JP2010070490A - Method for antibody purification - Google Patents

Method for antibody purification Download PDF

Info

Publication number
JP2010070490A
JP2010070490A JP2008239254A JP2008239254A JP2010070490A JP 2010070490 A JP2010070490 A JP 2010070490A JP 2008239254 A JP2008239254 A JP 2008239254A JP 2008239254 A JP2008239254 A JP 2008239254A JP 2010070490 A JP2010070490 A JP 2010070490A
Authority
JP
Japan
Prior art keywords
antibody
purification
anion exchange
protein
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008239254A
Other languages
Japanese (ja)
Inventor
Hironobu Shirataki
浩伸 白瀧
Chihiro Kato
千尋 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008239254A priority Critical patent/JP2010070490A/en
Publication of JP2010070490A publication Critical patent/JP2010070490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purifying an antibody under a pH condition not to cause an antibody denaturation or agglutination. <P>SOLUTION: The method for purifying the antibody from a mixed solution containing an antibody includes a process for adsorbing and removing impurities from the mixed solution by using a porous membrane containing an anion exchange group and a process for adsorbing the antibody by using an adsorbent carrying tryptophan and eluting and recovering the antibody after the process for removing impurities. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、タンパク質の精製技術に関し、特にバイオ医薬品としての抗体の精製方法に関する。   The present invention relates to a protein purification technique, and particularly to a method for purifying an antibody as a biopharmaceutical.

抗体は、標的物質を高い特異性で認識し、結合する。そのため抗体は、研究用試薬や臨床検査試薬として極めて有用である。こと近年においては、種々の治療用抗体が開発され、従来治療が困難であったリウマチや癌などの分野において、画期的な治療薬として医療技術の進歩に大きく貢献している。抗体の精製方法は、大まかに培養及び精製の二工程を含む。培養工程においては、免疫した動物あるいは抗体産性能を持つ細胞を用いて、抗体を含有する血液、腹水、あるいは細胞培養液等が得られる。細胞培養液等には抗体以外の様々なタンパク質やデオキシリボ核酸(DNA)等の不純物が含まれる。そのため、精製工程においては、不純物を減じ、抗体の純度を著しく高めることが求められる。   The antibody recognizes and binds to the target substance with high specificity. Therefore, antibodies are extremely useful as research reagents and clinical test reagents. In recent years, various therapeutic antibodies have been developed and have greatly contributed to the advancement of medical technology as epoch-making therapeutic agents in fields such as rheumatism and cancer, which have been difficult to treat conventionally. The antibody purification method roughly includes two steps of culture and purification. In the culturing step, antibody-containing blood, ascites fluid, cell culture fluid, or the like is obtained using immunized animals or cells having antibody-producing ability. Cell culture fluids and the like contain various proteins other than antibodies and impurities such as deoxyribonucleic acid (DNA). Therefore, in the purification process, it is required to reduce impurities and significantly increase the purity of the antibody.

精製工程において重要な役割を果たしているのが、アフィニティリガンドとして用いられる黄色ブドウ球菌(Staphylococcus aureus)由来のプロテインA、あるいはその組換え体であるプロテインGである。プロテインA及びプロテインGは抗体に対して非常に特異的であり、かつ高い親和性を有する。そのため、プロテインA及びプロテインGを用いた抗体の精製方法が提案されている(例えば、特許文献1参照。)。しかし、プロテインA及びプロテインGは、通常、大変高価である。また、プロテインA及びプロテインGを用いた抗体の精製工程では、pH3付近の低pH緩衝液のみが用いられる。そのため、プロテインA及びプロテインGは、低pHで変性する抗体には適用できず、また、適用できたとしても抗体の凝集を引き起こすことが知られている(例えば、非特許文献1参照。)。しかし、ヒトへ投与した場合に、抗体の凝集体は抗原性を示すことが懸念されており、こと治療用抗体の製造においては、凝集体の除去及び残留量のモニタリングが求められる(例えば、非特許文献2参照。)。   An important role in the purification process is protein A derived from Staphylococcus aureus, which is used as an affinity ligand, or protein G, which is a recombinant product thereof. Protein A and protein G are very specific for antibodies and have a high affinity. Therefore, an antibody purification method using protein A and protein G has been proposed (see, for example, Patent Document 1). However, protein A and protein G are usually very expensive. In the antibody purification step using protein A and protein G, only a low pH buffer solution having a pH of around 3 is used. Therefore, it is known that protein A and protein G cannot be applied to an antibody that denatures at a low pH, and cause aggregation of the antibody even if it can be applied (see, for example, Non-Patent Document 1). However, there is a concern that antibody aggregates exhibit antigenicity when administered to humans, and in the production of therapeutic antibodies, removal of aggregates and monitoring of residual amounts are required (for example, non-antibody). (See Patent Document 2).

さらに、プロテインA及びプロテインGは、微生物由来のタンパク質であるため、プロテインA及びプロテインGを含む抗体医薬品が投与された場合に、感受性の高い患者ではアナフィラキシー様の症状を引き起こす可能性がある(例えば、非特許文献3参照。)。そのため、抗体医薬品の製造工程の後段において、プロテインA及びプロテインGを除去し、残留量をモニタリングすることが必須となる。   Furthermore, since protein A and protein G are proteins derived from microorganisms, when an antibody drug containing protein A and protein G is administered, it may cause anaphylactoid symptoms in sensitive patients (for example, Non-patent document 3). Therefore, it is indispensable to remove protein A and protein G and monitor the residual amount in the latter stage of the manufacturing process of the antibody drug.

以上の課題を解決するため、イオン交換クロマトグラフィー及び疎水クロマトグラフィーを組み合わせた方法が知られている(例えば、特許文献2参照。)。また有機化学的に合成されたプロテインA模倣リガンドを用い、プロテインAを用いない抗体の精製方法も報告されている(例えば、特許文献3参照。)。また、プロテインA模倣リガンドは、プロテインAそのものと比較すると、抗体の選択的吸着性が劣るため、吸着後に溶出した溶出液の抗体の精製度が充分でない。一方、弱酸性付近の緩衝液を用いてプロテインAから抗体を脱離させる方法が報告されている(例えば、特許文献3参照。)。
欧州特許第310719号明細書 特開平7−267997号公報 国際公開第2007/064281号パンフレット ジャーナル・オブ・ファーマシューティカル・サイエンス(Journal of Pharmaceutical Sciences)、2007年、第96巻、p.1−26 エイミー・S・ローゼンブルグ(Amy S. Rosenberg)著、「Overview S ignificance of Protein Aggregation to Therapeutic Protein Products」、[平成2 0年9月12日検索]、インターネット<URL : http://www.fda.gov/cder/regulatory/follow_on/200512/200512_rosenberg.pdf> Eds.C.S.F.イースモン及びC.アドラム(Eds. C.S.F. Easmon and C. Adlam)著、「Staphylococci and Staphylococcal infections 2」、(英国)、アカデミック・プレス(Academic Press Inc.)、1983年、p.429−480
In order to solve the above problems, a method combining ion exchange chromatography and hydrophobic chromatography is known (for example, see Patent Document 2). In addition, a method for purifying an antibody using a protein A mimetic ligand synthesized organically and not using protein A has been reported (for example, see Patent Document 3). In addition, the protein A mimetic ligand is inferior in the selective adsorptivity of the antibody as compared with the protein A itself, and thus the purity of the antibody in the eluate eluted after the adsorption is not sufficient. On the other hand, a method of desorbing an antibody from protein A using a buffer solution near weak acidity has been reported (for example, see Patent Document 3).
European Patent No. 310719 Japanese Patent Laid-Open No. 7-267997 International Publication No. 2007/064281 Pamphlet Journal of Pharmaceutical Sciences, 2007, Vol. 96, p. 1-26 Amy S. Rosenberg, “Overview Significance of Protein Aggregation to Therapeutic Protein Products”, [searched September 12, 2000], Internet <URL: http: //www.fda .gov / cder / regulatory / follow_on / 200512 / 200512_rosenberg.pdf> Eds. C. S. F. Easmon and C.I. Eds (Eds. CSF Easmon and C. Adlam), "Staphylococci and Staphylococcal infections 2" (UK), Academic Press Inc., 1983, p. 429-480

しかしながら、特許文献2におけるイオン交換クロマトグラフィー及び疎水クロマトグラフィーを組み合わせた方法では、プロテインA及びプロテインGに比べて結合特性が低いことから、汎用性に乏しく、抗体の工業的な生産に広く用いられるに至っていない。   However, the method combining ion exchange chromatography and hydrophobic chromatography in Patent Document 2 has low binding characteristics as compared with protein A and protein G, and therefore is not versatile and widely used for industrial production of antibodies. It has not reached.

また、特許文献3では、人工的に合成された化合物を用いる以上、プロテインA模倣リガンドを含む抗体医薬品が投与された場合、感受性の高い患者においてアナフィラキシー様の症状が引き起こされる可能性を免れない。さらに、特許文献3では、プロテインAを用いた方法をベースにしている以上、上記課題の根本的な解決に至っていない。   Further, in Patent Document 3, as long as an artificially synthesized compound is used, when an antibody drug containing a protein A mimetic ligand is administered, there is an unavoidable possibility that anaphylaxis-like symptoms will be caused in sensitive patients. Furthermore, in patent document 3, since it is based on the method using protein A, it has not led to the fundamental solution of the said subject.

かかる事情に鑑み、本発明が解決しようとする課題は、抗体の変性あるいは凝集を引き起こさないpH条件で使用可能であり、安価にかつ簡便に、高い精度で抗体を精製可能な方法を提供することである。   In view of such circumstances, the problem to be solved by the present invention is to provide a method that can be used under pH conditions that do not cause denaturation or aggregation of antibodies, and that can purify antibodies with high accuracy at low cost. It is.

そこで、本発明者らは、上記問題を解決するため、種々の吸着体及び精製方法について鋭意研究を重ねた結果、アニオン交換基が固定された多孔膜を用いて混合液をろ過することにより、不純物を除去する工程と、次いでトリプトファンを低分子リガンドとした吸着体を用いたアフィニティカラムで抗体を吸着後溶出回収する工程とを組み合わせることにより、高い精度で抗体を精製可能であることを見出し、本発明に係る方法を完成させるに至った。トリプトファンは必須アミノ酸のひとつであり、大量に摂取しない限り毒性はない。因みにマウスへ腹腔内投与した場合の半数致死量(LD50)は4.8g/kgである。   Therefore, in order to solve the above problems, the present inventors have conducted extensive research on various adsorbents and purification methods, and as a result, by filtering the liquid mixture using a porous membrane on which an anion exchange group is fixed, By combining the step of removing impurities and then the step of elution and recovery after adsorption of the antibody with an affinity column using an adsorbent with tryptophan as a low molecular ligand, it was found that the antibody can be purified with high accuracy, The method according to the present invention has been completed. Tryptophan is an essential amino acid and is not toxic unless taken in large quantities. Incidentally, the half-lethal dose (LD50) when administered intraperitoneally to mice is 4.8 g / kg.

本発明に係る抗体の精製方法を用いることにより、抗体の変性を引き起こさず、異種タンパク質、人工合成化合物、あるいは抗体凝集体の混入のない抗体を得ることが可能となる。また、高価なプロテインAリガンドを有するカラム担体を用いることなく、高い精度で抗体を精製することが可能となる。   By using the method for purifying an antibody according to the present invention, it is possible to obtain an antibody that does not cause denaturation of the antibody and does not contain foreign proteins, artificially synthesized compounds, or antibody aggregates. In addition, the antibody can be purified with high accuracy without using a column carrier having an expensive protein A ligand.

以下、本発明を実施するための最良の形態(以下、「本実施の形態」という。)について詳細に説明する。なお、本発明は、以下の本実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiment, and can be implemented with various modifications within the scope of the gist.

(第1の実施形態)
本実施の形態の精製方法は、抗体を含有する混合液から前記抗体を精製するための方法であって、アニオン交換基を有する多孔膜を用いて、前記混合液から不純物を吸着除去する工程と、前記不純物を吸着除去する工程の次に、トリプトファンを担持した吸着体を用いて前記抗体を吸着した後、前記抗体を溶出し回収する工程と、を含む。
(First embodiment)
The purification method of the present embodiment is a method for purifying the antibody from a mixed solution containing an antibody, and a step of adsorbing and removing impurities from the mixed solution using a porous membrane having an anion exchange group; The step of adsorbing and removing the impurities includes the step of adsorbing the antibody using an adsorbent carrying tryptophan and then eluting and collecting the antibody.

最初に、本実施の形態における不純物を吸着除去する工程について説明する。本実施の形態に係るアニオン交換基を有する多孔膜は、基材となる多孔質体と、多孔質体の細孔の側壁表面に化学的又は物理的に固定されたアニオン交換基を備える。ここで、多孔膜が細孔の側壁表面にグラフト鎖を有し、かつグラフト鎖にアニオン交換基が固定されていると、吸着容量が高いためより好ましい。グラフト鎖の材質は特に限定しないが、細孔の側壁表面に導入しやすいことから、メタクリル酸グリシジル又は酢酸ビニルの重合体が好ましく、アニオン交換基を化学的に固定しやすいことから、メタクリル酸グリシジルの重合体がより好ましい。   First, the process of adsorbing and removing impurities in the present embodiment will be described. The porous membrane having an anion exchange group according to the present embodiment includes a porous body serving as a base material and an anion exchange group that is chemically or physically fixed to the side wall surface of the pores of the porous body. Here, it is more preferable that the porous membrane has a graft chain on the side wall surface of the pore and an anion exchange group is fixed to the graft chain because the adsorption capacity is high. The material of the graft chain is not particularly limited, but is preferably a glycidyl methacrylate or vinyl acetate polymer because it is easy to introduce into the side wall surface of the pore, and glycidyl methacrylate is easy to chemically fix the anion exchange group. The polymer of is more preferable.

多孔質体の素材は特に限定はされないが、機械的性質の保持のためにはポリオレフィン系重合体又はオレフィンとハロゲン化オレフィンとの共重合体から構成されていることが好ましい。これらの素材の中でも、機械的強度に特に優れ、かつ高い吸着容量が得られる素材である点で、ポリエチレン及びポリフッ化ビニリデンが好ましく、ポリエチレンがより好ましい。   The material of the porous body is not particularly limited, but is preferably composed of a polyolefin polymer or a copolymer of olefin and halogenated olefin in order to maintain mechanical properties. Among these materials, polyethylene and polyvinylidene fluoride are preferable, and polyethylene is more preferable in that the material is particularly excellent in mechanical strength and can obtain a high adsorption capacity.

多孔質体の最表面及び細孔の側壁表面に、グラフト鎖を導入し、グラフト鎖にさらにアニオン交換基を固定する方法は、限定されるものではないが、例えば、特開平2−132132号公報に開示されている。   A method of introducing a graft chain to the outermost surface of the porous body and the side wall surface of the pore and further fixing the anion exchange group to the graft chain is not limited, but for example, JP-A-2-132132 Is disclosed.

アニオン交換基としては、DNA、宿主細胞由来のタンパク質(HCP)、ウィルス、及びエンドトキシン等の不純物を吸着するアニオン交換基であれば限定されるものではないが、ジエチルアミノ基(DEA)、四級アンモニウム基(Q)、四級アミノエチル基(QAE)、ジエチルアミノエチル基(DEAE)、及びジエチルアミノプロピル基等が挙げられる。中でも、多孔質体に導入されたグラフト鎖への化学的な固定が容易であり、高い吸着容量が得られることから、ジエチルアミノ基及び四級アンモニウム基が好ましく、ジエチルアミノ基がより好ましい。   The anion exchange group is not limited as long as it is an anion exchange group that adsorbs impurities such as DNA, host cell-derived protein (HCP), virus, and endotoxin, but diethylamino group (DEA), quaternary ammonium Examples thereof include a group (Q), a quaternary aminoethyl group (QAE), a diethylaminoethyl group (DEAE), and a diethylaminopropyl group. Among them, a diethylamino group and a quaternary ammonium group are preferable, and a diethylamino group is more preferable because chemical fixation to the graft chain introduced into the porous body is easy and a high adsorption capacity is obtained.

多孔膜の最大細孔径は、濁質成分及びバクテリアをカットし、なおかつ高い透過流速を得るために、0.1μm以上、1.0μm以下であることが好ましく、さらに好ましくは0.1μm乃至0.6μmの範囲内であり、より好ましくは0.22μm乃至0.5μmの範囲内である。   The maximum pore diameter of the porous membrane is preferably 0.1 μm or more and 1.0 μm or less, more preferably 0.1 μm to 0. 0 μm, in order to cut turbid components and bacteria and obtain a high permeation flow rate. It is in the range of 6 μm, more preferably in the range of 0.22 μm to 0.5 μm.

多孔膜の形態は、平膜、不織布、中空糸膜、モノリス、キャピラリー、円板又は円筒状など、多孔質体であれば形態は限定しない。しかし、製造のしやすさ、スケールアップ性、モジュール成型した際の膜のパッキング性などから、中空糸膜であることが好ましい。   The form of the porous membrane is not limited as long as it is a porous body such as a flat membrane, nonwoven fabric, hollow fiber membrane, monolith, capillary, disk or cylinder. However, a hollow fiber membrane is preferable from the viewpoint of ease of production, scale-up property, and packing property of the membrane when it is molded into a module.

(請求項4のサポート)
前述のように、抗体を含有する混合液から不純物を吸着除去する目的のためには、アニオン交換基を有する中空糸多孔膜を、モジュールに内蔵されていることが好ましい。中空糸膜モジュールは、多孔質体の最表面及び細孔の側壁表面にアニオン交換基が化学的又は物理的に固定された多孔質中空糸よりなる中空糸多孔膜を内蔵するモジュールである。該モジュールを用いて、溶存するあるいは濁質成分としての不純物を混合液から吸着除去することができる。
(Support of claim 4)
As described above, a hollow fiber porous membrane having an anion exchange group is preferably built in the module for the purpose of adsorbing and removing impurities from the mixed solution containing the antibody. The hollow fiber membrane module is a module that incorporates a hollow fiber porous membrane made of a porous hollow fiber in which an anion exchange group is chemically or physically fixed on the outermost surface of the porous body and the side wall surface of the pore. The module can be used to adsorb and remove impurities dissolved or as turbid components from the mixed solution.

次に、本実施の形態におけるトリプトファンを担持した吸着体を用いて前記抗体を吸着した後、前記抗体を溶出し回収する工程を説明する。吸着体は、担体にトリプトファンを担持することにより形成される。担体の素材及び形態は、特に限定されないが、天然高分子又は合成高分子からなる粒子、多孔膜、多孔中空糸、不織布等が使用可能である。また、担体へのトリプトファンの固定化方法は、pH3乃至9で安定であり、pH3乃至9の条件下における溶出物濃度が人体に毒性を示す濃度未満となる方法であれば特に限定されない。吸着体として、具体的には、トリプトファン固定化ポリビニルアルコールゲル(以下TR−PVA担体)等が使用可能である。   Next, a process of eluting and recovering the antibody after adsorbing the antibody using the adsorbent carrying tryptophan in the present embodiment will be described. The adsorbent is formed by supporting tryptophan on a carrier. The material and form of the carrier are not particularly limited, but particles made of natural polymers or synthetic polymers, porous membranes, porous hollow fibers, nonwoven fabrics and the like can be used. The method for immobilizing tryptophan on the carrier is not particularly limited as long as it is stable at pH 3 to 9 and the eluate concentration under pH 3 to 9 is less than the concentration that is toxic to the human body. As the adsorbent, specifically, tryptophan-immobilized polyvinyl alcohol gel (hereinafter referred to as TR-PVA carrier) or the like can be used.

本実施の形態において、吸着した抗体の溶出には、pH3乃至9の緩衝液が使用される。pH3乃至9の緩衝液としては、例えば、リン酸緩衝液、酢酸緩衝液、及び希塩酸溶液等が使用可能である。また、緩衝液には、例えば塩化ナトリウム、アルギニン等の種々の添加物を添加してもよい。   In the present embodiment, a buffer solution having a pH of 3 to 9 is used for elution of the adsorbed antibody. As the buffer solution of pH 3 to 9, for example, a phosphate buffer solution, an acetate buffer solution, a diluted hydrochloric acid solution, or the like can be used. Further, various additives such as sodium chloride and arginine may be added to the buffer solution.

(第2の実施形態)
本実施の形態における別の精製方法は、抗体を含有する混合液から前記抗体を精製するための方法であって、トリプトファンを担持した吸着体を用いて前記抗体を吸着した後、前記抗体を溶出し回収する精製工程に次いで、以下の工程の少なくとも一つを含む方法により、さらに不純物を除去する。
(1)アニオン交換クロマトグラフィーで精製する工程、
(2)カチオン交換クロマトグラフィーで精製する工程、
(3)疎水性クロマトグラフィーで精製する工程。
(Second Embodiment)
Another purification method in the present embodiment is a method for purifying the antibody from a mixed solution containing the antibody, after the antibody is adsorbed using an adsorbent carrying tryptophan and then eluted. Then, after the purification step to be recovered, impurities are further removed by a method including at least one of the following steps.
(1) a step of purification by anion exchange chromatography;
(2) a step of purification by cation exchange chromatography,
(3) A step of purification by hydrophobic chromatography.

トリプトファンを担持した吸着体を用いて前記抗体を吸着した後、前記抗体を溶出し回収する工程は、前記第1の実施形態と同様である。
吸着体から抗体を溶出回収した後、さらに抗体を精製するために、アニオン交換クロマトグラフィーで精製する工程、カチオン交換クロマトグラフィーで精製する工程、及び疎水性クロマトグラフィーで精製する工程から選ばれる、少なくとも一つの精製工程が実施されてもよい。これらのクロマトグラフィー工程においては、リガンドが固定された樹脂を充填したクロマトグラフィーカラム、あるいはリガンドが固定された多孔膜を用いることができる。ここでリガンドの種類は、抗体精製の目的に適したものであれば、特に限定されない。
The step of eluting and recovering the antibody after adsorbing the antibody using an adsorbent carrying tryptophan is the same as in the first embodiment.
After eluting and recovering the antibody from the adsorbent, at least selected from the step of purification by anion exchange chromatography, the step of purification by cation exchange chromatography, and the step of purification by hydrophobic chromatography to further purify the antibody, One purification step may be performed. In these chromatography steps, a chromatography column packed with a resin on which a ligand is immobilized, or a porous membrane on which a ligand is immobilized can be used. Here, the type of ligand is not particularly limited as long as it is suitable for the purpose of antibody purification.

本実施の形態(第1及び第2の実施形態を含む。)に適用される、抗体を含有する混合液は特に限定されない。例えば血漿、血清、腹水、あるいは細胞培養液等に、本実施の形態を適用可能である。   The mixed solution containing the antibody applied to the present embodiment (including the first and second embodiments) is not particularly limited. For example, the present embodiment can be applied to plasma, serum, ascites, cell culture medium, and the like.

以下、実施例及び比較例によって、本実施の形態をより具体的に説明するが、本発明の実施の形態は以下の実施例によって何ら限定されるものではない。   Hereinafter, the present embodiment will be described more specifically with reference to examples and comparative examples, but the embodiment of the present invention is not limited to the following examples.

(製造例1) アニオン交換膜モジュールの作成
外径3mm、内径2mm、細孔径0.3μm、空孔率70%のポリエチレン中空糸に、特開平2−132132号公報に開示されている方法に従って、グラフト鎖を導入した。その後、アニオン交換基としてジエチルアミノ基をグラフト鎖に固定した。得られた中空糸3本を束ね、中空糸の中空部を閉塞しないようにエポキシ系ポッティング剤で量末端をポリスルホン酸製モジュールケースに固定し、アニオン交換基を有する中空糸モジュールを作製した。得られたモジュールの内径は9mm、長さは約33mm、モジュールの内容積は約2mL、モジュール内に占める多孔質中空糸の有効体積は0.85mL、中空部分を除いた中空糸多孔膜のみの体積は0.54mLであった。
(Production Example 1) Production of anion exchange membrane module According to the method disclosed in JP-A-2-132132, a polyethylene hollow fiber having an outer diameter of 3 mm, an inner diameter of 2 mm, a pore diameter of 0.3 μm, and a porosity of 70%, Graft chains were introduced. Thereafter, a diethylamino group was fixed to the graft chain as an anion exchange group. Three hollow fibers thus obtained were bundled, and the end of the amount was fixed to a polysulfonic acid module case with an epoxy-based potting agent so as not to block the hollow portion of the hollow fiber, thereby producing a hollow fiber module having an anion exchange group. The inner diameter of the obtained module is 9 mm, the length is about 33 mm, the inner volume of the module is about 2 mL, the effective volume of the porous hollow fiber occupying in the module is 0.85 mL, and only the hollow fiber porous membrane excluding the hollow portion is used. The volume was 0.54 mL.

(製造例2) 抗体含有細胞培養液の調整
無血清培地にて培養したチャイニーズハムスター卵巣(CHO)細胞の培養液(塩濃度約0.9質量%、たんぱく質濃度約1g/L、細胞密度1.1×107/mL)196mLに抗体50mg/mLを含むヒトγ−グロブリン溶液(ベネシス社、ヴェノグロブリン)4mLを添加し、塩酸によりpH5.0に調整した後、0.45μmの精密ろ過膜を透過させることにより、抗体1mg/mLを含有する細胞培養液を調整した。得られた培養液中の代表的な不純物であるHCP濃度を、ELISA法を用いて測定した。具体的には、Cygnus Technologies製、CHO Host Cell Protein ELISA Kitの96ウェルプレートに細胞培養液を滴下し、GEヘルスケアバイオサイエンス製、Ultrospec Visible Plate Reader II96のプレートリーダーを用いてHCP濃度を測定した。その結果、細胞培養液中のHCP濃度は、346μg/mLであった。さらに他の代表的な不純物であるDNAの定量は、invitrogen製、Quant−iT(登録商標)dsDNA HS Assay Kitを用いて評価する細胞培養液を処理した後、Qubit(登録商標)フルオロメーターを用いて行った。その結果、細胞培養液中のDNA濃度は7340ng/mLであった。
(Production Example 2) Preparation of antibody-containing cell culture solution Chinese hamster ovary (CHO) cell culture solution cultured in serum-free medium (salt concentration of about 0.9% by mass, protein concentration of about 1 g / L, cell density of 1. 1 × 10 7 / mL) 196 mL of human γ-globulin solution (Benesys, Venoglobulin) containing 50 mg / mL of antibody was added and adjusted to pH 5.0 with hydrochloric acid, and then a 0.45 μm microfiltration membrane was added. A cell culture solution containing 1 mg / mL of antibody was prepared by permeation. The concentration of HCP, which is a typical impurity in the obtained culture broth, was measured using an ELISA method. Specifically, the cell culture solution was dropped onto a 96-well plate made by Cygnos Technologies and CHO Host Cell Protein ELISA Kit, and the HCP concentration was measured using an Ultraspec Visible Plate Reader II96 plate reader made by GE Healthcare Biosciences. . As a result, the HCP concentration in the cell culture medium was 346 μg / mL. In addition, quantification of DNA, which is another typical impurity, was performed using a Qubit (registered trademark) fluorometer after treating a cell culture solution to be evaluated using Quant-iT (registered trademark) dsDNA HS Assay Kit manufactured by Invitrogen. I went. As a result, the DNA concentration in the cell culture solution was 7340 ng / mL.

(実施例1) 抗体精製その1:アニオン交換膜に次いでTR−PVA担体を用いた抗体精製
製造例1で作成したアニオン交換膜モジュールに20mmol/L酢酸−0.2mol/L NaCl緩衝液(pH5.0)10mLを通液して平衡化した後、製造例2で調整した抗体含有細胞培養液54mLを透過させ、不純物が除去された抗体含有細胞培養液を得た。次に、2mLのTR−PVA担体を充填したカラムを、20mmol/L酢酸−0.2mol/L NaCl緩衝液(pH5.0)20mLを用いて平衡化した後、不純物が除去された抗体含有細胞培養液20mLを通液し、カラムに抗体を吸着させた。その後、カラムに上記緩衝液40mLを通液して洗浄した後、0.1mol/Lのクエン酸ナトリウム緩衝液(pH3.0)を20mL通液して、抗体を溶出回収した。得られた溶出回収液に、等量の10mmol/Lリン酸ナトリウム緩衝液(pH8.2)を添加し中和した後、1.5mmol/LのTris−HCl(pH8.0)で回収液をpH8.0に調整し、抗体の精製液を得た。
Example 1 Antibody Purification No. 1: Antibody Purification Using TR-PVA Carrier Following Anion Exchange Membrane 20 mmol / L acetic acid-0.2 mol / L NaCl buffer (pH 5) was added to the anion exchange membrane module prepared in Production Example 1. 0.0) 10 mL of the solution was allowed to equilibrate, and then 54 mL of the antibody-containing cell culture solution prepared in Production Example 2 was permeated to obtain an antibody-containing cell culture solution from which impurities were removed. Next, a column packed with 2 mL of TR-PVA support was equilibrated with 20 mL of 20 mmol / L acetic acid-0.2 mol / L NaCl buffer (pH 5.0), and then the antibody-containing cells from which impurities were removed. 20 mL of the culture solution was passed through to adsorb the antibody to the column. Thereafter, 40 mL of the buffer solution was passed through the column for washing, and then 20 mL of 0.1 mol / L sodium citrate buffer solution (pH 3.0) was passed through to elute and recover the antibody. The obtained elution and recovery solution was neutralized by adding an equal amount of 10 mmol / L sodium phosphate buffer (pH 8.2), and then the recovery solution was added with 1.5 mmol / L Tris-HCl (pH 8.0). The pH was adjusted to 8.0 to obtain a purified antibody solution.

得られた抗体の精製液中のHCP濃度を製造例2と同様にして測定した結果、3.18μg/mLであった。また製造例2と同様にしてDNA濃度を測定した結果、33.2ng/mLであった。さらに得られた回収液を10倍希釈し、波長280nmの吸光度を測定し、抗体の吸光係数1.3を用いて得られた精製液中の抗体重量は18.2mgであった。アニオン交換膜で不純物を除去した後の抗体含有細胞培養液20mL中の抗体濃度を1mg/mLとすると、カラムに添加された抗体の重量は20mgである。したがって、カラム処理後の抗体の回収率は91%であった。よって、本実施の形態に係る精製方法により、高い精製度と回収率で抗体を回収できることが示された。   As a result of measuring the HCP concentration in the purified antibody solution in the same manner as in Production Example 2, it was 3.18 μg / mL. Further, the DNA concentration was measured in the same manner as in Production Example 2 and found to be 33.2 ng / mL. Further, the obtained recovered solution was diluted 10-fold, the absorbance at a wavelength of 280 nm was measured, and the antibody weight in the purified solution obtained using the antibody extinction coefficient 1.3 was 18.2 mg. If the antibody concentration in 20 mL of the antibody-containing cell culture solution after removing impurities with an anion exchange membrane is 1 mg / mL, the weight of the antibody added to the column is 20 mg. Therefore, the antibody recovery after the column treatment was 91%. Therefore, it was shown that the antibody can be recovered with a high degree of purification and a recovery rate by the purification method according to the present embodiment.

(比較例1) 抗体精製その2:TR−PVA担体のみを用いた抗体精製
製造例2で作成した抗体含有細胞培養液30mLを0.2μm除菌膜(ザルトリウス社製、Minisart plus)に通液した後、実施例1と同様にして、TR−PVA担体を用いて吸着、溶出回収し、pH8.0に調整して、抗体の精製液を得た。製造例2と同様にして、得られた抗体の精製液中のHCP濃度及びDNA濃度を測定したところ、それぞれ15.3μg/mL及び84.5ng/mLであった。また実施例1と同様の方法で抗体の回収率を測定したところ93%であった。この結果より、TR−PVA担体のみを用いた精製でも不純物は除去されるが、事前にアニオン交換膜を用いて不純物除去をした場合と比較して、精製度が大幅に劣ることが示された。
(Comparative Example 1) Antibody purification part 2: Antibody purification using TR-PVA carrier alone 30 mL of the antibody-containing cell culture solution prepared in Production Example 2 was passed through a 0.2 μm sterilization membrane (Sartorius, Minisart plus). Then, in the same manner as in Example 1, adsorption and elution recovery were performed using a TR-PVA carrier, and the pH was adjusted to 8.0 to obtain a purified antibody solution. In the same manner as in Production Example 2, the HCP concentration and DNA concentration in the purified solution of the obtained antibody were measured and found to be 15.3 μg / mL and 84.5 ng / mL, respectively. Further, the antibody recovery rate as measured in the same manner as in Example 1 was 93%. From this result, it was shown that impurities were removed even by purification using only TR-PVA support, but the degree of purification was significantly inferior compared with the case where impurities were removed in advance using an anion exchange membrane. .

(実施例2) 抗体精製その3:TR−PVA担体に次いでアニオン交換膜を用いた抗体精製
製造例1で作製したアニオン交換膜モジュールに10mmol/LのTris−HCl緩衝液(pH8.0)20mLを通液して平衡化した。その後、アニオン交換膜モジュールに、比較例1でTR−PVA担体を用いて得られたpH8.0の抗体精製液22.5mLを通液し、さらに上記平衡化緩衝液10mLを通液して併せて回収し、アニオン交換膜によるTR−PVA担体カラム後の精製液を得た。製造例2と同様にして、この抗体精製液中のHCP濃度及びDNA濃度を測定したところ、それぞれ56ng/mL及び1.1ng/mLであった。また実施例1と同様の方法で抗体の回収率を測定したところ84%であった。
(Example 2) Antibody purification part 3: Antibody purification using an anion exchange membrane after TR-PVA support 20 mL of 10 mmol / L Tris-HCl buffer (pH 8.0) was added to the anion exchange membrane module produced in Production Example 1. The solution was allowed to equilibrate. Thereafter, 22.5 mL of a pH 8.0 antibody purification solution obtained using the TR-PVA support in Comparative Example 1 was passed through the anion exchange membrane module, and 10 mL of the equilibration buffer was further passed through. Thus, a purified solution after the TR-PVA support column by an anion exchange membrane was obtained. In the same manner as in Production Example 2, the HCP concentration and DNA concentration in this antibody purified solution were measured and found to be 56 ng / mL and 1.1 ng / mL, respectively. Further, the antibody recovery rate as measured in the same manner as in Example 1 was 84%.

(比較例2) 抗体精製その4:プロテインAカラムを用いた抗体精製
製造例2で得られた抗体含有細胞培養液25mLを0.2μm除菌膜(ザルトリウス製、Minisart plus)に通液した後、20mmol/Lのリン酸ナトリウム緩衝液(pH7.0)10mLで平衡化したプロテインAカラム(GEヘルスケアバイオサイエンス社製HiTrap ProteinA HP 1ml)に10mL添加し、抗体を吸着させた。カラムに上記緩衝液20mLを通液して洗浄した後、0.1mol/Lのクエン酸ナトリウム緩衝液(pH3.0)を10mL通液して、抗体を溶出回収した。得られた溶出回収液に、等量の10mmol/Lリン酸ナトリウム緩衝液(pH8.2)を添加し中和した後、1.5mol/LのTris−HCl(pH8.0)で回収液をpH8.0に調整し、抗体の精製液を得た。
(Comparative Example 2) Antibody Purification No. 4: Antibody Purification Using Protein A Column After passing 25 mL of the antibody-containing cell culture solution obtained in Preparation Example 2 through a 0.2 μm sterilization membrane (Minisart plus, manufactured by Sartorius) Then, 10 mL was added to a Protein A column (HI Trap Protein A HP 1 ml, manufactured by GE Healthcare Biosciences) equilibrated with 10 mL of 20 mmol / L sodium phosphate buffer (pH 7.0) to adsorb the antibody. After washing 20 mL of the above buffer solution through the column, 10 mL of 0.1 mol / L sodium citrate buffer (pH 3.0) was passed to elute and recover the antibody. To the resulting elution and recovery solution, an equal amount of 10 mmol / L sodium phosphate buffer (pH 8.2) was added for neutralization, and then the recovery solution was added with 1.5 mol / L Tris-HCl (pH 8.0). The pH was adjusted to 8.0 to obtain a purified antibody solution.

得られた抗体の精製液中のHCP濃度を製造例2と同様にして測定した結果、2.93μg/mLであった。また製造例2と同様にしてDNA濃度を測定した結果、63.2ng/mLであった。さらに得られた回収液を10倍希釈し、波長280nmの吸光度を測定し、抗体の吸光係数1.3を用いて得られた抗体の回収率は90%であった。この結果を比較例1の結果と比較すると、TR−PVA担体のみによる抗体の精製度は、プロテインAカラムのみによる精製度より劣ることが示された。これに対し、実施例1の結果と比較すると、アニオン交換膜で不純物を除去した後に、TR−PVA担体で抗体を精製した場合の精製度は、プロテインAカラムのみによる精製度と同等とであることが示された。   As a result of measuring the HCP concentration in the purified antibody solution in the same manner as in Production Example 2, it was 2.93 μg / mL. Moreover, as a result of measuring the DNA concentration in the same manner as in Production Example 2, it was 63.2 ng / mL. Further, the obtained recovered solution was diluted 10-fold, the absorbance at a wavelength of 280 nm was measured, and the recovery rate of the antibody obtained using the antibody extinction coefficient 1.3 was 90%. When this result was compared with the result of Comparative Example 1, it was shown that the degree of purification of the antibody using only the TR-PVA carrier was inferior to the degree of purification using only the protein A column. On the other hand, when compared with the results of Example 1, the degree of purification when purifying the antibody with the TR-PVA support after removing the impurities with the anion exchange membrane is equivalent to the degree of purification with the protein A column alone. It was shown that.

(比較例3) 抗体精製その5:プロテインAカラムに次いでアニオン交換カラムを用いた抗体精製
アニオン交換クロマトグラフィーカラム(GEヘルスケアバイオサイエンス社製HiTrapQ FF 1ml)に10mmol/LのTris−HCl緩衝液(pH8.0)10mLを通液して平衡化した。その後、アニオン交換クロマトグラフィーカラムに比較例2でプロテインAカラムを用いて得られたpH8.0の抗体精製液22.5mLを通液し、さらに上記平衡化緩衝液10mLを通液して併せて回収し、アニオン交換クロマトグラフィーカラムによるプロテインAカラム後の精製液を得た。製造例2と同様にして、得られた抗体の精製液中のHCP濃度及びDNA濃度を測定したところ、それぞれ48ng/mL及び1.0ng/mLであった。また実施例1と同様の方法で抗体の回収率を測定したところ83%であった。この結果を実施例2と比較することにより、TR−PVA担体を用いて不純物を除去した後、さらにアニオン交換膜を用いて抗体を精製した場合の精製度は、プロテインAカラムに次いでアニオン交換カラムを用いて抗体を精製した場合の精製度と同等であることが示された。
(Comparative Example 3) Antibody Purification No. 5: Antibody Purification Using Protein A Column followed by Anion Exchange Column 10 mmol / L Tris-HCl Buffer on Anion Exchange Chromatography Column (GE Healthcare Biosciences HiTrapQ FF 1 ml) 10 mL (pH 8.0) was passed through to equilibrate. Thereafter, 22.5 mL of a pH 8.0 antibody purification solution obtained using the protein A column in Comparative Example 2 was passed through an anion exchange chromatography column, and 10 mL of the equilibration buffer was further passed through. It collect | recovered and the refinement | purification liquid after the protein A column by an anion exchange chromatography column was obtained. When the HCP concentration and the DNA concentration in the purified solution of the obtained antibody were measured in the same manner as in Production Example 2, they were 48 ng / mL and 1.0 ng / mL, respectively. Further, the antibody recovery rate as measured in the same manner as in Example 1 was 83%. By comparing this result with Example 2, after removing impurities using the TR-PVA carrier, the degree of purification when the antibody was further purified using an anion exchange membrane was as follows. It was shown to be equivalent to the degree of purification when the antibody was purified using

本発明に係る抗体の精製方法は、製薬産業及び医療産業等に利用可能である。   The antibody purification method according to the present invention can be used in the pharmaceutical industry, the medical industry, and the like.

Claims (5)

抗体を含有する混合液から前記抗体を精製するための方法であって、
アニオン交換基を有する多孔膜を用いて、前記混合液から不純物を吸着除去する工程と、
前記不純物を吸着除去する工程の次に、トリプトファンを担持した吸着体を用いて前記抗体を吸着した後、前記抗体を溶出し回収する工程と、
を含む抗体の精製方法。
A method for purifying an antibody from a mixture containing the antibody,
Adsorbing and removing impurities from the mixed solution using a porous membrane having an anion exchange group;
Next to the step of adsorbing and removing the impurities, the step of adsorbing the antibody using an adsorbent carrying tryptophan and then eluting and collecting the antibody;
A method for purifying an antibody comprising
前記アニオン交換基が、前記多孔膜の細孔の側壁表面に結合したグラフト鎖に固定されている、請求項1に記載の抗体の精製方法。   The method for purifying an antibody according to claim 1, wherein the anion exchange group is fixed to a graft chain bonded to a side wall surface of a pore of the porous membrane. 前記アニオン交換基を有する多孔膜がモジュール内に格納されており、前記混合液を前記多孔膜に透過させることにより、前記混合液から前記不純物を吸着除去する請求項1又は2に記載の抗体の精製方法。   The porous membrane having the anion exchange group is stored in a module, and the impurities are adsorbed and removed from the mixed solution by allowing the mixed solution to permeate the porous membrane. Purification method. 抗体を含有する混合液から前記抗体を精製するための方法であって、トリプトファンを担持した吸着体を用いて前記抗体を吸着した後、前記抗体を溶出し回収する精製工程に次いで、以下の工程の少なくとも一つを含む方法により、さらに不純物を除去する抗体の精製方法。
(1)アニオン交換クロマトグラフィーで精製する工程、
(2)カチオン交換クロマトグラフィーで精製する工程、
(3)疎水性クロマトグラフィーで精製する工程。
A method for purifying an antibody from a mixed solution containing the antibody, after adsorbing the antibody using an adsorbent carrying tryptophan and then eluting and recovering the antibody, the following steps A method for purifying an antibody, further removing impurities by a method comprising at least one of the methods.
(1) a step of purification by anion exchange chromatography;
(2) a step of purification by cation exchange chromatography,
(3) A step of purification by hydrophobic chromatography.
前記クロマトグラフィーで精製する工程において、リガンドが担持された多孔膜又は樹脂を用いる、請求項4に記載の抗体の精製方法。   The method for purifying an antibody according to claim 4, wherein a porous membrane or resin carrying a ligand is used in the step of purifying by chromatography.
JP2008239254A 2008-09-18 2008-09-18 Method for antibody purification Pending JP2010070490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239254A JP2010070490A (en) 2008-09-18 2008-09-18 Method for antibody purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239254A JP2010070490A (en) 2008-09-18 2008-09-18 Method for antibody purification

Publications (1)

Publication Number Publication Date
JP2010070490A true JP2010070490A (en) 2010-04-02

Family

ID=42202624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239254A Pending JP2010070490A (en) 2008-09-18 2008-09-18 Method for antibody purification

Country Status (1)

Country Link
JP (1) JP2010070490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001963A1 (en) * 2009-07-03 2011-01-06 旭化成ケミカルズ株式会社 Method for purification of antibody using porous membrane having amino group and alkyl group both bound to graft chain immobilized on porous base material
JP2012214408A (en) * 2011-03-31 2012-11-08 Asahi Kasei Medical Co Ltd Method for refining protein by removing impurity aggregate dispersed in clear liquid
US8653246B2 (en) 2007-10-26 2014-02-18 Asahi Kasei Chemicals Corporation Method for purifying protein

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653246B2 (en) 2007-10-26 2014-02-18 Asahi Kasei Chemicals Corporation Method for purifying protein
WO2011001963A1 (en) * 2009-07-03 2011-01-06 旭化成ケミカルズ株式会社 Method for purification of antibody using porous membrane having amino group and alkyl group both bound to graft chain immobilized on porous base material
JPWO2011001963A1 (en) * 2009-07-03 2012-12-13 旭化成ケミカルズ株式会社 Antibody purification method using a porous membrane having an amino group and an alkyl group bonded to a graft chain immobilized on a porous substrate
US9441011B2 (en) 2009-07-03 2016-09-13 Asahi Kasei Chemicals Corporation Method for purification of antibody using porous membrane having amino group and alkyl group both bound to graft chain immobilized on porous substrate
JP2012214408A (en) * 2011-03-31 2012-11-08 Asahi Kasei Medical Co Ltd Method for refining protein by removing impurity aggregate dispersed in clear liquid

Similar Documents

Publication Publication Date Title
EP2654914B1 (en) Affinity chromatography matrix
EP2654915B1 (en) Affinity chromatography matrix
US10189891B2 (en) Affinity chromatography matrix
JP4848356B2 (en) Antibody purification method
JP4831436B2 (en) Chromatographic ligand
US10519195B2 (en) Antibody purification method, antibody obtained therefrom, novel antibody purification method using cation exchanger, and antibody obtained therefrom
US20200317725A1 (en) Separation Method
US9441011B2 (en) Method for purification of antibody using porous membrane having amino group and alkyl group both bound to graft chain immobilized on porous substrate
BR112013008738B1 (en) METHOD FOR PURIFICATION OF A PROTEIN
US20150239956A1 (en) High-affinity antibody and method for manufacturing the same
US9890191B2 (en) Mixed-mode antibody affinity separation matrix and purification method using the same, and the target molecules
JP5721204B2 (en) Purification method of antibody monomer using porous membrane with immobilized anion exchange group
JP2010070490A (en) Method for antibody purification
TW200927254A (en) Antibody production method
JP5089924B2 (en) Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen
JP2010180170A (en) Method for producing antibody
BRPI0900276A2 (en) process of purifying immunoglobulin g (igg) from human serum or plasma by (omega) aminohexyl agarose or (omega) aminodecyl agarose chromatography
JP6038774B2 (en) Proteinaceous substance binding low molecular weight compound
AU2015255316A1 (en) Apparatus and process of purification of proteins