JP5023732B2 - Laminated board - Google Patents

Laminated board Download PDF

Info

Publication number
JP5023732B2
JP5023732B2 JP2007039719A JP2007039719A JP5023732B2 JP 5023732 B2 JP5023732 B2 JP 5023732B2 JP 2007039719 A JP2007039719 A JP 2007039719A JP 2007039719 A JP2007039719 A JP 2007039719A JP 5023732 B2 JP5023732 B2 JP 5023732B2
Authority
JP
Japan
Prior art keywords
laminate
resin
epoxy resin
copper foil
laminated board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007039719A
Other languages
Japanese (ja)
Other versions
JP2007288152A (en
Inventor
伸 高根沢
高示 森田
裕介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007039719A priority Critical patent/JP5023732B2/en
Publication of JP2007288152A publication Critical patent/JP2007288152A/en
Application granted granted Critical
Publication of JP5023732B2 publication Critical patent/JP5023732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配線板を製造するために用いる積層板に関する。   The present invention relates to a laminated board used for manufacturing a wiring board.

電子機器の小型化、軽量化、多機能化に伴い、LSIやチップ部品の形態は多ピン化、小型化へと急速に変化している。これに伴い、電子部品を搭載するプリント配線板は、さらなる配線の微細化の必要性がより高まっている。プリント配線板は、配線の微細化に対して銅はくの厚みを薄くしてエッチング精度を高めることで対応してきたが、この技術の延長線上では低コスト化との兼ね合いもあって限界が生じている。   As electronic devices become smaller, lighter, and more multifunctional, the form of LSIs and chip parts is rapidly changing to higher pins and smaller sizes. In connection with this, the necessity for further miniaturization of the wiring is increasing more about the printed wiring board which mounts an electronic component. The printed wiring board has responded to the miniaturization of wiring by reducing the thickness of the copper foil and increasing the etching accuracy, but the extension line of this technology has a limit due to the cost reduction. ing.

銅はくの厚みを薄くするために、第1層目の銅はくと第2層目の銅はくとの間に薄膜層を備えた3層構造の金属はくを使用して全体の銅はく厚みを低減する工夫が行われている(例えば、特許文献1を参照)。しかし、薄膜層を形成する工程を新たに取り入れることは工程の煩雑化につながり、また、ゴミの混入も問題となる。   In order to reduce the thickness of the copper foil, a total of three layers of metal foil with a thin film layer between the first layer copper foil and the second layer copper foil is used. The device which reduces copper foil thickness is performed (for example, refer patent document 1). However, newly incorporating a process for forming a thin film layer leads to complication of the process, and mixing of dust becomes a problem.

一方、極薄銅はくと呼ばれる全体の厚みが5μm以下の銅はくを取り扱い易いようにプラスチックフィルムやアルミ箔で補強した銅はくが市場で見かけられるようになってきた。しかし、極薄銅は、補強したプラスチックフィルムやアルミ箔を廃棄するため、資源の無駄が多いことや価格も高く、また技術面では、薄いことから銅はく内部のピンホールが完全になくならないなどの課題も多い。   On the other hand, copper foil reinforced with a plastic film or aluminum foil has been found in the market so that copper foil with an overall thickness of 5 μm or less called ultrathin copper foil can be easily handled. However, ultra-thin copper discards reinforced plastic film and aluminum foil, which is wasteful of resources and expensive, and technically thin, the pinhole inside the copper foil does not disappear completely. There are many issues such as.

このような背景から、銅はくがない状態で配線を形成するセミアディティブ法が注目されるようになってきた。この工法は、銅はくを使用していない絶縁基板をデスミア処理と呼ばれる化学粗化処理液に接触させて絶縁基板上に凹凸形状を作製し、次いで、電解めっきの供電層である無電解めっき層を形成し、さらにめっきレジストを形成した後に、電解めっきで必要な部分のみをパターンめっきするものである。従って、銅の厚みを任意に調整できることから、微細配線化に有利とされている。また、無電解銅と絶縁基板との接着性を確保するために、通常は無電解めっき下地専用の絶縁樹脂層が基板上に形成されるが、薄型化のために絶縁樹脂層を設けないで基材に直接無電解めっき層を形成するようになってきた。この場合、基材には無電解めっき層との接着性が考慮されていないため、銅はくの粗面化面が樹脂を含浸したプリプレグ側面となるように加圧、加熱して成型し、次いで銅はくを過硫酸アンモニウムなどのエッチング液に接触させて銅を化学的に溶解除去してプリプレグが硬化した基材面に銅はく粗化面のレプリカ面を作製する。このレプリカ面の凹凸による投錨効果で無電解めっきとの接着性を確保する。   From such a background, a semi-additive method for forming a wiring without a copper foil has attracted attention. In this method, an insulating substrate that does not use copper foil is brought into contact with a chemical roughening treatment solution called desmear treatment to produce a concavo-convex shape on the insulating substrate, and then electroless plating that is a power supply layer for electrolytic plating After a layer is formed and a plating resist is further formed, only a portion necessary for electrolytic plating is pattern-plated. Therefore, since the thickness of copper can be adjusted arbitrarily, it is advantageous for miniaturization. Also, in order to ensure the adhesion between the electroless copper and the insulating substrate, an insulating resin layer dedicated to the electroless plating base is usually formed on the substrate, but do not provide an insulating resin layer for thinning. An electroless plating layer has been formed directly on a substrate. In this case, since the adhesiveness to the electroless plating layer is not taken into consideration for the base material, it is molded by pressurizing and heating so that the roughened surface of the copper foil becomes the side surface of the prepreg impregnated with the resin, Next, the copper foil is brought into contact with an etching solution such as ammonium persulfate, and the copper is chemically dissolved and removed to produce a copper foil roughened replica surface on the substrate surface on which the prepreg has been cured. Adhesiveness with the electroless plating is ensured by the anchoring effect due to the unevenness of the replica surface.

このような背景において、銅はく粗化面の凹凸はより小さくなる傾向となっており、レプリカ面の凹凸による投錨効果では無電解めっきとの接着性を確保することが困難になっている。銅はく粗化面の凹凸が小さくなる理由は、配線幅や配線間隔が狭くなるとエッチング液の流れが悪くなり、凹部に残存する銅の溶解除去がしにくくなるからである。レプリカ面の凹凸は、銅はく粗化面の凹凸が小さくなることに加え、デスミア処理工程で樹脂が溶解することからさらに小さくなってしまう。
特開2004−165547号公報
In such a background, the unevenness of the copper foil roughened surface tends to be smaller, and it is difficult to ensure adhesion with electroless plating by the anchoring effect due to the unevenness of the replica surface. The reason why the unevenness of the copper foil roughened surface is reduced is that when the wiring width and the wiring interval are narrowed, the flow of the etching solution becomes worse, and it becomes difficult to dissolve and remove the copper remaining in the concave portion. The unevenness of the replica surface is further reduced because the resin is dissolved in the desmear treatment process in addition to the unevenness of the copper foil roughened surface being reduced.
JP 2004-165547 A

そこで、粗化面の凹凸が小さい銅はくを使用し、デスミア工程を経た状態で無電解銅と高い接着性を確保できる基材が出現すれば、望ましいことである。   Therefore, it is desirable if a copper foil having a rough surface with small irregularities is used, and a base material that can ensure high adhesiveness with electroless copper after the desmear process has appeared.

本発明は、粗化面の凹凸が小さい銅はくを使用し、デスミア工程を経た状態で無電解銅めっきを行って作製するプリント配線板の製造に用いられる、配線銅と高い接着性を確保できる積層板を提供することを目的とする。   The present invention uses copper foil with small roughness on the roughened surface, and secures high adhesion to wiring copper used in the production of printed wiring boards produced by electroless copper plating in a state after passing through the desmear process. It aims at providing the laminated board which can be performed.

本発明者等は、上述した課題を解決すべく鋭意検討したところ、配線銅との高い接着強度を確保するためには、銅はくを除去して積層板表面に作製したレプリカ面の凹凸がデスミア処理前後で変化しないまたは変化が小さいことが必要である。このためには、積層板に使用する樹脂がデスミア処理液で難溶性を示すことが重要であることを見出し、これらの知見に基づいて本発明を完成するに至った。   The inventors of the present invention have intensively studied to solve the above-mentioned problems, and in order to ensure high adhesive strength with the wiring copper, the unevenness of the replica surface produced on the surface of the laminated board by removing the copper foil is not necessary. It is necessary that there is no change or little change before and after the desmear treatment. For this purpose, it has been found that it is important for the resin used for the laminate to exhibit poor solubility in the desmear treatment liquid, and the present invention has been completed based on these findings.

かくして本発明によれば、以下の1〜7の発明が提供される。
1.ガラスクロスに樹脂を含浸し、樹脂を含浸したガラスクロスを必要な厚み分だけ重ねて積層体を成形し、積層体の一方又は両方の表面上に、回路となる表面粗さを有する銅はくを、表面粗さを有する面を積層体の表面に向けて重ねて一緒に加圧、加熱して積層板を成形し、積層板の銅はくを化学的に除去し、この積層板にデスミア処理、無電解銅めっきを施して配線板を製造するのに用いられる積層板であり、ガラスクロスに含浸する樹脂が、第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂、ポリフェニレンエーテル、ビスマレイミドのいずれかを必須成分として含み、更にエポキシ樹脂、エポキシ樹脂用硬化剤及び無機フィラーを含有する樹脂組成物であり、デスミア処理後の積層板表面粗さが算術平均粗さ(Ra)で0.1〜1.5μm、十点平均粗さ(Rz)が1〜6μmである積層板。
2.前記銅はくが、算術平均粗さ(Ra)表示の場合0.2〜1.5μm、十点平均粗さ(Rz)表示の場合1.5〜6μmのいずれかの表面粗さを有する、前記1記載の積層板。
3.前記デスミア処理が、膨潤水溶液の接触工程と過マンガン酸系強アルカリ水溶液の接触工程とを含む、請求項1または2記載の積層板。
4.前記無電解めっきが、無電解めっきの厚みとして0.2〜2μmの範囲であり、その後電解めっきにより所定の配線導体の厚みまで厚付けするものである、前記1〜3のいずれか一に記載の積層板。
5.前記エポキシ樹脂用硬化剤が、エポキシ基1.0当量に対して0.5〜1.5当量配合される、前記1〜4のいずれか一に記載の積層板。
6.前記無機フィラーが全固形文中で20〜80質量%の範囲で配合される、前記1〜5のいずれか一に記載の積層板。
7.前記無機フィラーが平均1次粒子径0.02〜5μmを有する、前記1記載の積層板。
Thus, according to the present invention, the following inventions 1 to 7 are provided.
1. A glass cloth is impregnated with resin, and a laminated body is formed by stacking the glass cloth impregnated with resin to the required thickness, and copper foil having a surface roughness that becomes a circuit is formed on one or both surfaces of the laminated body. Are laminated with the surface having the surface roughness facing the surface of the laminate, pressed and heated together to form a laminate, and the copper foil of the laminate is chemically removed, and desmear is added to the laminate. Epoxy resin which is a laminated board used for manufacturing a wiring board by performing treatment and electroless copper plating, and the resin impregnating the glass cloth does not contain at least one of the second and third carbon atoms in the main skeleton , A resin composition containing any of polyphenylene ether and bismaleimide as an essential component, and further containing an epoxy resin, a curing agent for epoxy resin and an inorganic filler, and the surface roughness of the laminate after desmear treatment is an arithmetic average roughness Ra) at 0.1 to 1.5 [mu] m, laminates ten-point average roughness (Rz) is 1 to 6 m.
2. The copper foil has a surface roughness of 0.2 to 1.5 μm for arithmetic average roughness (Ra) display and 1.5 to 6 μm for ten-point average roughness (Rz) display. 2. The laminate as described in 1 above.
3. The laminated board of Claim 1 or 2 in which the said desmear process includes the contact process of swelling aqueous solution, and the contact process of permanganic-acid type strong alkali aqueous solution.
4). The electroless plating is in a range of 0.2 to 2 μm as a thickness of the electroless plating, and thereafter thickened to a predetermined wiring conductor thickness by electrolytic plating. Laminated board.
5. The laminate according to any one of 1 to 4, wherein the epoxy resin curing agent is blended in an amount of 0.5 to 1.5 equivalents relative to 1.0 equivalent of an epoxy group.
6). The laminated board as described in any one of 1 to 5 above, wherein the inorganic filler is blended in a range of 20 to 80% by mass in the whole solid sentence.
7). 2. The laminate according to 1, wherein the inorganic filler has an average primary particle size of 0.02 to 5 μm.

デスミア処理による粗化面の凹凸の変化が小さく、高い凹凸差が保たてられ、無電解銅めっきを行ってプリント配線板を作製する際に、高い投錨効果が発揮されて、配線銅と高い接着性を有する積層板を提供することができる。   The unevenness of the roughened surface due to desmear treatment is small, high unevenness difference is maintained, and when making a printed wiring board by performing electroless copper plating, a high anchoring effect is demonstrated and it is high with wiring copper A laminate having adhesiveness can be provided.

本発明の積層板は、デスミア処理による粗化面の凹凸の変化が小さく、デスミア処理後の積層板表面粗さが算術平均粗さ(Ra)で0.1〜1.5μmであり、十点平均粗さ(Rz)で1〜6μmになるように調整する。   The laminated board of the present invention has a small change in roughness of the roughened surface due to desmearing treatment, and the laminated board surface roughness after desmearing treatment is 0.1 to 1.5 μm in terms of arithmetic average roughness (Ra). The average roughness (Rz) is adjusted to 1 to 6 μm.

本発明で言う「十点平均粗さ(Rz)」とは、走査距離を10分割した測定値の平均値を算出したものである。   The “ten-point average roughness (Rz)” referred to in the present invention is an average value of measured values obtained by dividing the scanning distance by ten.

デスミア処理工程前後の粗さが重要になる理由は、銅回路と積層板との接着強度が投錨効果で確保されているからである。この投錨効果は粗さに敏感であり、粗さが小さくなる程、接着強度は小さくなる傾向にある。すなわち、高い接着強度を確保するためには、銅はくを除去して積層板表面に作製した表面粗さががデスミア処理した後にも、変化しないまたは変化が極力小さいことが望ましい。このためには、積層板に使用する樹脂がデスミア処理液で難溶性を示すことが好ましい。   The reason why the roughness before and after the desmear process is important is that the adhesive strength between the copper circuit and the laminated board is ensured by the anchoring effect. This anchoring effect is sensitive to roughness, and the adhesive strength tends to decrease as the roughness decreases. That is, in order to ensure high adhesive strength, it is desirable that the surface roughness produced on the surface of the laminated board by removing the copper foil does not change or the change is as small as possible after the desmear treatment. For this purpose, it is preferable that the resin used for the laminate exhibits poor solubility in the desmear treatment liquid.

本発明では、銅はくを除去して、さらに、デスミア処理した後の積層板表面粗さが算術平均粗さ(Ra)で0.1〜1.5μm、十点平均粗さ(Rz)で1〜6μmになるように調整する。算術平均粗さがRaで0.1μm未満及びRzで1μm未満の場合は、投錨効果が不足し積層板表面への銅回路の接着強度が充分でない。また、算術平均粗さがRaで1.5μmを超え及びRzで6μmを超えると粗さが大きいことから、凹凸間に配線形成用レジストや無電解銅が残りやすくなるために、配線形成性が低下する。   In the present invention, the copper foil is removed, and the surface roughness of the laminated board after the desmear treatment is 0.1 to 1.5 μm in arithmetic average roughness (Ra) and 10-point average roughness (Rz). It adjusts so that it may become 1-6 micrometers. When the arithmetic average roughness is less than 0.1 μm in Ra and less than 1 μm in Rz, the anchoring effect is insufficient and the adhesive strength of the copper circuit to the laminate surface is not sufficient. Moreover, since the roughness is large when the arithmetic average roughness exceeds 1.5 μm in Ra and exceeds 6 μm in Rz, the wiring forming resist and the electroless copper are likely to remain between the irregularities, so that the wiring formability is improved. descend.

上述したデスミア処理後の積層板表面粗さを得るためには、算術平均粗さ(Ra)表示の場合0.2〜1.5μm、十点平均粗さ(Rz)表示の場合1.5〜6μmのいずれかの銅はくを使用するのが好ましい。この理由は、配線の微細化を達成するためには、粗化面の粗さを小さくする必要があるからである。このためには、使用する銅はくの粗化面粗さが重要になる。銅はくの粗化面粗さは、通常のカタログでは十点平均粗さ(Rz)で表示される場合が多いので、十点平均粗さで調整してもよい。例えば、銅はく粗化面粗さで十点平均粗さ(Rz)が4.0μm品は、算術平均粗さ(Ra)が0.7μmであり、この銅はくを使えば本発明の積層板の表面粗さが得られる。   In order to obtain the laminate surface roughness after the desmear treatment described above, the arithmetic average roughness (Ra) display is 0.2 to 1.5 μm, and the ten-point average roughness (Rz) display is 1.5 to 1.5. It is preferred to use any 6 μm copper foil. This is because it is necessary to reduce the roughness of the roughened surface in order to achieve finer wiring. For this purpose, the roughened surface roughness of the copper foil used is important. Since the roughened surface roughness of copper foil is often displayed as a ten-point average roughness (Rz) in a normal catalog, it may be adjusted with a ten-point average roughness. For example, a 10-point average roughness (Rz) with a copper foil roughened surface roughness of 4.0 μm has an arithmetic average roughness (Ra) of 0.7 μm. If this copper foil is used, the present invention The surface roughness of the laminate can be obtained.

本発明で使用する銅はくは、市販品を使用することができる。本発明で使用することができる銅はくの市販品の例として、古河サーキットフォイル株式会社製商品名F1−WS箔(十点平均粗さRz:1.9μm)、同社商品名F2−WS箔(十点平均粗さRz:2.1μm)、同社商品名F3−WS箔(十点平均粗さRz:2.4μm)、同社商品名GTS−MP箔(十点平均粗さRz:5.5μm)、日本電解株式会社製商品名YGP−9箔(算術平均粗さRa:0.84μm)、同社商品名YGP−12箔(算術平均粗さRa:0.96μm)、同社商品名YGP−18箔(算術平均粗さRa:1.33μm)、株式会社日鉱マテリアルズ社製商品名JTC−9箔(十点平均粗さRz:3.5μm)、同社商品名JTC−12箔(十点平均粗さRz:4.0μm)、同社商品名JTC−18箔(十点平均粗さRz:6.0μm)等を挙げることができる。   A commercial item can be used for the copper foil used by this invention. Examples of commercially available copper foil that can be used in the present invention include F1-WS foil (trade name: F1-WS foil, manufactured by Furukawa Circuit Foil Co., Ltd.), F2-WS foil (trade name: F2-WS foil). (10-point average roughness Rz: 2.1 μm), company name F3-WS foil (10-point average roughness Rz: 2.4 μm), company name GTS-MP foil (10-point average roughness Rz: 5. 5 μm), trade name YGP-9 foil (arithmetic mean roughness Ra: 0.84 μm) manufactured by Nippon Electrolytic Co., Ltd., trade name YGP-12 foil (arithmetic mean roughness Ra: 0.96 μm), trade name YGP- 18 foil (arithmetic average roughness Ra: 1.33 μm), trade name JTC-9 foil (ten-point average roughness Rz: 3.5 μm) manufactured by Nikko Materials Co., Ltd., trade name JTC-12 foil (ten points) Average roughness Rz: 4.0 μm), company name JTC-18 foil (ten-point average roughness Rz: 6) 0μm), and the like can be given.

本発明の積層板を製造するには、耐薬品性、電気絶縁性、耐熱性、寸法安定性に優れることから、基板としてガラスクロスを用いる。ガラスクロスに樹脂を含浸させ、樹脂を含浸したガラスクロスを所望の厚み分だけ重ねて積層体を成形する。用いる樹脂として、デスミア処理工程で用いる膨潤水溶液や過マンガン酸系強アルカリ水溶液に対して難溶性を示す樹脂組成とすることが好ましい。   In order to produce the laminate of the present invention, a glass cloth is used as a substrate because it is excellent in chemical resistance, electrical insulation, heat resistance and dimensional stability. A glass cloth is impregnated with resin, and the glass cloth impregnated with resin is stacked by a desired thickness to form a laminate. The resin used is preferably a resin composition that is hardly soluble in a swelling aqueous solution or a permanganic acid strong alkaline aqueous solution used in the desmear treatment step.

積層体の一方又は両方の表面上に、回路となる表面粗さを有する銅はくを、表面粗さを有する面を積層体の表面に向けて重ねて一緒に加圧、加熱して積層板を成形する。次いで、積層板の銅はくを化学的に除去し、この積層板にデスミア処理、無電解銅めっきを施して積層板を製造する。   On one or both surfaces of the laminate, a copper foil having a surface roughness that becomes a circuit is laminated with the surface having the surface roughness facing the surface of the laminate, and the laminate is pressed and heated together. Is molded. Next, the copper foil of the laminate is chemically removed, and desmear treatment and electroless copper plating are applied to the laminate to produce a laminate.

ガラスクロスに含浸する樹脂として、第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂、ポリフェニレンエーテル、ビスマレイミドのいずれかを必須成分として含み、更にエポキシ樹脂、樹脂用硬化剤及び無機フィラーを含有する樹脂組成物を用いる。   As a resin impregnated in the glass cloth, an epoxy resin, polyphenylene ether, or bismaleimide that does not contain at least one of the second and third carbon atoms in the main skeleton is included as an essential component, and further an epoxy resin and a curing agent for the resin And a resin composition containing an inorganic filler.

エポキシ樹脂としては、エポキシ基数2.0以上のエポキシ樹脂であれば特に制限がなく、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、りん含有エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などが使用可能である。これらのエポキシ樹脂は、液状、固形状または溶剤を含んだ状態のものが使用可能である。   The epoxy resin is not particularly limited as long as it is an epoxy resin having 2.0 or more epoxy groups, and includes biphenyl type epoxy resin, naphthalene type epoxy resin, phosphorus-containing epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and the like. It can be used. These epoxy resins can be used in a liquid state, a solid state or a state containing a solvent.

溶剤を使用する場合は、メチルエチルケトン、キシレン、トルエン、アセトン、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等を使用できる。これらの溶剤は、単独あるいは混合して用いることができる。   When a solvent is used, methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. These solvents can be used alone or in combination.

これらのエポキシ樹脂の配合量は、溶剤を除いた無機フィラー分を含む全固形成分中で10〜50質量%の範囲が好ましく、より好ましくは15〜40質量%である。エポキシ樹脂の割合が10質量%未満では、塗膜が脆くなるためガラスクロスに樹脂を含浸したプリプレグの状態時の取り扱い性が悪くなる。また、エポキシ樹脂の割合が50質量%を超えると熱膨張率(積層板の厚み方向)が大きくなり、冷熱サイクル試験での接続抵抗が悪化する。   The blending amount of these epoxy resins is preferably in the range of 10 to 50% by mass, more preferably 15 to 40% by mass in the total solid component including the inorganic filler excluding the solvent. If the ratio of the epoxy resin is less than 10% by mass, the coating film becomes brittle, and the handling property in the state of the prepreg in which the glass cloth is impregnated with the resin is deteriorated. Moreover, when the ratio of an epoxy resin exceeds 50 mass%, a thermal expansion coefficient (thickness direction of a laminated board) will become large, and the connection resistance in a cooling-heat cycle test will deteriorate.

このエポキシ樹脂を硬化する硬化剤も必要である。硬化剤は、エポキシ基と加熱により反応するものであれば特に制限するものではなく、一般的なものが使用できる。例えば、各種フェノール樹脂類、酸無水物類、アミン類、ヒドラジット類などが使用できるが、外層銅との接着性から、ジシアンジアミドが好ましく、耐熱性や絶縁性も考慮するとジシアンジアミドとノボラックフェノールとを併用することがさらに好ましい。   A curing agent that cures the epoxy resin is also required. The curing agent is not particularly limited as long as it reacts with an epoxy group by heating, and a general one can be used. For example, various phenol resins, acid anhydrides, amines, hydragits, etc. can be used, but dicyandiamide is preferred from the viewpoint of adhesion to outer layer copper, and dicyandiamide and novolak phenol are used in combination considering heat resistance and insulation. More preferably.

これらのエポキシ樹脂用硬化剤は、エポキシ基1.0当量に対して0.5〜1.5当量を用いるのが好ましい。エポキシ樹脂用硬化剤がエポキシ基に対して0.5当量未満の場合は、煮沸処理後のはんだ耐熱性が低下し、1.5当量を超えると、硬化不足からデスミア処理液への溶解性が大きくなり、レプリカ形状を維持できなくなったり、Tgや絶縁性が低下したりする。   These epoxy resin curing agents are preferably used in an amount of 0.5 to 1.5 equivalents relative to 1.0 equivalent of epoxy groups. When the curing agent for epoxy resin is less than 0.5 equivalent with respect to the epoxy group, the solder heat resistance after the boiling treatment is reduced, and when it exceeds 1.5 equivalent, the solubility in the desmear treatment liquid is insufficient due to insufficient curing. As a result, the replica shape cannot be maintained, and Tg and insulation are lowered.

本発明では、デスミア処理前後のレプリカ形状の変化量を抑制する重要な役割を果たす成分として、第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂、ポリフェニレンエーテル、ビスマレイミドのいずれか、又はこれらの混合物を樹脂組成内に成分として含むことが好ましい。ポリフェニレンエーテルは、変性PPEとも呼ばれるものであり、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルの共重合ポリマーが使用可能であり、両末端を水酸基、エポキシ基、シアネト基、スチレン等で変性した樹脂も使用可能である。   In the present invention, as a component that plays an important role in suppressing the amount of change in replica shape before and after desmear treatment, an epoxy resin, polyphenylene ether, or bismaleimide that does not contain at least one of the second and third carbon atoms in the main skeleton is used. It is preferable to include any one or a mixture thereof as a component in the resin composition. Polyphenylene ether is also called modified PPE, and a copolymer of poly (2,6-dimethyl-1,4-phenylene) ether can be used, and both ends are hydroxyl, epoxy, cyanate, styrene, etc. Resin modified with can also be used.

ビスマレイミドとしては、4,4’−ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m−フェニレンビスマレイミド、ビスフェノール A ジフェニルエーテルビスマレイミド、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミドのいずれかが使用可能である。   As the bismaleimide, 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′- Either diphenylmethane bismaleimide or 4-methyl-1,3-phenylenebismaleimide can be used.

第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂としては、−CH基や−CH基を主鎖に含まないものが挙げられ、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、キサンテン型エポキシ樹脂等が挙げられる。 Examples of the epoxy resin that does not include at least one of the second and third carbon atoms in the main skeleton include those that do not include a —CH group or a —CH 2 group in the main chain, and include a biphenol type epoxy resin and a naphthalene type epoxy resin. , Dicyclopentadiene type epoxy resin, tetraphenylethane type epoxy resin, triphenylmethane type epoxy resin, xanthene type epoxy resin and the like.

上記の第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂、ポリフェニレンエーテル、ビスマレイミドの配合量は、いずれの樹脂も溶剤を除いた無機フィラー分を含む全固形成分中で0.3〜10質量%の範囲が好ましい。   The amount of the epoxy resin, polyphenylene ether, and bismaleimide that does not contain at least one of the second and third carbon atoms in the main skeleton is the total solid component including the inorganic filler component excluding the solvent. The range of 0.3-10 mass% is preferable.

第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂、ポリフェニレンエーテル又はビスマレイミドの配合量が0.3質量%未満の場合、レプリカ形状の変化量を抑制する効果が小さいため銅回路と積層板との接着強度が0.5kN/m以下となり、回路が剥がれる等の不具合が生じる。逆に、配合量が10質量%を超えると、各特性に及ぼす悪影響が顕著になる。例えば、ポリフェニレンエーテルの配合量が10質量%を超えると、はんだ耐熱性が低下し、ビスマレイミドと第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂の配合量が10質量%を超えると、煮沸水処理後のはんだ耐熱性が低下する。   When the compounding amount of the epoxy resin, polyphenylene ether or bismaleimide not containing at least one of the second and third carbon atoms in the main skeleton is less than 0.3% by mass, the effect of suppressing the amount of change in the replica shape is small. The adhesive strength between the copper circuit and the laminated board is 0.5 kN / m or less, causing problems such as peeling of the circuit. On the other hand, when the blending amount exceeds 10% by mass, the adverse effect on each characteristic becomes remarkable. For example, when the blending amount of polyphenylene ether exceeds 10% by mass, the solder heat resistance is lowered, and the blending amount of the epoxy resin containing no bismaleimide and at least one of the second and third carbon atoms in the main skeleton is 10%. When it exceeds%, the solder heat resistance after boiling water treatment decreases.

本発明において、無機フィラーとして、平均1次粒子径で0.05〜5μmの材料を用いることが好ましい。平均1次粒子径が0.05μm未満の場合は、フィラーが溶剤と接触した段階で凝集しやすくなり、絶縁特性の低下を招きやすくなる。他方、平均1次粒子径が5μmを超える場合も、同様に絶縁特性が低下しやすくなる。   In the present invention, it is preferable to use a material having an average primary particle diameter of 0.05 to 5 μm as the inorganic filler. When the average primary particle diameter is less than 0.05 μm, the filler tends to aggregate at the stage where it comes into contact with the solvent, which tends to cause a decrease in insulating properties. On the other hand, when the average primary particle diameter exceeds 5 μm, the insulating characteristics are likely to be similarly lowered.

無機フィラーの具体例は、シリカ、水酸化アルミニウム、タルク、クレー、酸化チタン、チタン酸バリウム、炭酸カルシウム、珪酸ジルコニウム等であるが、積層板とした時の低熱膨張率化や高はんだ耐熱性の観点から、シリカを用いるのが最も好ましい。これらの無機フィラーは、固形(粉体)のままでも、溶剤に分散した状態のいずれでも使用が可能である。また、必要に応じて無機フィラーをカップリング剤等で処理してもよい。シリカは、破砕シリカ、合成球状シリカのいずれも使用が可能であるが、流度分布の均一性の点からは合成球状シリカが好ましい。   Specific examples of the inorganic filler are silica, aluminum hydroxide, talc, clay, titanium oxide, barium titanate, calcium carbonate, zirconium silicate, etc., but it has a low thermal expansion coefficient and high solder heat resistance when used as a laminate. From the viewpoint, it is most preferable to use silica. These inorganic fillers can be used either as solid (powder) or dispersed in a solvent. Moreover, you may process an inorganic filler with a coupling agent etc. as needed. As the silica, either crushed silica or synthetic spherical silica can be used, but synthetic spherical silica is preferred from the viewpoint of uniformity of flow rate distribution.

無機フィラーの配合量は、全固形分中で20〜80質量%の範囲が好ましく、より好ましくは30〜70質量%である。無機フィラーの割合が20質量%未満では、熱膨張率が大きくなり前記したような接続抵抗の悪化が生じる。一方、無機フィラーはデスミア処理液に溶解しやすい性質があるため、80質量%を超える配合量となるとデスミア処理前後のレプリカ形状の維持が困難になりやすい。   The blending amount of the inorganic filler is preferably in the range of 20 to 80% by mass, more preferably 30 to 70% by mass in the total solid content. When the proportion of the inorganic filler is less than 20% by mass, the coefficient of thermal expansion increases and the connection resistance is deteriorated as described above. On the other hand, since the inorganic filler has a property of being easily dissolved in the desmear treatment liquid, it becomes difficult to maintain the replica shape before and after the desmear treatment when the blending amount exceeds 80% by mass.

以上説明したガラスクロスに含浸する樹脂には、その他の成分として、ガラスクロスと樹脂との濡れ性を改善するシランカップリング剤、樹脂側に接触している銅はく面の加熱による酸化を抑制する酸化防止剤、硬化促進助剤、難燃剤等を、本発明の効果を阻害しない範囲の量で加えてよい。   The resin impregnated in the glass cloth described above includes, as other components, a silane coupling agent that improves the wettability between the glass cloth and the resin, and suppresses oxidation due to heating of the copper foil contacting the resin side. Antioxidants, curing accelerators, flame retardants and the like may be added in amounts that do not impair the effects of the present invention.

ガラスクロスに含浸する樹脂組成物は、溶剤に溶解させてガラスクロスに含浸させる。この溶剤としては、メチルエチルケトン、メチルイソブチルケトン、キシレン、トルエン、アセトン、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等を使用できる。これらの溶剤は、単独あるいは混合系でもよい。   The resin composition impregnated into the glass cloth is dissolved in a solvent and impregnated into the glass cloth. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, xylene, toluene, acetone, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide and the like. Can be used. These solvents may be used alone or in a mixed system.

この溶剤の前記樹脂に対する割合は、従来使用している割合でよく、ガラスクロスに含浸する付着量にあわせてその使用量を調整する。本発明における樹脂組成物は、ガラスクロスに含浸させた後に、乾燥してB−ステージ化した状態のプリプレグを得る。   The ratio of the solvent to the resin may be a ratio used in the past, and the amount used is adjusted according to the amount of adhesion impregnated into the glass cloth. The resin composition in the present invention is impregnated into a glass cloth and then dried to obtain a prepreg in a B-stage.

このプリプレグの作製方法は、公知の技術を使用してよく、特に制限しない。また、乾燥条件は、溶剤が揮発し、ガラスクロスを銅箔と加熱、加圧して積層する際に溶融する程度にゲルタイムで調整する。   A method for producing this prepreg may use a known technique and is not particularly limited. The drying conditions are adjusted by gel time to such an extent that the solvent is volatilized and the glass cloth is melted when heated and pressed to laminate with a copper foil.

次いで、プリプレグを所望の積層板の厚みとなるように必要枚数を重ね合わせ、銅はくを積層板の片面、若しくは両面に設置して加熱、加圧して積層する。積層条件は、通常のエポキシ樹脂系の積層板と同条件で行うことが出来る、例えば、35℃から昇温速度3℃/分で50分間で昇温させて185℃にし、その温度に圧力2.0〜3.0MPaで60〜90分間保持し、その後室温まで30分間で冷却して積層板を作製する。   Next, a necessary number of prepregs are stacked so as to have a desired thickness of the laminated plate, and copper foil is placed on one side or both sides of the laminated plate and heated and pressed to be laminated. Lamination conditions can be carried out under the same conditions as for ordinary epoxy resin laminates. For example, the temperature is raised from 35 ° C. over 50 minutes at a rate of temperature rise of 3 ° C./min to 185 ° C., and the pressure is 2 Holding at 0.0 to 3.0 MPa for 60 to 90 minutes, and then cooling to room temperature in 30 minutes to produce a laminate.

前記したガラスクロスに含浸する樹脂をガラスクロスに含浸せずに、前記の銅はくへ塗布して乾燥してBステージ化して、この樹脂付き銅はくをエポキシ樹脂系、シアネートエステル樹脂、ベンゾオキサゾール樹脂系のいずれかの樹脂に含浸し、Bステージ化したプリプレグと一緒に加圧、加熱して積層板を作製することもできる。樹脂の銅はくへの塗布は既存の方法のロールコート、グラビアコート等を用いることができる。乾燥条件は溶剤が揮発する条件であればよく、乾燥は、例えば70〜120℃で2〜15分間行う。   Without impregnating the glass cloth with the resin impregnated in the glass cloth, it is applied to the copper foil and dried to form a B-stage, and this copper foil with resin is epoxy resin-based, cyanate ester resin, benzoate. A laminate can also be produced by impregnating any oxazole resin-based resin and pressurizing and heating together with the B-staged prepreg. The application of the resin to the copper foil can be performed by roll coating, gravure coating or the like of an existing method. The drying conditions may be any conditions that allow the solvent to volatilize, and drying is performed, for example, at 70 to 120 ° C. for 2 to 15 minutes.

樹脂の厚みは、乾燥後10〜100μmの範囲となるように樹脂分あるいはコーターのギャップ等を調整する。この樹脂付き銅はくと一緒に加圧、加熱するプリプレグは、エポキシ樹脂系、シアネートエステル樹脂、ベンゾオキサゾール樹脂系の何れでも使用でき、樹脂の限定はしない。   The resin thickness or the coater gap is adjusted so that the thickness of the resin is in the range of 10 to 100 μm after drying. The prepreg to be pressed and heated together with the copper foil with resin can be any of epoxy resin, cyanate ester resin, and benzoxazole resin, and the resin is not limited.

作製した積層板に、電気的な接続孔を、ドリルやレーザーなどの公知の技術を利用して形成する。この電気的な接続孔は、銅をエッチング除去した後に形成してもよい。次いで、銅はくをエッチング除去する。このエッチングは化学的に金属を溶解するものであり、銅の場合、塩化第2鉄/塩酸水溶液、過硫酸アンモニウム水溶液、硫酸/過酸化水素水水溶液など公知の技術を使用して銅を溶解、除去する。そして、デスミア処理と無電解めっき工程へ移行する。   An electrical connection hole is formed in the manufactured laminate using a known technique such as a drill or a laser. This electrical connection hole may be formed after the copper is removed by etching. The copper foil is then etched away. This etching is to dissolve metals chemically. In the case of copper, copper is dissolved and removed using known techniques such as ferric chloride / hydrochloric acid aqueous solution, ammonium persulfate aqueous solution, sulfuric acid / hydrogen peroxide aqueous solution. To do. And it transfers to a desmear process and an electroless-plating process.

デスミア処理は、膨潤水溶液の接触工程と過マンガン酸系強アルカリ水溶液の接触工程とを含むのが好ましい。膨潤水溶液の接触工程は、銅を除去した積層板をアルコールとアルカリとの混合水溶液で処理する工程である。このアルコールとアルカリとの混合水溶液は、ジエチレングリコールモノブチルエーテルと水酸化ナトリウムとを混合した水溶液である。混合水溶液の割合は、例えば、ジエチレングリコールモノブチルエーテルが100〜400ml/l、水酸化ナトリウムが1〜10g/lであり、市販品としても入手可能である。例えば、セキュリガントP(アトテックジャパン株式会社製、商品名)、サーキュポジットMLBコンディショナー211(ローム&ハースジャパン株式会社製、商品名)等であり、スウェラー液とも呼ばれるものである。   The desmear treatment preferably includes a contact step of the swelling aqueous solution and a contact step of the permanganic acid strong alkaline aqueous solution. The contact step of the swelling aqueous solution is a step of treating the laminated board from which copper has been removed with a mixed aqueous solution of alcohol and alkali. This mixed aqueous solution of alcohol and alkali is an aqueous solution in which diethylene glycol monobutyl ether and sodium hydroxide are mixed. The ratio of the mixed aqueous solution is, for example, 100 to 400 ml / l for diethylene glycol monobutyl ether and 1 to 10 g / l for sodium hydroxide, and is also available as a commercial product. For example, Securigant P (trade name, manufactured by Atotech Japan Co., Ltd.), Circposite MLB Conditioner 211 (trade name, manufactured by Rohm & Haas Japan Co., Ltd.), and the like are also referred to as sweller liquids.

膨潤水溶液への積層板の接触方法としては、スプレイ方式、ディップ方式、噴流方式などが利用可能であり、その条件は、ディップ方式の場合、60〜90℃で2〜20分間膨潤水溶液に浸漬する。   As a method of contacting the laminate with the swelling aqueous solution, a spray method, a dip method, a jet method, or the like can be used. In the case of the dip method, the condition is immersed in the swelling aqueous solution at 60 to 90 ° C. for 2 to 20 minutes. .

その後、水洗工程を経て、過マンガン酸系強アルカリ水溶液の接触工程へと移る。この過マンガン酸系強アルカリ水溶液は、例えば、過マンガン酸ナトリウム、過マンガン酸カリウム等の酸化性剤とアルカリ源の水酸化ナトリウムとを水に溶解したものである。その割合は、過マンガン酸ナトリウムまたは過マンガン酸カリウムが30〜80g/l、水酸化ナトリウムが20〜60g/lである。   Then, it passes to the contact process of a permanganate type strong alkali aqueous solution through a water washing process. This permanganate-based strong alkaline aqueous solution is obtained by, for example, dissolving an oxidizing agent such as sodium permanganate or potassium permanganate and sodium hydroxide as an alkali source in water. The ratio is 30 to 80 g / l for sodium permanganate or potassium permanganate and 20 to 60 g / l for sodium hydroxide.

そのような酸化性剤とアルカリ源とを水に溶解した水溶液は、市販品としても入手可能であり、例えば、コンセントレートコンパクトCP(アトテックジャパン株式会社製、商品名)、サーキュポジットMLBプロモーター213(ローム&ハースジャパン株式会社製、商品名)等であり、マンガンエッチング液とも呼ばれるものである。   An aqueous solution in which such an oxidizing agent and an alkali source are dissolved in water is also available as a commercial product. For example, Concentrate Compact CP (manufactured by Atotech Japan Co., Ltd., trade name), Circoposit MLB promoter 213 ( Rohm & Haas Japan Co., Ltd., trade name), etc., also called a manganese etching solution.

過マンガン酸系強アルカリ水溶液への積層板の接触方法としては、例えば、スプレイ方式、ディップ方式、噴流方式などが利用可能である。例えば、ディップ方式の場合、積層板を60〜90℃の過マンガン酸系強アルカリ水溶液に4〜30分間浸漬する。   For example, a spray method, a dip method, a jet method, or the like can be used as a method for contacting the laminate with the permanganic acid strong alkaline aqueous solution. For example, in the case of the dip method, the laminate is immersed in a permanganic acid strong alkaline aqueous solution at 60 to 90 ° C. for 4 to 30 minutes.

その後、マンガンを中和するために、例えば、硫酸ヒドロキシルアミン水溶液、硫酸/過酸化水素水水溶液を用いて、40〜45℃で3〜10分間処理する。このような中和剤は、市販品としても入手可能であり、リダクションソリューションセキュリガントP−500(アトテックジャパン株式会社製、商品名)、MLBニュートライザー216(ローム&ハースジャパン株式会社製、商品名)等が挙げられる。   Thereafter, in order to neutralize manganese, for example, a hydroxylamine sulfate aqueous solution or a sulfuric acid / hydrogen peroxide aqueous solution is used for 3 to 10 minutes at 40 to 45 ° C. Such a neutralizing agent is also available as a commercial product. Reduction Solution Securigant P-500 (Atotech Japan Co., Ltd., trade name), MLB New Trizer 216 (Rohm & Haas Japan Co., Ltd., trade name) ) And the like.

次いで、無電解めっきの前処理工程へ移行するが、これらの工程は公知の手法を取り入れることが可能である。例えば、積層板を、日立化成工業(株)から販売されているコンディショナー液(商品名CLC−501)100ml/lの水溶液中60℃で5分間処理し、水洗し、プリディップ液(商品名PD−201)水溶液中室温(25℃)で3分間処理し、金属パラジウム液(商品名HS−202B)を含んだ水溶液中室温(25℃)で10分間処理し、水洗し、活性化処理液(商品名ADP−501)水溶液中室温(25℃)で5分間処理する。   Next, the process proceeds to a pretreatment process of electroless plating, and these processes can adopt known methods. For example, the laminate is treated for 5 minutes at 60 ° C. in a 100 ml / l aqueous solution of a conditioner solution (trade name CLC-501) sold by Hitachi Chemical Co., Ltd., washed with water, and pre-dip solution (trade name PD -201) Treated in an aqueous solution at room temperature (25 ° C.) for 3 minutes, treated in an aqueous solution containing a metal palladium solution (trade name HS-202B) at room temperature (25 ° C.) for 10 minutes, washed with water, Trade name ADP-501) Treat in aqueous solution at room temperature (25 ° C.) for 5 minutes.

これらの前処理工程を経て、積層板上に無電解めっき層を形成する。この無電解めっき層は、無電解めっき液に前記無電解めっきの前処理した基板を接触させることで作製できる。この接触方式としては、水平搬送型、ディップ型等があるが、いずれを用いてもよい。   Through these pretreatment steps, an electroless plating layer is formed on the laminate. The electroless plating layer can be produced by bringing a substrate that has been pretreated with the electroless plating into contact with an electroless plating solution. As this contact method, there are a horizontal conveyance type, a dip type, and the like, and any of them may be used.

また、無電解めっきの厚みは、0.2〜2μmの範囲とすることが好ましい。無電解めっきの厚みが0.2μm未満では、はんだ耐熱性が低下し、他方、厚みが2μmを超えると、析出は無電解めっき銅と積層板との間でふくれが生じやすくなるため好ましくない。無電解めっき液の種類は、特に限定するものではなく、市販のロッシェル塩系、EDTA系の下地用無電解銅めっき液が使用可能である。下地用無電解銅めっき液として、例えば、Cust−201、Cust−1160、Cust−4600(日立化成工業株式会社製、商品名)、スルカップPEA(上村工業株式会社製、商品名)、OPCカッパーH(奥野製薬株式会社製、商品名)等が使用できる。   Moreover, it is preferable to make the thickness of electroless plating into the range of 0.2-2 micrometers. If the thickness of the electroless plating is less than 0.2 μm, the solder heat resistance is lowered. On the other hand, if the thickness exceeds 2 μm, the precipitation tends to occur between the electroless plated copper and the laminate, which is not preferable. The type of the electroless plating solution is not particularly limited, and a commercially available Rochelle salt-based or EDTA-based electroless copper plating solution can be used. As the electroless copper plating solution for the base, for example, Cust-201, Cust-1160, Cust-4600 (trade name, manufactured by Hitachi Chemical Co., Ltd.), Sulcup PEA (trade name, manufactured by Uemura Industrial Co., Ltd.), OPC Copper H (Trade name) manufactured by Okuno Pharmaceutical Co., Ltd. can be used.

そして、基板を、水洗し、乾燥し、電解めっき銅を用いて必要な厚みまでめっきアップし、セミアディティブ工法の場合なら、めっきレジストの剥離、テンティング法などのサブトラクティブ工法の場合なら、銅を過硫酸アンモニウムなどの液により溶解・除去(エッチング)して配線導体を作製して配線板を得る。
以下、本発明を実施例に従い、詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
Then, the substrate is washed with water, dried, and plated up to the required thickness using electrolytically plated copper. In the case of the semi-additive method, the plating resist is stripped, and in the case of the subtractive method such as the tenting method, the copper is used. Is dissolved and removed (etched) with a liquid such as ammonium persulfate to produce a wiring conductor to obtain a wiring board.
EXAMPLES Hereinafter, although this invention is demonstrated in detail according to an Example, this invention is not limited to these Examples.

実施例1
(1)ガラスクロス含浸用樹脂の作製
以下に示す組成のガラスクロス含浸用樹脂を作製した。
・ノボラックフェノール型エポキシ樹脂、N−770(大日本インキ株式会社製、商品名) 30g
・ノボラックフェノール樹脂、HP−850(商品名、日立化成工業株式会社製)
16g
・ジシアンジアミド(日本カーバイド株式会社製、商品名) 0.04g
・シリカ、SO−G1、平均粒径0.2〜0.4m(商品名、アドマテックス株式会社製) 48g
・酸化防止剤、ヨシノックスBB(商品名、株式会社エーピーアイコーポレーション製) 0.6g
・ポリフェニレンエーテル、PPO SA120(商品名、日本ジーイープラスチック株式会社製) 6g
・溶剤、メチルエチルケトン(試薬) 80g
Example 1
(1) Preparation of glass cloth impregnating resin A glass cloth impregnating resin having the following composition was prepared.
・ Novolac phenol type epoxy resin, N-770 (Dainippon Ink Co., Ltd., trade name) 30g
・ Novolac phenol resin, HP-850 (trade name, manufactured by Hitachi Chemical Co., Ltd.)
16g
・ Dicyandiamide (trade name, manufactured by Nippon Carbide Corporation) 0.04g
Silica, SO-G1, average particle size 0.2 to 0.4 m (trade name, manufactured by Admatechs Co., Ltd.) 48 g
・ Antioxidant, Yoshinox BB (trade name, manufactured by API Corporation) 0.6 g
・ Polyphenylene ether, PPO SA120 (trade name, manufactured by GE Plastics, Inc.) 6g
・ Solvent, methyl ethyl ketone (reagent) 80g

(2)銅張り積層板の作製
(1)で作製した樹脂を厚みが0.2mmのガラスクロス(坪量210g/m2)に含浸し、160℃で3分間加熱して半硬化(Bステージ状態)のプリプレグを得た。このプリプレグを4枚重ね、その両側に18μmの商品名F2−WS銅はく(Rz:2.0μm、Ra:0.3μm)を重ね、175℃、90分、2.5MPaのプレス条件で両面銅張積層板を作製した。
(2) Production of copper-clad laminate The resin produced in (1) was impregnated into a 0.2 mm thick glass cloth (basis weight 210 g / m 2) and heated at 160 ° C. for 3 minutes to be semi-cured (B stage state) ) Prepreg was obtained. Four prepregs are stacked, and 18 μm product name F2-WS copper foil (Rz: 2.0 μm, Ra: 0.3 μm) is stacked on both sides of the prepreg. Both surfaces are pressed at 175 ° C. for 90 minutes at 2.5 MPa. A copper clad laminate was prepared.

(3)めっき銅付き積層板の作製
(2)で作製した銅張り積層板を過硫酸アンモニウム150g/lの水溶液に40℃で20分間浸漬して銅はくをエッチング除去した。次いで、この銅はくを除去した積層板を一部抜き取り、この試料について(株)キーエンス社製超深度形状測定顕微鏡VK−8500型により、測定長さ149μm、倍率2000倍、分解能0.05μmの条件で測定長さ149μm中の算術平均粗さ(Ra)と十点平均粗さ(Rz)を求めた。
(3) Preparation of laminated board with plated copper The copper-clad laminate produced in (2) was immersed in an aqueous solution of ammonium persulfate 150 g / l at 40 ° C. for 20 minutes to remove the copper foil by etching. Next, a part of the laminated board from which the copper foil was removed was extracted, and this sample was measured with a measurement depth of 149 μm, a magnification of 2000 times, and a resolution of 0.05 μm using an ultra-deep shape measurement microscope VK-8500 manufactured by Keyence Corporation. Under the conditions, the arithmetic average roughness (Ra) and ten-point average roughness (Rz) in the measurement length of 149 μm were determined.

次いで、試料の抜き取りをしていない積層板を膨潤水溶液のサーキュポジットMLBコンディショナー211(ローム&ハースジャパン株式会社製、商品名)にディップ法で80℃で5分間浸漬処理した。さらに、流水洗の室温で3分間処理後、過マンガン酸強アルカリ水溶液としてサーキュポジットMLBプロモーター213(ローム&ハースジャパン株式会社製、商品名)を用いて、同じくディップ法にて80℃で10分間浸漬処理した。   Next, the laminate from which the sample was not removed was immersed in a circulated MLB conditioner 211 (trade name, manufactured by Rohm & Haas Japan Co., Ltd.) of a swelling aqueous solution at 80 ° C. for 5 minutes by the dipping method. Further, after 3 minutes of treatment at room temperature in running water, Circoposit MLB promoter 213 (trade name, manufactured by Rohm & Haas Japan Co., Ltd.) is used as a strongly alkaline aqueous solution of permanganate, and similarly at 80 ° C. for 10 minutes by the dip method. Immersion treatment.

次いで、中和液としてMLBニュートライザー216(ローム&ハースジャパン株式会社製、商品名)を用いて、ディップ法で40℃で5分間浸漬処理した。流水洗の室温−3分間処理後、コンディショナー液のCLC−501(商品名、日立化成工業株式会社製)を用いて60℃で5分間処理し、流水洗し、プリディップ液PD−201(商品名、日立化成工業株式会社製)水溶液中室温−3分間処理し、金属パラジウム液HS−202B(商品名、日立化成工業株式会社製)を含んだ水溶液中で室温で10分間処理し、水洗し、活性化処理液ADP−501(商品名、日立化成工業株式会社製)水溶液中で室温−5分間処理した。そして、無電解銅めっき液として、Cust−201を用いて、ディップ法にて室温―15分間浸漬処理により無電解銅厚0.5μmの下地銅を積層板の両面に形成し、さらに電解銅にて銅厚み20μmまでめっきアップした。   Subsequently, immersion treatment was performed at 40 ° C. for 5 minutes by a dip method using MLB Neutralizer 216 (Rohm & Haas Japan Co., Ltd., trade name) as a neutralizing solution. After treatment with running water at room temperature for 3 minutes, conditioner solution CLC-501 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used for 5 minutes at 60 ° C., washed with running water, and pre-dip solution PD-201 (product). Name, manufactured by Hitachi Chemical Co., Ltd.) in an aqueous solution at room temperature for 3 minutes, treated in an aqueous solution containing a metal palladium solution HS-202B (trade name, manufactured by Hitachi Chemical Co., Ltd.) for 10 minutes at room temperature, and washed with water. Then, it was treated at room temperature for 5 minutes in an aqueous solution of activation treatment liquid ADP-501 (trade name, manufactured by Hitachi Chemical Co., Ltd.). Then, by using Cust-201 as an electroless copper plating solution, a base copper having a thickness of 0.5 μm is formed on both sides of the laminate by dipping at room temperature for 15 minutes, and further on the electrolytic copper. Then, the copper was plated up to a thickness of 20 μm.

そして、感光性ドライフィルムH−9638(商品名、日立化成工業株式会社製)をラミネートして、ライン/スペース30/30μmが形成してあるフォトマスクを介して露光し(50mj/cm2)、1重量%の炭酸ナトリウムで現像し、過硫酸アンモニウムでレジストが付いてない部分を除去して配線パターン形成性を調べた。この配線パターン形成性は、配線幅とスペース幅が設計値(30/30μm)に対してプラスマイナス10%以内の変動であり、かつ形成した配線パターン内の絶縁抵抗が1010Ω以上を○とした。 Then, a photosensitive dry film H-9638 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is laminated and exposed through a photomask in which a line / space 30/30 μm is formed (50 mj / cm 2 ), Development with 1% by weight of sodium carbonate was carried out, and the portion where the resist was not attached was removed with ammonium persulfate, and the wiring pattern formability was examined. In this wiring pattern formability, the wiring width and the space width are within ± 10% of the design value (30/30 μm), and the insulation resistance in the formed wiring pattern is 10 10 Ω or more. did.

一方、配線幅とスペース幅が設計値(30/30μm)に対してプラスマイナス10%以上の変動であり、かつ形成した配線パターン内の絶縁抵抗が1010Ω以下を×とした。また、銅回路との接着強度、288℃のはんだ耐熱性試験を測定し、さらに銅をエッチング除去した部分の表面について、(株)キーエンス社製超深度形状測定顕微鏡VK−8500型により、測定長さ149μm、倍率2000倍、分解能0.05μmの条件で測定長さ149μm中の算術平均粗さ(Ra)と十点平均粗さ(Rz)を求めた。 On the other hand, the wiring width and the space width varied by plus or minus 10% or more with respect to the design value (30/30 μm), and the insulation resistance in the formed wiring pattern was 10 10 Ω or less. Moreover, the adhesive strength with a copper circuit was measured by a solder heat resistance test at 288 ° C., and the surface of the portion where the copper was removed by etching was measured with an ultra-deep shape measurement microscope VK-8500 manufactured by Keyence Corporation. The arithmetic average roughness (Ra) and ten-point average roughness (Rz) in the measurement length of 149 μm were determined under the conditions of a thickness of 149 μm, a magnification of 2000 times, and a resolution of 0.05 μm.

なお、接着強度と288℃はんだ耐熱性試験とは、下記の方法で測定した:
・銅回路と積層板の接着強度
前記(2)で作製した試料の銅を、銅幅10mm、長さ100mmのラインにエッチングで加工し、この一端を剥がしてつかみ具でつかみ、JIS−C−6421に準拠して垂直方向に約50mm室温中で引き剥がした時の荷重を測定した。
・288℃はんだ耐熱性
前記(2)で作製した試料を25mm角に切断し、288℃±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間を調べた。
The adhesive strength and the 288 ° C. solder heat resistance test were measured by the following methods:
-Adhesive strength between the copper circuit and the laminated board The sample copper prepared in (2) above is processed into a copper width 10 mm, length 100 mm line by etching, this one end is peeled off and grasped with a grasping tool, and JIS-C- In accordance with 6421, the load when peeled off in the vertical direction at about 50 mm at room temperature was measured.
-288 degreeC solder heat resistance The sample produced by said (2) was cut | disconnected to 25 square mm, it floated in the solder bath adjusted to 288 degreeC +/- 2 degreeC, and the time until blistering was investigated.

実施例2
実施例1(1)の樹脂組成において、ポリフェニレンエーテルをビスマレイミド、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンBMI−5100(商品名、大和化成工業株式会社製)に配合量は変えずに置き換えた。その他は、実施例1と同様にして行った。
Example 2
In the resin composition of Example 1 (1), polyphenylene ether is bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane BMI-5100 (trade name, manufactured by Daiwa Kasei Kogyo Co., Ltd.) ) Without changing the blending amount. Others were performed in the same manner as in Example 1.

実施例3
実施例1(1)の樹脂組成において、第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂として、ナフタレン型エポキシ樹脂HP−4032(大日本インキ株式会社製、商品名)に配合量は変えずに置き換えた。その他は、実施例1と同様にして行った。
Example 3
In the resin composition of Example 1 (1), naphthalene type epoxy resin HP-4032 (trade name, manufactured by Dainippon Ink Co., Ltd.) is used as an epoxy resin that does not contain at least one of the second and third carbon atoms in the main skeleton. It was replaced without changing the blending amount. Others were performed in the same manner as in Example 1.

実施例4
実施例1において、銅はくをF2−WSからJTC12μm(Rz:4μm、Ra:0.7μm、商品名、株式会社日鉱マテリアルズ製)に変更した。その他は、実施例1と同様にして行った。
Example 4
In Example 1, the copper foil was changed from F2-WS to JTC 12 μm (Rz: 4 μm, Ra: 0.7 μm, trade name, manufactured by Nikko Materials Co., Ltd.). Others were performed in the same manner as in Example 1.

実施例5
実施例1において、無電解めっきをCust−201からCust−1160に置き換え、無電解めっきを35℃で15分間行い、無電解めっき銅厚み0.8μmを得た。その他は、実施例1と同様にして行った。
Example 5
In Example 1, electroless plating was replaced from Cust-201 to Cust-1160, and electroless plating was performed at 35 ° C. for 15 minutes to obtain an electroless plated copper thickness of 0.8 μm. Others were performed in the same manner as in Example 1.

実施例6
実施例1(1)で作製した樹脂をガラスクロスに含浸せずに、銅はくの粗化面側にロールコータを用いて、ロール間ギャップ180μmで塗布した。そして、110℃で10分間乾燥して、乾燥後の樹脂膜厚が50μmとなるようにした。この樹脂付き銅はくを、LX−67プリプレグ(商品名、日立化成工業株式会社製)と4枚重ねで一緒に加圧加熱した。プレスを、210℃、90分、2.5MPaの条件で行った。その他は、実施例1と同様にして行った。
Example 6
Without impregnating the glass cloth with the resin prepared in Example 1 (1), the surface of the copper foil was coated with a roll coater at a gap between rolls of 180 μm using a roll coater. And it dried at 110 degreeC for 10 minute (s) so that the resin film thickness after drying might be set to 50 micrometers. This resin-coated copper foil was pressure-heated together with LX-67 prepreg (trade name, manufactured by Hitachi Chemical Co., Ltd.) in four layers. The pressing was performed under the conditions of 210 ° C., 90 minutes, and 2.5 MPa. Others were performed in the same manner as in Example 1.

実施例7
実施例1(1)の樹脂組成において、シリカ、SO−G1の配合量を24gとし、新たに水酸化アルミニウムH−42M(商品名、昭和電工株式会社製)を30g配合した。その他は、実施例1と同様にして行った。
Example 7
In the resin composition of Example 1 (1), the amount of silica and SO-G1 was 24 g, and 30 g of aluminum hydroxide H-42M (trade name, manufactured by Showa Denko KK) was newly added. Others were performed in the same manner as in Example 1.

実施例8
実施例1(1)の樹脂組成において、ビスマレイミド、3,3’−ジメチル−5,5’−ジエチル−4,4’− ジフェニルメタンBMI−5100(商品名、大和化成工業株式会社製)を3g追加した。その他は、実施例1と同様にして行った。
Example 8
In the resin composition of Example 1 (1), 3 g of bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane BMI-5100 (trade name, manufactured by Daiwa Kasei Kogyo Co., Ltd.) Added. Others were performed in the same manner as in Example 1.

比較例1
実施例1(1)の樹脂組成において、ポリフェニレンエーテルだけを除去した。その他は、実施例1と同様にして行った。
Comparative Example 1
In the resin composition of Example 1 (1), only polyphenylene ether was removed. Others were performed in the same manner as in Example 1.

比較例2
実施例1において、銅はくをF2−WSからYGP−18μm(Rz:7.5μm、Ra:1.33μm、商品名、日本電解株式会社製)に変更した。その他は、実施例1と同様にして行った。
Comparative Example 2
In Example 1, the copper foil was changed from F2-WS to YGP-18 [mu] m (Rz: 7.5 [mu] m, Ra: 1.33 [mu] m, trade name, manufactured by Nihon Electrolytic Co., Ltd.). Others were performed in the same manner as in Example 1.

比較例3
実施例1(1)の樹脂組成において、熱硬化剤の使用量をエポキシ基に対して0.39当量とした以下に示す組成を用いた。その他は、実施例1と同様にして行った。
・ノボラックフェノール型エポキシ樹脂、N−770(大日本インキ株式会社製、エポキシ当量189):46g
・ノボラックフェノール樹脂、HP−850(商品名、日立化成工業株式会社製、水酸基当量102):9.6g
・ジシアンジアミド(日本カーバイド株式会社製、アミン当量:21):0.02g
・シリカ、SO−G1、平均粒径0.2〜0.4m(商品名、アドマテックス株式会社製):48g
・酸化防止剤、ヨシノックスBB(商品名、株式会社エーピーアイコーポレーション製):1.6g
・ポリフェニレンエーテル、PPO SA120(商品名、日本ジーイープラスチック株式会社製):6g
・溶剤、メチルエチルケトン(試薬):80g
Comparative Example 3
In the resin composition of Example 1 (1), the following composition was used in which the amount of the thermosetting agent used was 0.39 equivalent to the epoxy group. Others were performed in the same manner as in Example 1.
-Novolac phenol type epoxy resin, N-770 (Dainippon Ink Co., Ltd., epoxy equivalent 189): 46 g
-Novolac phenol resin, HP-850 (trade name, manufactured by Hitachi Chemical Co., Ltd., hydroxyl equivalent 102): 9.6 g
Dicyandiamide (Nippon Carbide Corporation, amine equivalent: 21): 0.02 g
Silica, SO-G1, average particle size 0.2 to 0.4 m (trade name, manufactured by Admatex Co., Ltd.): 48 g
・ Antioxidant, Yoshinox BB (trade name, manufactured by API Corporation): 1.6 g
・ Polyphenylene ether, PPO SA120 (trade name, manufactured by GE Plastics, Inc.): 6g
・ Solvent, methyl ethyl ketone (reagent): 80 g

これらの実施例と比較例とにおいて、デスミア処理後の算術平均粗さ(Ra)及び十点平均粗さ(Rz)を測定した。また、銅回路との接着強度、288℃はんだ耐熱性試験、ライン/スペース30/30μmの配線形成性を評価した。   In these Examples and Comparative Examples, arithmetic average roughness (Ra) and ten-point average roughness (Rz) after desmear treatment were measured. Moreover, the adhesive strength with a copper circuit, a 288 degreeC solder heat resistance test, and the wiring formation property of a line / space 30/30 micrometer were evaluated.

その結果を表1、表2に示す。表1、2中の算術平均粗さ(Ra)、十点平均粗さ(Rz)の単位は「μm」である。   The results are shown in Tables 1 and 2. The units of arithmetic average roughness (Ra) and ten-point average roughness (Rz) in Tables 1 and 2 are “μm”.

Figure 0005023732
Figure 0005023732

Figure 0005023732
Figure 0005023732

表1、2中、くし形パターについては、図1に示す。   In Tables 1 and 2, the comb pattern is shown in FIG.

表1、2から明らかなように、比較例1では、デスミア処理後の十点平均粗さRzが本発明の範囲外であり、この場合、接着強度値が小さかった。
比較例2では、デスミア処理後の積層板についての算術平均粗さRaおよび十点平均粗さRzが本発明の範囲外であり、この場合、ライン/スペースがショートした。
比較例3では、デスミア処理後の算術平均粗さおよび十点平均粗さRzが本発明の範囲外であり、この場合、接着強度値が小さかった。
As is clear from Tables 1 and 2, in Comparative Example 1, the 10-point average roughness Rz after the desmear treatment was outside the range of the present invention, and in this case, the adhesive strength value was small.
In Comparative Example 2, the arithmetic average roughness Ra and the ten-point average roughness Rz for the laminate after desmear treatment were outside the scope of the present invention, and in this case, the line / space was short-circuited.
In Comparative Example 3, the arithmetic average roughness and the ten-point average roughness Rz after desmear treatment were outside the scope of the present invention, and in this case, the adhesive strength value was small.

これに対し、実施例1〜8では、接着強度、288℃はんだ耐熱性及びライン/スペースのすべてが良好であった。   On the other hand, in Examples 1-8, all of adhesive strength, 288 degreeC solder heat resistance, and the line / space were favorable.

本発明は、電子部品を搭載するプリント配線板を製造するのに用いられる積層板として好適に使用することができる。   The present invention can be suitably used as a laminate used for manufacturing a printed wiring board on which electronic components are mounted.

くし形パターンについて示す。The comb pattern is shown.

Claims (7)

ガラスクロスに樹脂組成物を含浸し、前記樹脂組成物を含浸したガラスクロスを必要な厚み分だけ重ねて積層体を成形し、前記積層体の一方又は両方の表面上に、回路となる表面粗さを有する銅はくを、表面粗さを有する面を前記積層体の表面に向けて重ねて一緒に加圧、加熱して積層板を成形し、前記積層板について、前記銅はくを化学的に除去した後、デスミア処理、無電解銅めっきを施して配線板を製造するのに用いられる積層板であって、
前記樹脂組成物が、第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂、ポリフェニレンエーテル及びビスマレイミドの少なくもといずれかの樹脂と、エポキシ樹脂(但し、前記第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂を除く)と、エポキシ樹脂用硬化剤と、無機フィラーと、を含み、
前記第2及び第3炭素原子の少なくともいずれかを主骨格に含まないエポキシ樹脂、ポリフェニレンエーテル及びビスマレイミドの少なくともいずれかの樹脂の含有量が、前記樹脂組成物の固形成分中、0.3〜(6×100/100.64)重量%であり、
前記デスミア処理後の積層板表面粗さが算術平均粗さ(Ra)で0.1〜1.5μm、十点平均粗さ(Rz)が1〜6μmである積層板。
The resin composition was impregnated into glass cloth, the resin composition overlaid by the thickness of the necessary impregnated glass cloth molding the laminate on one or both surfaces of the laminate, the surface roughness of the circuit the copper foil with is, pressing a surface having a surface roughness with overlaid toward the surface of the laminate, heating and molding the laminate, for the laminate, chemical the copper foil after removal, de smear process, a laminate used to manufacture the wiring board is subjected to electroless copper plating,
The resin composition comprises an epoxy resin not containing at least one of the second and third carbon atoms in the main skeleton, at least one of polyphenylene ether and bismaleimide, and an epoxy resin (provided that the second and third carbon atoms are not included). Including an epoxy resin that does not contain at least one of the third carbon atoms in the main skeleton), a curing agent for epoxy resin, and an inorganic filler,
The content of at least one of epoxy resin, polyphenylene ether and bismaleimide not containing at least one of the second and third carbon atoms in the main skeleton is 0.3 to 0.3 in the solid component of the resin composition. (6 × 100 / 100.64)% by weight,
The laminated board surface roughness of the laminated board after the said desmear process is 0.1-1.5 micrometers in arithmetic mean roughness (Ra), and 10-point average roughness (Rz) is 1-6 micrometers.
前記銅はくが、算術平均粗さ(Ra)表示の場合0.2〜1.5μm、十点平均粗さ(Rz)表示の場合1.5〜6μmのいずれかの表面粗さを有する、請求項1記載の積層板。   The copper foil has a surface roughness of 0.2 to 1.5 μm for arithmetic average roughness (Ra) display and 1.5 to 6 μm for ten-point average roughness (Rz) display. The laminate according to claim 1. 前記デスミア処理が、膨潤水溶液の接触工程と過マンガン酸系強アルカリ水溶液の接触工程とを含む、請求項1または2記載の積層板。   The laminated board of Claim 1 or 2 in which the said desmear process includes the contact process of swelling aqueous solution, and the contact process of permanganic-acid type strong alkali aqueous solution. 前記無電解めっきが、無電解めっきの厚みとして0.2〜2μmの範囲であり、その後電解めっきにより所定の配線導体の厚みまで厚付けするものである、請求項1〜3のいずれか一に記載の積層板。   The electroless plating is in a range of 0.2 to 2 μm as a thickness of the electroless plating, and is then thickened to a predetermined wiring conductor thickness by electrolytic plating. The laminated board of description. 前記エポキシ樹脂用硬化剤が、エポキシ基1.0当量に対して0.5〜1.5当量配合される、請求項1〜4のいずれか一に記載の積層板。   The laminated board as described in any one of Claims 1-4 with which the said hardening | curing agent for epoxy resins is mix | blended 0.5-1.5 equivalent with respect to 1.0 equivalent of epoxy groups. 前記無機フィラーが全固形文中で20〜80質量%の範囲で配合される、請求項1〜5のいずれか一に記載の積層板。   The laminated board as described in any one of Claims 1-5 with which the said inorganic filler is mix | blended in the range of 20-80 mass% in a total solid sentence. 前記無機フィラーが平均1次粒子径0.05〜5μmを有する、請求項1記載の積層板。   The laminate according to claim 1, wherein the inorganic filler has an average primary particle diameter of 0.05 to 5 μm.
JP2007039719A 2006-03-23 2007-02-20 Laminated board Expired - Fee Related JP5023732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039719A JP5023732B2 (en) 2006-03-23 2007-02-20 Laminated board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006080547 2006-03-23
JP2006080547 2006-03-23
JP2007039719A JP5023732B2 (en) 2006-03-23 2007-02-20 Laminated board

Publications (2)

Publication Number Publication Date
JP2007288152A JP2007288152A (en) 2007-11-01
JP5023732B2 true JP5023732B2 (en) 2012-09-12

Family

ID=38759582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039719A Expired - Fee Related JP5023732B2 (en) 2006-03-23 2007-02-20 Laminated board

Country Status (1)

Country Link
JP (1) JP5023732B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499690B (en) * 2009-03-13 2015-09-11 Ajinomoto Kk Paste metal laminates
TWI498408B (en) * 2009-07-14 2015-09-01 Ajinomoto Kk Attached film with copper foil
TWI511876B (en) * 2009-07-14 2015-12-11 Ajinomoto Kk Production method of copper laminated board and copper clad laminate
JP5482083B2 (en) * 2009-10-14 2014-04-23 日立化成株式会社 LAMINATED BOARD FOR WIRING BOARD AND ITS MANUFACTURING METHOD, PRIMER LAYER RESIN FILM, MULTILAYER WIRING BOARD AND ITS MANUFACTURING METHOD
JP5511597B2 (en) 2010-09-06 2014-06-04 日東電工株式会社 Method for manufacturing printed circuit board
CN103125149B (en) * 2010-09-27 2016-09-14 吉坤日矿日石金属株式会社 Copper foil for printed circuit board, its manufacture method, resin substrate for printed circuit board and printed circuit board (PCB)
TWI609779B (en) * 2012-01-11 2018-01-01 三井金屬鑛業股份有限公司 Copper foil containing adhesive layer,copper clad laminate and printed wiring board
JP6575151B2 (en) * 2015-06-05 2019-09-18 日立化成株式会社 Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189548A (en) * 1999-12-28 2001-07-10 Tdk Corp Method of manufacturing substrate for electronic part
JP5105657B2 (en) * 2000-04-14 2012-12-26 三菱瓦斯化学株式会社 Prepreg and laminate
JP4479079B2 (en) * 2000-09-14 2010-06-09 パナソニック電工株式会社 Prepreg and laminate
JP4770019B2 (en) * 2000-12-22 2011-09-07 三菱瓦斯化学株式会社 Prepreg and metal foil-clad laminate
JP2004149577A (en) * 2002-10-28 2004-05-27 Matsushita Electric Works Ltd Prepreg and laminated sheet
JP2005028825A (en) * 2003-07-10 2005-02-03 Mitsubishi Gas Chem Co Inc B-stage resin composition sheet with film base therein
JP2006019451A (en) * 2004-06-30 2006-01-19 Ibiden Co Ltd Printed-circuit board and interlayer insulating layer therefor
JP2005175265A (en) * 2003-12-12 2005-06-30 Hitachi Chem Co Ltd Adhesive sheet for multilayer wiring boards and method for manufacturing multilayer wiring board

Also Published As

Publication number Publication date
JP2007288152A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP5023732B2 (en) Laminated board
JP4576794B2 (en) Insulating resin composition and use thereof
JP2020023714A (en) Resin material and multilayer printed board
JP5434240B2 (en) Interlayer insulating layer adhesive film and multilayer printed wiring board
JP7385344B2 (en) Thermosetting resin composition and multilayer substrate
JP6408847B2 (en) Resin composition
JP2014148562A (en) Curable resin composition, film, prepreg, and cured product
TWI624368B (en) Insulating resin sheet
JP2013021025A (en) Adhesive film for multilayer printed wiring board
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
JP4760932B2 (en) Insulating resin film for multilayer wiring board, insulating resin film with copper foil for multilayer wiring board, and multilayer wiring board using these
JP2009188163A (en) Insulating film with multilayer printed wiring board supporter, multilayer printed wiring board, and method of manufacturing same
JP2004014611A (en) Insulation film with supports, multilayer printed circuit board, and its manufacturing method
JP4300890B2 (en) Manufacturing method of multilayer wiring board
JP4400060B2 (en) Insulating resin composition and use thereof
JP3620453B2 (en) Adhesive composition
JP2008120989A (en) Prepreg and laminate
JP4019800B2 (en) Insulating resin composition manufacturing method, insulating resin composition, multilayer wiring board and manufacturing method thereof
JP7332539B2 (en) Laminate film and combination member for printed wiring board
JP2005175265A (en) Adhesive sheet for multilayer wiring boards and method for manufacturing multilayer wiring board
JP6302164B2 (en) Manufacturing method of laminated structure
JP2009272533A (en) Insulating film with support for multilayer printed wiring board, multilayer printed wiring board, and method of manufacturing the same
JP2005082742A (en) Thermosetting resin composition, multilayer printed wiring board, and thermosensitive dry film
JP6303257B2 (en) Pre-preg compatible with semi-additive process and metal-clad laminate using the same
JP7305326B2 (en) Resin materials and multilayer printed wiring boards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees