JP2014002008A - Method for purifying antibody and antibody purification column - Google Patents

Method for purifying antibody and antibody purification column Download PDF

Info

Publication number
JP2014002008A
JP2014002008A JP2012136923A JP2012136923A JP2014002008A JP 2014002008 A JP2014002008 A JP 2014002008A JP 2012136923 A JP2012136923 A JP 2012136923A JP 2012136923 A JP2012136923 A JP 2012136923A JP 2014002008 A JP2014002008 A JP 2014002008A
Authority
JP
Japan
Prior art keywords
antibody
purification
adsorbent
column
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012136923A
Other languages
Japanese (ja)
Inventor
Masamichi Ipponmatsu
正道 一本松
Toshikazu Miyamoto
利一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renaissance Energy Investment Co Ltd
Original Assignee
Renaissance Energy Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renaissance Energy Investment Co Ltd filed Critical Renaissance Energy Investment Co Ltd
Priority to JP2012136923A priority Critical patent/JP2014002008A/en
Publication of JP2014002008A publication Critical patent/JP2014002008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Peptides Or Proteins (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antibody purification column with high adsorption efficiency, and to sharply shorten time required for antibody purification.SOLUTION: An antibody purification column comprising an adsorbent formed by fixing protein A on the surface of a porous carrier 5 having a skeleton body 7 consisting of silica gel or silica glass with a three-dimensional net structure and pores 9 dispersedly formed on the surface of the skeleton body 7 and penetrated from the surface up to the inside of the skeleton body, in which a center diameter of each pore 9 measured by a nitrogen adsorption method is 40 to 70 nm, is used. Under a condition that contact time between an unpurified solution containing an antibody to be purified and the adsorbent is 40 sec or less, the unpurified solution is passed into the antibody purification column and the antibody in the unpurified solution is adsorbed to the adsorbent to purify the antibody.

Description

本発明は、プロテインAを固定してなる吸着体を備えてなる抗体精製用カラム、及び、その抗体精製用カラムを用いて行う抗体精製方法に関する。   The present invention relates to an antibody purification column provided with an adsorbent formed by immobilizing protein A, and an antibody purification method performed using the antibody purification column.

抗体は、抗体医薬として広く用いられている他、生化学分野の研究でも広く活用されており、抗体精製を高効率に行われることが望まれている。免疫グロブリン抗体(Ig)は、2本の同一重鎖(Heavy chain)と2本の同一軽鎖(Light chain)のポリペプチド鎖を有し、重鎖と軽鎖がY字型に配置した基本構造を有している。免疫グロブリン抗体は、基本構造が共通しているため、抗体精製に生物学的親和性を利用したアフィニティークロマトグラフィーを用いて、粗精製プロセスを行った後に最終精製プロセスを行うことが一般に行われている。   In addition to being widely used as an antibody drug, antibodies are also widely used in biochemical research, and it is desired that antibody purification be performed with high efficiency. An immunoglobulin antibody (Ig) has a polypeptide chain of two identical heavy chains and two identical light chains, and a heavy chain and a light chain arranged in a Y-shape. It has a structure. Since immunoglobulin antibodies share the same basic structure, it is common practice to perform a crude purification process followed by a final purification process using affinity chromatography utilizing biological affinity for antibody purification. Yes.

免疫グロブリン抗体の精製には、当該抗体の定常部位と親和性のあるプロテインAを担体にリガンドしてなる吸着体を備えたアフィニティーカラムが使用できる。従来、アフィニティーカラムに用いる担体として、ビーズ状のシリカゲル、アガロースゲル、セルロースゲル等の多数の細孔を有する多孔質担体が用いられている。   For purification of an immunoglobulin antibody, an affinity column equipped with an adsorbent formed by liganding protein A having affinity for a constant site of the antibody as a carrier can be used. Conventionally, porous carriers having a large number of pores such as bead-like silica gel, agarose gel, and cellulose gel have been used as carriers used in affinity columns.

また、最近では、下記の特許文献1において、アフィニティーカラムに用いる多孔質担体として、無機モノリスを使用することが提案されている。特許文献1では、無機モノリスは、直径0.1μm〜10μmのマクロ孔(貫通孔)と骨格体が共連続構造を形成し、骨格体に直径2nm〜200nmのメソ孔(細孔)が存在する、シリカを主成分とする無機系多孔質連続体として規定されている。   Further, recently, in Patent Document 1 below, it has been proposed to use an inorganic monolith as a porous carrier used for an affinity column. In Patent Document 1, an inorganic monolith has a macropore (through hole) having a diameter of 0.1 μm to 10 μm and a skeleton body forming a co-continuous structure, and mesopores (pores) having a diameter of 2 nm to 200 nm exist in the skeleton body. And is defined as an inorganic porous continuous body mainly composed of silica.

特開2012−1462号公報JP 2012-1462 A

現在実用化されているビーズ状の多孔質セルロースゲル等を担体として使用した抗体精製用のアフィニティーカラムは、高線速にすると吸着能力が低下する、或いは、高線速で圧密化を起こすという欠点が指摘されており、担体として無機モノリスを使用することで、当該欠点が補われると考えられている(特許文献1参照)。尚、これらのビーズ状の多孔質担体の欠点は、以下のように分析することができる。   Affinity columns for antibody purification using bead-shaped porous cellulose gel, etc. that are currently in practical use as a carrier, have the disadvantage that the adsorption capacity decreases at high linear velocity, or consolidation occurs at high linear velocity. It has been pointed out that use of an inorganic monolith as a carrier is considered to compensate for this drawback (see Patent Document 1). The defects of these bead-like porous carriers can be analyzed as follows.

第1に、抗体精製用カラム内に通液された精製対象の抗体を含む精製前溶液は、各ビーズ間の隙間を流路として流れるが、抗体のビーズ内部の細孔表面への移動は拡散による移動となり、更に、担体がビーズ状でその直径が細孔径に対して大きいので、抗体はビーズ表面近傍の細孔表面にしか吸着されず、ビーズ表面近傍から深奥部に亘る細孔表面積の全てを有効に利用できない。   First, the pre-purification solution containing the antibody to be purified that has been passed through the antibody purification column flows through the gaps between the beads, but the movement of the antibody to the pore surface within the beads is diffused. Furthermore, since the carrier is bead-shaped and its diameter is larger than the pore diameter, the antibody is adsorbed only on the pore surface near the bead surface, and the entire pore surface area extending from the vicinity of the bead surface to the deep part thereof. Cannot be used effectively.

第2に、上記第1の問題点を改善するためにビーズ径を小さくすると、各ビーズ状担体間の隙間が狭窄して精製前溶液の流路抵抗が高くなって圧力損失が増加し、精製前溶液の流量を大きくできない。カラム容器内にビーズ状担体を密に充填した場合を仮定すると、各ビーズ状担体間の隙間の狭窄個所を通過する流路径がビーズ径の15%程度まで狭くなること、また、当該狭窄個所がビーズ状担体によって4方向から囲まれ、一方向から当該狭窄個所に浸入する流路が対向するビーズ状担体によって大きく屈曲すること等が、圧力損失増加の要因と考えられる。   Second, if the bead diameter is reduced in order to improve the first problem, the gap between each bead-like carrier is narrowed to increase the channel resistance of the pre-purification solution and increase the pressure loss. The flow rate of the previous solution cannot be increased. Assuming that the bead-shaped carrier is packed tightly in the column container, the diameter of the flow path passing through the narrowed portion of the gap between each bead-shaped carrier is narrowed to about 15% of the bead diameter, and the narrowed portion is It is considered that the pressure loss increases because the channel surrounded by the bead-shaped carrier from four directions and the flow path entering the constricted portion from one direction is largely bent by the facing bead-shaped carrier.

更に、多孔質セルロースゲル等のソフトゲルでは、更に圧力損失が高く、高線速で精製前溶液を通液した場合、圧密化が起こり一定流量以上では精製前溶液が流れなくなる。   Furthermore, in soft gels such as porous cellulose gel, the pressure loss is further high, and when the pre-purification solution is passed at a high linear velocity, consolidation occurs and the pre-purification solution does not flow above a certain flow rate.

従って、担体として無機モノリスを使用することで、高線速下での吸着能力の低下及び圧密化は或る程度改善されることが期待される。   Therefore, by using an inorganic monolith as a carrier, it is expected that the reduction in adsorption capacity and consolidation at high linear speeds will be improved to some extent.

しかしながら、吸着能力の低下は単に高線速であることだけが要因でないことが、本願発明者の鋭意研究により明らかになった。無機モノリスにおいても、高線速にすると吸着能力が低下する点は、程度の差はあれ、従来のビーズ状の担体と同じであり、当該高線速以外の他の要因を考慮した設計を行わなければ、高線速下において高い吸着能力を得られないことが判明した。   However, it has been clarified by the inventor's earnest research that the decrease in the adsorption capacity is not simply caused by the high linear velocity. Even in inorganic monoliths, the adsorption capacity decreases when the linear velocity is increased, to some extent, is the same as the conventional bead-shaped carrier, and is designed taking into consideration other factors other than the high linear velocity. Without it, it was found that a high adsorption capacity could not be obtained at a high linear velocity.

特許文献1に開示の無機モノリスの細孔径が2nm〜200nmと広範囲に分布しており、細孔径の設定の自由度は極めて大きい。一方、吸着対象の免疫グロブリン抗体の分子は扁平なY字型形状をしており、当該Y字型構造の頂点間の距離(以下、「抗体の大きさ」と称す)は約10〜12nmである。つまり、無機モノリスの細孔径は、当該抗体の大きさの6分の1から20倍までの広範囲に分布している。   The pore diameter of the inorganic monolith disclosed in Patent Document 1 is distributed over a wide range of 2 nm to 200 nm, and the degree of freedom in setting the pore diameter is extremely large. On the other hand, the immunoglobulin antibody molecule to be adsorbed has a flat Y-shape, and the distance between the vertices of the Y-shape structure (hereinafter referred to as “antibody size”) is about 10 to 12 nm. is there. That is, the pore diameter of the inorganic monolith is distributed over a wide range from 1/6 to 20 times the size of the antibody.

細孔径が大きくなると細孔容積当たりの表面積が小さくなり、吸着効率が低下する。逆に、細孔径が小さくなると細孔内の拡散速度が遅くなるため表面近傍の細孔表面にのみにしか抗体が吸着されず、吸着効率が低下する。従って、抗体の大きさに対して大き過ぎる或いは小さ過ぎる細孔径を用いることで、吸着効率が低下すると考えられ、無機モノリスの細孔径が2nm〜200nmと広範囲に分布していれば、吸着効率が低下する細孔径の範囲が含まれることになり、改善の余地がある。   As the pore diameter increases, the surface area per pore volume decreases and the adsorption efficiency decreases. Conversely, when the pore diameter is reduced, the diffusion rate in the pores is slowed down, so that the antibody is adsorbed only on the surface of the pores in the vicinity of the surface, and the adsorption efficiency is lowered. Therefore, it is considered that the adsorption efficiency is lowered by using a pore diameter that is too large or too small with respect to the size of the antibody. If the pore diameter of the inorganic monolith is distributed over a wide range of 2 nm to 200 nm, the adsorption efficiency is reduced. A range of pore diameters that decrease is included, and there is room for improvement.

本願発明者の鋭意研究により、吸着効率と細孔径の間に有意な相関があることを見出し、従来の無機モノリスより細孔径の分布をタイトに制御することで、従来と比較して吸着効率を大幅に改善できることを確認した。実際、特許文献1では、吸着効率と細孔径との間の関係は一切考慮されておらず、細孔径の分布を制御して吸着効率の改善を図ることにつき何らの検討も示唆もなされていない。   Through the diligent research of the inventor of the present application, it was found that there is a significant correlation between the adsorption efficiency and the pore diameter, and by controlling the pore size distribution tighter than the conventional inorganic monolith, It was confirmed that it can be greatly improved. In fact, Patent Document 1 does not consider any relationship between the adsorption efficiency and the pore diameter, and does not provide any examination or suggestion for improving the adsorption efficiency by controlling the pore diameter distribution. .

本発明は、上述の抗体精製用のアフィニティーカラムの問題点に鑑みてなされたものであり、その目的は、吸着効率の高い抗体精製用カラムを提供し、抗体精製に掛かる時間を大幅に短縮することにある。   The present invention has been made in view of the above-described problems of affinity columns for antibody purification, and the object thereof is to provide a column for antibody purification with high adsorption efficiency and to greatly reduce the time required for antibody purification. There is.

上記目的を達成するため、本発明は、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有し、窒素吸着法で測定した前記細孔の中心直径が40nm以上70nm以下である多孔質担体の表面に、プロテインAを固定してなる吸着体を備えてなる抗体精製用カラムを用い、精製対象の抗体を含む精製前溶液と前記吸着体との接触時間が40秒以下の条件で、前記抗体精製用カラムに前記精製前溶液を通液させて、前記精製前溶液内の抗体を前記吸着体に吸着させ、前記抗体を精製することを特徴とする抗体精製方法を提供する。   In order to achieve the above object, the present invention provides a skeleton made of silica gel or silica glass having a three-dimensional network structure, and pores penetrating from the surface to the inside of the skeleton formed by being dispersed on the surface of the skeleton. And a column for purifying an antibody comprising an adsorbent formed by immobilizing protein A on the surface of a porous carrier having a pore diameter measured by nitrogen adsorption method of 40 nm to 70 nm. The pre-purification solution is allowed to flow through the antibody purification column under a condition that the contact time between the pre-purification solution containing the antibody to be purified and the adsorbent is 40 seconds or less, and the antibody in the pre-purification solution is removed. Provided is a method for purifying an antibody, wherein the antibody is purified by being adsorbed on the adsorbent.

更に好ましくは、上記特徴の抗体精製方法において、前記接触時間は2秒以上40秒以下である。   More preferably, in the antibody purification method having the above characteristics, the contact time is 2 seconds or longer and 40 seconds or shorter.

更に好ましくは、上記特徴の抗体精製方法において、溶媒置換、吸着、洗浄、溶出、及び、後洗浄の各工程からなる1回の精製工程に要する時間は、120秒以内である。   More preferably, in the antibody purification method having the above characteristics, the time required for one purification step comprising solvent replacement, adsorption, washing, elution, and post-washing steps is 120 seconds or less.

更に好ましくは、上記特徴の抗体精製方法において、前記後洗浄工程でpH13を超える強アルカリの溶液を用いずに前記抗体精製用カラムの洗浄を行い、2時間以内に、前記精製工程を100回以上繰り返す。   More preferably, in the antibody purification method of the above feature, the antibody purification column is washed without using a strong alkali solution having a pH of more than 13 in the post-washing step, and the purification step is performed 100 times or more within 2 hours. repeat.

上記目的を達成するため、本発明は、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有する多孔質担体の表面に、プロテインAを固定してなる吸着体を備えてなり、窒素吸着法で測定した前記細孔の中心直径が40nm以上70nm以下であることを特徴とする抗体精製用カラムを提供する。   In order to achieve the above object, the present invention provides a skeleton made of silica gel or silica glass having a three-dimensional network structure, and pores penetrating from the surface to the inside of the skeleton formed by being dispersed on the surface of the skeleton. Purification of an antibody comprising an adsorbent formed by immobilizing protein A on the surface of a porous carrier having a pore diameter of 40 nm to 70 nm measured by a nitrogen adsorption method. Provide a column for use.

更に好ましくは、上記特徴の抗体精製カラムは、精製対象の抗体を含む精製前溶液と前記吸着体との接触時間が2秒以上40秒以下の条件で、前記吸着体に前記精製前溶液を通液させて、前記精製前溶液内の抗体を前記吸着体に吸着させた場合における、波長280nmの紫外線を用いて得られる吸着破過曲線で10%破過を超える前記吸着体の単位体積当たりの前記抗体の添加量で規定される動的吸着容量が10mg/mLgelを超える吸着性能を有する。   More preferably, in the antibody purification column having the above characteristics, the pre-purification solution is passed through the adsorbent under a condition where the contact time between the pre-purification solution containing the antibody to be purified and the adsorbent is 2 seconds to 40 seconds. When the antibody in the pre-purification solution is adsorbed to the adsorbent, the adsorption per unit volume of the adsorbent exceeds 10% breakthrough in the adsorption breakthrough curve obtained using ultraviolet light having a wavelength of 280 nm. The dynamic adsorption capacity defined by the added amount of the antibody has an adsorption performance exceeding 10 mg / mLgel.

尚、上記特徴の抗体精製方法及び抗体精製用カラムにおいて、多孔質担体の表面は、骨格体の表面に加え、細孔の内壁面を含む。   In the antibody purification method and antibody purification column having the above characteristics, the surface of the porous carrier includes the inner wall surface of the pore in addition to the surface of the skeleton.

上記特徴の抗体精製方法または抗体精製用カラムによれば、担体にシリカモノリスを用い、しかも抗体吸着に最適な範囲の中心細孔直径を使用することで、後述するように、高線速下において高い動的吸着容量(dBC、動的結合容量とも呼ばれる)が実現でき、吸着工程での所要時間を40秒以下にして、高効率且つ短時間での抗体精製を実施できる。   According to the antibody purification method or antibody purification column having the above characteristics, by using silica monolith as a carrier and using a central pore diameter in the optimum range for antibody adsorption, as described later, at a high linear velocity, A high dynamic adsorption capacity (dBC, also called dynamic binding capacity) can be realized, and the time required for the adsorption step can be 40 seconds or less, and antibody purification can be carried out with high efficiency and in a short time.

本発明に係る抗体精製用カラムの第1実施形態における概略の構成を模式的に示す構成図The block diagram which shows typically the schematic structure in 1st Embodiment of the column for antibody purification which concerns on this invention. 本発明に係る抗体精製用カラムの吸着体の構造を模式的に示す要部断面図Cross-sectional view of relevant parts schematically showing the structure of an adsorbent of an antibody purification column according to the present invention 本発明に係る抗体精製用カラムの吸着体を構成する多孔質担体の構造を模式的に示す要部断面図Cross-sectional view of relevant parts schematically showing the structure of a porous carrier constituting an adsorbent of an antibody purification column according to the present invention 本発明に係る抗体精製用カラムの吸着体を構成する多孔質担体のSEM写真SEM photograph of porous carrier constituting adsorbent of antibody purification column according to the present invention 本発明に係る抗体精製用カラムの吸着体を充填した評価用カラムの線速度と動的吸着容量の関係を測定した結果を示す吸着破過曲線図Adsorption breakthrough curve diagram showing the results of measuring the relationship between the linear velocity and the dynamic adsorption capacity of the evaluation column packed with the adsorbent of the antibody purification column according to the present invention 図5の吸着破過曲線から得られる線速度と動的吸着容量と接触時間の関係を示す図The figure which shows the relationship between the linear velocity obtained from the adsorption breakthrough curve of FIG. 5, dynamic adsorption capacity, and contact time 本発明に係る抗体精製用カラムの多孔質担体の中心細孔直径の異なる4種類の評価用カラムの吸着性能を比較評価した結果を示す図The figure which shows the result of having comparatively evaluated the adsorption | suction performance of four types of evaluation columns from which the center pore diameter of the porous support | carrier of the column for antibody refinement | purification which concerns on this invention differs. 本発明に係る抗体精製用カラムの第2実施形態における概略の構成を模式的に示す構成図The block diagram which shows typically the schematic structure in 2nd Embodiment of the column for antibody purification which concerns on this invention.

本発明に係る抗体精製用カラム(以下、適宜「本カラム」という。)、及び、本カラムを用いた抗体精製方法の実施の形態につき、図面に基づいて説明する。   Embodiments of an antibody purification column according to the present invention (hereinafter, appropriately referred to as “this column”) and an antibody purification method using this column will be described with reference to the drawings.

〈第1実施形態〉
第1実施形態の本カラム10は、一例として、図1に示すように、円盤状または円柱状の吸着体1が円筒容器2に収容されて構成されている。円筒容器2の各端面には、夫々開口部3,4が形成されている。開口部3,4の一方が、後述する精製工程の各工程で通液する溶液の送入口となり、他方が通液後の溶液の排出口となる。
<First Embodiment>
As an example, the main column 10 of the first embodiment is configured such that a disk-like or columnar adsorbent 1 is accommodated in a cylindrical container 2 as shown in FIG. Openings 3 and 4 are formed on the respective end surfaces of the cylindrical container 2. One of the openings 3 and 4 serves as a solution inlet through which each of the purification steps to be described later passes, and the other serves as a solution outlet after the passage.

本カラム10の主要な構成部品である吸着体1は、図2に模式的に示すように、円盤状または円柱状に成形された無機系の多孔質担体5の表面に吸着対象物質である免疫グロブリン抗体の定常部位と特異的に結合するタンパク質6を表面修飾して固定化したものである。本実施形態では、当該タンパク質6としてプロテインAを使用する。   As schematically shown in FIG. 2, the adsorbent 1 which is a main component of the column 10 has an immune target substance adsorbed on the surface of an inorganic porous carrier 5 formed into a disk shape or a column shape. Protein 6 that specifically binds to the constant region of a globulin antibody is surface-modified and immobilized. In this embodiment, protein A is used as the protein 6.

吸着体1を構成する無機系の多孔質担体5は、図3に模式的に示すように、3次元網目状の一体構造の骨格体7と、骨格体7の間隙に形成された平均孔径が4μm以下の範囲内の3次元網目状の貫通孔8を有してなり、更に、骨格体7の表面には、中心細孔直径が40nm以上70nm以下の範囲の細孔9が分散して形成されている。尚、貫通孔8の孔径は細孔9の孔径より大きく、例えば0.5μm以上である。従って、本カラム10で使用する多孔質担体5は、孔径の異なる2種類の細孔(貫通孔8と細孔9)からなる2重細孔構造となっている。図4に、本カラム10で使用する多孔質担体5のSEM(走査型電子顕微鏡)写真の一例を示す。尚、貫通孔はマクロ孔、細孔はメソ孔とも呼ばれる。   As shown schematically in FIG. 3, the inorganic porous carrier 5 constituting the adsorbent 1 has a three-dimensional network-like monolithic skeleton 7 and an average pore diameter formed in the gap between the skeleton 7. It has three-dimensional network-like through-holes 8 in the range of 4 μm or less, and furthermore, pores 9 having a central pore diameter in the range of 40 nm to 70 nm are dispersed and formed on the surface of the skeleton 7. Has been. In addition, the hole diameter of the through-hole 8 is larger than the hole diameter of the pore 9, for example, 0.5 micrometer or more. Therefore, the porous carrier 5 used in this column 10 has a double pore structure composed of two kinds of pores (through holes 8 and pores 9) having different pore diameters. FIG. 4 shows an example of an SEM (scanning electron microscope) photograph of the porous carrier 5 used in the column 10. The through holes are also called macropores, and the pores are also called mesopores.

次に、多孔質担体5の表面に抗体結合能を有するタンパク質6としてプロテインAを固定化した吸着体1を備えた本カラムの作製方法について、後述する吸着性能評価に使用する評価用カラムの作製工程を一例として説明する。   Next, regarding the method for producing this column provided with the adsorbent 1 in which protein A is immobilized as the protein 6 having antibody-binding ability on the surface of the porous carrier 5, the production of an evaluation column used for the adsorption performance evaluation described later. The process will be described as an example.

先ず、10mM(体積モル濃度)硝酸水溶液10mlに対してポリエチレングリコール(分子量100000)1.2gと尿素0.9gを溶かし、氷冷下でテトラエトキシシラン5mlを加え、30分攪拌して均一な溶液を得る。得られた均一溶液を、直径8mmのポリプロピレンチューブに充填し、30℃でゲル化させる。その後、得られたゲルを密閉容器に入れ、120℃で20時間加熱処理した後、蒸留水ですすぎ乾燥し、650℃5時間で焼成してシリカモノリス多孔質担体5(シリカゲルまたはシリカガラスからなる多孔質担体に相当)を得る。尚、本実施形態で使用する多孔質担体5の合成方法は、スピノーダル分解ゾルゲル法を使用するものである。   First, 1.2 g of polyethylene glycol (molecular weight 100000) and 0.9 g of urea are dissolved in 10 ml of 10 mM (volume molar concentration) nitric acid aqueous solution, 5 ml of tetraethoxysilane is added under ice cooling, and the mixture is stirred for 30 minutes to obtain a uniform solution. Get. The obtained uniform solution is filled into a polypropylene tube having a diameter of 8 mm and gelled at 30 ° C. Thereafter, the obtained gel is put into a sealed container, heat-treated at 120 ° C. for 20 hours, rinsed and dried with distilled water, and fired at 650 ° C. for 5 hours to form a silica monolith porous carrier 5 (made of silica gel or silica glass). Corresponding to a porous carrier). The method for synthesizing the porous carrier 5 used in this embodiment uses a spinodal decomposition sol-gel method.

上記合成条件では、貫通孔の平均孔径(水銀圧入法による測定)が約1.7μm、細孔の中心直径(中心細孔直径、窒素吸着法による測定)が約50nmのシリカモノリスが得られる。上述のポリエチレングリコールの添加量を調整することで、貫通孔の孔径を制御することができ、ゲル化後の加熱処理温度を調整することで、中心細孔直径を制御することができる。尚、本実施形態においては、中心細孔直径は、窒素吸着法で測定した細孔分布における細孔容積(V)を細孔直径(D)の常用対数(logD)で微分した値(dV/d(logD))を細孔直径(D)に対してプロットした曲線の最大のピークを示す細孔直径として定義される。   Under the above synthesis conditions, a silica monolith having an average pore diameter (measured by mercury porosimetry) of about 1.7 μm and a pore center diameter (center pore diameter, measured by nitrogen adsorption method) of about 50 nm is obtained. By adjusting the addition amount of the above-mentioned polyethylene glycol, the pore diameter of the through hole can be controlled, and by adjusting the heat treatment temperature after gelation, the central pore diameter can be controlled. In this embodiment, the central pore diameter is a value obtained by differentiating the pore volume (V) in the pore distribution measured by the nitrogen adsorption method with the common logarithm (logD) of the pore diameter (D) (dV / d (logD)) is defined as the pore diameter showing the maximum peak of the curve plotted against the pore diameter (D).

引き続き、得られたシリカモノリス多孔質担体を直径8mmにくり抜き、硬質ガラス管に装填して外周からガスバーナーで加熱して、シリカモノリス多孔質担体とガラス管を密着させガラスクラッドカラムを得る。得られたガラスクラッドカラムを所定長さ(本実施形態では10mm)にダイアモンドカッターで切断して、プロテインAを固定化する前の評価用カラムが得られる。   Subsequently, the obtained silica monolith porous carrier is cut into a diameter of 8 mm, loaded into a hard glass tube, and heated from the outer periphery with a gas burner to closely adhere the silica monolith porous carrier and the glass tube to obtain a glass clad column. The obtained glass-clad column is cut into a predetermined length (10 mm in the present embodiment) with a diamond cutter to obtain an evaluation column before protein A is immobilized.

引き続き、得られた評価用カラムに、5%γアミノプロピルトリエトキシシランのトルエン溶液を通液して充填し、100℃24時間加熱し、反応後に、2−プロパノールを通液して評価用カラムを洗浄し80℃で乾燥する。その後、1%炭酸スクシンイミジルのアセトニトリル溶液を通液した後、アセトニトリルで洗浄して減圧乾燥し、5mg/mLのプロテインAのHEPES緩衝溶液を通液して、プロテインAを固定化した評価用カラムを得る。   Subsequently, the obtained evaluation column was filled with a toluene solution of 5% γ aminopropyltriethoxysilane, and heated at 100 ° C. for 24 hours. After the reaction, 2-propanol was passed through the evaluation column. And dried at 80 ° C. Then, after passing through an acetonitrile solution of 1% succinimidyl carbonate, washing with acetonitrile, drying under reduced pressure, passing through a 5 mg / mL protein A HEPES buffer solution, an evaluation column having protein A immobilized thereon was prepared. obtain.

尚、上述の作製方法で説明した寸法や成型方法等は、評価用カラムの形状及び大きさに合わせた値であり、実用に供する本カラム1の多孔質担体5の形状及び大きさ応じて、適宜変更される。   In addition, the dimension, the molding method, etc. described in the above-described production method are values according to the shape and size of the evaluation column, and depending on the shape and size of the porous carrier 5 of the column 1 to be put to practical use, It is changed appropriately.

次に、上記要領で作製した評価用カラムを用いて本カラムの免疫グロブリン抗体(IgG)の吸着性能評価を行った評価手順及び評価結果を説明する。   Next, an evaluation procedure and evaluation results for evaluating the adsorption performance of the immunoglobulin antibody (IgG) of this column using the evaluation column prepared as described above will be described.

本カラムの吸着性能の評価では、動的吸着容量(dBC)の多孔質担体の中心細孔直径に対する依存性と、線速度に対する依存性を調べた。中心細孔直径依存性の評価では、多孔質担体の中心細孔直径が30nm、50nm、70nm、100nmの4種類のサンプルを準備し、線速度90cm/hでの動的吸着容量を測定した。線速度依存性の評価では、多孔質担体の中心細孔直径が50nmのサンプルを準備し、線速度90cm/h、360cm/h、720cm/h、1800cm/hの4通りの線速度での動的吸着容量を測定した。   In the evaluation of the adsorption performance of this column, the dependence of the dynamic adsorption capacity (dBC) on the central pore diameter of the porous carrier and the dependence on the linear velocity were examined. In the evaluation of the dependence on the central pore diameter, four types of samples having a central pore diameter of 30 nm, 50 nm, 70 nm, and 100 nm of a porous carrier were prepared, and the dynamic adsorption capacity at a linear velocity of 90 cm / h was measured. In the evaluation of the linear velocity dependence, a sample with a central pore diameter of 50 nm of a porous support was prepared, and the motion at four linear velocities of linear velocity 90 cm / h, 360 cm / h, 720 cm / h, and 1800 cm / h was prepared. The adsorption capacity was measured.

何れの評価においても、動的吸着容量の測定は以下の要領で実施した。評価用カラムを高速液体クロマトグラフィー装置に接続した。評価用カラムを10mMリン酸緩衝生理食塩水(pH7.4)にて平衡化した後、1mg/mLのIgGリン酸緩衝生理食塩水溶液(リン酸濃度10mM、pH7.4)を所定の線速度にて評価用カラムに通液し、紫外可視吸光光度計を用いて評価用カラム出口の溶液を紫外吸収波長280nmにてオンラインで測定した。   In any evaluation, the dynamic adsorption capacity was measured as follows. The evaluation column was connected to a high performance liquid chromatography apparatus. After the evaluation column was equilibrated with 10 mM phosphate buffered saline (pH 7.4), 1 mg / mL IgG phosphate buffered saline solution (phosphate concentration 10 mM, pH 7.4) was adjusted to a predetermined linear velocity. Then, the solution was passed through the evaluation column, and the solution at the outlet of the evaluation column was measured online using an ultraviolet-visible absorptiometer at an ultraviolet absorption wavelength of 280 nm.

尚、動的吸着容量の測定では、ゲル単位体積当たりのIgG添加量(通液したIgG溶液量×IgG濃度÷評価用カラムの担体体積、単位:mg/mLgel)を横軸に、評価用カラム出口の溶液の紫外吸収波長280nmでのIgGリン酸緩衝生理食塩水の検出強度比(リン酸緩衝生理食塩水溶液が1mg/mLで検出される強度を100%とする)を縦軸にプロットして吸着破過曲線を描き、ゲル体積当たりで添加したIgGが10%(10%破過)を超える点を動的吸着容量とした。   In the measurement of the dynamic adsorption capacity, the amount of added IgG per unit volume of the gel (the amount of IgG solution passed through × the IgG concentration / the support volume of the column for evaluation, unit: mg / mLgel) is plotted on the horizontal axis. The detection intensity ratio of IgG phosphate buffered saline at the ultraviolet absorption wavelength of 280 nm of the outlet solution (the intensity at which phosphate buffered saline solution is detected at 1 mg / mL is defined as 100%) is plotted on the vertical axis. An adsorption breakthrough curve was drawn, and the point at which IgG added per gel volume exceeded 10% (10% breakthrough) was defined as the dynamic adsorption capacity.

図5に、線速度が90cm/h、360cm/h、720cm/h、1800cm/hにおける、多孔質担体の中心細孔直径が50nmの評価用カラムの吸着破過曲線を示す。図5に示す吸着破過曲線の10%破過から、各線速度に対する動的吸着容量が導出され、各線速度と評価用カラムの長さから、IgG溶液の評価用カラムの入口から出口までの接触時間が算出される。図6に、各線速度に対する接触時間と動的吸着容量を纏めて示す。   FIG. 5 shows an adsorption breakthrough curve of an evaluation column in which the central pore diameter of the porous carrier is 50 nm at linear velocities of 90 cm / h, 360 cm / h, 720 cm / h, and 1800 cm / h. The dynamic adsorption capacity for each linear velocity is derived from the 10% breakthrough of the adsorption breakthrough curve shown in FIG. 5, and the contact from the inlet to the outlet of the IgG solution evaluation column is determined from each linear velocity and the length of the evaluation column. Time is calculated. FIG. 6 summarizes the contact time and dynamic adsorption capacity for each linear velocity.

図6に示すように、線速度が90cm/h、360cm/h、720cm/h、1800cm/hと速くなると、接触時間は40秒、10秒、5秒、2秒と短くなり、動的吸着容量は、38mg/mLgel、33mg/mLgel、27mg/mLgel、20mg/mLgelと低下する。線速度と接触時間は反比例の関係にある。ここで、注目すべきは、線速度を上げて接触時間を40秒から2秒に、20分の1に短縮しても、動的吸着容量は、38mg/mLgelから20mg/mLgelと約半分に低下したに過ぎない点である。つまり、本カラムは、基本的な吸着性能が高いため、吸着能力の極端な低下を伴わずに、線速度を上げて接触時間を40秒から更に短縮できることが分かる。   As shown in FIG. 6, when the linear velocity is increased to 90 cm / h, 360 cm / h, 720 cm / h, and 1800 cm / h, the contact time is shortened to 40 seconds, 10 seconds, 5 seconds, and 2 seconds. The volume drops to 38 mg / mLgel, 33 mg / mLgel, 27 mg / mLgel, 20 mg / mLgel. Linear velocity and contact time are inversely related. Here, it should be noted that even if the linear velocity is increased and the contact time is reduced from 40 seconds to 2 seconds to 1/20, the dynamic adsorption capacity is reduced to about half from 38 mg / mLgel to 20 mg / mLgel. It is only a drop. That is, it can be seen that the basic adsorption performance of this column is high, so that the contact time can be further shortened from 40 seconds by increasing the linear velocity without causing an extreme decrease in adsorption capacity.

図7に、線速度が90cm/hにおける、多孔質担体の中心細孔直径が30nm、50nm、70nm、100nmの4種類の評価用カラムの動的吸着容量を示す。図7より、中心細孔直径が40nmを下回り30nmになると、動的吸着容量は中心細孔直径が50nmの場合の約13%まで低下し、逆に、中心細孔直径が70nmを上回り100nmになると、動的吸着容量は中心細孔直径が50nmの場合の約26%まで低下し、中心細孔直径が50nm付近、概ね40nmから70nmの範囲に最適な中心細孔直径の範囲が存在することが分かる。図7中の横方向の矢印で示す幅は、4種類の評価用カラムの細孔径の分布範囲を示しており、夫々、概ね±10nmの範囲で分布している。   FIG. 7 shows the dynamic adsorption capacities of four types of evaluation columns having a central support diameter of 30 nm, 50 nm, 70 nm, and 100 nm at a linear velocity of 90 cm / h. From FIG. 7, when the central pore diameter is less than 40 nm and 30 nm, the dynamic adsorption capacity decreases to about 13% when the central pore diameter is 50 nm, and conversely, the central pore diameter exceeds 70 nm and reaches 100 nm. As a result, the dynamic adsorption capacity decreases to about 26% when the central pore diameter is 50 nm, and there is an optimum central pore diameter range in the vicinity of the central pore diameter of 50 nm, generally in the range of 40 nm to 70 nm. I understand. The widths indicated by the horizontal arrows in FIG. 7 indicate the distribution ranges of the pore diameters of the four types of evaluation columns, and each is distributed in a range of approximately ± 10 nm.

免疫グロブリン抗体の大きさが約10〜12nmであることから、中心細孔直径が30nm程度では、抗体は、細孔の骨格体表面付近で固定化されたプロテインAに結合しても、細孔奥部の表面に固定化されたプロテインAとは十分に結合できていないものと推察される。図7より、中心細孔直径としては、40nm以上であることが好ましいと推察される。また、中心細孔直径が70nmから100nmへと増加するに伴い、細孔容積当たりの表面積が小さくなり、動的吸着容量が低下していると考えられる。以上より、多孔質担体の中心細孔直径は、40nmから70nmの範囲内、より好ましくは、45nmから60nmの範囲内に設定するのが良い。   Since the size of the immunoglobulin antibody is about 10 to 12 nm, when the central pore diameter is about 30 nm, the antibody can bind to protein A immobilized near the surface of the pore skeleton, It is presumed that the protein A immobilized on the inner surface is not sufficiently bound. From FIG. 7, it is presumed that the center pore diameter is preferably 40 nm or more. Further, it is considered that as the central pore diameter increases from 70 nm to 100 nm, the surface area per pore volume decreases, and the dynamic adsorption capacity decreases. From the above, the center pore diameter of the porous carrier is preferably set in the range of 40 nm to 70 nm, more preferably in the range of 45 nm to 60 nm.

次に、本カラムを用いた抗体精製方法の処理手順を説明する。本実施形態では、抗体精製方法は、溶媒置換、吸着、洗浄、溶出、後洗浄の5つの工程で構成される。   Next, the processing procedure of the antibody purification method using this column will be described. In the present embodiment, the antibody purification method is composed of five steps of solvent replacement, adsorption, washing, elution, and post-washing.

先ず、溶媒置換工程では、本カラムに10mMリン酸緩衝生理食塩水(pH7.4)を通液して平衡化する。   First, in the solvent replacement step, 10 mM phosphate buffered saline (pH 7.4) is passed through the column for equilibration.

次に、吸着工程では、IgGリン酸緩衝生理食塩水溶液(pH7.4)、或いは、血清、腹水、細胞上清等の免疫グロブリン抗体を含む溶液を、本カラムに通液して、抗体を吸着体に吸着させる。   Next, in the adsorption step, IgG phosphate buffered saline solution (pH 7.4) or a solution containing immunoglobulin antibodies such as serum, ascites, cell supernatant, etc. is passed through this column to adsorb the antibodies. Adsorb to the body.

次に、洗浄工程では、本カラムに10mMリン酸緩衝生理食塩水(pH7.4)を通液して、吸着体内の免疫グロブリン抗体を含んでいた溶液を洗い流す。   Next, in the washing step, 10 mM phosphate buffered saline (pH 7.4) is passed through the column to wash away the solution containing the immunoglobulin antibody in the adsorbent.

次に、溶出工程では、本カラムに100mMクエン酸ナトリウム緩衝液(pH3.0)または100mMグリシン+塩酸緩衝液(pH3.0)を通液して、吸着体内を酸性にして吸着体に吸着した免疫グロブリン抗体を溶出させる。これにより、吸着体に吸着した免疫グロブリン抗体を回収することができる。   Next, in the elution step, 100 mM sodium citrate buffer (pH 3.0) or 100 mM glycine + hydrochloric acid buffer (pH 3.0) is passed through the column to make the adsorbent acidic and adsorbed on the adsorbent. Elute immunoglobulin antibodies. Thereby, the immunoglobulin antibody adsorbed on the adsorbent can be recovered.

次に、後洗浄工程では、本カラムに10mMリン酸緩衝生理食塩水(pH7.4)を通液して、溶出工程で用いた吸着体内の酸性溶液を洗い流し、吸着体内を中性に平衡化させる。   Next, in the post-cleaning step, 10 mM phosphate buffered saline (pH 7.4) is passed through the column to wash away the acidic solution in the adsorbent used in the elution step, and the adsorbent is neutralized. Let

本実施形態では、以下の要領で、上記の溶媒置換、吸着、洗浄、溶出、後洗浄の5つの工程からなる1回の精製工程を、120秒以内に実施することができる。本実施形態では、吸着体の体積を基準として、各工程で通液する溶液の容量を、溶媒置換工程で2倍、吸着工程で3倍、洗浄工程で2倍、溶出工程で4倍、後洗浄工程で1倍を想定している。尚、各工程で通液する溶液の容量比は、上記比率に限定されるものではない。   In the present embodiment, a single purification step comprising the above five steps of solvent replacement, adsorption, washing, elution, and post-washing can be performed within 120 seconds in the following manner. In this embodiment, based on the volume of the adsorbent, the volume of the solution to be passed through in each step is doubled in the solvent replacement step, tripled in the adsorption step, doubled in the washing step, and quadrupled in the elution step. It assumes 1 time in the cleaning process. In addition, the volume ratio of the solution which passes at each process is not limited to the said ratio.

上述の評価用カラムと同じ、直径8mm、長さ10mmの円柱形のシリカモノリス多孔質担体にプロテインAを固定した吸着体の使用を想定し、1回の精製工程を通しての各溶液を流量0.648mL/min(線速度360cm/hに相当)で通液した場合、溶媒置換工程で200μLを17.5秒、吸着工程で300μLを26.3秒、洗浄工程で200μLを17.5秒、溶出工程で400μLを35.1秒、後洗浄工程で100μLを8.8秒、夫々通液することになり、1回の精製工程が約105秒で完了する。   Assuming the use of an adsorbent in which protein A is immobilized on a cylindrical silica monolith porous carrier having a diameter of 8 mm and a length of 10 mm, which is the same as the column for evaluation described above, the flow rate of each solution through a single purification step is 0. When liquid was passed at 648 mL / min (corresponding to a linear velocity of 360 cm / h), 200 μL was eluted in the solvent replacement step for 17.5 seconds, 300 μL in the adsorption step was 26.3 seconds, and 200 μL was eluted in the washing step for 17.5 seconds. 400 μL is passed through for 35.1 seconds in the process, and 100 μL is passed through for 8.8 seconds in the post-cleaning step, and one purification step is completed in about 105 seconds.

尚、吸着工程で通液する免疫グロブリン抗体を含む溶液中の抗体濃度を10mg/mLとした場合に、吸着体の単位体積当たり30mg/mLgelの吸着量が得られる。   In addition, when the antibody concentration in the solution containing the immunoglobulin antibody passed through in the adsorption step is 10 mg / mL, an adsorption amount of 30 mg / mL gel per unit volume of the adsorbent can be obtained.

上記想定では、線速度360cm/hを想定したが、図5及び図6に示す評価結果より、線速度は360cm/hより更に速くできるので、1回の精製工程に要する時間を105秒より更に短縮できる。例えば、1回の精製工程に要する時間を72秒まで短縮すると、上記精製工程を2時間で100回繰り返すことができる。1回の精製工程に要する時間が120秒でも、上記精製工程を2時間で60回繰り返すことができる。   In the above assumption, a linear velocity of 360 cm / h was assumed. However, from the evaluation results shown in FIGS. 5 and 6, the linear velocity can be made faster than 360 cm / h, so that the time required for one purification step is further longer than 105 seconds. Can be shortened. For example, if the time required for one purification step is shortened to 72 seconds, the purification step can be repeated 100 times in 2 hours. Even if the time required for one purification step is 120 seconds, the above purification step can be repeated 60 times in 2 hours.

ここで注目すべきは、1回の精製工程に要する時間が1〜2分程度と短いため、1回の精製工程毎に、後洗浄工程で強アルカリ溶液(pH13以上)を用いて、強吸着物質の洗浄及び滅菌を行う必要が無い点である。従来のアフィニティーカラムでは、強アルカリ処理により吸着性能が低下することが知られており、強アルカリ処理による滅菌が必要なければ、吸着性能の低下を伴わずに、上述の精製工程を連続的に繰り返すことができる。   It should be noted here that the time required for one purification process is as short as 1 to 2 minutes, so that a strong alkaline solution (pH 13 or more) is used in the post-washing process for each purification process. There is no need to clean and sterilize the substance. In the conventional affinity column, it is known that the adsorption performance is reduced by the strong alkali treatment, and if the sterilization by the strong alkali treatment is not necessary, the above purification process is continuously repeated without reducing the adsorption performance. be able to.

精製工程を連続的に繰り返すことで、高効率に抗体精製が実施できるとともに、本カラムに使用するプロテインAは高価であるので、精製工程を100回以上繰り返すことで、コストパフォーマンスの向上も図れる。   By repeating the purification step continuously, antibody purification can be carried out with high efficiency, and protein A used in this column is expensive. Therefore, by repeating the purification step 100 times or more, cost performance can be improved.

一方、現在実用に供されている従来のビーズ状のアガロースゲルを用いたアフィニティーカラムでは、抗体精製に要する総処理時間はしばしば2時間を超える。その間、当然ながら滅菌処理は行われていない。つまり、本カラムを用いて精製工程を連続的に繰り返す場合でも総処理時間が2時間以内であれば、従来と同様に滅菌処理の必要がなく、後洗浄工程で強アルカリ溶液(pH13以上)を用いなくてもよい。   On the other hand, with an affinity column using a conventional bead-shaped agarose gel currently in practical use, the total processing time required for antibody purification often exceeds 2 hours. In the meantime, of course, sterilization is not performed. In other words, even if the purification process is continuously repeated using this column, if the total treatment time is within 2 hours, there is no need for sterilization treatment as in the prior art, and a strong alkaline solution (pH 13 or higher) is used in the post-washing process. It may not be used.

〈第2実施形態〉
本カラムの第2実施形態について説明する。図8に示すように、第2実施形態の本カラム20は、円筒状の吸着体11が円筒容器12に収容されて構成されている。円筒容器12の各端面には、夫々開口部13,14が形成され、開口部13,14の一方が、上述の精製工程の各工程で通液する溶液の送入口となり、他方が通液後の溶液の排出口となる。
Second Embodiment
A second embodiment of this column will be described. As shown in FIG. 8, the main column 20 of the second embodiment is configured by accommodating a cylindrical adsorbent 11 in a cylindrical container 12. Openings 13 and 14 are formed in the respective end faces of the cylindrical container 12, and one of the openings 13 and 14 serves as a solution inlet through which the liquid is passed in each step of the above-described purification process, and the other after the liquid is passed through. It becomes the outlet of the solution.

図8に示すように、吸着体11の筒状外側面11aが円筒容器12の内壁面から離間して、その間に溶液の通流路15が形成されている。図8中の左右の通流路15は環状になっており連通している。また、吸着体11の筒状内側の空間も、溶液の通流路16となる。開口部13は、通流路16に連通し、開口部14は通流路15に連通している。開口部13が送入口、開口部14が排出口となる場合、溶液は、開口部13、通流路16、吸着体11、通流路15、開口部14の順番に流れる。   As shown in FIG. 8, the cylindrical outer surface 11 a of the adsorbent 11 is separated from the inner wall surface of the cylindrical container 12, and a solution flow path 15 is formed therebetween. The left and right passages 15 in FIG. 8 are annular and communicate with each other. Further, the space inside the cylindrical shape of the adsorbent 11 also serves as a solution flow path 16. The opening 13 communicates with the flow path 16, and the opening 14 communicates with the flow path 15. When the opening 13 serves as the inlet and the opening 14 serves as the outlet, the solution flows in the order of the opening 13, the passage 16, the adsorbent 11, the passage 15, and the opening 14.

本カラム20の吸着体11は、外形は円筒状に加工されているが、平均孔径の異なる2種類の細孔(貫通孔と細孔)からなる2重細孔構造を有する一体構造の多孔質担体の表面に、プロテインAを固定化したもので、第1実施形態の吸着体1と同じである。また、多孔質担体の貫通孔の平均孔径と細孔の中心直径も、第1実施形態の多孔質担体5の場合と同じである。従って、吸着体及び多孔質担体の作製方法及びそれらの吸着性能は、第1実施形態と同じであるので、重複する説明は省略する。   The adsorbent 11 of this column 20 is processed into a cylindrical shape, but has an integral structure having a double pore structure composed of two types of pores (through-holes and pores) having different average pore diameters. Protein A is immobilized on the surface of the carrier and is the same as the adsorbent 1 of the first embodiment. Further, the average pore diameter of the through holes and the center diameter of the pores of the porous carrier are the same as in the case of the porous carrier 5 of the first embodiment. Therefore, since the production method of the adsorbent and the porous carrier and the adsorption performance thereof are the same as those in the first embodiment, a duplicate description is omitted.

第2実施形態では、円筒状の吸着体11の筒状外側面11aと筒状内側面11bの一方から他方へと各溶液が通液されるため、筒状外側面11aと筒状内側面11b間の距離が吸着体11の厚みとなる。第1実施形態では、円盤状または円柱状の吸着体1の上面と下面の一方から他方へと各溶液が通液されるため、吸着体1の上面と下面間の距離が吸着体1の厚みとなる。   In the second embodiment, since each solution is passed from one of the cylindrical outer surface 11a and the cylindrical inner surface 11b of the cylindrical adsorbent 11 to the other, the cylindrical outer surface 11a and the cylindrical inner surface 11b. The distance between them is the thickness of the adsorbent 11. In the first embodiment, since each solution is passed from one of the upper surface and the lower surface of the disk-shaped or columnar adsorbent 1 to the other, the distance between the upper surface and the lower surface of the adsorbent 1 is the thickness of the adsorbent 1. It becomes.

次に、本カラムの別実施形態について説明する。   Next, another embodiment of this column will be described.

〈1〉上記各実施形態では、吸着体1,11の厚みについては、具体的な数値を明示しなかったが、吸着体1,11の厚みは、第1実施形態において説明した評価用カラムと同様に10mmに設定することで、吸着工程において、線速度90cm/h以上で通液することで、接触時間40秒以内の短時間での処理が可能となる。図5及び図6に示す評価結果より、線速度は90cm/hより更に速くできるので、吸着体1,11の厚みを、線速度に比例して厚くしても、接触時間40秒以内の短時間での処理が可能となる。   <1> In each of the above embodiments, no specific numerical value is specified for the thickness of the adsorbents 1 and 11, but the thickness of the adsorbents 1 and 11 is the same as that of the evaluation column described in the first embodiment. Similarly, by setting it to 10 mm, in the adsorption step, liquid can be passed at a linear velocity of 90 cm / h or more, so that processing in a short time within 40 seconds can be performed. From the evaluation results shown in FIG. 5 and FIG. 6, the linear velocity can be made faster than 90 cm / h, so even if the thickness of the adsorbents 1 and 11 is increased in proportion to the linear velocity, the contact time is less than 40 seconds. Processing in time becomes possible.

〈2〉上記第1実施形態では、吸着体1及び円筒容器2の断面形状として円形及び円環形を想定したが、該断面形状は円形及び円環形に限定されるものではなく、多角形状でも構わない。また、上記第2実施形態では、吸着体11及び円筒容器12の断面形状として円環形を想定したが、該断面形状は円環形に限定されるものではなく、多角形状でも構わない。   <2> In the first embodiment, a circular shape and a circular shape are assumed as the cross-sectional shapes of the adsorbent 1 and the cylindrical container 2, but the cross-sectional shape is not limited to a circular shape and a circular shape, and may be a polygonal shape. Absent. In the second embodiment, an annular shape is assumed as the sectional shape of the adsorbing body 11 and the cylindrical container 12, but the sectional shape is not limited to the annular shape, and may be a polygonal shape.

〈3〉上記各実施形態では、多孔質担体の貫通孔の平均孔径(水銀圧入法による測定)は、4μm以下を想定し、第1実施形態で説明した評価用カラムでは、1.7μmの場合について、説明したが、本カラムの吸着性能は、貫通孔の平均孔径が4μm以下の範囲では、平均孔径に大きく依存しないことが確認されている。尚、貫通孔の平均孔径が4μmを超えて大きくなると、細孔表面積も減少するので、吸着性能も低下してくる。   <3> In each of the above embodiments, the average pore diameter (measured by the mercury intrusion method) of the through holes of the porous carrier is assumed to be 4 μm or less, and the evaluation column described in the first embodiment is 1.7 μm. However, it has been confirmed that the adsorption performance of this column does not greatly depend on the average pore diameter in the range where the average pore diameter of the through holes is 4 μm or less. Note that when the average pore diameter of the through-holes exceeds 4 μm, the pore surface area also decreases, and the adsorption performance also decreases.

本発明に係る抗体精製方法及び抗体精製用カラムは、免疫グロブリン抗体の精製に利用可能である。   The antibody purification method and the antibody purification column according to the present invention can be used for the purification of immunoglobulin antibodies.

1: 吸着体
2: 円筒容器
3,4: 開口部(送入口,排出口)
5: 多孔質担体
6: プロテインA
7: 骨格体
8: 貫通孔
9: 細孔
10: 本発明に係る抗体精製用カラム
11: 吸着体
11a: 吸着体の筒状外側面
11b: 吸着体の筒状内側面
12: 円筒容器
13,14: 開口部(送入口,排出口)
15: 通流路(吸着体の外側)
16: 通流路(吸着体の内側)
20: 本発明に係る抗体精製用カラム
1: Adsorbent 2: Cylindrical container 3, 4: Opening (inlet, outlet)
5: Porous carrier 6: Protein A
7: Skeletal body 8: Through hole 9: Pore 10: Column for antibody purification according to the present invention 11: Adsorbent body 11a: Cylindrical outer surface of the adsorbent body 11b: Cylindrical inner surface of the adsorbent body 12: Cylindrical container 13, 14: Opening (inlet, outlet)
15: Flow path (outside of adsorbent)
16: Flow path (inside the adsorbent)
20: Antibody purification column according to the present invention

Claims (6)

3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有し、窒素吸着法で測定した前記細孔の中心直径が40nm以上70nm以下である多孔質担体の表面に、プロテインAを固定してなる吸着体を備えてなる抗体精製用カラムを用い、
精製対象の抗体を含む精製前溶液と前記吸着体との接触時間が40秒以下の条件で、前記抗体精製用カラムに前記精製前溶液を通液させて、前記精製前溶液内の抗体を前記吸着体に吸着させ、前記抗体を精製することを特徴とする抗体精製方法。
It has a skeleton made of silica gel or silica glass having a three-dimensional network structure, and pores penetrating from the surface of the skeleton to the inside formed by being dispersed on the surface of the skeleton, and measured by a nitrogen adsorption method Using an antibody purification column comprising an adsorbent formed by immobilizing protein A on the surface of a porous carrier having a pore central diameter of 40 nm to 70 nm,
The pre-purification solution is allowed to flow through the antibody purification column under a condition where the contact time between the pre-purification solution containing the antibody to be purified and the adsorbent is 40 seconds or less, and the antibody in the pre-purification solution An antibody purification method characterized by adsorbing to an adsorbent and purifying the antibody.
前記接触時間が2秒以上40秒以下であることを特徴とする請求項1に記載の抗体精製方法。   2. The antibody purification method according to claim 1, wherein the contact time is 2 seconds or more and 40 seconds or less. 溶媒置換、吸着、洗浄、溶出、及び、後洗浄の各工程からなる1回の精製工程に要する時間が、120秒以内であることを特徴とする請求項1または2に記載の抗体精製方法。   The method for purifying an antibody according to claim 1 or 2, wherein the time required for one purification step comprising the steps of solvent substitution, adsorption, washing, elution and post-washing is 120 seconds or less. 前記後洗浄工程でpH13を超える強アルカリの溶液を用いずに前記抗体精製用カラムの洗浄を行い、2時間以内に、前記精製工程を100回以上繰り返すことを特徴とする請求項3に記載の抗体精製方法。   The said purification | cleaning column is wash | cleaned without using the strong alkali solution exceeding pH13 at the said post-washing process, and the said refinement | purification process is repeated 100 times or more within 2 hours. Antibody purification method. 3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体と、前記骨格体の表面に分散して形成された前記骨格体の表面から内部まで貫通する細孔とを有する多孔質担体の表面に、プロテインAを固定してなる吸着体を備えてなり、
窒素吸着法で測定した前記細孔の中心直径が40nm以上70nm以下であることを特徴とする抗体精製用カラム。
Proteins are formed on the surface of a porous carrier having a skeleton made of silica gel or silica glass having a three-dimensional network structure, and pores penetrating from the surface to the inside of the skeleton formed by being dispersed on the surface of the skeleton. An adsorbent formed by fixing A,
A column for antibody purification, wherein the pore has a center diameter of 40 nm or more and 70 nm or less as measured by a nitrogen adsorption method.
精製対象の抗体を含む精製前溶液と前記吸着体との接触時間が2秒以上40秒以下の条件で、前記吸着体に前記精製前溶液を通液させて、前記精製前溶液内の抗体を前記吸着体に吸着させた場合における、波長280nmの紫外線を用いて得られる吸着破過曲線で10%破過を超える前記吸着体の単位体積当たりの前記抗体の添加量で規定される動的吸着容量が10mg/mLgelを超える吸着性能を有することを特徴とする請求項5に記載の抗体精製用カラム。   The pre-purification solution is passed through the adsorbent under conditions where the contact time between the pre-purification solution containing the antibody to be purified and the adsorbent is not shorter than 2 seconds and not longer than 40 seconds. Dynamic adsorption defined by the amount of the antibody added per unit volume of the adsorbent exceeding 10% in the adsorption breakthrough curve obtained using ultraviolet light having a wavelength of 280 nm when adsorbed on the adsorbent. 6. The antibody purification column according to claim 5, wherein the column has an adsorption capacity exceeding 10 mg / mLgel.
JP2012136923A 2012-06-18 2012-06-18 Method for purifying antibody and antibody purification column Pending JP2014002008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136923A JP2014002008A (en) 2012-06-18 2012-06-18 Method for purifying antibody and antibody purification column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136923A JP2014002008A (en) 2012-06-18 2012-06-18 Method for purifying antibody and antibody purification column

Publications (1)

Publication Number Publication Date
JP2014002008A true JP2014002008A (en) 2014-01-09

Family

ID=50035319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136923A Pending JP2014002008A (en) 2012-06-18 2012-06-18 Method for purifying antibody and antibody purification column

Country Status (1)

Country Link
JP (1) JP2014002008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142724A (en) * 2015-02-05 2016-08-08 株式会社日立製作所 Refiner and refining method
JP2017047365A (en) * 2015-09-01 2017-03-09 国立研究開発法人産業技術総合研究所 Carrier for protein immobilization, and production method thereof
CN108130325A (en) * 2018-02-02 2018-06-08 苏州优卡新材料科技有限公司 A kind of efficiently purifying column of ribonucleic acid extraction inorganic material filter core
US11207660B2 (en) 2015-06-30 2021-12-28 Sng Inc. Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345379A (en) * 2004-06-04 2005-12-15 Gl Sciences Inc Device for affinity chromatography and its manufacturing method
JP2009031277A (en) * 2007-07-10 2009-02-12 Millipore Corp Medium for affinity chromatography
JP3149787U (en) * 2008-11-21 2009-04-16 株式会社 京都モノテック Antibody purification chip
JP2011001336A (en) * 2009-06-22 2011-01-06 Agc Si-Tech Co Ltd Method for producing new protein a immobilization carrier
JP2011232098A (en) * 2010-04-26 2011-11-17 National Institute Of Advanced Industrial & Technology Measuring method for immunoglobulin amount in solution
JP2012001462A (en) * 2010-06-15 2012-01-05 Kaneka Corp Column for antibody purification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345379A (en) * 2004-06-04 2005-12-15 Gl Sciences Inc Device for affinity chromatography and its manufacturing method
JP2009031277A (en) * 2007-07-10 2009-02-12 Millipore Corp Medium for affinity chromatography
JP3149787U (en) * 2008-11-21 2009-04-16 株式会社 京都モノテック Antibody purification chip
JP2011001336A (en) * 2009-06-22 2011-01-06 Agc Si-Tech Co Ltd Method for producing new protein a immobilization carrier
JP2011232098A (en) * 2010-04-26 2011-11-17 National Institute Of Advanced Industrial & Technology Measuring method for immunoglobulin amount in solution
JP2012001462A (en) * 2010-06-15 2012-01-05 Kaneka Corp Column for antibody purification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142724A (en) * 2015-02-05 2016-08-08 株式会社日立製作所 Refiner and refining method
US11207660B2 (en) 2015-06-30 2021-12-28 Sng Inc. Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body
JP2017047365A (en) * 2015-09-01 2017-03-09 国立研究開発法人産業技術総合研究所 Carrier for protein immobilization, and production method thereof
CN108130325A (en) * 2018-02-02 2018-06-08 苏州优卡新材料科技有限公司 A kind of efficiently purifying column of ribonucleic acid extraction inorganic material filter core

Similar Documents

Publication Publication Date Title
JP4226050B1 (en) Absorption column for body fluid purification treatment
Mallik et al. Affinity monolith chromatography
KR101871683B1 (en) Chromatogrphy media and method
Jain et al. Protein purification with polymeric affinity membranes containing functionalized poly (acid) brushes
JP4874976B2 (en) INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
Hajizadeh et al. Evaluation of selective composite cryogel for bromate removal from drinking water
JP6469574B2 (en) Functionalized granular carrier and its production and use
Jaiboon et al. Amine modified silica xerogel for H2S removal at low temperature
AU2016297435B2 (en) Affinity chromatography devices
JP2014002008A (en) Method for purifying antibody and antibody purification column
JP5550109B2 (en) Method for measuring the amount of immunoglobulin in solution
Öztürk et al. Newly synthesized bentonite–histidine (Bent–His) micro-composite affinity sorbents for IgG adsorption
US20170232433A1 (en) Anionic exchange-hydrophobic mixed mode
KR20000069261A (en) Separating agents for optical isomers and process for producing the same
JP2017037069A5 (en)
Qiao et al. High-surface-area interconnected macroporous nanofibrous cellulose microspheres: a versatile platform for large capacity and high-throughput protein separation
Yang et al. Chitosan/coarse filter paper composite membrane for fast purification of IgG from human serum
Öztürk et al. Silane‐modified magnetic beads: application to immunoglobulin G separation
De Souza et al. Purification of human IgG by negative chromatography on ω-aminohexyl-agarose
US11229896B2 (en) Affinity chromatography media and chromatography devices
JP2012001462A (en) Column for antibody purification
JPH0489500A (en) Method for purifying substance by affinity chromatography and apparatus for purification
JP5308171B2 (en) Absorption column for body fluid purification treatment
WO2017034024A1 (en) Ligand immobilization method
Shimoda et al. Protein-binding characteristics of anion-exchange particles prepared by radiation-induced graft polymerization at low temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906