JP4798698B2 - Cylindrical linear motor - Google Patents

Cylindrical linear motor Download PDF

Info

Publication number
JP4798698B2
JP4798698B2 JP2005222331A JP2005222331A JP4798698B2 JP 4798698 B2 JP4798698 B2 JP 4798698B2 JP 2005222331 A JP2005222331 A JP 2005222331A JP 2005222331 A JP2005222331 A JP 2005222331A JP 4798698 B2 JP4798698 B2 JP 4798698B2
Authority
JP
Japan
Prior art keywords
vibration
shaft
permanent magnets
linear motor
cylindrical linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005222331A
Other languages
Japanese (ja)
Other versions
JP2007043768A (en
Inventor
政利 藤田
圭史 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2005222331A priority Critical patent/JP4798698B2/en
Publication of JP2007043768A publication Critical patent/JP2007043768A/en
Application granted granted Critical
Publication of JP4798698B2 publication Critical patent/JP4798698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

本発明は、振動減衰機能を内蔵した円筒型リニアモータに関する発明である。   The present invention relates to a cylindrical linear motor with a built-in vibration damping function.

特許文献1(特開2001−23894号公報)には、半導体素子製造工程に用いる露光装置のステージの駆動源として円筒型リニアモータを用いた構成が記載されている。この円筒型リニアモータは、シャフトモータとも称され、円筒状のシャフト内に多数の永久磁石を直線状に並べて配置すると共に、シャフトの外側に、コイルを内蔵した可動子を該シャフトと同心状に配置し、コイルに通電することで可動子をシャフトに沿って直線駆動するように構成されている。この円筒型リニアモータは、コイルに通電することで発生する磁界と永久磁石の磁界との間の吸引・反発力で可動子を駆動する推力を発生する点で、リニアモータカーの駆動源として用いられる平板型のリニアモータと推力発生原理が同じであるが、円筒型リニアモータは、鉄心のないコアレス構造で、可動子のコイルが永久磁石の外周囲を完全に取り囲んだ構成となっているため、上記平板型のリニアモータと比較して、永久磁石の磁束の利用効率が高く、コイルに供給する電力を効率良く推力に変換して高速駆動が可能になると共に、コアレス構造によりコギングが発生せず、速度むらが非常に小さいという優れた特長がある。   Japanese Patent Laid-Open No. 2001-23894 describes a configuration using a cylindrical linear motor as a drive source for a stage of an exposure apparatus used in a semiconductor element manufacturing process. This cylindrical linear motor is also referred to as a shaft motor, and a large number of permanent magnets are arranged in a straight line in a cylindrical shaft, and a mover with a coil incorporated outside the shaft is concentric with the shaft. It arrange | positions and it is comprised so that a needle | mover may be linearly driven along a shaft by supplying with electricity to a coil. This cylindrical linear motor is used as a drive source for a linear motor car in that it generates thrust to drive the mover with the attraction / repulsion force between the magnetic field generated by energizing the coil and the magnetic field of the permanent magnet. The thrust generation principle is the same as that of the flat type linear motor, but the cylindrical type linear motor has a coreless structure without an iron core, and the coil of the mover completely surrounds the outer periphery of the permanent magnet. Compared with the flat plate type linear motor, the magnetic flux utilization efficiency of the permanent magnet is high, the electric power supplied to the coil can be efficiently converted into thrust, enabling high-speed driving, and cogging does not occur due to the coreless structure. There is an excellent feature that the speed unevenness is very small.

その反面、円筒型リニアモータは、可動子の駆動時の反力が永久磁石を内蔵するシャフトに直に作用するため、シャフトを振動させてシャフトを支持するブラケットを介して機台側を振動させてしまい、この振動が可動子の位置決め精度を低下させる原因になる。   On the other hand, in the cylindrical linear motor, the reaction force at the time of driving the mover acts directly on the shaft containing the permanent magnet. Therefore, the shaft is vibrated and the base side is vibrated via the bracket that supports the shaft. This vibration causes a decrease in the positioning accuracy of the mover.

そこで、特許文献1では、可動子(ステージ)の駆動時の反力によりシャフトに生じる振動の影響を軽減するために、円筒型リニアモータのシャフトを支持する支持部材を、可動子(ステージ)をスライド可能に支持するベース部材から完全に独立(分離)させた構成としている。
特開2001−23894号公報(第3頁等)
Therefore, in Patent Document 1, in order to reduce the influence of vibration generated on the shaft due to the reaction force at the time of driving the mover (stage), the support member that supports the shaft of the cylindrical linear motor is replaced with the mover (stage). It is configured to be completely independent (separated) from a base member that is slidably supported.
Japanese Patent Laid-Open No. 2001-23894 (page 3, etc.)

しかし、上記特許文献1のように、円筒型リニアモータのシャフトを支持する支持部材を、可動子をスライド可能に支持するベース部材から完全に独立(分離)させた構成にすると、シャフトと可動子との位置関係を予め位置決め状態で固定しておくことができないため、この円筒型リニアモータを装置に搭載する際に、シャフトと可動子との位置決めをどの様にして行うのかが問題となり、この問題を解決しない限り、実用化が困難であると思われる。   However, if the support member that supports the shaft of the cylindrical linear motor is configured to be completely independent (separated) from the base member that slidably supports the mover as in Patent Document 1, the shaft and the mover The positional relationship between the shaft and the mover is a problem when mounting this cylindrical linear motor on the device. Unless the problem is solved, practical use seems to be difficult.

また、機台振動の影響を軽減するために、モータ制御信号から機台振動を誘発する振動成分を除去する制振フィルタを設けることがあるが、この構成では、制振フィルタによる応答遅れが生じて高速位置決め動作の応答性を悪化させることが問題視されている。   In order to reduce the influence of machine vibration, a vibration suppression filter that removes vibration components that induce machine vibration from the motor control signal may be provided. However, in this configuration, a response delay is caused by the vibration suppression filter. Therefore, it has been regarded as a problem to deteriorate the responsiveness of the high-speed positioning operation.

その他、機台振動抑制対策として、円筒型リニアモータを支持する支持機構に電子制御ダンパ装置を設けて、機台振動を電子制御ダンパ装置による電子アクティブ制御で抑制することが考えられるが、この構成では、装置の大型化、高コスト化、制御システムの複雑化を招くという問題がある。   As another measure to suppress machine vibration, an electronic control damper device can be installed in the support mechanism that supports the cylindrical linear motor, and the machine vibration can be suppressed by electronic active control using the electronic control damper device. However, there is a problem that the apparatus is increased in size, increased in cost, and complicated in the control system.

本発明はこれらの事情を考慮してなされたものであり、従ってその目的は、円筒型リニアモータを搭載する装置や制御系に振動対策を施さなくても、円筒型リニアモータ自体に可動子の駆動時の反力により発生する振動の影響を低減する機能を持たせることができる円筒型リニアモータを提供することにある。   The present invention has been made in view of these circumstances. Therefore, the object of the present invention is to provide a movable element for the cylindrical linear motor itself without taking measures against vibrations in the apparatus or control system on which the cylindrical linear motor is mounted. An object of the present invention is to provide a cylindrical linear motor capable of having a function of reducing the influence of vibration generated by a reaction force during driving.

上記目的を達成するために、請求項1に係る発明は、円筒状のシャフト内に複数の永久磁石を直線状に並べて配置すると共に、前記シャフトの外側に、コイルを内蔵した可動子を配置し、前記コイルに通電することで前記可動子をシャフトに沿って直線駆動する円筒型リニアモータにおいて、前記シャフト内に、前記複数の永久磁石を各永久磁石が独立して振動可能となるように収容すると共に、可動子の駆動時の反力により発生する各永久磁石の振動を減衰させる振動減衰手段を設けた構成としたものである。この構成では、可動子の駆動時の反力により発生する各永久磁石の振動がシャフト内で振動減衰手段によって減衰されるため、円筒型リニアモータ自体に振動低減機能を持たせることができて、円筒型リニアモータを搭載する装置や制御系に従来のような振動対策を施さずに済み、円筒型リニアモータを搭載する装置の小形化、低コスト化、制御システムの簡単化を実現できると共に、従来の制振フィルタによる応答遅れの問題もなく、高精度な高速位置決め動作に対応できる。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of permanent magnets are arranged in a straight line in a cylindrical shaft, and a mover incorporating a coil is arranged outside the shaft. In a cylindrical linear motor that linearly drives the mover along the shaft by energizing the coil, the plurality of permanent magnets are accommodated in the shaft so that each permanent magnet can independently vibrate. In addition, a vibration attenuating means for attenuating the vibration of each permanent magnet generated by the reaction force at the time of driving the mover is provided. In this configuration, the vibration of each permanent magnet generated by the reaction force at the time of driving the mover is attenuated by the vibration damping means in the shaft, so that the cylindrical linear motor itself can have a vibration reducing function, It is possible to reduce the size and cost of the equipment equipped with the cylindrical linear motor, simplify the control system, and eliminate the need for conventional vibration countermeasures for the equipment and control system equipped with the cylindrical linear motor. It can cope with high-accuracy and high-speed positioning operation without the problem of response delay due to the conventional vibration damping filter.

この場合、振動減衰手段の好ましい実施態様としては、例えば、請求項2のように、各永久磁石の間に、各永久磁石の振動を減衰させる振動減衰部材を挟み込ませた構成としたり、或は、請求項3のように、シャフト内に粘性流動体を充填して各永久磁石の間に充填した粘性流動体の粘性抵抗力により各永久磁石の振動を減衰させるように構成したり、或は、請求項4のように、各永久磁石が互いに接触する端面を傾斜面に形成して各永久磁石が前記傾斜面に沿って振動する際の摩擦抵抗力により各永久磁石の振動を減衰させるように構成しても良い。いずれの構成を採用しても、可動子の駆動時の反力により発生する各永久磁石の振動をシャフト内で減衰させることができる。   In this case, as a preferred embodiment of the vibration attenuating means, for example, as in claim 2, a vibration attenuating member for attenuating the vibration of each permanent magnet is sandwiched between each permanent magnet, or According to a third aspect of the present invention, the viscous fluid is filled in the shaft and the vibration of each permanent magnet is attenuated by the viscous resistance of the viscous fluid filled between the permanent magnets, or The end surfaces where the permanent magnets contact each other are formed on the inclined surface as in claim 4 so that the vibration of each permanent magnet is attenuated by the frictional resistance force when the permanent magnet vibrates along the inclined surface. You may comprise. Whichever configuration is employed, the vibration of each permanent magnet generated by the reaction force during driving of the mover can be attenuated in the shaft.

以下、本発明を実施するための最良の形態を具体化した4つの実施例1〜4を説明する。   Hereinafter, four Examples 1 to 4 embodying the best mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図3に基づいて説明する。
図1及び図2に示すように、円筒型リニアモータ11(シャフトモータ)は、円筒状のシャフト12内に多数の永久磁石13を直線状に並べて配置すると共に、シャフト12の外側に、コイル14を内蔵した可動子15を該シャフト12と同心状に配置し、コイル12に通電することで可動子15をシャフト12に沿って直線駆動するように構成されている。シャフト12内の各永久磁石13の間には、振動減衰部材18が挟み込まれている。シャフト12内の各永久磁石13は、隣接する永久磁石13のS極どうし、N極どうしが対向するように配置されている。また、シャフト12は、各永久磁石13の磁束を透過させる非磁性材料(例えばステンレス鋼)のパイプにより形成されている。可動子15のコイル14は、シャフト12(永久磁石13)の外周囲を取り巻くように該シャフト12と同心状に配置されている。そして、このシャフト12の両端部が、機台16上に立設された支持ブラケット17に水平に固定されている。
A first embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the cylindrical linear motor 11 (shaft motor) has a large number of permanent magnets 13 arranged in a straight line in a cylindrical shaft 12 and a coil 14 on the outside of the shaft 12. The movable element 15 having a built-in is arranged concentrically with the shaft 12, and the movable element 15 is linearly driven along the shaft 12 by energizing the coil 12. A vibration damping member 18 is sandwiched between the permanent magnets 13 in the shaft 12. Each permanent magnet 13 in the shaft 12 is arranged so that the south poles and the north poles of the adjacent permanent magnets 13 face each other. The shaft 12 is formed of a pipe made of a nonmagnetic material (for example, stainless steel) that transmits the magnetic flux of each permanent magnet 13. The coil 14 of the mover 15 is disposed concentrically with the shaft 12 so as to surround the outer periphery of the shaft 12 (permanent magnet 13). Both ends of the shaft 12 are horizontally fixed to a support bracket 17 erected on the machine base 16.

図2及び図3に示すように、シャフト12内の各永久磁石13の間には、振動減衰手段として振動減衰部材18が挟み込まれている。この振動減衰部材18は、弾性変形可能又は塑性変形可能な材料で形成され、より好ましくは、減衰ゴム等の振動吸収特性に優れた粘弾性体で形成すると良い。この場合、シャフト12は、各永久磁石13を収容してその径方向の位置決めをする役割を果たすが、各永久磁石13はシャフト12に対して軸方向には固定されておらず、シャフト12内で各永久磁石13が独立して軸方向に振動可能となっており、各永久磁石13の間隔が振動減衰部材18によって保持された構成となっている。   As shown in FIGS. 2 and 3, a vibration damping member 18 is sandwiched between the permanent magnets 13 in the shaft 12 as vibration damping means. The vibration damping member 18 is made of an elastically deformable or plastically deformable material, and more preferably a viscoelastic body having excellent vibration absorption characteristics such as a damping rubber. In this case, the shaft 12 plays a role of accommodating each permanent magnet 13 and positioning in the radial direction. However, each permanent magnet 13 is not fixed in the axial direction with respect to the shaft 12, Thus, the permanent magnets 13 can independently vibrate in the axial direction, and the interval between the permanent magnets 13 is held by the vibration damping member 18.

以上のように構成した本実施例1の円筒型リニアモータ11は、シャフト12内の各永久磁石13の間に振動減衰部材18が挟み込まれているため、可動子15の駆動時の反力により発生する各永久磁石13の振動がシャフト12内で振動減衰部材18によって減衰され、その結果、可動子15の駆動時の反力によりシャフト12から支持ブラケット17を介して機台16に伝達される振動が低減される。   In the cylindrical linear motor 11 according to the first embodiment configured as described above, the vibration damping member 18 is sandwiched between the permanent magnets 13 in the shaft 12. The generated vibration of each permanent magnet 13 is damped by the vibration damping member 18 in the shaft 12 and, as a result, is transmitted from the shaft 12 to the machine base 16 via the support bracket 17 by the reaction force when the mover 15 is driven. Vibration is reduced.

このように、本実施例1の円筒型リニアモータ11は、円筒型リニアモータ11自体に振動低減機能をコンパクトに内蔵させた構成となっているため、円筒型リニアモータ11を搭載する装置や制御系に従来のような振動対策を施さなくても、円筒型リニアモータ11内部で可動子15の駆動時の反力による振動を低減させることができて、円筒型リニアモータ11を搭載する装置の小形化、低コスト化、制御システムの簡単化を実現できると共に、従来の制振フィルタによる応答遅れの問題もなく、高精度な高速位置決め動作に対応できる。   As described above, the cylindrical linear motor 11 according to the first embodiment has a configuration in which the vibration reducing function is compactly incorporated in the cylindrical linear motor 11 itself. Even if the conventional vibration countermeasure is not applied to the system, the vibration due to the reaction force at the time of driving the mover 15 can be reduced inside the cylindrical linear motor 11, and the apparatus equipped with the cylindrical linear motor 11 can be reduced. It is possible to realize downsizing, cost reduction, and simplification of the control system, and it is possible to cope with high-accuracy high-speed positioning operation without the problem of response delay due to the conventional vibration damping filter.

尚、可動子15(又は可動子15に取り付けられたスライド部材)のスライドを案内するスライドガイドを機台16に設けるようにしても良く、この場合でも、可動子15の駆動時の反力により発生する各永久磁石13の振動がシャフト12内で振動減衰部材18によって減衰されるため、スライドガイドへの振動伝達の問題が発生することはない。   Note that a slide guide for guiding the slide of the mover 15 (or a slide member attached to the mover 15) may be provided in the machine base 16. Even in this case, due to the reaction force when the mover 15 is driven. Since the generated vibration of each permanent magnet 13 is damped by the vibration damping member 18 in the shaft 12, the problem of vibration transmission to the slide guide does not occur.

図4に示す本発明の実施例2では、可動子15の駆動時の反力により発生する各永久磁石13の振動を減衰させる振動減衰手段として粘性ダンパを用いている。この粘性ダンパは、シャフト12内に粘性流動体21を充填して各永久磁石13の間に充填した粘性流動体21の粘性抵抗力により各永久磁石13の振動を減衰させるように構成されている。粘性流動体21としては、微動領域での粘性特性が優れているグリース等を用いれば良い。各永久磁石13には、粘性流動体21を軸方向に流通させる1本又は複数本の小径の貫通孔22が形成され、各貫通孔22の孔径や粘性流動体21の粘度によって振動減衰特性が調整される。その他の構成は、前記実施例1と同じである。   In the second embodiment of the present invention shown in FIG. 4, a viscous damper is used as a vibration attenuating means for attenuating the vibration of each permanent magnet 13 generated by the reaction force when the mover 15 is driven. This viscous damper is configured to attenuate the vibration of each permanent magnet 13 by the viscous resistance force of the viscous fluid 21 filled in the shaft 12 with the viscous fluid 21 filled between the permanent magnets 13. . As the viscous fluid 21, grease or the like having excellent viscosity characteristics in the fine movement region may be used. Each permanent magnet 13 is formed with one or a plurality of small-diameter through holes 22 through which the viscous fluid 21 is circulated in the axial direction, and vibration damping characteristics depend on the diameter of each through-hole 22 and the viscosity of the viscous fluid 21. Adjusted. Other configurations are the same as those of the first embodiment.

以上説明した本実施例2においては、シャフト12内に粘性流動体21を充填して各永久磁石13の間に充填した粘性流動体21の粘性抵抗力により各永久磁石13の振動を減衰させるように構成しているため、可動子15の駆動時の反力により発生する各永久磁石13の振動を粘性流動体21の粘性抵抗力により減衰させることができ、前記実施例1と同様の効果を得ることができる。   In the second embodiment described above, the vibration of each permanent magnet 13 is attenuated by the viscous resistance force of the viscous fluid 21 filled in the shaft 12 and filled between the permanent magnets 13. Therefore, the vibration of each permanent magnet 13 generated by the reaction force during driving of the mover 15 can be attenuated by the viscous resistance force of the viscous fluid 21, and the same effect as in the first embodiment can be obtained. Obtainable.

図5に示す本発明の実施例3では、可動子15の駆動時の反力により発生する各永久磁石13の振動を減衰させる振動減衰手段としてコイルばね等のばね25を用い、シャフト12内の各永久磁石13の間にばね25が挟み込まれた構成となっている。この場合、ばね25の弾性係数を調整することで振動減衰特性が調整される。その他の構成は、前記実施例1と同じである。   In the third embodiment of the present invention shown in FIG. 5, a spring 25 such as a coil spring is used as a vibration attenuating means for attenuating the vibration of each permanent magnet 13 generated by the reaction force when the mover 15 is driven. A spring 25 is sandwiched between the permanent magnets 13. In this case, the vibration damping characteristic is adjusted by adjusting the elastic coefficient of the spring 25. Other configurations are the same as those of the first embodiment.

本実施例3においては、可動子15の駆動時の反力により発生する各永久磁石13の振動をばね25の弾性力により減衰させることができ、前記実施例1と同様の効果を得ることができる。   In the third embodiment, the vibration of each permanent magnet 13 generated by the reaction force during driving of the mover 15 can be attenuated by the elastic force of the spring 25, and the same effect as in the first embodiment can be obtained. it can.

尚、本実施例3は、前記実施例2と組み合わせて実施しても良い。つまり、シャフト12内の各永久磁石13の間にばね25を挟み込むと共に、シャフト12内に粘性流動体を充填して、可動子15の駆動時の反力により発生する各永久磁石13の振動をばね25の弾性力と粘性流動体の粘性抵抗力とにより減衰させるようにしても良い。   The third embodiment may be implemented in combination with the second embodiment. In other words, the spring 25 is sandwiched between the permanent magnets 13 in the shaft 12, the viscous fluid is filled in the shaft 12, and the vibrations of the permanent magnets 13 generated by the reaction force when the mover 15 is driven are detected. You may make it attenuate | damp with the elastic force of the spring 25, and the viscous resistance force of a viscous fluid.

図6に示す本発明の実施例4では、可動子15の駆動時の反力により発生する各永久磁石13の振動を減衰させる振動減衰手段として摩擦ダンパを用いている。この摩擦ダンパは、シャフト12内の各永久磁石13が互いに接触する端面を傾斜面に形成して各永久磁石13が前記傾斜面に沿って振動する際の摩擦抵抗力により各永久磁石13の振動を減衰させるように構成されている。この場合、各永久磁石13の傾斜面(接触面)の摩擦係数を調整することで振動減衰特性が調整される。各永久磁石13の傾斜面(接触面)に適当な摩擦係数の部材を積層しても良いし、各永久磁石13の傾斜面(接触面)を粗面化処理してその表面粗さ(摩擦係数)を調整するようにしても良い。   In the fourth embodiment of the present invention shown in FIG. 6, a friction damper is used as a vibration attenuating means for attenuating the vibration of each permanent magnet 13 generated by the reaction force when the mover 15 is driven. In this friction damper, the end surfaces where the permanent magnets 13 in the shaft 12 contact each other are formed on inclined surfaces, and the vibrations of the permanent magnets 13 are caused by the frictional resistance when the permanent magnets 13 vibrate along the inclined surfaces. Is configured to attenuate. In this case, the vibration damping characteristic is adjusted by adjusting the friction coefficient of the inclined surface (contact surface) of each permanent magnet 13. A member having an appropriate friction coefficient may be laminated on the inclined surface (contact surface) of each permanent magnet 13, or the inclined surface (contact surface) of each permanent magnet 13 may be roughened to obtain a surface roughness (friction). The coefficient may be adjusted.

シャフト12の内周面には、各永久磁石13を振動可能に保持するサポート材27が設けられている。このサポート材27は、前記実施例1の振動減衰部材18と同種の弾性変形可能又は塑性変形可能な材料で形成されている。或は、サポート材27として、前記実施例2の粘性流動体21と同種の粘性流動体を用いるようにしても良い。その他の構成は、前記実施例1と同じである。   A support material 27 is provided on the inner peripheral surface of the shaft 12 to hold the permanent magnets 13 so that they can vibrate. The support member 27 is formed of the same kind of elastically deformable or plastically deformable material as the vibration damping member 18 of the first embodiment. Alternatively, the same kind of viscous fluid as the viscous fluid 21 of the second embodiment may be used as the support material 27. Other configurations are the same as those of the first embodiment.

以上説明した本実施例4においては、シャフト12内の各永久磁石13が互いに接触する端面を傾斜面に形成して各永久磁石13が前記傾斜面に沿って振動する際の摩擦抵抗力により各永久磁石13の振動を減衰させるように構成されているため、前記実施例1と同様の効果を得ることができる。   In the fourth embodiment described above, the end surfaces where the permanent magnets 13 in the shaft 12 come into contact with each other are formed on the inclined surfaces, and each permanent magnet 13 is caused by the frictional resistance when the permanent magnets 13 vibrate along the inclined surfaces. Since the vibration of the permanent magnet 13 is configured to be attenuated, the same effect as in the first embodiment can be obtained.

本発明の実施例1の円筒型リニアモータを搭載した装置を概略的に示す図である。It is a figure which shows roughly the apparatus carrying the cylindrical linear motor of Example 1 of this invention. 実施例1の円筒型リニアモータの主要部の斜視図である。It is a perspective view of the principal part of the cylindrical linear motor of Example 1. 実施例1の円筒型リニアモータの主要部の断面図である。1 is a cross-sectional view of a main part of a cylindrical linear motor according to Embodiment 1. FIG. 実施例2の円筒型リニアモータの主要部の断面図である。It is sectional drawing of the principal part of the cylindrical linear motor of Example 2. FIG. 実施例3の円筒型リニアモータの主要部の断面図である。It is sectional drawing of the principal part of the cylindrical linear motor of Example 3. 実施例4の円筒型リニアモータの主要部の断面図である。It is sectional drawing of the principal part of the cylindrical linear motor of Example 4.

符号の説明Explanation of symbols

11…円筒型リニアモータ、12…シャフト、13…永久磁石、14…コイル、15…可動子、16…機台、17…支持ブラケット、18…振動減衰部材(振動減衰手段)、21…粘性流動体(振動減衰手段)、22…貫通孔、25…ばね(振動減衰手段)、27…サポート材   DESCRIPTION OF SYMBOLS 11 ... Cylindrical linear motor, 12 ... Shaft, 13 ... Permanent magnet, 14 ... Coil, 15 ... Mover, 16 ... Machine stand, 17 ... Support bracket, 18 ... Vibration damping member (vibration damping means), 21 ... Viscous flow Body (vibration damping means), 22 ... through hole, 25 ... spring (vibration damping means), 27 ... support material

Claims (4)

円筒状のシャフト内に複数の永久磁石を直線状に並べて配置すると共に、前記シャフトの外側に、コイルを内蔵した可動子を該シャフトと同心状に配置し、前記コイルに通電することで前記可動子をシャフトに沿って直線駆動する円筒型リニアモータにおいて、
前記シャフト内に、前記複数の永久磁石を各永久磁石が独立して振動可能となるように収容すると共に、前記可動子の駆動時の反力により発生する前記各永久磁石の振動を減衰させる振動減衰手段を設けたことを特徴とする円筒型リニアモータ。
A plurality of permanent magnets are arranged in a straight line in a cylindrical shaft, and a mover containing a coil is arranged on the outside of the shaft concentrically with the shaft, and the movable coil is energized by energizing the coil. In a cylindrical linear motor that drives the child linearly along the shaft,
A vibration that accommodates the plurality of permanent magnets in the shaft so that the permanent magnets can independently vibrate, and attenuates the vibration of the permanent magnets generated by a reaction force when the mover is driven. A cylindrical linear motor provided with a damping means.
前記振動減衰手段は、前記各永久磁石の間に、前記各永久磁石の振動を減衰させる振動減衰部材を挟み込ませて構成されていることを特徴とする請求項1に記載の円筒型リニアモータ。   2. The cylindrical linear motor according to claim 1, wherein the vibration attenuating means is configured by sandwiching a vibration attenuating member for attenuating vibrations of the permanent magnets between the permanent magnets. 前記振動減衰手段は、前記シャフト内に粘性流動体を充填して前記各永久磁石の間に充填した前記粘性流動体の粘性抵抗力により前記各永久磁石の振動を減衰させるように構成されていることを特徴とする請求項1に記載の円筒型リニアモータ。   The vibration damping means is configured to attenuate the vibration of each permanent magnet by the viscous resistance force of the viscous fluid filled between the permanent magnets by filling the shaft with a viscous fluid. The cylindrical linear motor according to claim 1. 前記振動減衰手段は、前記各永久磁石が互いに接触する端面を傾斜面に形成して前記各永久磁石が前記傾斜面に沿って振動する際の摩擦抵抗力により前記各永久磁石の振動を減衰させるように構成されていることを特徴とする請求項1に記載の円筒型リニアモータ。   The vibration attenuating means attenuates the vibrations of the permanent magnets by a frictional resistance force when the permanent magnets vibrate along the inclined surface by forming end surfaces where the permanent magnets contact each other on the inclined surface. The cylindrical linear motor according to claim 1, wherein the cylindrical linear motor is configured as described above.
JP2005222331A 2005-08-01 2005-08-01 Cylindrical linear motor Expired - Fee Related JP4798698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222331A JP4798698B2 (en) 2005-08-01 2005-08-01 Cylindrical linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222331A JP4798698B2 (en) 2005-08-01 2005-08-01 Cylindrical linear motor

Publications (2)

Publication Number Publication Date
JP2007043768A JP2007043768A (en) 2007-02-15
JP4798698B2 true JP4798698B2 (en) 2011-10-19

Family

ID=37801242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222331A Expired - Fee Related JP4798698B2 (en) 2005-08-01 2005-08-01 Cylindrical linear motor

Country Status (1)

Country Link
JP (1) JP4798698B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116317B2 (en) * 2007-02-21 2013-01-09 富士機械製造株式会社 Cylindrical linear motor
JP5288304B2 (en) * 2007-07-18 2013-09-11 富士機械製造株式会社 Linear motor
EP3198618B1 (en) 2014-09-24 2021-05-19 Taction Technology Inc. Systems and methods for generating damped electromagnetically actuated planar motion for audio-frequency vibrations
US10573139B2 (en) 2015-09-16 2020-02-25 Taction Technology, Inc. Tactile transducer with digital signal processing for improved fidelity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292732A (en) * 1992-04-07 1993-11-05 Hitachi Metals Ltd Magnetic circuit
JPH09247921A (en) * 1996-03-13 1997-09-19 Minolta Co Ltd Linear motor
JP3175554B2 (en) * 1995-09-29 2001-06-11 松下電工株式会社 DC linear motor
JPH1143852A (en) * 1997-05-29 1999-02-16 Y Ii Drive:Kk Motor assembly for automatic knitting machine
JP3500402B2 (en) * 2000-05-02 2004-02-23 財団法人鉄道総合技術研究所 Linear actuator
JP2002238239A (en) * 2001-02-06 2002-08-23 Sigma Technos Kk Stator, its manufacturing method and linear motor

Also Published As

Publication number Publication date
JP2007043768A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP7469688B2 (en) Vibration actuator and electronic device
US8016493B2 (en) Magnetic coupling and camera platform using magnetic coupling
JP4702629B2 (en) Moving magnet type linear slider and machine tool using the same
JP2007026344A (en) Coordinate input device
JPH11351322A (en) Exciter for active damping
JP4916500B2 (en) Electric machine with a magnetic brake directly on the rotor
JP4798698B2 (en) Cylindrical linear motor
CN107107112B (en) Linear vibration motor
WO2007029325A1 (en) Flat vibration actuator
JPWO2019044722A1 (en) Eddy current damper
KR101047451B1 (en) Coin Linear Motor
WO2018166013A1 (en) Linear vibration motor and electronic device
JP2007215380A (en) Motor
JP2003284311A (en) Stepping motor
JP2017221905A (en) Linear vibration motor
US8716919B2 (en) Drive apparatus
JP2006075734A (en) Flat oscillating actuator
EP0911943B1 (en) Motor for driving magnetic disk
JP2006068688A (en) Vibration actuator
WO2018166012A1 (en) Linear vibration motor and electronic device
JP2017225334A (en) Motor and fluid delivery device comprising the same
JP2006077982A (en) Active vibration reducer
KR101083146B1 (en) Linear actuator for mobile phone
CN101257981A (en) Flat vibrating actuator
JP2007143210A (en) Motor and lens drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees