JP5297906B2 - Image probe calibration method and shape measuring machine - Google Patents

Image probe calibration method and shape measuring machine Download PDF

Info

Publication number
JP5297906B2
JP5297906B2 JP2009144956A JP2009144956A JP5297906B2 JP 5297906 B2 JP5297906 B2 JP 5297906B2 JP 2009144956 A JP2009144956 A JP 2009144956A JP 2009144956 A JP2009144956 A JP 2009144956A JP 5297906 B2 JP5297906 B2 JP 5297906B2
Authority
JP
Japan
Prior art keywords
image probe
probe
image
reference sphere
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009144956A
Other languages
Japanese (ja)
Other versions
JP2011002317A (en
Inventor
雅典 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2009144956A priority Critical patent/JP5297906B2/en
Publication of JP2011002317A publication Critical patent/JP2011002317A/en
Application granted granted Critical
Publication of JP5297906B2 publication Critical patent/JP5297906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、画像プローブの校正方法および形状測定機に関する。   The present invention relates to an image probe calibration method and a shape measuring machine.

従来、形状測定機において、測定対象に応じてタッチプローブおよび画像プローブを交換できるものが利用されている。このような形状測定機では、タッチプローブから画像プローブに交換した際に画像プローブの位置校正を行う必要があり、その校正方法として、例えば特許文献1に記載の校正方法が知られている。   2. Description of the Related Art Conventionally, a shape measuring machine that can exchange a touch probe and an image probe according to a measurement object has been used. In such a shape measuring machine, it is necessary to calibrate the position of the image probe when the touch probe is replaced with the image probe. As a calibration method, for example, a calibration method described in Patent Document 1 is known.

特許文献1に記載の校正方法では、タッチプローブから画像プローブに交換した際、まず、テーブル上に設けられた平面視D字状の基準ゲージの真上に画像プローブを移動させ、該画像プローブにより平面視D字状の基準ゲージを真上から撮像する。そして、取得した撮像画像からD字状の円弧部分の中心位置および直線部分の傾斜を算出し、前記中心位置に基づいて画像プローブの位置(位置座標)を校正するとともに、前記直線部分の傾斜に基づいて画像プローブの光軸周りの回転角度を校正する。   In the calibration method described in Patent Document 1, when the touch probe is replaced with the image probe, first, the image probe is moved directly above the D-shaped reference gauge in plan view provided on the table, and the image probe is used. A D-shaped reference gauge in plan view is imaged from directly above. Then, the center position of the D-shaped arc portion and the inclination of the straight line portion are calculated from the acquired captured image, and the position (position coordinates) of the image probe is calibrated based on the center position, and the inclination of the straight line portion is adjusted. Based on this, the rotation angle around the optical axis of the image probe is calibrated.

特開2001−165630号公報JP 2001-165630 A

ところで、近年、形状測定機では、測定範囲の拡大のため、画像プローブの撮像方向を傾斜させ、その撮像方向を変更可能にしたものが開発されている。このような形状測定機では、撮像方向を変更する度に画像プローブの校正を行うことが好ましい。しかしながら、特許文献1に記載の校正方法では、画像プローブにより基準ゲージを真上から真下に向かって撮像する必要があるので、画像プローブの撮像方向を傾斜させその撮像方向を変更した場合には、特許文献1に記載の校正方法を用いることができないという問題がある。   By the way, in recent years, shape measuring machines have been developed in which the imaging direction of the image probe is inclined and the imaging direction can be changed in order to expand the measurement range. In such a shape measuring machine, it is preferable to calibrate the image probe every time the imaging direction is changed. However, in the calibration method described in Patent Document 1, since it is necessary to image the reference gauge from directly above to directly below by the image probe, when the imaging direction of the image probe is tilted and the imaging direction is changed, There is a problem that the calibration method described in Patent Document 1 cannot be used.

本発明の目的は、画像プローブの撮像方向を変更した場合にも画像プローブを校正できる画像プローブの校正方法および形状測定機を提供することにある。   An object of the present invention is to provide an image probe calibration method and a shape measuring machine that can calibrate an image probe even when the imaging direction of the image probe is changed.

本発明の画像プローブの校正方法は、対物レンズを介して被測定物を撮像する画像プローブと、前記画像プローブおよび被測定物が載置されるテーブルを相対移動させる移動機構と、前記画像プローブの撮像方向を変更する変更機構とを備えた形状測定機において、前記画像プローブを、その撮像方向を前記テーブルに垂直な方向に対して傾斜させて用いる場合の画像プローブの校正方法であって、前記テーブル上において、中心軸を有し平面視直線部および前記中心軸を中心とした平面視円弧状部が形成された校正ゲージと、基準球とを設けるとともに、前記画像プローブにおいて前記対物レンズの光軸周りに第1,第2測定子を有するタッチプローブを取り付ける取付工程と、前記画像プローブの撮像方向を前記テーブルに垂直な方向に保持した状態で前記画像プローブおよび前記各測定子により前記校正ゲージを測定し、前記画像プローブの光軸中心および前記各測定子の相対位置関係を取得する相対位置関係取得工程と、いずれか一方の測定子により前記基準球を測定し、前記基準球の位置を登録する基準球測定工程と、前記画像プローブの撮像方向を前記テーブルに垂直な方向に対して所望の角度に傾斜させる傾斜工程と、前記画像プローブの撮像方向を前記所望の角度に傾斜させた状態で前記各測定子により前記基準球を測定し、この測定結果と登録した前記基準球の位置とから前記各測定子の位置を求め、求めた前記各測定子の位置と前記相対位置関係とに基づいて、前記画像プローブの光軸周りの回転角度および前記画像プローブの位置を校正するプローブ校正工程とを備えることを特徴とする。   An image probe calibration method according to the present invention includes an image probe that images a measurement object via an objective lens, a moving mechanism that relatively moves a table on which the image probe and the measurement object are placed, In the shape measuring machine provided with a change mechanism for changing the imaging direction, the image probe is used when the imaging probe is used with its imaging direction inclined with respect to a direction perpendicular to the table. On the table, a calibration gauge having a central axis and a planar straight line portion and a planar arcuate portion centering on the central axis is provided, and a reference sphere, and the light of the objective lens in the image probe An attachment process for attaching a touch probe having first and second measuring elements around an axis, and an imaging direction of the image probe in a direction perpendicular to the table A relative positional relationship acquisition step of measuring the calibration gauge with the image probe and each measuring element in a held state, and acquiring a relative positional relationship between the optical axis center of the image probe and each measuring element; A reference sphere measurement step of measuring the reference sphere with a probe and registering a position of the reference sphere; an inclination step of inclining an imaging direction of the image probe at a desired angle with respect to a direction perpendicular to the table; The reference sphere is measured by each measuring element in a state where the imaging direction of the image probe is inclined to the desired angle, and the position of each measuring element is obtained from the measurement result and the registered position of the reference sphere. A probe calibration process for calibrating the rotation angle around the optical axis of the image probe and the position of the image probe based on the obtained position of each probe and the relative positional relationship. Characterized in that it comprises and.

本発明によれば、まず、テーブル上に校正ゲージおよび基準球を設けるとともに、画像プローブに第1,第2測定子を有するタッチプローブを取り付ける(取付工程)。次に、画像プローブの撮像方向をテーブルに垂直な方向に保持した状態で画像プローブおよび各測定子によりそれぞれ校正ゲージを測定し、画像プローブの光軸中心および各測定子の相対位置関係を求める(相対位置関係算出工程)。続いて、いずれか一方の測定子により基準球を測定し、基準球の位置を登録する(基準球測定工程)。
次に、画像プローブの撮像方向をテーブルに垂直な方向に対して所望の角度に傾斜させた状態で(傾斜工程)、各測定子により基準球を測定し、該測定結果と登録した基準球の位置とから形状測定機上の各測定子の位置を求める。画像プローブの光軸中心および各測定子の相対位置関係は既に取得しているので、求めた各測定子の位置から画像プローブの光軸周りの回転角度および画像プローブの位置を校正できる(プローブ校正工程)。
以上のように、本発明では、画像プローブの撮像方向をテーブルに垂直な方向に対して傾斜させた状態でも、画像プローブの光軸周りの回転角度および位置を校正できるので、精度良く被測定物を測定することができる。
また、画像プローブの回転角度および位置の校正を簡単な構成の校正装置(校正ゲージ、基準球、およびタッチプローブ)を用いて行うことができ、校正コストを抑えることができる。
加えて、画像プローブの回転角度および位置の校正を簡単な方法で行うことができ、画像プローブの回転角度および位置を容易に校正できる。
According to the present invention, first, a calibration gauge and a reference sphere are provided on a table, and a touch probe having first and second measuring elements is attached to an image probe (attachment process). Next, the calibration gauge is measured by the image probe and each probe while the imaging direction of the image probe is held in a direction perpendicular to the table, and the relative positional relationship between the optical axis center of the image probe and each probe is obtained ( Relative positional relationship calculation step). Subsequently, the reference sphere is measured with one of the measuring elements, and the position of the reference sphere is registered (reference sphere measurement step).
Next, in a state where the imaging direction of the image probe is inclined at a desired angle with respect to the direction perpendicular to the table (inclination process), the reference sphere is measured by each measuring element, and the measurement result and the registered reference sphere The position of each measuring element on the shape measuring machine is obtained from the position. Since the relative positional relationship between the optical axis center of the image probe and each probe is already acquired, the rotation angle around the optical axis of the image probe and the position of the image probe can be calibrated from the obtained position of each probe (probe calibration). Process).
As described above, in the present invention, the rotation angle and position around the optical axis of the image probe can be calibrated even when the imaging direction of the image probe is tilted with respect to the direction perpendicular to the table. Can be measured.
In addition, the rotation angle and position of the image probe can be calibrated using a calibration device (calibration gauge, reference sphere, and touch probe) having a simple configuration, and the calibration cost can be reduced.
In addition, the rotation angle and position of the image probe can be calibrated by a simple method, and the rotation angle and position of the image probe can be easily calibrated.

本発明の形状測定機は、対物レンズを介して被測定物を撮像する画像プローブと、前記画像プローブおよび被測定物が載置されるテーブルを相対移動させる移動機構と、前記画像プローブの撮像方向を変更する変更機構と、前記画像プローブにおいて前記対物レンズの光軸周りに設けられ、第1,第2測定子を有するタッチプローブと、前記テーブル上に設けられた基準球と、中心軸を有し平面視直線部および前記中心軸を中心とした平面視円弧状部が形成され、前記テーブル上に設けられた校正ゲージとを備え、前記画像プローブの撮像方向を前記テーブルに垂直な方向に保持した状態で前記画像プローブおよび前記各測定子により前記校正ゲージを測定し、前記画像プローブの光軸中心および前記各測定子の相対位置関係を取得した後、いずれか一方の測定子により前記基準球を測定して前記基準球の位置を登録し、前記画像プローブの撮像方向を前記テーブルに垂直な方向に対して所望の角度に傾斜させた状態で前記各測定子により前記基準球を測定し、この測定結果と登録した前記基準球の位置とから前記各測定子の位置を求め、求めた前記各測定子の位置と前記相対位置関係とに基づいて、前記画像プローブの光軸周りの回転角度および前記画像プローブの位置を校正することを特徴とする。   The shape measuring machine of the present invention includes an image probe that images a measurement object via an objective lens, a moving mechanism that relatively moves a table on which the image probe and the measurement object are placed, and an imaging direction of the image probe A change mechanism for changing the image probe, a touch probe provided around the optical axis of the objective lens in the image probe, having a first and a second probe, a reference sphere provided on the table, and a central axis. A straight line portion in plan view and a circular arc portion in plan view centered on the central axis, and a calibration gauge provided on the table, and holding the imaging direction of the image probe in a direction perpendicular to the table After measuring the calibration gauge with the image probe and each measuring element in the state, and obtaining the relative positional relationship between the optical axis center of the image probe and each measuring element, The position of the reference sphere is registered by measuring the reference sphere with either one of the measuring elements, and each of the image probes is tilted at a desired angle with respect to a direction perpendicular to the table. The reference sphere is measured by a measuring element, the position of each measuring element is determined from the measurement result and the registered position of the reference sphere, and based on the determined position of each measuring element and the relative positional relationship, The rotation angle around the optical axis of the image probe and the position of the image probe are calibrated.

本発明によれば、前記画像プローブの校正方法と同様の方法により画像プローブを校正できるので、精度良く被測定物を測定できる。   According to the present invention, since the image probe can be calibrated by the same method as the image probe calibration method, the object to be measured can be measured with high accuracy.

本発明の一実施形態に係る形状測定機を示す斜視図。The perspective view which shows the shape measuring machine which concerns on one Embodiment of this invention. 校正装置を拡大して示す斜視図。The perspective view which expands and shows a calibration apparatus. 画像プローブの校正方法を示すフローチャート。The flowchart which shows the calibration method of an image probe. 校正ゲージの撮像画像を示す図。The figure which shows the captured image of a calibration gauge. 画像プローブを傾斜させた状態の測定機を示す斜視図。The perspective view which shows the measuring machine of the state which inclined the image probe. 変形例のタッチプローブを示す斜視図。The perspective view which shows the touch probe of a modification.

以下、本発明の一実施形態を図面に基づいて説明する。
図1は、本実施形態に係る形状測定機1(以下、測定機と記載)を示す斜視図である。
測定機1は、被測定物が載置されるテーブル2と、図示しない対物レンズを介して被測定物を撮像する画像プローブ3と、画像プローブ3を被測定物に対して移動させる移動機構4と、画像プローブ3と移動機構4との間に設けられ、画像プローブ3の撮像方向を変更する変更手段5と、画像プローブ3の位置校正を行うための校正装置6とを備える。以下、Z軸方向を、テーブル2に垂直な方向として定めるとともに、X軸方向およびY軸方向を、Z軸方向に直交しかつ互いに直交する方向として定める。
画像プローブ3にはリングライト31が取り付けられている。リングライト31は、図示しない対物レンズを囲むようにリング状に設けられた複数の発光ダイオードを備え、被測定物を照明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a shape measuring machine 1 (hereinafter referred to as a measuring machine) according to the present embodiment.
The measuring machine 1 includes a table 2 on which the object to be measured is placed, an image probe 3 that images the object to be measured through an objective lens (not shown), and a moving mechanism 4 that moves the image probe 3 relative to the object to be measured. And a changing means 5 provided between the image probe 3 and the moving mechanism 4 for changing the imaging direction of the image probe 3 and a calibration device 6 for calibrating the position of the image probe 3. Hereinafter, the Z-axis direction is defined as a direction perpendicular to the table 2, and the X-axis direction and the Y-axis direction are defined as directions orthogonal to the Z-axis direction and orthogonal to each other.
A ring light 31 is attached to the image probe 3. The ring light 31 includes a plurality of light emitting diodes provided in a ring shape so as to surround an objective lens (not shown), and illuminates an object to be measured.

移動機構4は、テーブル2のX軸方向両端に立設され、Y軸方向に沿ってスライド移動可能に設けられたコラム41と、各コラム41の上端間に架け渡されたビーム42と、ビーム42上をX軸方向に沿ってスライド移動可能に設けられたXスライダ43と、Xスライダ43内をZ軸方向に沿ってスライド移動可能に設けられたラム44とを備えている。ラム44の下端には変更手段5を介して画像プローブ3が取り付けられている。   The moving mechanism 4 is erected on both ends of the table 2 in the X-axis direction, and is provided with columns 41 provided so as to be slidable along the Y-axis direction, beams 42 spanned between the upper ends of the columns 41, 42, an X slider 43 provided so as to be slidable along the X-axis direction, and a ram 44 provided so as to be slidable along the Z-axis direction within the X-slider 43. The image probe 3 is attached to the lower end of the ram 44 via the changing means 5.

変更手段5は、画像プローブ3を保持しており、Z軸方向に沿った回転軸AとY軸方向に沿った回転軸Bとを備え、前記2軸を中心に画像プローブ3を回転させて画像プローブ3の撮像方向を変更する。変更手段5には、画像プローブ3に換え、接触子を有するタッチプローブを取り付けることも可能となっている。   The changing means 5 holds the image probe 3 and includes a rotation axis A along the Z-axis direction and a rotation axis B along the Y-axis direction, and rotates the image probe 3 around the two axes. The imaging direction of the image probe 3 is changed. Instead of the image probe 3, a touch probe having a contact can be attached to the changing unit 5.

図2は、校正装置6を拡大して示す斜視図である。
校正装置6は、タッチプローブ61A,61Bと、校正ゲージ62と、基準球63とを備えている。
タッチプローブ61A,61Bは、リングライト31における対物レンズの光軸周りにそれぞれ取り付けられ、第1,第2測定子611A,611Bをそれぞれ有している。各タッチプローブ61A,61Bは、画像プローブ3による測定時に被測定物と干渉することがないよう、画像プローブ3の焦点深度よりも十分短く形成されている。また、各タッチプローブ61A,61Bは、該タッチプローブ61A,61Bにより基準球63を測定できるよう、互いに十分離間して設けられている。
FIG. 2 is an enlarged perspective view showing the calibration device 6.
The calibration device 6 includes touch probes 61A and 61B, a calibration gauge 62, and a reference sphere 63.
The touch probes 61A and 61B are attached around the optical axis of the objective lens in the ring light 31 and have first and second measuring elements 611A and 611B, respectively. Each of the touch probes 61A and 61B is formed sufficiently shorter than the depth of focus of the image probe 3 so as not to interfere with the object to be measured during measurement by the image probe 3. The touch probes 61A and 61B are provided sufficiently apart from each other so that the reference sphere 63 can be measured by the touch probes 61A and 61B.

校正ゲージ62は、テーブル2上に設けられ、中心軸Cを有する略円柱状に形成されている。具体的には、校正ゲージ62は、前記中心軸Cを中心とした平面視円弧状部621と、平面視直線部622(以下、円弧状部、直線部と記載)とからなる外側面を有し、平面視D字の柱状に形成されている。また、校正ゲージ62は、平坦な頂面623を有している。このような校正ゲージ62は、直線部622がY軸と平行となるように設置される。
基準球63は、所定の直径を有し、テーブル2上の所定位置に設けられる。
The calibration gauge 62 is provided on the table 2 and is formed in a substantially cylindrical shape having a central axis C. Specifically, the calibration gauge 62 has an outer surface composed of a planar arcuate part 621 centered on the central axis C and a planar straight line part 622 (hereinafter referred to as an arcuate part or a straight part). In addition, it is formed in a columnar shape having a D-shape in plan view. The calibration gauge 62 has a flat top surface 623. Such a calibration gauge 62 is installed such that the linear portion 622 is parallel to the Y axis.
The reference sphere 63 has a predetermined diameter and is provided at a predetermined position on the table 2.

以上の測定機1では、画像プローブ3の撮像方向を変更した際に、画像プローブ3の光軸中心位置が所定の取付位置に対してずれたり、画像プローブ3の光軸周りの回転角度が所定の取付角度に対してずれたりするおそれがあるため、画像プローブ3の撮像方向を変更する毎に、画像プローブ3の位置および回転角度を校正する必要がある。   In the measuring machine 1 described above, when the imaging direction of the image probe 3 is changed, the optical axis center position of the image probe 3 is shifted from a predetermined mounting position, or the rotation angle around the optical axis of the image probe 3 is predetermined. Therefore, every time the imaging direction of the image probe 3 is changed, it is necessary to calibrate the position and rotation angle of the image probe 3.

以下、画像プローブ3の校正方法について、図3のフローチャートを参照して簡略に説明する。
まず、作業者がテーブル2上に校正ゲージ62と基準球63とを設けるとともに、測定子611A,611Bを有するタッチプローブ61A,61Bを画像プローブ3に取り付ける(工程S1)。該工程S1が取付工程となる。
工程S1の後、測定機1は、画像プローブ3の撮像方向をテーブル2に対して垂直な方向にする(工程S2)。
Hereinafter, a method for calibrating the image probe 3 will be briefly described with reference to the flowchart of FIG.
First, the operator provides the calibration gauge 62 and the reference sphere 63 on the table 2, and attaches the touch probes 61A and 61B having the measuring elements 611A and 611B to the image probe 3 (step S1). This process S1 becomes an attachment process.
After step S1, the measuring instrument 1 sets the imaging direction of the image probe 3 to a direction perpendicular to the table 2 (step S2).

図4は、画像プローブ3による校正ゲージ62の撮像画像Imを示す図である。
工程S2の後、測定機1は、画像プローブ3により校正ゲージ62を撮像し、円弧状部621から校正ゲージ62の中心位置を求めるとともに、クロスラインLを基準として直線部622の傾きを求め該直線部622の傾きから画像プローブ3の光軸周りの回転角度を求める(工程S3)。
FIG. 4 is a diagram showing a captured image Im of the calibration gauge 62 by the image probe 3.
After step S2, the measuring instrument 1 images the calibration gauge 62 with the image probe 3, obtains the center position of the calibration gauge 62 from the arcuate part 621, and obtains the inclination of the straight line part 622 with reference to the cross line L. A rotation angle around the optical axis of the image probe 3 is obtained from the inclination of the straight line portion 622 (step S3).

工程S3の後、測定機1は、各タッチプローブ61A,61Bの測定子611A,611Bをそれぞれ校正ゲージ62の円弧状部621と頂面623に接触させ、校正ゲージ62の中心位置をそれぞれ求める(工程S4)。測定機1は、以上の工程S2〜S4により、以上の測定結果、すなわち画像プローブの光軸中心および各測定子の相対位置関係を表す測定結果を取得する。本実施形態では、これらの工程S2〜S4により、相対位置関係取得工程が構成される。   After step S3, the measuring instrument 1 brings the measuring elements 611A and 611B of the touch probes 61A and 61B into contact with the arc-shaped portion 621 and the top surface 623 of the calibration gauge 62, respectively, and obtains the center position of the calibration gauge 62 ( Step S4). The measuring instrument 1 acquires the above measurement result, that is, the measurement result representing the relative positional relationship between the optical axis center of the image probe and each probe by the above steps S2 to S4. In the present embodiment, a relative positional relationship acquisition process is configured by these processes S2 to S4.

工程S4の後、測定機1は、一方の測定子611Aにより基準球63を測定し、基準球63の位置を登録する(工程S5)。この工程S5が基準球測定工程となる。   After step S4, the measuring instrument 1 measures the reference sphere 63 with one measuring element 611A and registers the position of the reference sphere 63 (step S5). This step S5 is a reference sphere measurement step.

図5は、画像プローブ3を傾斜させた状態の測定機1を示す斜視図である。
工程S5の後、測定機1は、画像プローブ3を少なくともB軸周りに回転させ、画像プローブ3の撮像方向をテーブル2に垂直な方向に対して傾斜させ、画像プローブ3の撮像方向を所望の方向に変更する(工程S6)。該工程S6が傾斜工程となる。
FIG. 5 is a perspective view showing the measuring instrument 1 with the image probe 3 tilted.
After step S5, the measuring instrument 1 rotates the image probe 3 at least around the B axis, tilts the imaging direction of the image probe 3 with respect to the direction perpendicular to the table 2, and sets the imaging direction of the image probe 3 to a desired value. The direction is changed (step S6). This process S6 becomes an inclination process.

工程S6の後、測定機1は、各測定子611A,611Bにより基準球63を測定する(工程S7)。
工程S7の後、測定機1は、工程S7の測定結果と、登録した基準球63の位置とから測定機1上の各測定子611A,611Bの位置を求める。画像プローブ3の光軸中心および各測定子611A,611Bの相対位置関係を表す測定結果は、前記工程S2〜S4により既に取得しているので、求めた測定機1上の各測定子611A,611Bの位置から画像プローブ3の光軸周りの回転角度および画像プローブ3の位置を校正できる(工程S8)。これらの工程S7,S8がプローブ校正工程となる。画像プローブ3の撮像方向を再び変更する場合には、前記工程S6〜S8を繰り返す。
After step S6, the measuring instrument 1 measures the reference sphere 63 with the measuring elements 611A and 611B (step S7).
After step S7, the measuring instrument 1 obtains the positions of the measuring elements 611A and 611B on the measuring instrument 1 from the measurement result of step S7 and the registered position of the reference sphere 63. Since the measurement results representing the relative positional relationship between the optical axis center of the image probe 3 and the respective measuring elements 611A and 611B have already been obtained in the above steps S2 to S4, the respective measuring elements 611A and 611B on the measuring instrument 1 thus obtained are obtained. The rotation angle around the optical axis of the image probe 3 and the position of the image probe 3 can be calibrated from the position (step S8). These steps S7 and S8 are probe calibration steps. When changing the imaging direction of the image probe 3 again, the steps S6 to S8 are repeated.

以上のような本実施形態によれば、以下の効果を奏することができる。
画像プローブ3の撮像方向をテーブル2に垂直な方向に対して傾斜させる場合でも、画像プローブ3の位置および光軸周りの回転角度を校正できるので、精度良く被測定物を測定することが可能となる。また、画像プローブ3の回転角度および位置の校正を簡単な構成の校正装置6(タッチプローブ61A,61B、校正ゲージ62、および基準球63)を用いて行うことができ、校正コストを抑えることができる。加えて、画像プローブ3の回転角度および位置の校正を簡単な方法で行うことができ、画像プローブ3の回転角度および位置を容易に校正できる。
According to the present embodiment as described above, the following effects can be obtained.
Even when the imaging direction of the image probe 3 is tilted with respect to the direction perpendicular to the table 2, the position of the image probe 3 and the rotation angle around the optical axis can be calibrated, so that the object to be measured can be accurately measured. Become. In addition, the rotation angle and position of the image probe 3 can be calibrated using the calibration device 6 (touch probes 61A and 61B, calibration gauge 62, and reference sphere 63) having a simple configuration, thereby reducing the calibration cost. it can. In addition, the rotation angle and position of the image probe 3 can be calibrated by a simple method, and the rotation angle and position of the image probe 3 can be easily calibrated.

〔実施形態の変形〕
なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
図6は、変形例のタッチプローブ61Cを示す斜視図である。
前記実施形態では、タッチプローブ61A,61Bは2つ設けられ、それぞれ第1,第2測定子611A,611Bを備えていたが、図6に示すように、タッチプローブ61Cは、リングライト31における対物レンズの光軸周りに1つのみ設けられ、該タッチプローブ61Cが第1、第2測定子612,613を備えていてもよい。このようなタッチプローブ61Cを備える測定機1Aであっても、前記実施形態と同様の方法で画像プローブ3を校正することができる。
[Modification of Embodiment]
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
FIG. 6 is a perspective view showing a touch probe 61C according to a modification.
In the embodiment, the two touch probes 61A and 61B are provided and have the first and second measuring elements 611A and 611B, respectively, but the touch probe 61C is an objective lens in the ring light 31 as shown in FIG. One touch probe 61 </ b> C may be provided with first and second measuring elements 612 and 613. Even in the measuring instrument 1A including such a touch probe 61C, the image probe 3 can be calibrated by the same method as in the above embodiment.

前記実施形態では、移動機構4は、コラム41、Xスライダ43、およびラム44を移動させることにより画像プローブ3を被測定物に対して移動させたが、移動機構4は、コラム41、Xスライダ43、およびラム44に加え、テーブル2を移動させることにより、またはテーブル2のみを移動させることにより、画像プローブ3を被測定物に対して相対移動させてもよい。   In the embodiment, the moving mechanism 4 moves the image probe 3 relative to the object to be measured by moving the column 41, the X slider 43, and the ram 44. However, the moving mechanism 4 includes the column 41, the X slider. In addition to 43 and the ram 44, the image probe 3 may be moved relative to the object to be measured by moving the table 2 or by moving only the table 2.

本発明は、画像プローブの校正方法および形状測定機に利用できる。   The present invention can be used for an image probe calibration method and a shape measuring machine.

1 形状測定機
1A 測定機
2 テーブル
3 画像プローブ
4 移動機構
5 変更手段
61A,61B,61C タッチプローブ
62 校正ゲージ
63 基準球
612,613,611A,611B 第1,第2測定子
621 平面視円弧状部
622 平面視直線部
C 校正ゲージの中心軸
DESCRIPTION OF SYMBOLS 1 Shape measuring machine 1A Measuring machine 2 Table 3 Image probe 4 Moving mechanism 5 Changing means 61A, 61B, 61C Touch probe 62 Calibration gauge 63 Reference | standard sphere 612,613,611A, 611B 1st, 2nd measuring element 621 Top view circular arc shape 622 Straight line portion C in plan view Center axis of calibration gauge

Claims (2)

対物レンズを介して被測定物を撮像する画像プローブと、前記画像プローブおよび被測定物が載置されるテーブルを相対移動させる移動機構と、前記画像プローブの撮像方向を変更する変更機構とを備えた形状測定機において、前記画像プローブを、その撮像方向を前記テーブルに垂直な方向に対して傾斜させて用いる場合の画像プローブの校正方法であって、
前記テーブル上において、中心軸を有し平面視直線部および前記中心軸を中心とした平面視円弧状部が形成された校正ゲージと、基準球とを設けるとともに、前記画像プローブにおいて前記対物レンズの光軸周りに第1,第2測定子を有するタッチプローブを取り付ける取付工程と、
前記画像プローブの撮像方向を前記テーブルに垂直な方向に保持した状態で前記画像プローブおよび前記各測定子により前記校正ゲージを測定し、前記画像プローブの光軸中心および前記各測定子の相対位置関係を取得する相対位置関係取得工程と、
いずれか一方の測定子により前記基準球を測定し、前記基準球の位置を登録する基準球測定工程と、
前記画像プローブの撮像方向を前記テーブルに垂直な方向に対して所望の角度に傾斜させる傾斜工程と、
前記画像プローブの撮像方向を前記所望の角度に傾斜させた状態で前記各測定子により前記基準球を測定し、この測定結果と登録した前記基準球の位置とから前記各測定子の位置を求め、求めた前記各測定子の位置と前記相対位置関係とに基づいて、前記画像プローブの光軸周りの回転角度および前記画像プローブの位置を校正するプローブ校正工程とを備える
ことを特徴とする画像プローブの校正方法。
An image probe that images a measurement object via an objective lens, a moving mechanism that relatively moves a table on which the image probe and the measurement object are placed, and a change mechanism that changes an imaging direction of the image probe In the shape measuring machine, the image probe is used when the imaging direction is inclined with respect to a direction perpendicular to the table,
On the table, a calibration gauge having a central axis and a straight line portion in plan view and a circular arc portion in plan view centered on the central axis are provided, and a reference sphere. An attaching step of attaching a touch probe having first and second measuring elements around the optical axis;
The calibration gauge is measured by the image probe and each measuring element in a state where the imaging direction of the image probe is held in a direction perpendicular to the table, and the relative positional relationship between the optical axis center of the image probe and each measuring element A relative positional relationship acquisition step of acquiring
A reference sphere measuring step of measuring the reference sphere with any one of the measuring elements and registering a position of the reference sphere;
A tilting step of tilting the imaging direction of the image probe at a desired angle with respect to a direction perpendicular to the table;
The reference sphere is measured by each measuring element in a state where the imaging direction of the image probe is inclined to the desired angle, and the position of each measuring element is obtained from the measurement result and the registered position of the reference sphere. And a probe calibration step for calibrating the rotation angle around the optical axis of the image probe and the position of the image probe based on the obtained position of each measuring element and the relative positional relationship. Probe calibration method.
対物レンズを介して被測定物を撮像する画像プローブと、前記画像プローブおよび被測定物が載置されるテーブルを相対移動させる移動機構と、前記画像プローブの撮像方向を変更する変更機構と、前記画像プローブにおいて前記対物レンズの光軸周りに設けられ、第1,第2測定子を有するタッチプローブと、前記テーブル上に設けられた基準球と、中心軸を有し平面視直線部および前記中心軸を中心とした平面視円弧状部が形成され、前記テーブル上に設けられた校正ゲージとを備え、
前記画像プローブの撮像方向を前記テーブルに垂直な方向に保持した状態で前記画像プローブおよび前記各測定子により前記校正ゲージを測定し、前記画像プローブの光軸中心および前記各測定子の相対位置関係を取得した後、
いずれか一方の測定子により前記基準球を測定して前記基準球の位置を登録し、
前記画像プローブの撮像方向を前記テーブルに垂直な方向に対して所望の角度に傾斜させた状態で前記各測定子により前記基準球を測定し、この測定結果と登録した前記基準球の位置とから前記各測定子の位置を求め、求めた前記各測定子の位置と前記相対位置関係とに基づいて、前記画像プローブの光軸周りの回転角度および前記画像プローブの位置を校正する
ことを特徴とする形状測定機。
An image probe that images the object to be measured via the objective lens, a moving mechanism that relatively moves a table on which the image probe and the object to be measured are placed, a change mechanism that changes an imaging direction of the image probe, In the image probe, a touch probe provided around the optical axis of the objective lens and having first and second measuring elements, a reference sphere provided on the table, a linear axis having a central axis and the center A circular arc-shaped portion in plan view with the axis as the center is formed, and includes a calibration gauge provided on the table,
The calibration gauge is measured by the image probe and each measuring element in a state where the imaging direction of the image probe is held in a direction perpendicular to the table, and the relative positional relationship between the optical axis center of the image probe and each measuring element After getting
Measure the reference sphere with one of the measuring elements and register the position of the reference sphere,
The reference sphere is measured by each measuring element in a state where the imaging direction of the image probe is inclined at a desired angle with respect to a direction perpendicular to the table, and the measurement result and the registered position of the reference sphere are used. The position of each probe is obtained, and the rotation angle around the optical axis of the image probe and the position of the image probe are calibrated based on the obtained position of each probe and the relative positional relationship. Shape measuring machine.
JP2009144956A 2009-06-18 2009-06-18 Image probe calibration method and shape measuring machine Active JP5297906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144956A JP5297906B2 (en) 2009-06-18 2009-06-18 Image probe calibration method and shape measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144956A JP5297906B2 (en) 2009-06-18 2009-06-18 Image probe calibration method and shape measuring machine

Publications (2)

Publication Number Publication Date
JP2011002317A JP2011002317A (en) 2011-01-06
JP5297906B2 true JP5297906B2 (en) 2013-09-25

Family

ID=43560386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144956A Active JP5297906B2 (en) 2009-06-18 2009-06-18 Image probe calibration method and shape measuring machine

Country Status (1)

Country Link
JP (1) JP5297906B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693978B2 (en) * 2011-01-11 2015-04-01 株式会社ミツトヨ Image probe calibration method
JP5808949B2 (en) * 2011-05-27 2015-11-10 株式会社ミツトヨ Surface shape measurement probe and calibration method thereof
JP5946259B2 (en) * 2011-10-20 2016-07-06 東芝機械株式会社 Measuring device, measuring method and touch probe
JP6108757B2 (en) * 2012-10-19 2017-04-05 株式会社ミツトヨ Calibration method for double cone stylus
JP6289001B2 (en) * 2013-09-24 2018-03-07 キヤノン株式会社 Shape measuring method and shape measuring device
DE102014107784A1 (en) * 2014-06-03 2015-12-03 Marposs Gmbh System and method for measuring a dimension of a workpiece
CN108917520B (en) * 2018-05-08 2020-04-14 黄鹄(苏州)机床有限公司 Method for detecting precision of rotating shaft of five-axis linkage machine tool
CN111366070B (en) * 2018-12-25 2022-04-29 苏州笛卡测试技术有限公司 Multi-axis space coordinate system calibration method for combined type line laser measurement system
CN116045813B (en) * 2023-04-03 2023-06-27 苏州苏映视图像软件科技有限公司 Rotating shaft calibration method, device, equipment and medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902285B2 (en) * 1993-11-22 1999-06-07 株式会社ミツトヨ 3D position control system
JP3215325B2 (en) * 1996-06-07 2001-10-02 株式会社東京精密 Measuring machine calibration method and device
JP4316754B2 (en) * 1999-12-14 2009-08-19 株式会社ミツトヨ Sensor calibration device for surface texture measuring machine
JP4791118B2 (en) * 2005-09-16 2011-10-12 株式会社ミツトヨ Image measuring machine offset calculation method

Also Published As

Publication number Publication date
JP2011002317A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5297906B2 (en) Image probe calibration method and shape measuring machine
JP5277033B2 (en) Correction ball diameter calculation method and shape measuring apparatus
JP4459264B2 (en) Three-dimensional shape measurement method
JP4825598B2 (en) Calibration method for image measuring device
JPH1183438A (en) Position calibration method for optical measuring device
JP2004257927A (en) Three-dimensional profile measuring system and method for measuring the same
JP5652631B2 (en) Method of calculating the amount of misalignment in a roundness measuring device
JP2010271057A (en) Form measuring instrument, form measuring method, and program
JP6657552B2 (en) Flatness measurement method
JP2009139139A (en) Calibrating method of image measuring instrument
JP5270138B2 (en) Calibration jig and calibration method
EP2149775B1 (en) Profile measuring instrument and profile measuring method
JP4964691B2 (en) Measuring method of measured surface
JP5716427B2 (en) Roundness measuring device and method of correcting misalignment
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP5693978B2 (en) Image probe calibration method
JP2009281768A (en) Measuring apparatus
JP5489017B2 (en) Method of calculating the amount of misalignment in a roundness measuring device
CN112461871A (en) X-ray CT apparatus for measurement
JP6394970B2 (en) Calibration method of measuring instrument and gauge unit for calibration
JP2009098092A (en) Relative height detector
JP5287266B2 (en) measuring device
JP2010185804A (en) Shape measuring apparatus, shape measuring method, and program
JP2006052998A (en) Method and apparatus for measuring three dimensional shape
JP5363196B2 (en) Dimension measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5297906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250