JP4964691B2 - Measuring method of measured surface - Google Patents

Measuring method of measured surface Download PDF

Info

Publication number
JP4964691B2
JP4964691B2 JP2007168986A JP2007168986A JP4964691B2 JP 4964691 B2 JP4964691 B2 JP 4964691B2 JP 2007168986 A JP2007168986 A JP 2007168986A JP 2007168986 A JP2007168986 A JP 2007168986A JP 4964691 B2 JP4964691 B2 JP 4964691B2
Authority
JP
Japan
Prior art keywords
measured
angle sensor
dimensional
dimensional angle
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007168986A
Other languages
Japanese (ja)
Other versions
JP2009008483A (en
Inventor
慧 清野
Original Assignee
慧 清野
株式会社小坂研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慧 清野, 株式会社小坂研究所 filed Critical 慧 清野
Priority to JP2007168986A priority Critical patent/JP4964691B2/en
Publication of JP2009008483A publication Critical patent/JP2009008483A/en
Application granted granted Critical
Publication of JP4964691B2 publication Critical patent/JP4964691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、被測定面の測定方法に関するものである。   The present invention relates to a method for measuring a surface to be measured.

精密な塗布工具の長尺化,ウエハの大型化,液晶画面の大面積化等により,長尺の真直形状,大面積の平面形状を高精度に測定する必要が高まっているが,物理的に与えられる測定基準の確からしさはもはや限界が来ている。特に象徴的なことは、平面の測定基準として使われてきた干渉形状測定機もその測定基準となる参照面の大きさと精度が、現在の要求を十分満たせなくなっているということである。そこで,平面や直線の正しさについて物理的基準に頼らない,数学的に与えられる基準での測定法が求められている。また、測定対象が、2次元、3次元物体となると、構造上アッベの原理が満たせなくなり、その高精度化には大きな壁となっている。そのため、ステージの運動誤差についても,高精度な測定においては、前記ピッチング誤差や前記ローリング誤差の測定と補正の必要性が顕著になっている。この必要性を満たすためにも、信頼できる基準平面等の測定法が不可欠である。これらの直線運動に関連した必要は、回転テーブルについても同様に生じている.なお,回転運動では,回転軸の傾斜運動誤差を円の母線に沿って観察すると,直線運動における前記ピッチング誤差とローリング誤差に相当している。   The need to measure long straight shapes and large area planar shapes with high precision is increasing due to the increase in the length of precision coating tools, the enlargement of wafers, and the increase in the area of LCD screens. The certainty of the metrics given is no longer limited. What is particularly symbolic is that the interference shape measuring machine that has been used as a plane measurement standard cannot sufficiently meet the current requirements for the size and accuracy of the reference plane as the measurement standard. Therefore, there is a need for a measurement method based on mathematically given standards that does not rely on physical standards for the correctness of planes and straight lines. In addition, if the measurement object is a two-dimensional or three-dimensional object, the Abbe's principle cannot be satisfied structurally, which is a big barrier to improving the accuracy. For this reason, the necessity of measuring and correcting the pitching error and the rolling error is remarkable in the high-precision measurement of the stage motion error. In order to satisfy this need, a reliable measurement method such as a reference plane is indispensable. Needs related to these linear motions have arisen for rotary tables as well. In the rotational motion, when the tilting motion error of the rotating shaft is observed along the circle generatrix, it corresponds to the pitching error and rolling error in the linear motion.

従来,真直運動誤差の測定では、断面直線の真直度が保証された直定規を基準として用い、直定規の長手方向と変位計の相対的な運動における変位計の出力から、真直運動の誤差を検出することが行われていた。ピッチングは理論上,長手方向の局所的な傾斜角を基準にすれば測定できることは知られているが,直定規を基準にするときは一定間隔で長手方向に配置した2点の変位の差から得る方法が用いられる。移動体上に二つのコーナキューブを置きその相対変位をレーザ干渉測長器でよみとりピッチングかヨーイングを計る方法も知られているが,空気の揺らぎの影響などで,あまり長い距離の移動真直度の安定した測定は難しい。そのため,工作機械の移動ステージ,回転ステージ,3次元測定機のx,y,z軸移動機構,r,z,θ軸移動機構にはそれぞれ移動方向に沿う位置決めのエンコーダが取り付けられるのみで,それぞれの軸における直線運動誤差(直線からの並進誤差,ピッチング誤差,ヨーイング誤差,ローリング誤差を含む)や回転運動誤差(ピッチング誤差,ローリング誤差に相当する回転軸の2方向の傾斜運動誤差と回転軸の軸方向の出入りの誤差,2方向の半径方向並進誤差を含む)は検出され制御されることはなかった。しかし,機械に要求される精度の向上に伴い,直線運動の高精度で簡便な計測法の確立が課題となっている。特許文献1には、逐次2点法における変位センサの姿勢変化によるピッチング誤差を除去し、センサのデータに取り込んで表面形状計測の精度を向上させる技術が開示されている。回転運動誤差についても、リング状の定規の端面や側面の真円度が校正された円定規が基準として用いられているが、傾斜運動については良い基準定規は知られていない。
特開2005−114549号公報
Conventionally, in the measurement of straight motion error, a straight ruler that guarantees straightness of the cross-section straight line is used as a reference, and the error of straight motion is calculated from the displacement meter output in the longitudinal direction of the straight ruler and the relative movement of the displacement meter. It was going to be detected. It is known that pitching can be measured theoretically based on the local inclination angle in the longitudinal direction. However, when a straight ruler is used as a reference, the difference between the displacements of two points arranged in the longitudinal direction at regular intervals is used. The method to obtain is used. It is also known to place two corner cubes on a moving object and read the relative displacement with a laser interferometer to measure pitching or yawing. However, due to the effects of air fluctuations, the movement straightness of a very long distance Stable measurement is difficult. Therefore, each of the moving stage, the rotating stage of the machine tool, the x-, y-, and z-axis moving mechanism, and the r, z, and θ-axis moving mechanism of the three-dimensional measuring machine are each equipped with a positioning encoder along the moving direction. Linear motion error (including translation error from a straight line, pitching error, yawing error, rolling error) and rotational motion error (inclination motion error in two directions of the rotational axis corresponding to pitching error, rolling error) (Including axial entry / exit errors and two radial translation errors) were detected and not controlled. However, with the improvement in accuracy required for machines, the establishment of a highly accurate and simple measurement method for linear motion has become an issue. Japanese Patent Application Laid-Open No. 2004-228688 discloses a technique for removing the pitching error due to the change in posture of the displacement sensor in the sequential two-point method and taking it into sensor data to improve the accuracy of surface shape measurement. As for the rotational motion error, a circular ruler in which the roundness of the end surface and side surface of the ring-shaped ruler is calibrated is used as a reference, but a good reference ruler is not known for the tilting motion.
JP 2005-114549 A

しかるに、特許文献1の技術では、離れた場所からレーザをセンサユニットに照射して、ピッチング角度を読みとるものであるため、レーザ測長器を設けるスペースが必要となり、装置が大型化するという問題がある。また,ローリングについては直接測定する方法がなかった。また、測定環境の悪い工作機械の運動を計測する手法とはなりえない。   However, the technique of Patent Document 1 irradiates the sensor unit with a laser from a distant location and reads the pitching angle, so that a space for providing a laser length measuring device is required, and the apparatus becomes large. is there. There was no direct measurement method for rolling. Moreover, it cannot be a method for measuring the motion of a machine tool having a poor measurement environment.

また、従来運動誤差を測定するために供給されている基準は、真直度、真円度といった、基準の持つ誤差の最大値のみが保証されていて、現在求められている運動精度の精細な検査には十分の役割が果たせないでいる。もちろん、レーザの反射対象が方向を変えてしまう回転運動における運動誤差の測定には使えない。また、直定規などの基準を保証するために用いるもう一つの方法である干渉形状測定機もそのカバーできる面の大きさと精度が十分でなくなっている。   In addition, the standard that has been supplied to measure the motion error is guaranteed only the maximum value of the standard error, such as straightness and roundness, and a fine inspection of the currently required motion accuracy. Cannot play a sufficient role. Of course, it cannot be used to measure motion errors in a rotational motion in which the object of laser reflection changes direction. In addition, the interference shape measuring machine, which is another method used to guarantee a standard such as a straight ruler, is not sufficiently large in size and accuracy to be covered.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、凹凸形状や面法線角度形状を高精度に値付けして基準となる平面を提供し、ひいては、ピッチング誤差やローリング誤差を抽出でき高精度な測定を行える被測定面の測定方法を提供することを目的とする。また、3点法などで知られている各種多点法のゼロ点の校正基準の提供にもなる。   The present invention has been made in view of the problems of the prior art, and provides a reference plane by accurately pricing the uneven shape and the surface normal angle shape, and consequently, pitching error and rolling error. An object of the present invention is to provide a measuring method of a surface to be measured that can extract a signal and perform highly accurate measurement. It also provides zero-point calibration standards for various multipoint methods known as the three-point method.

請求項1に記載の被測定面の測定方法は、被測定面を備えた部材を、回転可能に支持するステップと、
前記被測定面の回転軸線上の第1の測定点を測定可能な位置に、第1の2次元角度センサを配置するステップと、
前記回転軸線から所定の半径Rをおいた前記被測定面上の第2の測定点を測定可能な位置に、前記第1の2次元角度センサに対して直線ピッチング角の検出に関するゼロ点が校正された第2の2次元角度センサとを配置するステップと、
前記被測定面を備えた部材を回転させながら、前記第1の2次元角度センサにより前記第1の測定点の面法線角度を2次元で測定し、前記第2の2次元角度センサにより前記第2の測定点の面法線角度を2次元で測定するステップと、
前記第1の2次元角度センサと前記第2の2次元角度センサとを同じ円周上に配置して直線ローリング角の検出に関するゼロ点を校正するステップと、
前記第1の2次元角度センサの測定値に基づいて、前記第2の2次元角度センサの測定値から、直線ピッチング誤差および直線ローリング誤差を排除するステップと、
前記第1の2次元角度センサと前記第2の2次元角度センサの間隔を変えて、前記回転軸線上の点と前記半径Rの円周上の点の間の面法線角度についてを内挿するステップを有することを特徴とする。
The method of measuring a surface to be measured according to claim 1, wherein a member having the surface to be measured is rotatably supported,
Disposing a first two-dimensional angle sensor at a position where the first measurement point on the rotation axis of the surface to be measured can be measured;
A zero point relating to the detection of the linear pitching angle is calibrated with respect to the first two-dimensional angle sensor at a position where the second measurement point on the measurement surface with a predetermined radius R from the rotation axis can be measured. Disposing a second two-dimensional angle sensor,
The surface normal angle of the first measurement point is measured two-dimensionally by the first two-dimensional angle sensor while rotating the member having the surface to be measured, and the second two-dimensional angle sensor is used to measure the surface normal angle. Measuring the surface normal angle of the second measurement point in two dimensions;
Arranging the first two-dimensional angle sensor and the second two-dimensional angle sensor on the same circumference to calibrate a zero point related to detection of a linear rolling angle;
Removing a linear pitching error and a linear rolling error from the measurement value of the second two-dimensional angle sensor based on the measurement value of the first two-dimensional angle sensor;
The surface normal angle between the point on the rotation axis and the point on the circumference of the radius R is interpolated by changing the interval between the first two-dimensional angle sensor and the second two-dimensional angle sensor. It has the step to perform.

本発明によれば、第2の2次元角度センサの測定値から直線ピッチング誤差と直線ローリング誤差を排除することができ、前記第1の測定点(被測定面の回転中心点)の面法線方向を基準にして、それと関連付けることができ、これにより高精度な面法線角度形状の測定を行うことができる。   According to the present invention, it is possible to eliminate the linear pitching error and the linear rolling error from the measurement value of the second two-dimensional angle sensor, and the surface normal of the first measurement point (the rotation center point of the surface to be measured). It can be related to the direction as a reference, whereby a highly accurate surface normal angle shape measurement can be performed.

更に本発明は、
前記第1の2次元角度センサと前記第2の2次元角度センサの間隔を初期のRよりも縮小してR/N(ただし、N>1)とし、前記2個の2次元角度センサを、前記被測定面の回転軸線上の第1の測定点を含む一つの半径上の任意の測定可能な位置に配置するステップと、
前記被測定面を備えた部材を回転させながら、前記2個の2次元角度センサにより測定される半径の異なる2つの円周上の面法線角度を2次元で測定し、前記半径の異なる2つの円周上の面法線角度の差を、前記被測定面の回転に伴う面の振れの影響を受けないで、2次元で測定するステップと、
前記2つの円周上の面法線角度の差を前記一つの半径上の複数の点で得てから、その半径方向の積分によって評価される、前期被測定面の回転軸線上の第1の測定点と前記半径Rの第2の測定点における面法線角度の差と、前期センサ間隔Rで最初に測定して既知となっている前期被測定面の回転軸線上の第1の測定点と前記半径Rの第2の測定点における面法線角度の差を比較して、前記2つの2次元角度センサの間隔を変える際に生じたゼロの狂いを校正して、前記2つのセンサの間隔R/Nで得た面法線角度の差のデータを補正することを特徴とする。
なお、前記2つの2次元角度センサの間隔R/Nを選ぶときに、N=10などの整数にして、前記第1の2次元角度センサの位置をR・K/N(ただし、K=0,1,2、N,N+1,..)するとゼロの狂いを校正するときの精度が高まることが多いので、前記センサの間隔には、Nを整数とする場合を含めることが好ましい。
Furthermore, the present invention provides
The interval between the first two-dimensional angle sensor and the second two-dimensional angle sensor is reduced from the initial R to R / N (where N> 1), and the two two-dimensional angle sensors are Disposing at any measurable position on one radius including the first measurement point on the rotation axis of the surface to be measured;
While rotating the member having the surface to be measured, surface normal angles on two circumferences having different radii measured by the two two-dimensional angle sensors are measured in two dimensions, and the two different radii are measured. Measuring in two dimensions the difference between surface normal angles on two circumferences without being affected by surface deflection associated with rotation of the surface to be measured;
A difference between surface normal angles on the two circumferences is obtained at a plurality of points on the one radius, and then evaluated by integration in the radial direction. The difference between the surface normal angle at the measurement point and the second measurement point of the radius R, and the first measurement point on the rotation axis of the previous measurement surface that is first known at the previous sensor interval R And the difference between the surface normal angles at the second measurement point of the radius R to calibrate the zero deviation caused when the interval between the two two-dimensional angle sensors is changed. It is characterized by correcting the data of the surface normal angle difference obtained at the interval R / N.
When the interval R / N between the two two-dimensional angle sensors is selected, an integer such as N = 10 is used, and the position of the first two-dimensional angle sensor is R · K / N (where K = 0 , 1, 2, N, N + 1,...) In many cases, the accuracy when calibrating the deviation of zero is increased. Therefore, it is preferable to include the case where N is an integer in the sensor interval.

更に本発明は、上述した被測定面の測定方法に用いる測定装置であって、被測定面を回転自在に支持する回転テーブルと、2つの2次元角度センサと、前記2次元角度センサを所定の間隔で保持する保持具とを有することを特徴とする。   Furthermore, the present invention is a measuring apparatus used in the above-described method for measuring a surface to be measured, which includes a rotary table that rotatably supports the surface to be measured, two two-dimensional angle sensors, and a predetermined two-dimensional angle sensor. It has a holding tool held at intervals.

更に本発明は、上述した被測定面の測定方法により測定された被測定面を有することを特徴とする平板である。   Furthermore, the present invention is a flat plate having a measured surface measured by the above-described measuring method of the measured surface.

以下、図面を参照して本発明の実施の形態について説明する。図1は、本明細書中で用いる座標軸を示す図である。被測定面CPの回転軸線の方向をZ軸、それに直交し被測定面CP上の原点Oを通る方向をX軸、Z軸とX軸とに直交する方向をY軸とする。又、被測定面CP上の任意の点は、回転軸線からの半径rと、原点Oからの角度θで表されるものとする。尚、被測定面CPの面法線の角度が求まれば、それを積分することで面形状を求めることができる。ここで、2次元角度センサとは、測定点の面法線の傾きを2次元で測定できるセンサをいう。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing coordinate axes used in the present specification. The direction of the rotation axis of the measurement surface CP is the Z axis, the direction orthogonal to the origin O on the measurement surface CP is the X axis, and the direction orthogonal to the Z axis and the X axis is the Y axis. An arbitrary point on the measurement surface CP is represented by a radius r from the rotation axis and an angle θ from the origin O. If the angle of the surface normal of the surface CP to be measured is obtained, the surface shape can be obtained by integrating the angle. Here, the two-dimensional angle sensor refers to a sensor that can measure the inclination of the surface normal of the measurement point in two dimensions.

図2は、第1の2次元角度センサと第2の2次元角度センサの間における直線ピッチング角の検出に関するゼロ点の校正を説明するための図である。まず、図2(a)に示すように、長手方向をX方向としたときに、上面がf(x)の形状を有し、下面がg(x)の形状を有する試験片TPを用意する。次に、試験片TPの上面の形状を測定する第1の2次元角度センサSAと、試験片TPの下面の形状を測定する第2の2次元角度センサSBとを、アームAMにより支持しながら、試験片TPの長手方向(X方向)に移動させる。ここで、第1の2次元角度センサSAからの出力をμA(x)、第2の2次元角度センサSBからの出力をμB(x)とすると、以下の(1)、(2)式が成立する。 FIG. 2 is a diagram for explaining the calibration of the zero point related to the detection of the linear pitching angle between the first two-dimensional angle sensor and the second two-dimensional angle sensor. First, as shown in FIG. 2A, a test piece TP having an upper surface having a shape of f (x) and a lower surface having a shape of g (x) when the longitudinal direction is the X direction is prepared. . Next, the first two-dimensional angle sensor SA that measures the shape of the upper surface of the test piece TP and the second two-dimensional angle sensor SB that measures the shape of the lower surface of the test piece TP are supported by the arm AM. The specimen TP is moved in the longitudinal direction (X direction). Here, when the output from the first two-dimensional angle sensor SA is μ A (x) and the output from the second two-dimensional angle sensor SB is μ B (x), the following (1), (2) The formula holds.

次に、図2(b)に示すように、第1の2次元角度センサSAと第2の2次元角度センサSBとを下側のアームAMに固定して、試験片TPの下面の形状を測定することにより、(3)式を得る。更に、図2(c)に示すように、第1の2次元角度センサSAと第2の2次元角度センサSBの関係を維持しつつ(例えばアームAMを上下反転して)、各々で試験片TPの上面の形状を測定することにより、(4)式を得る。(1)〜(4)式から、第1の2次元角度センサSAと第2の2次元角度センサSBとの間における直線ピッチング角の検出に関するゼロ点α(ピッチング方向の誤差)が校正されることとなる。但し、かかる段階では、直線ローリング角の検出に関するゼロ点は校正されておらず、ローリング方向の誤差は残ったままである。   Next, as shown in FIG. 2B, the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB are fixed to the lower arm AM, and the shape of the lower surface of the test piece TP is changed. (3) Formula is obtained by measuring. Further, as shown in FIG. 2C, while maintaining the relationship between the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB (for example, the arm AM is turned upside down), each of the test pieces is tested. By measuring the shape of the upper surface of TP, equation (4) is obtained. From the expressions (1) to (4), the zero point α (error in the pitching direction) relating to the detection of the linear pitching angle between the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB is calibrated. It will be. However, at such a stage, the zero point relating to the detection of the linear rolling angle is not calibrated, and the error in the rolling direction remains.

次に、図3に示すように、2次元角度センサSA,SBを保持具HLに取り付けたまま(相互の間隔を変えることなく)、第1の2次元角度センサSAを回転軸線AX上の第1の測定点p1を測定可能な位置に配置し、第2の2次元角度センサを半径Rの円周上の第2の点p2を測定可能な位置に配置する。ここで、回転テーブルRTを回転させながら、第1の2次元角度センサSAにより第1の測定点p1を測定し、第2の2次元角度センサSBにより第2の測定点p2を測定する。測定毎の回転角度は任意であるが、細かい方が好ましい。   Next, as shown in FIG. 3, with the two-dimensional angle sensors SA and SB attached to the holder HL (without changing the mutual distance), the first two-dimensional angle sensor SA is moved to the first position on the rotation axis AX. One measurement point p1 is arranged at a measurable position, and the second two-dimensional angle sensor is arranged at a position where the second point p2 on the circumference of the radius R can be measured. Here, while rotating the rotary table RT, the first measurement point p1 is measured by the first two-dimensional angle sensor SA, and the second measurement point p2 is measured by the second two-dimensional angle sensor SB. The rotation angle for each measurement is arbitrary, but a finer one is preferable.

ここで、上述の工程で、第1の2次元角度センサSAと第2の2次元角度センサSBの間において、直線ピッチング角の検出に関するゼロ点の校正がなされており、後述の工程で直線ローリング角の検出に関するゼロ点の校正がなされるため、回転テーブルRTと共に被測定面CPを回転して、一個所以上の回転位置で同時に得た2次元角度センサSA、SBの出力から、回転軸線AXから所定の半径Rをおいた被測定面CPの円周上の面法線角度形状を精度良く求めることができる。   Here, in the above-described process, the zero point regarding the detection of the linear pitching angle is calibrated between the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB. Since the zero point relating to the detection of the angle is calibrated, the rotational axis AX is obtained from the outputs of the two-dimensional angle sensors SA and SB obtained simultaneously by rotating the measurement surface CP together with the rotary table RT and at one or more rotational positions. Therefore, the surface normal angle shape on the circumference of the surface CP to be measured with a predetermined radius R can be obtained with high accuracy.

図4は、第1の2次元角度センサと第2の2次元角度センサの間における直線ローリング角の検出に関するゼロ点の校正を説明するための図である。不図示の駆動装置により駆動される回転テーブルRT上に、上面が被測定面CPである部材(円形状の平板)Mを配置する。更に、図2のアームAMの一部を取り外してなる不図示の剛体に固定された直板状の保持具HLにより、第1の2次元角度センサSAと、第2の2次元角度センサSBとを保持する。2次元角度センサSA,SBの測定値は、不図示のメモリに記憶される。ここで、第1の2次元角度センサSAと第2の2次元角度センサSBは、半径R/2の円上の一つの直径上に配置される。又、第1の2次元角度センサSAと、第2の2次元角度センサSBは、図2(c)の測定時の関係を維持しており、従って直線ピッチング角の検出に関するゼロ点の校正がなされているものとする。尚、2次元角度センサについては、例えば光束を照射することにより、被測定面からのその反射光をCCD等で受光した位置に基づいて、被測定面における面法線のXZ平面に対する角度とYZ平面に対する角度とを2次元で求めるものが知られており、以下に詳細は記載しない。   FIG. 4 is a diagram for explaining the zero point calibration relating to the detection of the linear rolling angle between the first two-dimensional angle sensor and the second two-dimensional angle sensor. A member (circular flat plate) M whose upper surface is the surface CP to be measured is disposed on a rotary table RT driven by a driving device (not shown). Further, the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB are connected by a straight plate-shaped holder HL fixed to a rigid body (not shown) obtained by removing a part of the arm AM of FIG. Hold. The measured values of the two-dimensional angle sensors SA and SB are stored in a memory (not shown). Here, the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB are arranged on one diameter on a circle having a radius R / 2. Further, the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB maintain the relationship at the time of measurement shown in FIG. 2C, so that the zero point calibration relating to the detection of the linear pitching angle can be performed. Shall be made. For a two-dimensional angle sensor, for example, by irradiating a light beam, the angle of the surface normal on the measured surface with respect to the XZ plane and YZ based on the position where the reflected light from the measured surface is received by the CCD or the like. It is known to obtain an angle with respect to a plane in two dimensions, and details are not described below.

ここで、回転テーブルRTを回転させながら、第1の2次元角度センサSAにより第3の測定点p3を測定し、第2の2次元角度センサSBにより第4の測定点p4を測定する。測定毎の回転角度は任意であるが、細かい方が好ましい。   Here, while rotating the rotary table RT, the third measurement point p3 is measured by the first two-dimensional angle sensor SA, and the fourth measurement point p4 is measured by the second two-dimensional angle sensor SB. The rotation angle for each measurement is arbitrary, but a finer one is preferable.

このとき、前記測定点p3.p4を結ぶ直径回りのティルトモーションについては前記第1と第2の2次元角度センサSAとSBに同じ値が含まれる。また、円周に沿う直線ローリング角度形状も1回転の平均値は、理論的にゼロになる。したがって、2つのセンサSA,SBそれぞれの出力の1回転にわたる平均値の差は、両センサの直線ローリング角のゼロ点の違いを与えることになる。これにより第1の2次元角度センサSAと第2の2次元角度センサSBの間における直線ローリング角の検出に関するゼロ点の校正ができる。   At this time, the measurement points p3. For the tilt motion around the diameter connecting p4, the same values are included in the first and second two-dimensional angle sensors SA and SB. Further, the average value of one rotation of the linear rolling angle shape along the circumference is theoretically zero. Therefore, the difference in the average value over one rotation of the outputs of the two sensors SA and SB gives the difference in the zero point of the linear rolling angle of both sensors. As a result, the zero point relating to the detection of the linear rolling angle between the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB can be calibrated.

これを式で表すと、式(5)〜(6)のようになる。νA(θ)、νB(θ)は、それぞれ2次元角度センサSA、SBのX軸方向の傾斜角の出力(測定値)であり、φy(θ)は回転軸のティルトモーションのy軸方向の成分であり、f’θ(R/2、θ)は、半径R/2の円に沿う直線ローリング角度形状(円周ピッチング角度形状)を示す。また、βは、直線ローリング角度についての、2つのセンサのゼロの違いを表す。 This can be expressed by equations (5) to (6). ν A (θ) and ν B (θ) are outputs (measured values) of the tilt angles in the X-axis direction of the two-dimensional angle sensors SA and SB, respectively, and φ y (θ) is y of the tilt motion of the rotation axis. It is an axial component, and f ′ θ (R / 2, θ) indicates a linear rolling angle shape (circumferential pitching angle shape) along a circle having a radius R / 2. Also, β represents the zero difference between the two sensors for the linear rolling angle.

以上の測定によって、被測定面CP上における回転軸線AXから半径Rの円周上の面法線角度形状が、回転軸線AX上の点の値を基準として既知となり、その積分から回転軸線AXから半径Rの円周上の形状が既知となる。ここで初めて、2次元角度センサSA,SBの関係を崩し、互いの間隔を変えて保持具HL上に固定する。   As a result of the above measurement, the surface normal angle shape on the circumference of the radius R from the rotation axis AX on the measured surface CP becomes known with reference to the value of the point on the rotation axis AX, and from the integration, from the rotation axis AX The shape on the circumference of the radius R is known. Here, for the first time, the relationship between the two-dimensional angle sensors SA and SB is broken, and the distance between the two is changed and fixed on the holder HL.

センサ間隔をR/Nと決めたら、その間隔の同心円を順次逐次法で測定する。第1の2次元角度センサSAと第2の2次元角度センサSBの位置が、(r=0,r=R/N)、(r=R/N,r=2R/N)、(r=2R/N,r=3R/N)、、、(r=(N−1)R/N,r=NR/N)となるように配置して測定を行い、データとして記憶する。   When the sensor interval is determined as R / N, concentric circles of the interval are sequentially measured by the sequential method. The positions of the first two-dimensional angle sensor SA and the second two-dimensional angle sensor SB are (r = 0, r = R / N), (r = R / N, r = 2R / N), (r = (2R / N, r = 3R / N), (r = (N−1) R / N, r = NR / N). Measurement is performed and stored as data.

このように測定を行うと、最終的に2次元角度センサSA、SBが、回転軸線AXから半径Rをおいた被測定面CP上の測定点を測定することとなる。これは2次元角度センサSA、SBの関係を崩す前に測定した回転軸線AXから半径Rをおいた被測定面CP上の第2の測定点p2の測定に他ならない。従って、前記の方法で直接測定した、回転軸線AXから半径Rの円周上の2次元面法線角度形状データと、センサ間隔がR/Nで得た、同じ半径Rの円周上の2次元面法線角度形状データとを比較すれば、蓄積された偶然誤差がわかる。かかる誤差分を内挿などで補正することによって、回転軸線AXより半径R/N〜Rの範囲における全ての測定点の2次元面法線角度形状データを取得でき、被測定面CP上面全体の2次元面法線角度形状を求めることができる。もちろん、必要なら、この逐次法はr>Rとなる位置の測定にも拡張できる。また、rがR/Nの整数倍にならない位置となる一般2点法と呼ばれる方法を逐次法の代わりに採用してもよい。   When the measurement is performed in this way, finally, the two-dimensional angle sensors SA and SB measure the measurement points on the measurement surface CP with the radius R from the rotation axis AX. This is nothing but the measurement of the second measurement point p2 on the measured surface CP with the radius R from the rotation axis AX measured before breaking the relationship between the two-dimensional angle sensors SA and SB. Therefore, the two-dimensional surface normal angle shape data on the circumference of the radius R from the rotation axis AX and the 2 of the circumference of the circumference of the same radius R obtained by the sensor interval R / N, measured directly by the above method. Comparing with the dimensional surface normal angle shape data, the accumulated accidental error can be found. By correcting the error by interpolation or the like, two-dimensional surface normal angle shape data of all measurement points in the radius R / N to R range from the rotation axis AX can be acquired, and the entire upper surface of the measured surface CP can be obtained. A two-dimensional surface normal angle shape can be obtained. Of course, if necessary, this sequential method can be extended to the measurement of positions where r> R. Further, a method called a general two-point method in which r is a position that does not become an integral multiple of R / N may be employed instead of the sequential method.

このようにして2次元法線角度形状を精度良く測定された被測定面CPを有する平板部材Mは、測定装置の校正基準となる定規として用いることができる。   In this way, the flat plate member M having the measured surface CP whose two-dimensional normal angle shape is accurately measured can be used as a ruler serving as a calibration reference for the measuring apparatus.

以上述べた本発明によれば、いわゆる反転法などで必要であった被測定部材を反転させるなどの動作が不要となり、被測定面の円周ローリング角度形状や円周角度ピッチング形状、およびそれらを積分して得られる面の凹凸形状を高精度に測定することができる。又、被測定面に対して第1の2次元角度センサ及び第2の2次元角度センサにおける原点調整をいつでも行えるので、誤差が累積するなどの不具合を回避して、高精度な測定を行うことができる。又、一度測定を行った被測定面基準面や基準直定規として利用することにより、大面積の面の形状を高精度に測定できる。   According to the present invention described above, an operation such as reversing a member to be measured, which is necessary in a so-called reversal method, is unnecessary, and the circumferential rolling angle shape and the circumferential angle pitching shape of the surface to be measured, and those The uneven shape of the surface obtained by integration can be measured with high accuracy. In addition, since the origin adjustment in the first two-dimensional angle sensor and the second two-dimensional angle sensor can be performed at any time with respect to the surface to be measured, it is possible to perform high-precision measurement while avoiding problems such as accumulation of errors. Can do. In addition, the shape of a large-area surface can be measured with high accuracy by using it as a measured surface reference surface or a reference straight ruler once measured.

また、本発明によれば、任意のセンサ間隔の角度2点法のゼロ点調整が出来るだけでなく、真直形状を測定するために、変位センサを一直線上に3本並べた3点法、変位センサ2本と角度センサを一直線上に3本並べた混合法や、平面形状を測定するための角度センサを2次元的に3本配置した角度3点法、変位センサを2次元的の4本配置した変位4点法、角度センサと変位センサを2次元的に配置した2次元混合法など、形状測定のための全ての多点法のゼロ点校正に用いることが出来る。   In addition, according to the present invention, not only can the zero point adjustment of the angle two-point method with any sensor interval be performed, but also a three-point method in which three displacement sensors are arranged in a straight line in order to measure a straight shape, a displacement A mixing method in which two sensors and three angle sensors are arranged in a straight line, a three-angle method in which three angle sensors for measuring a planar shape are arranged two-dimensionally, and a four-dimensional displacement sensor It can be used for zero point calibration of all multipoint methods for shape measurement, such as a four-point displacement method and a two-dimensional mixed method in which an angle sensor and a displacement sensor are two-dimensionally arranged.

上述の混合法では、同一点の角度と変位を検出できる混合センサが有効であるが、図5は、これを実現するための変位センサと角度センサとを併せ持つ混合センサの一例を示す概略図である。図5において、半導体レーザである光源OSから出射された光束は、プリズムPS1で反射され、被測定面に向かい、点線で示すその反射光がプリズムPS1を通過してプリズムPS2に入射し、一部が透過して干渉計IM1に入射する。干渉計IM1は、干渉の原理により被測定面までの距離を測定できる。一方、光束の残りはプリズムPS2で反射され、レンズLで集光されて、光のスポット位置を検出する4分割フォトダイオードPSD(CCDでも良い)の受光面に入射する。受光されたスポットの位置により、被測定面の角度を測定することができる。尚、本例では、光源OSから出射された光束の一部をプリズムPS1を通過させ、これをプリズムPS3で反射させ、干渉計IM2で受光しており、これにより光源OSから出射される光束の波長をモニタできる。   In the above-described mixing method, a mixing sensor capable of detecting the angle and displacement of the same point is effective. FIG. 5 is a schematic diagram illustrating an example of a mixing sensor having both a displacement sensor and an angle sensor for realizing this. is there. In FIG. 5, the light beam emitted from the light source OS, which is a semiconductor laser, is reflected by the prism PS1, travels toward the surface to be measured, and the reflected light indicated by the dotted line passes through the prism PS1 and enters the prism PS2. Passes through and enters the interferometer IM1. The interferometer IM1 can measure the distance to the surface to be measured by the principle of interference. On the other hand, the remainder of the light beam is reflected by the prism PS2, collected by the lens L, and incident on the light receiving surface of a quadrant photodiode PSD (or CCD) that detects the spot position of the light. The angle of the surface to be measured can be measured based on the position of the received spot. In this example, a part of the light beam emitted from the light source OS passes through the prism PS1, is reflected by the prism PS3, and is received by the interferometer IM2, thereby the light beam emitted from the light source OS. Wavelength can be monitored.

本明細書中で用いる座標軸を示す図である。It is a figure which shows the coordinate axis used in this specification. 第1の2次元角度センサと第2の2次元角度センサの間における直線ピッチング角の検出に関するゼロ点の校正を説明するための図である。It is a figure for demonstrating the calibration of the zero point regarding the detection of the linear pitching angle between the 1st two-dimensional angle sensor and the 2nd two-dimensional angle sensor. 第1の2次元角度センサと第2の2次元角度センサを用いて被測定面CPの形状を測定する状態を示す図である。It is a figure which shows the state which measures the shape of to-be-measured surface CP using a 1st two-dimensional angle sensor and a 2nd two-dimensional angle sensor. 第1の2次元角度センサと第2の2次元角度センサの間における直線ローリング角の検出に関するゼロ点の校正を説明するための図である。It is a figure for demonstrating the calibration of the zero point regarding the detection of the linear rolling angle between the 1st two-dimensional angle sensor and the 2nd two-dimensional angle sensor. 変位センサと角度センサとを併せ持つ混合センサの一例を示す概略図である。It is the schematic which shows an example of the mixing sensor which has both a displacement sensor and an angle sensor.

符号の説明Explanation of symbols

AM アーム
AX 回転軸線
CP 被測定面
HL 保持具
IM1 干渉計
IM2 干渉計
L レンズ
OS 光源
PS1 プリズム
PS2 プリズム
PS3 プリズム
RT 回転テーブル
SA 第1の2次元角度センサ
SB 第2の2次元角度センサ
PSD4分割フォトダイオード
TP 試験片
AM arm AX rotation axis CP surface to be measured HL holder IM1 interferometer IM2 interferometer L lens OS light source PS1 prism PS2 prism PS3 prism RT rotation table SA first two-dimensional angle sensor SB second two-dimensional angle sensor PSD4 divided photo Diode TP test piece

Claims (1)

被測定面を備えた部材を、回転可能に支持するステップと、
前記被測定面の回転軸線上の第1の測定点を測定可能な位置に、第1の2次元角度センサを配置するステップと、
前記回転軸線から所定の半径Rをおいた前記被測定面上の第2の測定点を測定可能な位置に、前記第1の2次元角度センサに対して直線ピッチング角の検出に関するゼロ点が校正された第2の2次元角度センサとを配置するステップと、
前記被測定面を備えた部材を回転させながら、前記第1の2次元角度センサにより前記第1の測定点の面法線角度を2次元で測定し、前記第2の2次元角度センサにより前記第2の測定点の面法線角度を2次元で測定するステップと、
前記第1の2次元角度センサと前記第2の2次元角度センサとを同じ円周上に配置して直線ローリング角の検出に関するゼロ点を校正するステップと、
前記第1の2次元角度センサの測定値に基づいて、前記第2の2次元角度センサの測定値から、直線ピッチング誤差および直線ローリング誤差を排除するステップと、
前記第1の2次元角度センサと第2の2次元角度センサの間隔を変えて、前記第1の測定点と前記第2の測定点について測定された面法線角度の関係を基準にして、前記第1の測定点と前記第2の間にある点の面法線角度を内挿するステップとを有することを特徴とする被測定面の測定方法。
A step of rotatably supporting a member having a surface to be measured;
Disposing a first two-dimensional angle sensor at a position where the first measurement point on the rotation axis of the surface to be measured can be measured;
A zero point relating to the detection of the linear pitching angle is calibrated with respect to the first two-dimensional angle sensor at a position where the second measurement point on the measurement surface with a predetermined radius R from the rotation axis can be measured. Disposing a second two-dimensional angle sensor,
The surface normal angle of the first measurement point is measured two-dimensionally by the first two-dimensional angle sensor while rotating the member having the surface to be measured, and the second two-dimensional angle sensor is used to measure the surface normal angle. Measuring the surface normal angle of the second measurement point in two dimensions;
Arranging the first two-dimensional angle sensor and the second two-dimensional angle sensor on the same circumference to calibrate a zero point related to detection of a linear rolling angle;
Removing a linear pitching error and a linear rolling error from the measurement value of the second two-dimensional angle sensor based on the measurement value of the first two-dimensional angle sensor;
By changing the interval between the first two-dimensional angle sensor and the second two-dimensional angle sensor, the relationship between the surface normal angle measured for the first measurement point and the second measurement point is used as a reference. A method for measuring a surface to be measured, comprising the step of interpolating a surface normal angle of a point between the first measurement point and the second.
JP2007168986A 2007-06-27 2007-06-27 Measuring method of measured surface Active JP4964691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168986A JP4964691B2 (en) 2007-06-27 2007-06-27 Measuring method of measured surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168986A JP4964691B2 (en) 2007-06-27 2007-06-27 Measuring method of measured surface

Publications (2)

Publication Number Publication Date
JP2009008483A JP2009008483A (en) 2009-01-15
JP4964691B2 true JP4964691B2 (en) 2012-07-04

Family

ID=40323716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168986A Active JP4964691B2 (en) 2007-06-27 2007-06-27 Measuring method of measured surface

Country Status (1)

Country Link
JP (1) JP4964691B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980817B2 (en) * 2007-08-07 2012-07-18 株式会社ナガセインテグレックス Multipoint probe zero error related value recording device
JP5601699B2 (en) * 2010-02-19 2014-10-08 株式会社ナガセインテグレックス Calibration device
JP2012058228A (en) * 2010-08-09 2012-03-22 Mitsubishi Electric Corp Surface shape inspection device and surface shape inspection method
JP6181935B2 (en) * 2013-02-14 2017-08-16 清野 慧 Coordinate measuring machine
CN104316017B (en) * 2014-11-14 2017-05-31 苏州爱德蒙得测控系统有限公司 A kind of three section gauge methods of cylindricity
CN116255917B (en) * 2023-02-23 2023-08-29 泰微科技(珠海)有限公司 Wafer thickness measuring method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041733A (en) * 1999-07-30 2001-02-16 Univ Chuo Surface shape measuring device
JP3790961B2 (en) * 2001-11-26 2006-06-28 株式会社東北テクノアーチ Surface shape measuring device
JP2003227712A (en) * 2002-02-01 2003-08-15 Mitsutoyo Corp Autonomous calibration method of surface shape measuring system using area sensor

Also Published As

Publication number Publication date
JP2009008483A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
JP4964691B2 (en) Measuring method of measured surface
JP2007071852A (en) Apparatus and method for measuring deep hole
JP3678915B2 (en) Non-contact 3D measuring device
JP5297906B2 (en) Image probe calibration method and shape measuring machine
EP2138803A1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP2014098690A (en) Calibration apparatus, calibration method, and measurement apparatus
JP3604944B2 (en) Three-dimensional shape measuring machine and its measuring method
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP6542955B1 (en) Measuring device and measuring method
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP2005037353A (en) Width measuring method and surface property measuring equipment
JP2009098092A (en) Relative height detector
JP6757391B2 (en) Measuring method
JP2008268000A (en) Displacement measuring method and device
JP2016191663A (en) Calibration method of optical sensor, and three-dimensional coordinate measuring instrument
JP2009145152A (en) Measuring device
JP6181935B2 (en) Coordinate measuring machine
JP2005172810A (en) Three-dimensional shape measuring method and three-dimensional shape measuring device
JP2009031170A (en) Surface shape calibrating device and method
JP5460427B2 (en) Measuring method and shape measuring device
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP4686125B2 (en) Width measuring method and surface texture measuring machine
JP4494189B2 (en) Accuracy measurement method and calibration method of non-contact image measuring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250