the present invention can be used as an adsorption column for apheresis treatment for the purpose of adsorption removal of pathogenic substances such as LDL in blood.

1: 補助吸着体
2: 主吸着体
3: 円筒容器
4: 仕切り板
5,6: 軸心部分
7: 開口部(送入口)
8: 開口部(排出口)
9: 外周流路
10,20: 本発明に係る体液浄化処理用吸着カラム
11: 多孔質担体
12: 官能基
13: 骨格体
14: 貫通孔
15: 細孔
21,22: 円筒容器
23: チューブ
24: 補助吸着カラム
25: 主吸着カラム
1: Auxiliary adsorbent 2: Main adsorbent 3: Cylindrical container 4: Partition plate 5, 6: Axial portion 7: Opening (feeding port)
8: Opening (discharge port)
9: Peripheral flow channel 10, 20: Adsorption column for body fluid purification treatment according to the present invention 11: Porous carrier 12: Functional group 13: Skeletal body 14: Through hole 15: Pore 21, 22: Cylindrical container 23: Tube 24 : Auxiliary adsorption column 25: Main adsorption column

Claims (9)

少なくとも低密度リポタンパクを含む吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定してなる吸着体を備えてなる体液浄化処理用の吸着カラムであって、
被処理体液から前記吸着対象物質より分子量の小さい共吸着物質を予め吸着除去する補助吸着体と、前記補助吸着体で前記共吸着物質を吸着除去した後の被処理体液から前記吸着対象物質を吸着除去する主吸着体を備え、
前記補助吸着体と前記主吸着体の前記多孔質担体が、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の間隙に形成された3次元網目状の貫通孔と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有し、
前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が前記吸着対象物質の最大長より小さく、且つ、前記細孔の窒素吸着法で測定した細孔直径の分布範囲の下限が2nm以下で、前記細孔直径の分布範囲の上限が前記共吸着物質の最大長の最大値を超えて大きく、
前記主吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、前記吸着対象物質の最大長より大きいことを特徴とする体液浄化処理用吸着カラム。
An adsorption column for body fluid purification treatment comprising an adsorbent formed by fixing a functional group that specifically binds to a substance to be adsorbed containing at least low-density lipoprotein on the surface of a porous carrier,
An adsorbent that adsorbs and removes a coadsorbed substance having a molecular weight smaller than that of the substance to be adsorbed in advance from the body fluid to be treated, and adsorbs the substance to be adsorbed from the body fluid that has been adsorbed and removed by the auxiliary adsorbent. With a main adsorber to remove,
The porous carrier of the auxiliary adsorbent and the main adsorbent is a skeleton made of silica gel or silica glass having a three-dimensional network structure, a three-dimensional network-like through-hole formed in a gap between the skeleton, Having fine pores penetrating from the surface of the skeleton body to the inside formed dispersed on the surface of the skeleton body,
The central pore diameter measured by the nitrogen adsorption method of the pore in the porous carrier of the auxiliary adsorbent is smaller than the maximum length of the substance to be adsorbed, and the pore diameter measured by the nitrogen adsorption method of the pore The upper limit of the distribution range of the pore diameter is larger than the maximum value of the maximum length of the coadsorbing substance,
An adsorption column for body fluid purification treatment, wherein a central pore diameter measured by a nitrogen adsorption method of the pores in the porous carrier of the main adsorbent is larger than a maximum length of the adsorption target substance.
前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、10nm以上26nm以下であることを特徴とする請求項1に記載の体液浄化処理用吸着カラム。   2. The adsorption column for body fluid purification treatment according to claim 1, wherein a central pore diameter measured by a nitrogen adsorption method of the pores in the porous carrier of the auxiliary adsorbent is 10 nm or more and 26 nm or less. 前記主吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、前記吸着対象物質の最大長より2倍以上大きいことを特徴とする請求項1または2に記載の体液浄化処理用吸着カラム。   The center pore diameter measured by the nitrogen adsorption method of the pores in the porous carrier of the main adsorbent is at least twice as large as the maximum length of the substance to be adsorbed. Adsorption column for body fluid purification treatment. 単体容器内の前記被処理体液が通流する経路内の上流側に前記補助吸着体を備え、下流側に前記主吸着体を備えてなることを特徴とする請求項1〜3の何れか1項に記載の体液浄化処理用吸着カラム。   4. The apparatus according to claim 1, wherein the auxiliary adsorbent is provided on an upstream side in a path through which the body fluid to be processed in a single container flows, and the main adsorbent is provided on a downstream side. The adsorption column for body fluid purification treatment according to Item. 前記被処理体液が通流する体液通流路の上流側に単体容器内に前記補助吸着体を充填してなる補助吸着カラムを備え、前記体液通流路の下流側に別の単体容器内に前記主吸着体を充填してなる主吸着カラムを備えてなることを特徴とする請求項1〜3の何れか1項に記載の体液浄化処理用吸着カラム。   Provided with an auxiliary adsorption column formed by filling the auxiliary adsorbent in a single container upstream of the body fluid flow path through which the body fluid flows, and in another single container downstream of the body fluid flow path The adsorption column for body fluid purification treatment according to any one of claims 1 to 3, further comprising a main adsorption column filled with the main adsorbent. 少なくとも低密度リポタンパクを含む吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定して、被処理体液から前記吸着対象物質より分子量の小さい共吸着物質を予め吸着除去する補助吸着体を備えてなる体液浄化処理用の吸着カラムであって、
前記補助吸着体の前記多孔質担体が、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の間隙に形成された3次元網目状の貫通孔と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有し、
前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が前記吸着対象物質の最大長より小さく、且つ、前記細孔の窒素吸着法で測定した細孔直径の分布範囲の下限が2nm以下、前記細孔直径の分布範囲の上限が前記共吸着物質の最大長の最大値を超えて大きいことを特徴とする体液浄化処理用吸着カラム。
Auxiliary for adsorbing and removing in advance the coadsorbed substance having a molecular weight smaller than that of the substance to be adsorbed from the body fluid to be treated by immobilizing a functional group that specifically binds to the substance to be adsorbed including at least low-density lipoprotein on the surface of the porous carrier. An adsorption column for body fluid purification treatment comprising an adsorbent,
The porous carrier of the auxiliary adsorbent is a skeleton made of silica gel or silica glass having a three-dimensional network structure, a three-dimensional network-like through-hole formed in a gap between the skeleton, and a surface of the skeleton. Having pores penetrating from the surface to the inside of the skeleton formed by dispersion,
The central pore diameter measured by the nitrogen adsorption method of the pore in the porous carrier of the auxiliary adsorbent is smaller than the maximum length of the substance to be adsorbed, and the pore diameter measured by the nitrogen adsorption method of the pore An adsorption column for bodily fluid purification, wherein the lower limit of the distribution range is 2 nm or less and the upper limit of the distribution range of the pore diameter is larger than the maximum value of the maximum length of the coadsorbent.
前記補助吸着体の前記多孔質担体における前記細孔の窒素吸着法で測定した中心細孔直径が、10nm以上26nm以下であることを特徴とする請求項6に記載の体液浄化処理用吸着カラム。   The adsorption column for body fluid purification treatment according to claim 6, wherein the pore diameter of the auxiliary adsorbent in the porous carrier measured by a nitrogen adsorption method is 10 nm or more and 26 nm or less. 前記官能基が、低密度リポタンパクに特異的に結合する親和性を有するデキストラン硫酸またはその塩、ポリアクリル酸またはその塩、或いは、その他の鎖状多価酸またはその塩であることを特徴とする請求項1〜7の何れか1項に記載の体液浄化処理用吸着カラム。   The functional group is dextran sulfate or a salt thereof, polyacrylic acid or a salt thereof, or other chain polyvalent acid or a salt thereof having an affinity for specifically binding to low density lipoprotein. The adsorption column for body fluid purification treatment according to any one of claims 1 to 7. 前記多孔質担体が、スピノーダル分解ゾルゲル法で合成されていることを特徴とする請求項1〜8の何れか1項に記載の体液浄化処理用吸着カラム。   The adsorption column for body fluid purification treatment according to any one of claims 1 to 8, wherein the porous carrier is synthesized by a spinodal decomposition sol-gel method.
JP2009010314A 2009-01-20 2009-01-20 Absorption column for body fluid purification treatment Expired - Fee Related JP5308171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010314A JP5308171B2 (en) 2009-01-20 2009-01-20 Absorption column for body fluid purification treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010314A JP5308171B2 (en) 2009-01-20 2009-01-20 Absorption column for body fluid purification treatment

Publications (2)

Publication Number Publication Date
JP2010166979A JP2010166979A (en) 2010-08-05
JP5308171B2 true JP5308171B2 (en) 2013-10-09

Family

ID=42699656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010314A Expired - Fee Related JP5308171B2 (en) 2009-01-20 2009-01-20 Absorption column for body fluid purification treatment

Country Status (1)

Country Link
JP (1) JP5308171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000113A (en) * 2013-06-13 2015-01-05 サンデン商事株式会社 Lipid removal system in blood using cyclic polysaccharide
CN105343954B (en) * 2015-09-25 2018-03-06 珠海健帆生物科技股份有限公司 Compound apparatus for purifying blood and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173528A (en) * 1994-12-26 1996-07-09 Terumo Corp Blood processing system
JPH1076004A (en) * 1996-09-05 1998-03-24 Kanegafuchi Chem Ind Co Ltd Adsorbing material for humor treatment and adsorber for humor treatment
JPH10179732A (en) * 1996-12-21 1998-07-07 Kanegafuchi Chem Ind Co Ltd Whole blood treating device and whole blood treatment
JP2007029511A (en) * 2005-07-28 2007-02-08 Kaneka Corp Adsorbent, adsorption method and adsorber of high mobility group protein
JP4226050B1 (en) * 2007-09-12 2009-02-18 株式会社Reiメディカル Absorption column for body fluid purification treatment

Also Published As

Publication number Publication date
JP2010166979A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4226050B1 (en) Absorption column for body fluid purification treatment
US7740763B2 (en) Capillary-channeled polymeric fiber as solid phase extraction media
JP6665184B2 (en) Mixed bed ion exchange adsorbent
US9155980B2 (en) Separation medium for chromatography of various biomolecules
KR20130031351A (en) Chromatogrphy media and method
KR101161072B1 (en) Protein adsorbent and method for producing the same
Wernert et al. Adsorption of the uremic toxin p-cresol onto hemodialysis membranes and microporous adsorbent zeolite silicalite
US20240139394A1 (en) Adsorbent for calciprotein particles, adsorption removal system, and method for utilization thereof
Huseynli et al. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses
JP5308171B2 (en) Absorption column for body fluid purification treatment
RU2007145933A (en) MALBULAR DEFINITION OF STABILIZERS ALBUMIN SOLUTION
US20140017813A1 (en) Method and means for sample preparation
Shirataki et al. Evaluation of an anion-exchange hollow-fiber membrane adsorber containing γ-ray grafted glycidyl methacrylate chains
JP4976391B2 (en) Isolation of proteins based on isoelectric point using solid buffer
JP2014002008A (en) Method for purifying antibody and antibody purification column
Guo et al. Removal of endotoxin from aqueous solutions by affinity membrane
JP5499270B2 (en) Method for producing porous membrane having affinity function and method for separating and purifying protein
Zhang et al. Separation of proteins from complex bio-matrix samples using a double-functionalized polymer monolithic column
JP2010070490A (en) Method for antibody purification
EP3406623A1 (en) Protein purification method
RU2118541C1 (en) Sorbent for removing atherogenic lipoproteins from blood and a method of its producing
CN108348892B (en) Method for producing chromatography medium and chromatography medium
JPH043988B2 (en)
Li et al. Purification of lysozyme by intrinsically shielded hydrogel beads
JPS63160669A (en) Low density lipoprotein adsorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees