JP4702115B2 - Battery status judgment device - Google Patents

Battery status judgment device Download PDF

Info

Publication number
JP4702115B2
JP4702115B2 JP2006065280A JP2006065280A JP4702115B2 JP 4702115 B2 JP4702115 B2 JP 4702115B2 JP 2006065280 A JP2006065280 A JP 2006065280A JP 2006065280 A JP2006065280 A JP 2006065280A JP 4702115 B2 JP4702115 B2 JP 4702115B2
Authority
JP
Japan
Prior art keywords
battery
voltage
temperature
open circuit
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006065280A
Other languages
Japanese (ja)
Other versions
JP2007238001A (en
Inventor
惠造 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2006065280A priority Critical patent/JP4702115B2/en
Priority to PCT/JP2007/054553 priority patent/WO2007105595A1/en
Priority to US12/282,347 priority patent/US8036839B2/en
Priority to EP07738043.4A priority patent/EP1995123B1/en
Publication of JP2007238001A publication Critical patent/JP2007238001A/en
Application granted granted Critical
Publication of JP4702115B2 publication Critical patent/JP4702115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は電池状態判定装置に係り、特に、車両に搭載されたバッテリの電池状態を判定する電池状態判定装置に関する。   The present invention relates to a battery state determination device, and more particularly to a battery state determination device that determines a battery state of a battery mounted on a vehicle.

近年、内部抵抗、放電電圧、開回路電圧、残容量、充電状態などが電池状態を表すパラメータ又は電池状態を演算するための測定パラメータとして用いられてきている。自動車、携帯機器などの高性能化に伴ってそれらに使用される電池の負荷が大きくなるに従い、近時、このような電池状態の監視と電池状態制御はその重要性がますます大きくなってきている。車両用電池では、排ガスの削減のために行われているアイドルストップ・スタート(ISS)、回生充電などに対応するため、これらの用途に適した電池状態に電池を保つ技術が望まれている。鉛電池はこれらの用途に応用できる代表的な電池のひとつである。   In recent years, internal resistance, discharge voltage, open circuit voltage, remaining capacity, state of charge, etc. have been used as parameters representing battery state or measurement parameters for calculating battery state. As the load on the batteries used for automobiles and portable devices increases, the importance of such battery state monitoring and battery state control is increasing. Yes. In order to cope with idle stop / start (ISS), regenerative charging, and the like performed for reducing exhaust gas, a vehicle battery is required to have a technology for keeping the battery in a battery state suitable for these applications. Lead batteries are one of the typical batteries that can be applied to these applications.

このような要請に応えるため、車両用ではエンジン始動時の電圧や直流内部抵抗を予め測定したデータマップと比較して電池状態を算出するハイブリッド車用電池残存容量検出装置が提案されている(例えば、特許文献1参照)。   In order to meet such demands, there has been proposed a battery remaining capacity detection device for a hybrid vehicle that calculates a battery state by comparing a voltage and DC internal resistance at the time of starting an engine with a data map measured in advance (for example, for vehicles) (for example, , See Patent Document 1).

また、車両を用いた電池試験方法として、スタータモータを回した状態での電圧を評価する方法が知られている。この方法は、エンジン始動不能になった車両に対してスタータと電池のどちらが原因か調べるためのバッテリチェックの方法として古くから用いられてきた。この方法では、オシロスコープを使わず、時間応答性の遅い簡単な電圧計による測定が一般的であり、例えば、突入電流後比較的電圧が安定した時の電圧が9V程度以上であれば正常と判断する。エンジンに燃料の供給をしないような措置をするなどして、スタータモータが回っても実際にエンジンが始動しないような条件にすると、正常な車両でも時間的に安定した電圧が得られ、バッテリチェックができる。   As a battery test method using a vehicle, a method for evaluating a voltage in a state where a starter motor is rotated is known. This method has been used for a long time as a battery check method for investigating whether a starter or a battery is the cause of a vehicle whose engine cannot be started. In this method, measurement with a simple voltmeter that does not use an oscilloscope and has a slow time response is common. For example, if the voltage is relatively stable after an inrush current, the voltage is determined to be normal if the voltage is about 9 V or higher. To do. If measures are taken not to supply fuel to the engine so that the engine does not actually start even if the starter motor rotates, a time-stable voltage can be obtained even in a normal vehicle, and battery check Can do.

特開平7−63830号公報JP-A-7-63830

しかしながら、従来、エンジン始動時の電圧から電池状態を算出する方法は簡易的な方法と考えられ、温度補正の方法について詳細な検討はなされてこなかった。エンジン始動時の電圧は電池状態のほか、車両の種類や車両の温度、測定時間によって大きく異なる。車両に搭載されたバッテリの電池状態を推定するには、車両の種類や車両の温度などの影響を除く必要がある。図6に示すように、バッテリの電圧は、エンジン始動時、最初に大きく下がり、その後上昇して比較的電圧が安定する。この時の電圧(エンジン始動電圧)は車両の温度の影響を受けるが、車両の温度の影響を考慮したエンジン始動時の電圧の取扱い方法は確立していなかったため、車両に搭載されたバッテリの電池状態の算出は高精度に行うことが困難であった。   However, conventionally, the method of calculating the battery state from the voltage at the time of starting the engine is considered as a simple method, and no detailed examination has been made on the method of temperature correction. The voltage at the start of the engine varies greatly depending on the battery type, vehicle type, vehicle temperature, and measurement time. In order to estimate the battery state of the battery mounted on the vehicle, it is necessary to remove the influence of the type of vehicle and the temperature of the vehicle. As shown in FIG. 6, when the engine is started, the voltage of the battery greatly decreases first and then increases to relatively stabilize the voltage. The voltage at this time (engine start voltage) is affected by the temperature of the vehicle, but since the handling method of the voltage at the time of engine start considering the effect of the temperature of the vehicle has not been established, the battery of the battery mounted on the vehicle It was difficult to calculate the state with high accuracy.

本発明は上記事案に鑑み、車両の温度の影響を考慮してエンジン始動電圧からバッテリの電池状態を正確に判定することができる電池状態判定装置を提供することを課題とする。   An object of the present invention is to provide a battery state determination device that can accurately determine a battery state of a battery from an engine starting voltage in consideration of the influence of the temperature of the vehicle.

上記課題を解決するために、本発明の第1の態様は、車両に搭載されたバッテリの電池状態を判定する電池状態判定装置において、前記バッテリの開回路電圧OCVを測定する開回路電圧測定手段と、前記バッテリのエンジン始動時の電圧を表すエンジン始動電圧Vstを測定するエンジン始動電圧測定手段と、前記車両の温度を測定する車両温度測定手段と、前記開回路電圧測定手段で測定された開回路電圧OCV及び前記車両温度測定手段で測定された車両の温度に基づいて、前記エンジン始動電圧測定手段で測定されたエンジン始動電圧Vstを補正したエンジン始動電圧Vst1を演算するエンジン始動電圧補正手段と、前記開回路電圧測定手段で測定された開回路電圧OCVから、前記バッテリの内部抵抗の増大率がバッテリ交換のための所定値に達するときの前記バッテリのエンジン始動時の電圧を表すバッテリ判定電圧Vst_thを演算する判定電圧演算手段と、前記エンジン始動電圧補正手段で演算された前記エンジン始動電圧Vst1が前記判定電圧演算手段で測定されたバッテリ判定電圧Vst_th以上かを判定する電池状態判定手段と、を備え、前記開回路電圧測定手段は、前記バッテリから暗電流が流れているときの安定した開回路電圧OCVを測定し、前記エンジン始動電圧補正手段及び前記判定電圧演算手段は、前記開回路電圧測定手段で測定された開回路電圧OCVに、温度の関数である補正量を加算して得た補正後の開回路電圧OCV1を用いて前記エンジン始動電圧Vst1及び前記バッテリ判定電圧Vst_thを演算することを特徴とするIn order to solve the above-mentioned problem, according to a first aspect of the present invention, there is provided a battery state determination device for determining a battery state of a battery mounted on a vehicle, and an open circuit voltage measurement unit that measures an open circuit voltage OCV of the battery. Engine starting voltage measuring means for measuring an engine starting voltage Vst representing a voltage at the time of starting the engine of the battery, vehicle temperature measuring means for measuring the temperature of the vehicle, and an open circuit voltage measured by the open circuit voltage measuring means. Engine starting voltage correcting means for calculating an engine starting voltage Vst1 obtained by correcting the engine starting voltage Vst measured by the engine starting voltage measuring means based on a circuit voltage OCV and a vehicle temperature measured by the vehicle temperature measuring means; From the open circuit voltage OCV measured by the open circuit voltage measuring means, the rate of increase of the internal resistance of the battery is battery replacement. Determination voltage calculation means for calculating a battery determination voltage Vst_th that represents a voltage at the time of engine start of the battery when reaching a predetermined value, and the engine start voltage Vst1 calculated by the engine start voltage correction means is the determination voltage Battery state determination means for determining whether or not the battery determination voltage Vst_th measured by the calculation means is equal to or greater than the battery determination voltage Vst_th , wherein the open circuit voltage measurement means obtains a stable open circuit voltage OCV when dark current is flowing from the battery. The engine start voltage correction means and the determination voltage calculation means measure the corrected open circuit voltage obtained by adding a correction amount that is a function of temperature to the open circuit voltage OCV measured by the open circuit voltage measurement means. The engine start voltage Vst1 and the battery determination voltage Vst_th are calculated using a circuit voltage OCV1. That.

第1の態様では、開回路電圧測定手段でバッテリの開回路電圧OCVが測定され、エンジン始動電圧測定手段でバッテリのエンジン始動時の電圧を表すエンジン始動電圧Vstが測定され、車両温度測定手段でスタータ等の車両の温度が測定される。エンジン始動電圧補正手段により、開回路電圧測定手段で測定された開回路電圧OCV及び車両温度測定手段で測定された車両の温度に基づいて、エンジン始動電圧測定手段で測定されたエンジン始動電圧Vstを補正したエンジン始動電圧Vst1が演算され、判定電圧演算手段により、開回路電圧測定手段で測定された開回路電圧OCVから、バッテリの内部抵抗の増大率がバッテリ交換のための所定値に達するときのバッテリのエンジン始動時の電圧を表すバッテリ判定電圧Vst_thが演算される。そして、電池状態判定手段により、エンジン始動電圧測定手段で演算されたエンジン始動電圧Vst1が、判定電圧演算手段で演算されたバッテリ判定電圧Vst_th以上かが判断されることで、バッテリの電池状態が判定される。このとき、開回路電圧測定手段が、バッテリから暗電流が流れているときの安定した開回路電圧OCVを測定し、エンジン始動電圧補正手段及び判定電圧演算手段が、開回路電圧測定手段で測定された開回路電圧OCVに、温度の関数である補正量を加算して得た補正後の開回路電圧OCV1を用いてエンジン始動電圧Vst1及びバッテリ判定電圧Vst_thを演算するため、開回路電圧OCVも温度補正されるので、バッテリの電池状態を更に高精度に判定することができる。本態様によれば、エンジン始動電圧補正手段によりエンジン始動電圧Vstを車両の温度の影響を考慮して補正したエンジン始動電圧Vst1が演算され、電池状態判定手段により、エンジン始動電圧Vst1がバッテリ判定電圧Vst_th以上かが判断されるので、電池状態の判定にあたり車両の温度による影響が排除されるため、バッテリの電池状態を正確に判定することができるとともに、開回路電圧測定手段が、バッテリから暗電流が流れているときの安定した開回路電圧OCVを測定し、エンジン始動電圧補正手段及び判定電圧演算手段が、開回路電圧測定手段で測定された開回路電圧OCVに、温度の関数である補正量を加算して得た補正後の開回路電圧OCV1を用いてエンジン始動電圧Vst1及びバッテリ判定電圧Vst_thを演算するため、開回路電圧OCVも温度補正されるので、バッテリの電池状態を更に高精度に判定することができるIn the first aspect, the open circuit voltage OCV of the battery is measured by the open circuit voltage measuring means, the engine starting voltage Vst representing the voltage at the time of starting the engine of the battery is measured by the engine starting voltage measuring means, and the vehicle temperature measuring means is measured. The temperature of a vehicle such as a starter is measured. Based on the open circuit voltage OCV measured by the open circuit voltage measuring means and the vehicle temperature measured by the vehicle temperature measuring means by the engine starting voltage correcting means, the engine starting voltage Vst measured by the engine starting voltage measuring means is obtained. When the corrected engine starting voltage Vst1 is calculated and the increase rate of the internal resistance of the battery reaches a predetermined value for battery replacement from the open circuit voltage OCV measured by the open circuit voltage measuring means by the determination voltage calculating means A battery determination voltage Vst_th representing a voltage at the time of engine start of the battery is calculated. The battery state determination unit determines whether the engine start voltage Vst1 calculated by the engine start voltage measurement unit is equal to or higher than the battery determination voltage Vst_th calculated by the determination voltage calculation unit, thereby determining the battery state of the battery. Is done. At this time, the open circuit voltage measuring means measures a stable open circuit voltage OCV when dark current is flowing from the battery, and the engine starting voltage correcting means and the determination voltage calculating means are measured by the open circuit voltage measuring means. Since the engine start voltage Vst1 and the battery determination voltage Vst_th are calculated using the corrected open circuit voltage OCV1 obtained by adding a correction amount that is a function of temperature to the open circuit voltage OCV, the open circuit voltage OCV is also a temperature. Since the correction is made, the battery state of the battery can be determined with higher accuracy. According to this aspect, the engine start voltage Vst1 obtained by correcting the engine start voltage Vst in consideration of the influence of the vehicle temperature is calculated by the engine start voltage correction means, and the engine start voltage Vst1 is calculated by the battery state determination means. Since it is determined whether or not Vst_th or more, the influence of the temperature of the vehicle is eliminated in determining the battery state, so that the battery state of the battery can be accurately determined , and the open circuit voltage measuring means can detect the dark current from the battery. A stable open circuit voltage OCV when the engine is flowing is measured, and the engine starting voltage correcting means and the determination voltage calculating means add a correction amount that is a function of temperature to the open circuit voltage OCV measured by the open circuit voltage measuring means. The engine start voltage Vst1 and the battery determination voltage Vs using the corrected open circuit voltage OCV1 obtained by adding For calculating the - th, since the open circuit voltage OCV is also the temperature correction can be determined more accurate battery state of the battery.

また、上記課題を解決するために、本発明の第2の態様は、車両に搭載されたバッテリの電池状態を判定する電池状態判定装置において、前記バッテリの開回路電圧OCVを測定する開回路電圧測定手段と、前記バッテリのエンジン始動時の電圧を表すエンジン始動電圧Vstを測定するエンジン始動電圧測定手段と、前記バッテリの温度を測定するバッテリ温度測定手段と、前記開回路電圧測定手段で測定された開回路電圧OCV及び車両の温度に基づいて、前記エンジン始動電圧測定手段で測定されたエンジン始動電圧Vstを補正したエンジン始動電圧Vst1を演算するエンジン始動電圧補正手段と、前記開回路電圧測定手段で測定された開回路電圧OCVから、前記バッテリの内部抵抗の増大率がバッテリ交換のための所定値に達するときの前記バッテリのエンジン始動時の電圧を表すバッテリ判定電圧Vst_thを演算する判定電圧演算手段と、前記エンジン始動電圧補正手段で演算された前記エンジン始動電圧Vst1が前記判定電圧演算手段で測定されたバッテリ判定電圧Vst_th以上かを判定する電池状態判定手段と、を備え、前記開回路電圧測定手段は、前記バッテリから暗電流が流れているときの安定した開回路電圧OCVを測定し、前記エンジン始動電圧補正手段及び前記判定電圧演算手段は、前記開回路電圧測定手段で測定された開回路電圧OCVに、温度の関数である補正量を加算して得た補正後の開回路電圧OCV1を用いて前記エンジン始動電圧Vst1及び前記バッテリ判定電圧Vst_thを演算し、前記エンジン始動電圧補正手段は、エンジン停止から所定時間以上経過後に前記バッテリ温度測定手段で測定されたバッテリの温度を前記車両の温度とみなして前記エンジン始動電圧Vst1を演算することを特徴とする。 In order to solve the above problems, a second aspect of the present invention provides an open circuit voltage for measuring an open circuit voltage OCV of a battery in a battery state determination device for determining a battery state of a battery mounted on a vehicle. Measured by a measuring means, an engine starting voltage measuring means for measuring an engine starting voltage Vst representing a voltage at the time of starting the engine of the battery, a battery temperature measuring means for measuring the temperature of the battery, and the open circuit voltage measuring means. Engine starting voltage correcting means for calculating an engine starting voltage Vst1 obtained by correcting the engine starting voltage Vst measured by the engine starting voltage measuring means based on the open circuit voltage OCV and the vehicle temperature; and the open circuit voltage measuring means From the open circuit voltage OCV measured in step 1, the increase rate of the internal resistance of the battery reaches a predetermined value for battery replacement. A determination voltage calculating means for calculating a battery determination voltage Vst_th representing a voltage at the time of engine start of the battery, and the engine starting voltage Vst1 calculated by the engine starting voltage correcting means is measured by the determination voltage calculating means. Battery state determination means for determining whether or not the battery determination voltage is greater than or equal to the battery determination voltage Vst_th, wherein the open circuit voltage measurement means measures a stable open circuit voltage OCV when dark current is flowing from the battery, and the engine The starting voltage correcting means and the determination voltage calculating means use the corrected open circuit voltage OCV1 obtained by adding a correction amount that is a function of temperature to the open circuit voltage OCV measured by the open circuit voltage measuring means. the calculated engine starting voltage Vst1 and the battery determination voltage Vst_th Te, the engine starting voltage correcting means The measured temperature of the battery by the battery temperature measuring means after a lapse of a predetermined time from the engine stop is regarded as the temperature of the vehicle, characterized in that computing the engine starting voltage Vst1.

第2の態様は、第1の態様の車両温度測定手段に代えて、バッテリの温度を測定するバッテリ温度測定手段を備え、エンジン始動電圧補正手段が、エンジン停止から所定時間以上経過後にバッテリ温度測定手段で測定されたバッテリの温度を車両の温度とみなしてエンジン始動電圧Vst1を演算するものである。このような態様でも第1の態様と同様の作用、効果を得ることができることに加え、第1の態様のように、例えば、スタータ等の車両の温度を直接計測する必要がないため、電池状態判定装置を装着する際の手間を大幅に省くことができると共に、車両温度の測定位置から電池状態判定装置までのリード線の長さを短くすることができ、ノイズ等の影響を小さくすることができる。   The second aspect includes battery temperature measurement means for measuring the battery temperature instead of the vehicle temperature measurement means of the first aspect, and the engine start voltage correction means measures the battery temperature after a predetermined time or more has elapsed since the engine stopped. The engine starting voltage Vst1 is calculated by regarding the battery temperature measured by the means as the vehicle temperature. In such an aspect, in addition to being able to obtain the same operations and effects as the first aspect, it is not necessary to directly measure the temperature of a vehicle such as a starter, as in the first aspect. It is possible to save a lot of time and effort when mounting the determination device, and to shorten the length of the lead wire from the vehicle temperature measurement position to the battery state determination device, thereby reducing the influence of noise and the like. it can.

上記第1及び第2の態様において、エンジン始動電圧補正手段が、車両の温度をT、温度補正の基準温度をT0、エンジン始動時の車両の電気抵抗を基準温度T0での値に補正するための温度補正係数をα、0.9〜1.1の範囲をとる定数をAとしたときに、エンジン始動電圧Vst1を下記式(1)により演算するようにしてもよい。   In the first and second aspects, the engine start voltage correction means corrects the vehicle temperature to T, the temperature correction reference temperature to T0, and the vehicle electric resistance at the time of engine start to a value at the reference temperature T0. The engine starting voltage Vst1 may be calculated by the following equation (1), where α is the temperature correction coefficient and A is a constant that takes a range of 0.9 to 1.1.

Figure 0004702115
Figure 0004702115

このとき、温度補正係数αが銅線の電気抵抗の温度補正係数であることが好ましい。   At this time, the temperature correction coefficient α is preferably a temperature correction coefficient of the electrical resistance of the copper wire.

また、上記第1及び第2の態様において、判定電圧演算手段が、新品のバッテリの開回路電圧OCV=OCV0(12.4V≦OCV0≦13.0V)での内部抵抗をr0、バッテリ交換のためのバッテリの内部抵抗しきい値をr_th、車両の電気抵抗をR、0.9〜1.1の範囲をとる定数をBとしたときに、バッテリ交換判定電圧Vst_thを下記式(2)により演算するようにしてもよい。   Further, in the first and second aspects, the determination voltage calculation means sets the internal resistance at the open circuit voltage OCV = OCV0 (12.4V ≦ OCV0 ≦ 13.0V) of a new battery to r0, for battery replacement When the internal resistance threshold value of the battery is r_th, the electric resistance of the vehicle is R, and the constant taking a range of 0.9 to 1.1 is B, the battery replacement determination voltage Vst_th is calculated by the following equation (2). You may make it do.

Figure 0004702115
Figure 0004702115

この場合に、式(2)の(r_th/r0)を1.2〜1.6の範囲内の定数として演算すれば、内部抵抗しきい値r_thや内部抵抗r0を測定する必要がなく、電池状態判定装置に電流センサを備える必要がなくなるため、電池状態判定装置の低コスト化を図ることができる。このとき、新品のバッテリの開回路電圧OCVがOCV0をとるときのエンジン始動電圧VstをVst0としたときに、式(2)の(r0/R)を下記式(3)により演算すれば、車両の電気抵抗Rが未知であってもバッテリ判定電圧Vst_thを演算することが可能となる。更に、式(3)のエンジン始動電圧Vst0を下記式(4)により演算することが好ましい。   In this case, if (r_th / r0) in equation (2) is calculated as a constant within the range of 1.2 to 1.6, it is not necessary to measure the internal resistance threshold value r_th or the internal resistance r0, and the battery Since it is not necessary to provide a current sensor in the state determination device, the cost of the battery state determination device can be reduced. At this time, when the engine start voltage Vst when the open circuit voltage OCV of the new battery takes OCV0 is Vst0, the vehicle can be obtained by calculating (r0 / R) of the equation (2) by the following equation (3). Even if the electrical resistance R is unknown, the battery determination voltage Vst_th can be calculated. Furthermore, it is preferable to calculate the engine start voltage Vst0 of the formula (3) by the following formula (4).

Figure 0004702115
Figure 0004702115

Figure 0004702115
Figure 0004702115

また、上記第1の態様において、バッテリの温度を測定するバッテリ温度測定手段を更に備え、エンジン始動電圧補正手段が、バッテリ温度測定手段で測定されたバッテリの温度と1対1に対応する補正量をエンジン始動電圧Vst1に加算してエンジン始動電圧Vst1を更に補正するか、又は、上記第2の態様において、エンジン始動電圧補正手段が、バッテリ温度測定手段で測定されたバッテリの温度と1対1に対応する補正量をエンジン始動電圧Vst1に加算してエンジン始動電圧Vst1を更に補正すれば、バッテリの温度による影響も排除されるため、バッテリの電池状態をより高精度に判定することができる。   The first aspect further includes battery temperature measuring means for measuring the temperature of the battery, and the engine starting voltage correcting means has a correction amount corresponding to the battery temperature measured by the battery temperature measuring means in a one-to-one relationship. Is added to the engine starting voltage Vst1 to further correct the engine starting voltage Vst1, or in the second aspect, the engine starting voltage correcting means has a one-to-one correspondence with the battery temperature measured by the battery temperature measuring means. If the engine starting voltage Vst1 is further corrected by adding the correction amount corresponding to the above to the engine starting voltage Vst1, the influence of the battery temperature is also eliminated, so that the battery state of the battery can be determined with higher accuracy.

本発明によれば、エンジン始動電圧補正手段によりエンジン始動電圧Vstを車両の温度の影響を考慮して補正したエンジン始動電圧Vst1が演算され、電池状態判定手段により、エンジン始動電圧Vst1がバッテリ判定電圧Vst_th以上かが判断されるので、電池状態の判定にあたり車両の温度による影響が排除されるため、バッテリの電池状態を正確に判定することができるとともに、開回路電圧測定手段が、バッテリから暗電流が流れているときの安定した開回路電圧OCVを測定し、エンジン始動電圧補正手段及び判定電圧演算手段が、開回路電圧測定手段で測定された開回路電圧OCVに、温度の関数である補正量を加算して得た補正後の開回路電圧OCV1を用いてエンジン始動電圧Vst1及びバッテリ判定電圧Vst_thを演算するため、開回路電圧OCVも温度補正されるので、バッテリの電池状態を更に高精度に判定することができる、という効果を得ることができる。 According to the present invention, the engine starting voltage Vst1 obtained by correcting the engine starting voltage Vst in consideration of the influence of the vehicle temperature is calculated by the engine starting voltage correcting means, and the engine starting voltage Vst1 is calculated by the battery state determining means. Since it is determined whether or not Vst_th or more, the influence of the temperature of the vehicle is eliminated in determining the battery state, so that the battery state of the battery can be accurately determined , and the open circuit voltage measuring means can detect the dark current from the battery. A stable open circuit voltage OCV when the engine is flowing is measured, and the engine starting voltage correcting means and the determination voltage calculating means add a correction amount that is a function of temperature to the open circuit voltage OCV measured by the open circuit voltage measuring means. The engine start voltage Vst1 and the battery determination voltage Vs using the corrected open circuit voltage OCV1 obtained by adding For calculating the - th, since the open circuit voltage OCV is also the temperature correction can be determined more accurate battery state of the battery, the effect can be obtained as.

以下、図面を参照して、本発明を、ガソリン車に搭載された鉛電池の電池状態を判定する電池状態判定装置に適用した実施の形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a battery state determination apparatus that determines a battery state of a lead battery mounted on a gasoline vehicle will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の電池状態判定装置12は、鉛電池1の温度を測定するサーミスタ等の温度センサ2、差動増幅回路等を有し鉛電池1の両端電圧を測定する電圧センサ3及び鉛電池1の電池状態を判定するマイクロコンピュータ(以下、マイコンという。)10を備えている。
(Constitution)
As shown in FIG. 1, the battery state determination device 12 of the present embodiment includes a temperature sensor 2 such as a thermistor that measures the temperature of the lead battery 1, a differential amplifier circuit, and the like, and measures the voltage across the lead battery 1. A microcomputer (hereinafter referred to as a microcomputer) 10 for determining the battery state of the voltage sensor 3 and the lead battery 1 is provided.

鉛電池1は、電池容器となる角型の電槽を有している。電槽の材質には、成形性、電気的絶縁性、耐腐食性及び耐久性等の点で優れる、例えば、アクリルブタジエンスチレン(ABS)、ポリプロピレン(PP)、ポリエチレン(PE)等の高分子樹脂を選択することができる。電槽の中央部の隔壁にはセンサ挿入孔が形成されている。センサ挿入孔には温度センサ2が挿入されており、接着剤でセンサ挿入孔内に固定されている。電槽には合計6組の極板群が収容されている。各極板群は、複数枚の負極板及び正極板がガラス繊維からなるリテーナ(セパレータ)を介して積層されており、セル電圧は2.0Vとされている。従って、鉛電池1の公称電圧は12Vである。電槽の上部は、電槽の上部開口部を密閉するABS、PP、PE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池を電源として外部へ電力を供給するためのロッド状正極外部出力端子及び負極外部出力端子が立設されている。   The lead battery 1 has a rectangular battery case serving as a battery container. The battery case material is excellent in terms of moldability, electrical insulation, corrosion resistance and durability, for example, polymer resins such as acrylic butadiene styrene (ABS), polypropylene (PP), polyethylene (PE), etc. Can be selected. A sensor insertion hole is formed in the partition wall at the center of the battery case. The temperature sensor 2 is inserted into the sensor insertion hole, and is fixed in the sensor insertion hole with an adhesive. A total of six sets of electrode plates are accommodated in the battery case. In each electrode plate group, a plurality of negative electrode plates and positive electrode plates are laminated via a retainer (separator) made of glass fiber, and the cell voltage is set to 2.0V. Therefore, the nominal voltage of the lead battery 1 is 12V. The upper part of the battery case is bonded or welded to an upper lid made of a polymer resin such as ABS, PP, PE or the like that seals the upper opening of the battery case. A rod-shaped positive external output terminal and a negative external output terminal for supplying electric power to the outside using a lead battery as a power source are erected on the upper lid.

上述した鉛電池1の正極外部出力端子は、イグニッションスイッチ(以下、IGNスイッチという。)5の中央端子に接続されている。IGNスイッチ5は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。   The positive external output terminal of the lead battery 1 described above is connected to the center terminal of an ignition switch (hereinafter referred to as IGN switch) 5. The IGN switch 5 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the central terminal, and the central terminal and any of these OFF, ON / ACC, and START terminals can be switched in a rotary manner. Is possible.

START端子はエンジン始動用セルモータ(エンジン始動用スタータ)9に接続されている。セルモータ9は、図示しないクラッチ機構を介してエンジン8の回転軸に回転駆動力の伝達が可能である。   The START terminal is connected to an engine starting cell motor (engine starting starter) 9. The cell motor 9 can transmit a rotational driving force to the rotating shaft of the engine 8 via a clutch mechanism (not shown).

また、ON/ACC端子は、エアコン、ラジオ、ランプ等の補機6及び一方向への電流の流れを許容するダイオードを介してエンジン8の回転により発電する発電機7の一端に接続されている。すなわち、ダイオードのアノードは発電機7の一端に、カソードはON/ACC端子に接続されている。エンジン8の回転軸は、不図示のクラッチ機構を介して発電機7に動力の伝達が可能である。このため、エンジン8が回転状態にあるときは、不図示のクラッチ機構を介して発電機7が作動し発電機7からの電力が補機6や鉛電池1に供給(充電)される。なお、OFF端子はいずれにも接続されていない。   The ON / ACC terminal is connected to one end of a generator 7 that generates electric power by rotation of the engine 8 through an auxiliary device 6 such as an air conditioner, a radio, a lamp, etc. and a diode that allows current flow in one direction. . That is, the anode of the diode is connected to one end of the generator 7, and the cathode is connected to the ON / ACC terminal. The rotating shaft of the engine 8 can transmit power to the generator 7 via a clutch mechanism (not shown). For this reason, when the engine 8 is in a rotating state, the generator 7 is operated via a clutch mechanism (not shown), and the electric power from the generator 7 is supplied (charged) to the auxiliary machine 6 and the lead battery 1. Note that the OFF terminal is not connected to any of them.

鉛電池1の外部出力端子は、電圧センサ3に接続されており、電圧センサ3の出力側はマイコン10に内蔵されたA/Dコンバータに接続されている。このため、マイコン10は、鉛電池1の電圧をデジタル値で取り込むことができる。また、温度センサ2の出力端子は、マイコン10に内蔵されたA/Dコンバータに接続されている。このため、マイコン10は、鉛電池1の温度をデジタル値で取り込むことができる。なお、マイコン11は、I/Oを介して上位の車両制御システム11と通信可能である。   An external output terminal of the lead battery 1 is connected to the voltage sensor 3, and an output side of the voltage sensor 3 is connected to an A / D converter built in the microcomputer 10. For this reason, the microcomputer 10 can take in the voltage of the lead battery 1 as a digital value. The output terminal of the temperature sensor 2 is connected to an A / D converter built in the microcomputer 10. For this reason, the microcomputer 10 can capture the temperature of the lead battery 1 as a digital value. The microcomputer 11 can communicate with the host vehicle control system 11 via the I / O.

マイコン10は、中央演算処理装置として機能するCPU、電池状態判定装置12の基本制御プログラムや後述するマップ及び数式等のプログラムデータが格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM等を含んで構成されている。また、マイコン10の外部バスには、不図示のEEPROM等の不揮発性メモリが接続されている。発電機7、セルモータ9及び補機6の他端、鉛電池1の負極外部出力端子及びマイコンは、それぞれグランドに接続されている。なお、本実施形態のマイコン10は、電圧及び温度を1m秒間隔でサンプリングし、サンプリング結果をRAMに格納する。   The microcomputer 10 functions as a CPU that functions as a central processing unit, a ROM that stores program data such as a basic control program of the battery state determination device 12 and maps and mathematical expressions described later, and a work area of the CPU and temporarily stores data. It includes a RAM and the like for storing. A non-volatile memory such as an EEPROM (not shown) is connected to the external bus of the microcomputer 10. The other end of the generator 7, the cell motor 9 and the auxiliary machine 6, the negative external output terminal of the lead battery 1, and the microcomputer are each connected to the ground. Note that the microcomputer 10 of the present embodiment samples the voltage and temperature at 1-msec intervals and stores the sampling result in the RAM.

(動作)
次に、フローチャートを参照して、本実施形態の電池状態判定装置12の動作について、マイコン10のCPUを主体として説明する。マイコン10に電源が投入されると、CPUは、図2に示す鉛電池1の電池状態を判定するための電池状態判定ルーチンを実行する。なお、ROMに格納されたプログラムやプログラムデータは、マイコン10への電源投入後の図示しない初期設定処理によりRAMに展開される。
(Operation)
Next, with reference to a flowchart, the operation of the battery state determination device 12 of the present embodiment will be described with the CPU of the microcomputer 10 as a main component. When the microcomputer 10 is powered on, the CPU executes a battery state determination routine for determining the battery state of the lead battery 1 shown in FIG. The program and program data stored in the ROM are expanded in the RAM by an initial setting process (not shown) after turning on the power to the microcomputer 10.

図2に示すように、電池状態判定ルーチンでは、ステップ102において、鉛電池1が放電している間(車両の運転中)放電分極が蓄積されているため、分極が解消された状態にならないため、鉛電池1の電圧が安定するまで待機する。すなわち、エンジン停止後所定時間(例えば、6時間)が経過したかを判定することにより、鉛電池1の電圧が安定したと判断する。エンジン8が停止したか否かは、例えば、車両制御システム11から報知を受けてもよいし、電圧センサ3で測定した鉛電池1の電圧を監視してマイコン10側でエンジン停止を判断するようにしてもよい。   As shown in FIG. 2, in the battery state determination routine, in step 102, the discharge polarization is accumulated while the lead battery 1 is being discharged (during driving of the vehicle), so that the polarization is not released. Wait until the voltage of the lead battery 1 is stabilized. That is, it is determined that the voltage of the lead battery 1 is stable by determining whether a predetermined time (for example, 6 hours) has elapsed after the engine is stopped. Whether the engine 8 has stopped may be notified from the vehicle control system 11, for example, or the microcomputer 10 may determine whether the engine has stopped by monitoring the voltage of the lead battery 1 measured by the voltage sensor 3. It may be.

次のステップ104では、鉛電池1の開回路電圧OCVを測定する。すなわち、電圧センサ3から出力された鉛電池1の電圧をA/Dコンバータを介してデジタル値で取り込む。次にステップ106では、温度センサ2から出力された鉛電池1の温度をA/Dコンバータを介してデジタル値で取り込み、図4に示すように、温度補正マップにより、測定された開回路電圧OCVに温度の補正関数である補正量を加算して得た補正後の開回路電圧OCV1を演算する。エンジン停止中も鉛電池1には暗電流が流れているため、鉛電池1の電圧は実際の開回路電圧OCVより低い値となり、低温になればなるほど、実際の開回路電圧OCVとの差が大きくなる。このため、ステップ106では、図4に示した温度補正量を鉛電池1の開回路電圧OCVを加算して、より正確な補正後の開回路電圧OCV1を演算している。このような温度補正マップは、電池設計、電池劣化や車両の暗電流に応じて変えることが望ましい。暗電流を知ることができない場合は、図4に示したように、10〜20mAの暗電流で想定される補正マップを利用すると、多くの車両で良好な結果が得られる。   In the next step 104, the open circuit voltage OCV of the lead battery 1 is measured. That is, the voltage of the lead battery 1 output from the voltage sensor 3 is captured as a digital value via the A / D converter. Next, in step 106, the temperature of the lead battery 1 output from the temperature sensor 2 is acquired as a digital value via the A / D converter, and as shown in FIG. 4, the measured open circuit voltage OCV is measured according to the temperature correction map. A corrected open circuit voltage OCV1 obtained by adding a correction amount which is a temperature correction function is calculated. Since the dark current flows through the lead battery 1 even when the engine is stopped, the voltage of the lead battery 1 is lower than the actual open circuit voltage OCV. The lower the temperature, the more the difference from the actual open circuit voltage OCV is. growing. Therefore, in step 106, the open circuit voltage OCV1 of the lead battery 1 is added to the temperature correction amount shown in FIG. Such a temperature correction map is desirably changed according to battery design, battery deterioration, and vehicle dark current. In the case where the dark current cannot be known, as shown in FIG. 4, if a correction map assumed for a dark current of 10 to 20 mA is used, good results can be obtained in many vehicles.

次いで、ステップ108において、鉛電池1の電圧安定後の最初のエンジン始動か否かを判断する。否定判断のときは、ステップ102へ戻り、肯定判断のときは、ステップ110でエンジン始動電圧Vstを測定する。上述したように、マイコン10は、エンジン始動時の鉛電池1の電圧を1m秒間隔でサンプリングしたRAMに格納しているため、RAMに格納された電圧値が一定値(例えば、9V)より下回った場合の最小値をエンジン始動電圧Vstと決定することが可能である。   Next, at step 108, it is determined whether or not the engine is first started after the voltage of the lead battery 1 is stabilized. When the determination is negative, the process returns to step 102, and when the determination is affirmative, the engine start voltage Vst is measured at step 110. As described above, since the microcomputer 10 stores the voltage of the lead battery 1 at the time of engine start in the RAM sampled at an interval of 1 msec, the voltage value stored in the RAM falls below a certain value (for example, 9V). In this case, the minimum value can be determined as the engine start voltage Vst.

次のステップ112では、ステップ106で温度補正した開回路電圧OCV及び車両の温度に基づいて、エンジン始動電圧Vstを補正したエンジン始動電圧Vst1を演算する。ここで、エンジン始動電圧Vst1の演算意義と演算式について詳述する。   In the next step 112, the engine start voltage Vst1 corrected from the engine start voltage Vst is calculated based on the open circuit voltage OCV corrected in step 106 and the vehicle temperature. Here, the calculation significance and calculation formula of the engine start voltage Vst1 will be described in detail.

図6に示したエンジン始動時の電圧は、車両の電気抵抗と機械抵抗に依存し、これら双方は温度の影響を受ける。機械抵抗の温度依存性は予測困難であるが、電気抵抗は導体の材質を仮定することで予測可能である。機械抵抗の影響を排除することは、ピストンがまだ殆ど動き始めていないと思われる最初の大きく電圧が低下した際のエンジン始動電圧Vst(ステップ110で測定したエンジン始動電圧Vst)を利用することで可能である。更に、エンジン始動電圧Vstを次式(1)で基準温度(例えば、室温の25°C)での値に補正することで電気抵抗の電圧への影響も排除することができる。   The voltage at the time of starting the engine shown in FIG. 6 depends on the electrical resistance and mechanical resistance of the vehicle, both of which are affected by temperature. The temperature dependence of the mechanical resistance is difficult to predict, but the electrical resistance can be predicted by assuming the material of the conductor. It is possible to eliminate the influence of mechanical resistance by using the engine start voltage Vst (the engine start voltage Vst measured in step 110) when the first large voltage drop that the piston seems to have hardly started moving is possible. It is. Further, by correcting the engine starting voltage Vst to a value at a reference temperature (for example, 25 ° C. of room temperature) by the following equation (1), it is possible to eliminate the influence of the electric resistance on the voltage.

Figure 0004702115
Figure 0004702115

式(1)において、OCVはステップ106で温度補正を行った開回路電圧(OCV1)、Tは車両(例えば、セルモータ9)の温度、T0は上述した基準温度、Aは0.9〜1.1の範囲をとる定数(本例では1.0に設定されている。)、αはエンジン始動時の車両の電気抵抗をT0での値に補正する温度補正係数である。温度補正係数αには、例えば、軟銅線(JIS C3102)での値を利用すると良好な補正が期待できる。   In the equation (1), OCV is the open circuit voltage (OCV1) subjected to temperature correction in step 106, T is the temperature of the vehicle (for example, the cell motor 9), T0 is the reference temperature described above, and A is 0.9 to 1.. A constant taking a range of 1 (set to 1.0 in this example), α is a temperature correction coefficient for correcting the electric resistance of the vehicle at the time of engine start to a value at T0. For the temperature correction coefficient α, for example, a good correction can be expected by using a value of an annealed copper wire (JIS C3102).

車両の温度Tは、図1に示すように、本来、セルモータ9の温度を温度センサ4で測定することが望ましいが、エンジン停止から充分時間がたてばセルモータ9と周辺の車両部品の温度とはほぼ同じになるので、本実施形態では、前回エンジン停止から充分長い規定時間経過しているか判断し(本例ではステップ102で6時間経過を判断している。)、エンジン停止中又はエンジン始動直後に鉛電池1の温度を測定し(ステップ106参照)、車両の温度Tとして利用している。   As shown in FIG. 1, it is desirable that the temperature of the cell motor 9 is originally measured by the temperature sensor 4 as shown in FIG. 1. However, if sufficient time elapses after the engine is stopped, the temperature of the cell motor 9 and the surrounding vehicle parts are In this embodiment, it is determined whether a sufficiently long specified time has elapsed since the previous engine stop (in this example, 6 hours have been determined in step 102), and the engine is stopped or the engine is started. Immediately after that, the temperature of the lead battery 1 is measured (see step 106) and used as the temperature T of the vehicle.

次にステップ114では、エンジン始動電圧Vst1を、更に、電池特性の温度依存性を考慮して補正する。この補正は、図5に示すように、温度補正マップにより、温度補正量をエンジン始動電圧Vst1に加算することで行う。図5に示す温度補正マップは、使用する鉛電池により変動する。放電電圧は電流の関数であり温度特性も多少異なるので、電流情報を入手できる(電流センサを備えた)電池状態判定装置の場合には電流ごとに温度補正量を規定することで精度をより向上させることができる。実際に通常の自動車でのエンジン始動時の突入電流500〜900Aで温度補正係数は大きく違わないため、特に電流センサを付加しなくても実用に耐える電池状態判定装置が実現できる。   Next, at step 114, the engine starting voltage Vst1 is further corrected in consideration of the temperature dependence of the battery characteristics. As shown in FIG. 5, this correction is performed by adding the temperature correction amount to the engine start voltage Vst1 using the temperature correction map. The temperature correction map shown in FIG. 5 varies depending on the lead battery used. Discharge voltage is a function of current and temperature characteristics are slightly different, so in the case of a battery status determination device (with a current sensor) where current information can be obtained, accuracy is further improved by specifying a temperature correction amount for each current Can be made. Actually, since the temperature correction coefficient does not differ greatly depending on the inrush current of 500 to 900 A at the time of engine start in a normal automobile, a battery state determination device that can withstand practical use can be realized without adding a current sensor.

次のステップ116では、エンジン始動回数が5回未満、かつ、開回路電圧OCVが12.5Vを越えるか否かを判断する。換言すれば、鉛電池1が無劣化(新品)、かつ、満充電状態か否かを判断する。肯定判断のときは、ステップ118で、鉛電池1が無劣化かつ満充電状態でのエンジン始動電圧Vst0を下式(4)により演算しEEPROMに格納する。このエンジン始動電圧Vst0について換言すれば、無劣化(新品)かつ満充電状態での開回路電圧OCV0(12.4V≦OCV0≦13.0V)でのエンジン始動時の電圧である。   In the next step 116, it is determined whether or not the number of engine starts is less than 5 and the open circuit voltage OCV exceeds 12.5V. In other words, it is determined whether or not the lead battery 1 is not deteriorated (new) and is fully charged. If the determination is affirmative, in step 118, the engine start voltage Vst0 when the lead battery 1 is not deteriorated and fully charged is calculated by the following equation (4) and stored in the EEPROM. In other words, the engine starting voltage Vst0 is a voltage at the time of starting the engine at an open circuit voltage OCV0 (12.4V ≦ OCV0 ≦ 13.0V) in a non-deteriorated (new) and fully charged state.

Figure 0004702115
Figure 0004702115

また、ステップ116では、EEPROMに既に格納されたエンジン始動電圧Vst0を読み出してエンジン始動電圧Vst0の平均値を演算し、EEPROMに格納する。このため、最終的には、複数回の鉛電池1の無劣化かつ満充電状態でのエンジン始動電圧Vst0の平均値が演算され、EEPROMに格納される。   In step 116, the engine starting voltage Vst0 already stored in the EEPROM is read out, an average value of the engine starting voltage Vst0 is calculated, and stored in the EEPROM. For this reason, finally, the average value of the engine start voltage Vst0 when the lead battery 1 is not deteriorated and fully charged a plurality of times is calculated and stored in the EEPROM.

次いで、ステップ120では、無劣化かつ満充電状態での鉛電池1の開回路電圧OCV0での内部抵抗をr0、車両の電気抵抗Rとしたときの(r0/R)を下式(3)により演算しEEPROMに格納する。また、ステップ120では、EEPROMに既に格納された(r0/R)を読み出して(r0/R)の平均値を演算し、EEPROMに格納する。このため、最終的に、複数回の鉛電池1の無劣化かつ満充電状態での(r0/R)の平均値が演算され、EEPROMに格納される。   Next, at step 120, (r0 / R) when the internal resistance at the open circuit voltage OCV0 of the lead battery 1 in the non-degraded and fully charged state is r0 and the electric resistance R of the vehicle is expressed by the following equation (3). Calculate and store in EEPROM. In step 120, (r0 / R) already stored in the EEPROM is read out, an average value of (r0 / R) is calculated, and stored in the EEPROM. For this reason, finally, the average value of (r0 / R) in the non-degraded and fully charged state of the lead battery 1 a plurality of times is calculated and stored in the EEPROM.

Figure 0004702115
Figure 0004702115

次に、ステップ122では、下式(2)により、ステップ106で温度補正された開回路電圧から、鉛電池1の内部抵抗の増大率が電池交換のための所定値に達するときの鉛電池1のエンジン始動時の電圧を表すバッテリ判定電圧Vst_thが演算される。ステップ118、120で演算されたエンジン始動電圧Vst0及び(r0/R)の平均値はEEPROMから読み出され、式(2)に代入される。なお、式(2)において、OCVはステップ106で温度補正を行った開回路電圧(OCV1)、r_thはバッテリ交換のためのバッテリの内部抵抗しきい値、Bは0.9〜1.1の範囲をとる定数(本例では1.0に設定されている。)、(r_th/r0)は1.2〜1.6の範囲内の定数(本例では1.4に設定されている。)、すなわち、新品からの鉛電池1の内部抵抗の増大率を表している。   Next, in step 122, the lead battery 1 when the increase rate of the internal resistance of the lead battery 1 reaches a predetermined value for battery replacement from the open circuit voltage corrected in temperature in step 106 by the following equation (2). The battery determination voltage Vst_th representing the voltage at the time of engine start is calculated. The average values of the engine starting voltages Vst0 and (r0 / R) calculated in steps 118 and 120 are read from the EEPROM and substituted into the equation (2). In equation (2), OCV is the open circuit voltage (OCV1) that has been temperature-corrected in step 106, r_th is the internal resistance threshold value of the battery for battery replacement, and B is 0.9 to 1.1. A constant that takes a range (set to 1.0 in this example) and (r_th / r0) are set to a constant in the range of 1.2 to 1.6 (1.4 in this example). ), That is, the increase rate of the internal resistance of the new lead battery 1.

Figure 0004702115
Figure 0004702115

ここで、式(2)〜(4)の関係について説明する。式(2)には、車両の電気抵抗Rが含まれている。車種毎に異なる車両の電気抵抗Rを実際に測定し、ROMないしEEPROMに書き込むことは、理論的には可能であるが、商用上の問題としては難しい。一方、(r0/R)は式(3)で算出可能である。式(3)において、Vst0はOCV=OCV0でのVst(本例ではVst1)である。実際にはVst取得時のOCVが都合よくOCV0になることは少ないため、式(4)によりOCV0でのVst0に補正し、式(4)、式(3)を式(2)に代入することで、車両の電気抵抗Rを知る術が無くても、バッテリ判定電圧Vst_thの演算を可能としている。   Here, the relationship of Formula (2)-(4) is demonstrated. Expression (2) includes the electric resistance R of the vehicle. Although it is theoretically possible to actually measure the electric resistance R of a different vehicle for each vehicle type and write it in the ROM or EEPROM, it is difficult as a commercial problem. On the other hand, (r0 / R) can be calculated by equation (3). In Formula (3), Vst0 is Vst (OCst1 in this example) when OCV = OCV0. Actually, the OCV at the time of Vst acquisition is unlikely to become OCV0 conveniently, so it is corrected to Vst0 at OCV0 by equation (4), and equations (4) and (3) are substituted into equation (2). Thus, the battery determination voltage Vst_th can be calculated even without knowing the electric resistance R of the vehicle.

ステップ124では、ステップ116での判断に備えるために、エンジン始動回数をカウントし、次のステップ126において、エンジン始動電圧Vst1がバッテリ判定電圧Vst_th以上か否かを判断する。このエンジン始動電圧Vstとバッテリ判定電圧Vst_thとの比較は、バッテリ判定電圧Vst_thを定義する式(2)の形から分るように、新品からの内部抵抗の増大率(r_th/r0)が所定値に達したか否かを判別することに相当する。上述したように、新品からの鉛電池1の内部抵抗の増大率(r_th/r0)は1.2〜1.6の範囲内の定数(本例では1.4)に設定されるが、この範囲未満となると、正常な電池でも保証期間内で警告が出る恐れがあり、この範囲を越えると警告を車両制御システム11側に出す前にエンジン始動不能になる可能性がある。内部抵抗は充電状態の関数のため、警告を発するときの内部抵抗しきい値r_thは開回路電圧OCVの関数として定義されている。   In step 124, in order to prepare for the determination in step 116, the number of engine start is counted, and in the next step 126, it is determined whether or not the engine start voltage Vst1 is equal to or higher than the battery determination voltage Vst_th. The comparison between the engine start voltage Vst and the battery determination voltage Vst_th indicates that the increase rate (r_th / r0) of the internal resistance from the new product is a predetermined value, as can be seen from the form of equation (2) defining the battery determination voltage Vst_th. Is equivalent to determining whether or not. As described above, the increase rate (r_th / r0) of the internal resistance of the new lead battery 1 is set to a constant within the range of 1.2 to 1.6 (1.4 in this example). If it is less than the range, a warning may be issued within the warranty period even with a normal battery. If this range is exceeded, there is a possibility that the engine cannot be started before issuing the warning to the vehicle control system 11 side. Since the internal resistance is a function of the state of charge, the internal resistance threshold r_th when issuing a warning is defined as a function of the open circuit voltage OCV.

ステップ126での判断が肯定のときは、ステップ128で車両制御システム11に鉛電池1の電池状態が良好である旨を報知し、否定判断のときは、ステップ130で車両制御システム11に鉛電池1の交換を要する旨(の警告)を報知して電池状態判定ルーチンを終了する。なお、図2では、説明を簡単にするために、ステップ128、130での処理により電池状態判定ルーチンが終了する例を示しているが、実際にはステップ102に戻り、鉛電池1の電池状態の判定を続行する。   If the determination in step 126 is affirmative, the vehicle control system 11 is informed in step 128 that the battery state of the lead battery 1 is good, and if the determination is negative, the vehicle control system 11 is notified in step 130 to the lead battery. 1 (warning) that it is necessary to replace 1 is notified and the battery state determination routine is terminated. 2 shows an example in which the battery state determination routine is ended by the processing in steps 128 and 130 for the sake of simplicity, but actually the process returns to step 102 and the battery state of the lead battery 1 is shown. Continue the determination.

鉛電池1の交換を要する旨が報知された車両制御システム11は、インストーメントパネルに鉛電池1の交換を要する旨を表示させる。これにより、ドライバは鉛電池1の交換が必要であることを認識し、車両のサービスステーション等で鉛電池1の交換を行うことが可能となる。なお、車両制御システム11は、鉛電池1の電池状態が良好である旨をインストールメントパネルに表示するようにしてもよい。   The vehicle control system 11 informed that the replacement of the lead battery 1 is required causes the instrument panel to display that the replacement of the lead battery 1 is necessary. As a result, the driver recognizes that the lead battery 1 needs to be replaced, and the lead battery 1 can be replaced at a vehicle service station or the like. The vehicle control system 11 may display on the installation panel that the battery state of the lead battery 1 is good.

(作用等)
次に、本実施形態の電池状態判定装置12の作用、効果等について説明する。
(Action etc.)
Next, operations, effects, and the like of the battery state determination device 12 of the present embodiment will be described.

本実施形態の電池状態判定装置12では、式(1)により、エンジン始動電圧Vstを車両の温度の影響を考慮して補正したエンジン始動電圧Vst1が演算され(ステップ112)、エンジン始動電圧Vst1が鉛電池1の交換を判定するためのバッテリ判定電圧Vst_th以上かが判断される(ステップ126)ので、鉛電池1の劣化による交換判定にあたり車両の温度による影響での誤判定が排除されるため、鉛電池1の電池状態を正確に判定することができる。従って、アイドルストップ・スタート時のいわゆるエンストを防止することができる。   In the battery state determination device 12 of the present embodiment, the engine start voltage Vst1 obtained by correcting the engine start voltage Vst in consideration of the influence of the vehicle temperature is calculated by the equation (1) (step 112), and the engine start voltage Vst1 is calculated. Since it is determined whether or not the battery determination voltage Vst_th or higher for determining the replacement of the lead battery 1 (step 126), the erroneous determination due to the influence of the vehicle temperature is eliminated in the replacement determination due to the deterioration of the lead battery 1. The battery state of the lead battery 1 can be accurately determined. Therefore, the so-called engine stall at the time of idling stop / start can be prevented.

また、本実施形態の電池状態判定装置12では、エンジン停止から所定時間(例えば、6時間)以上経過後に測定された鉛電池1の温度を車両の温度とみなして、式(1)により、エンジン始動電圧Vst1が演算されるので、上述したようにセルモータ9等の車両の温度を直接計測する必要がないため、電池状態判定装置を装着(特に、後付)する際の手間を大幅に省くことができると共に、セルモータ9から電池状態判定装置12までのリード線の長さを短くすることができ、ノイズ等による誤差の影響を小さくすることができる。   Further, in the battery state determination device 12 of this embodiment, the temperature of the lead battery 1 measured after elapse of a predetermined time (for example, 6 hours) or more from the engine stop is regarded as the temperature of the vehicle, and the engine is calculated according to the equation (1). Since the starting voltage Vst1 is calculated, it is not necessary to directly measure the temperature of the vehicle such as the cell motor 9 as described above, so that it is possible to save a lot of time and effort when mounting (particularly, retrofitting) the battery state determination device. In addition, the length of the lead wire from the cell motor 9 to the battery state determination device 12 can be shortened, and the influence of errors due to noise or the like can be reduced.

更に、本実施形態の電池状態判定装置12では、図4に示したように、測定された開回路電圧OCVに温度の補正関数である補正量を加算して得た補正後の開回路電圧OCV1を演算し(ステップ106)、式(1)及び式(2)で、この補正後の開回路電圧OCV1を用いてエンジン始動電圧Vst1、バッテリ判定電圧Vst_thを演算する(ステップ112、122)。このため、電池状態判定装置12は、鉛電池1の電池状態の判定をより正確に行うことができる。また、本実施形態の電池状態判定装置12では、図5に示したように、鉛電池1の温度と1体1に対応する補正量をエンジン始動電圧Vst1に加算してエンジン始動電圧Vst1を更に補正している。このため、鉛電池1の電池状態の判定を更に正確に行うことができる。   Furthermore, in the battery state determination device 12 of the present embodiment, as shown in FIG. 4, the corrected open circuit voltage OCV1 obtained by adding a correction amount that is a temperature correction function to the measured open circuit voltage OCV. Is calculated (step 106), and the engine start voltage Vst1 and the battery determination voltage Vst_th are calculated using the corrected open circuit voltage OCV1 using the equations (1) and (2) (steps 112 and 122). For this reason, the battery state determination device 12 can more accurately determine the battery state of the lead battery 1. Further, in the battery state determination device 12 of the present embodiment, as shown in FIG. 5, the temperature of the lead battery 1 and the correction amount corresponding to one body 1 are added to the engine starting voltage Vst1 to further increase the engine starting voltage Vst1. It is corrected. For this reason, the battery state of the lead battery 1 can be determined more accurately.

なお、本実施形態では、エンジン停止から所定時間以上経過後の鉛電池1の温度を車両の温度とみなしてエンジン始動電圧Vst1を演算する例を示したが、本発明はこれに限定されず、図1に示したように、セルモータ9(車両)の温度を実際に測定する温度センサ4を備えるようにしてもよい。また、本実施形態では、図4、5において、温度に対応する補正量のマップを例示したが、本発明はこれに制限されず、温度と補正量との関係を表す関係式を用いるようにしてもよい。   In the present embodiment, an example in which the engine starting voltage Vst1 is calculated by regarding the temperature of the lead battery 1 after a predetermined time or more from the engine stop as the temperature of the vehicle is shown, but the present invention is not limited to this. As shown in FIG. 1, a temperature sensor 4 that actually measures the temperature of the cell motor 9 (vehicle) may be provided. In this embodiment, the correction amount map corresponding to the temperature is illustrated in FIGS. 4 and 5. However, the present invention is not limited to this, and a relational expression representing the relationship between the temperature and the correction amount is used. May be.

更に、本実施形態では、式(1)、(2)において定数A、Bを1.0に設定した例を示したが、これらの定数は鉛電池1の仕様や鉛電池1が搭載される車両に応じて、0.9〜1.1の範囲で適正な値に変更するようにしてもよい。また、本実施形態では、温度センサ3による温度の測定間隔に電圧測定間隔と同じ1msを例示したが、温度変化は図6に示したようには急峻でないため、例えば、1秒間隔等の電圧測定間隔より長い間隔で測定して測定結果をRAMに記憶し、直近の測定温度を使用するようにしてもよい。   Furthermore, in this embodiment, although the example which set the constants A and B to 1.0 in Formula (1), (2) was shown, the specification of the lead battery 1 and the lead battery 1 are mounted in these constants. Depending on the vehicle, the value may be changed to an appropriate value in the range of 0.9 to 1.1. In the present embodiment, the temperature measurement interval by the temperature sensor 3 is 1 ms, which is the same as the voltage measurement interval. However, the temperature change is not steep as shown in FIG. It is also possible to measure at intervals longer than the measurement interval, store the measurement results in the RAM, and use the latest measurement temperature.

更にまた、本実施形態では、ステップ126〜130において鉛電池1の電池状態を良好、要交換の1段階判定の例を示したが、これに代えて、Vst≧Vst_th1(このときの(r_th/r0)は例えば、1.3に設定される。)か否かを判断し、肯定判断のときに良好と判定し、否定判断のときにVst≧Vst_th2(このときの(r_th/r0)は例えば、1.4に設定される。)かを判断して、肯定判断のときに要注意状態と判断し、否定判断のときに要交換と判断する2段階判定を行うようにしてもよい。   Furthermore, in the present embodiment, in steps 126 to 130, the battery state of the lead battery 1 is good, and an example of one-step determination of replacement is shown, but instead of this, Vst ≧ Vst_th1 ((r_th / r0) is set to 1.3, for example.) is determined to be good when affirmative, and Vst ≧ Vst_th2 (when (r_th / r0) at this time is, for example, In other words, a two-step determination may be performed in which an affirmative determination determines that a state of caution is required and a negative determination indicates replacement is required.

次に、上記実施形態に従って、2000ccのガソリン車に搭載された65B24の電池状態を判定する電池状態判定装置の実施例について説明する。なお、比較のために作製した電池状態判定装置についても併せて説明する。   Next, an example of a battery state determination device that determines the battery state of 65B24 mounted on a 2000 cc gasoline vehicle according to the above embodiment will be described. In addition, the battery state determination apparatus produced for the comparison is also demonstrated.

(実施例1)
6時間間隔をあけ5回エンジン始動させた後、低温恒温室にガソリン車を入れ、0°C、−10°Cの温度下でエンジンを始動させた。インサーキットエミュレータを使用し、電池状態判定装置の内部変数を確認できるものを使用した。温度補正後のエンジン始動電圧Vst1を確認すると下表1に示す値になった。温度補正が充分正確であることがわかる。
Example 1
After starting the engine 5 times at intervals of 6 hours, a gasoline car was put in a low temperature constant temperature room and the engine was started at temperatures of 0 ° C. and −10 ° C. We used an in-circuit emulator that can check the internal variables of the battery status determination device. When the engine starting voltage Vst1 after temperature correction was confirmed, the values shown in Table 1 below were obtained. It can be seen that the temperature correction is sufficiently accurate.

Figure 0004702115
Figure 0004702115

(比較例1)
比較例1の電池状態判定装置では、図3に示すように、車両温度補正及び開回路電圧の温度補正を行わず、実施例1の電池状態判定装置と同様の試験を行った。つまり、図3のフローチャートは、図2のフローチャートのステップ106、112の処理を欠いている。試験結果を表1に示す。比較例1の電池状態判定装置は、実施例1の電池状態判定装置よりも温度補正の誤差が大きい。この結果により、実施例1の電池状態判定装置が電池状態判定の点で優れていることがわかる。
(Comparative Example 1)
In the battery state determination apparatus of Comparative Example 1, as shown in FIG. 3, the same test as the battery state determination apparatus of Example 1 was performed without performing vehicle temperature correction and open circuit voltage temperature correction. That is, the flowchart of FIG. 3 lacks the processing of steps 106 and 112 of the flowchart of FIG. The test results are shown in Table 1. The battery state determination device of Comparative Example 1 has a larger temperature correction error than the battery state determination device of Example 1. This result shows that the battery state determination apparatus of Example 1 is superior in terms of battery state determination.

本発明は車両の温度の影響を考慮してエンジン始動電圧からバッテリの電池状態を正確に算出することができる電池状態判定装置を提供するため、電池状態判定装置の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a battery state determination device that can accurately calculate the battery state of the battery from the engine starting voltage in consideration of the influence of the temperature of the vehicle, it contributes to the manufacture and sale of the battery state determination device. Has industrial applicability.

本発明が適用可能な実施形態の電池状態判定装置及び車両のブロック配線図である。1 is a block wiring diagram of a battery state determination device and a vehicle according to an embodiment to which the present invention is applicable. 実施形態の電池状態判定装置のマイコンのCPUが実行する電池状態判定ルーチンのフローチャートである。It is a flowchart of the battery state determination routine which CPU of the microcomputer of the battery state determination apparatus of embodiment performs. 比較例1の電池状態判定装置のマイコンのCPUが実行する電池状態判定ルーチンのフローチャートである。It is a flowchart of the battery state determination routine which CPU of the microcomputer of the battery state determination apparatus of the comparative example 1 performs. 暗電流通電時の鉛電池の開回路電圧の温度補正量を示すマップである。It is a map which shows the temperature correction amount of the open circuit voltage of the lead battery at the time of dark current energization. エンジン始動電圧Vst1の温度補正量を示すマップである。It is a map which shows the temperature correction amount of the engine starting voltage Vst1. エンジン始動時の鉛電池の電圧変化を示すグラフである。It is a graph which shows the voltage change of the lead battery at the time of engine starting.

符号の説明Explanation of symbols

1 鉛電池(バッテリ)
2 温度センサ(バッテリ温度測定手段の一部)
3 電圧センサ(開回路電圧測定手段の一部、エンジン始動電圧測定手段の一部)
4 温度センサ(車両温度測定手段の一部)
10 マイクロコンピュータ(エンジン始動電圧補正手段、判定電圧演算手段、電池状態判定手段)
12 電池状態判定装置
1 Lead battery (battery)
2 Temperature sensor (part of battery temperature measurement means)
3 Voltage sensor (part of open circuit voltage measurement means, part of engine starting voltage measurement means)
4 Temperature sensor (part of vehicle temperature measurement means)
10 microcomputer (engine starting voltage correction means, determination voltage calculation means, battery state determination means)
12 Battery state determination device

Claims (10)

車両に搭載されたバッテリの電池状態を判定する電池状態判定装置において、
前記バッテリの開回路電圧OCVを測定する開回路電圧測定手段と、
前記バッテリのエンジン始動時の電圧を表すエンジン始動電圧Vstを測定するエンジン始動電圧測定手段と、
前記車両の温度を測定する車両温度測定手段と、
前記開回路電圧測定手段で測定された開回路電圧OCV及び前記車両温度測定手段で測定された車両の温度に基づいて、前記エンジン始動電圧測定手段で測定されたエンジン始動電圧Vstを補正したエンジン始動電圧Vst1を演算するエンジン始動電圧補正手段と、
前記開回路電圧測定手段で測定された開回路電圧OCVから、前記バッテリの内部抵抗の増大率がバッテリ交換のための所定値に達するときの前記バッテリのエンジン始動時の電圧を表すバッテリ判定電圧Vst_thを演算する判定電圧演算手段と、
前記エンジン始動電圧補正手段で演算された前記エンジン始動電圧Vst1が前記判定電圧演算手段で測定されたバッテリ判定電圧Vst_th以上かを判定する電池状態判定手段と、
を備え、前記開回路電圧測定手段は、前記バッテリから暗電流が流れているときの安定した開回路電圧OCVを測定し、前記エンジン始動電圧補正手段及び前記判定電圧演算手段は、前記開回路電圧測定手段で測定された開回路電圧OCVに、温度の関数である補正量を加算して得た補正後の開回路電圧OCV1を用いて前記エンジン始動電圧Vst1及び前記バッテリ判定電圧Vst_thを演算することを特徴とする電池状態判定装置。
In a battery state determination device for determining a battery state of a battery mounted on a vehicle,
Open circuit voltage measuring means for measuring the open circuit voltage OCV of the battery;
Engine starting voltage measuring means for measuring an engine starting voltage Vst representing a voltage at the time of starting the engine of the battery;
Vehicle temperature measuring means for measuring the temperature of the vehicle;
Based on the open circuit voltage OCV measured by the open circuit voltage measuring means and the vehicle temperature measured by the vehicle temperature measuring means, the engine start is corrected by correcting the engine start voltage Vst measured by the engine start voltage measuring means. Engine starting voltage correcting means for calculating the voltage Vst1,
A battery determination voltage Vst_th representing a voltage at the time of starting the engine of the battery when the increase rate of the internal resistance of the battery reaches a predetermined value for battery replacement from the open circuit voltage OCV measured by the open circuit voltage measuring means Determination voltage calculation means for calculating
Battery state determination means for determining whether the engine start voltage Vst1 calculated by the engine start voltage correction means is equal to or higher than the battery determination voltage Vst_th measured by the determination voltage calculation means;
The open circuit voltage measuring means measures a stable open circuit voltage OCV when dark current is flowing from the battery, and the engine starting voltage correcting means and the determination voltage calculating means are the open circuit voltage The engine start voltage Vst1 and the battery determination voltage Vst_th are calculated using the corrected open circuit voltage OCV1 obtained by adding a correction amount that is a function of temperature to the open circuit voltage OCV measured by the measuring means. A battery state determination device.
車両に搭載されたバッテリの電池状態を判定する電池状態判定装置において、
前記バッテリの開回路電圧OCVを測定する開回路電圧測定手段と、
前記バッテリのエンジン始動時の電圧を表すエンジン始動電圧Vstを測定するエンジン始動電圧測定手段と、
前記バッテリの温度を測定するバッテリ温度測定手段と、
前記開回路電圧測定手段で測定された開回路電圧OCV及び車両の温度に基づいて、前記エンジン始動電圧測定手段で測定されたエンジン始動電圧Vstを補正したエンジン始動電圧Vst1を演算するエンジン始動電圧補正手段と、
前記開回路電圧測定手段で測定された開回路電圧OCVから、前記バッテリの内部抵抗の増大率がバッテリ交換のための所定値に達するときの前記バッテリのエンジン始動時の電圧を表すバッテリ判定電圧Vst_thを演算する判定電圧演算手段と、
前記エンジン始動電圧補正手段で演算された前記エンジン始動電圧Vst1が前記判定電圧演算手段で測定されたバッテリ判定電圧Vst_th以上かを判定する電池状態判定手段と、
を備え、前記開回路電圧測定手段は、前記バッテリから暗電流が流れているときの安定した開回路電圧OCVを測定し、前記エンジン始動電圧補正手段及び前記判定電圧演算手段は、前記開回路電圧測定手段で測定された開回路電圧OCVに、温度の関数である補正量を加算して得た補正後の開回路電圧OCV1を用いて前記エンジン始動電圧Vst1及び前記バッテリ判定電圧Vst_thを演算し、前記エンジン始動電圧補正手段は、エンジン停止から所定時間以上経過後に前記バッテリ温度測定手段で測定されたバッテリの温度を前記車両の温度とみなして前記エンジン始動電圧Vst1を演算することを特徴とする電池状態判定装置。
In a battery state determination device for determining a battery state of a battery mounted on a vehicle,
Open circuit voltage measuring means for measuring the open circuit voltage OCV of the battery;
Engine starting voltage measuring means for measuring an engine starting voltage Vst representing a voltage at the time of starting the engine of the battery;
Battery temperature measuring means for measuring the temperature of the battery;
Engine start voltage correction for calculating an engine start voltage Vst1 obtained by correcting the engine start voltage Vst measured by the engine start voltage measurement means based on the open circuit voltage OCV measured by the open circuit voltage measurement means and the vehicle temperature. Means,
A battery determination voltage Vst_th representing a voltage at the time of starting the engine of the battery when the increase rate of the internal resistance of the battery reaches a predetermined value for battery replacement from the open circuit voltage OCV measured by the open circuit voltage measuring means Determination voltage calculation means for calculating
Battery state determination means for determining whether the engine start voltage Vst1 calculated by the engine start voltage correction means is equal to or higher than the battery determination voltage Vst_th measured by the determination voltage calculation means;
The open circuit voltage measuring means measures a stable open circuit voltage OCV when dark current is flowing from the battery, and the engine starting voltage correcting means and the determination voltage calculating means are the open circuit voltage The engine start voltage Vst1 and the battery determination voltage Vst_th are calculated using the corrected open circuit voltage OCV1 obtained by adding a correction amount that is a function of temperature to the open circuit voltage OCV measured by the measuring means, The battery is characterized in that the engine starting voltage correcting means calculates the engine starting voltage Vst1 by regarding the temperature of the battery measured by the battery temperature measuring means as a temperature of the vehicle after a predetermined time or more has elapsed since the engine stopped. State determination device.
前記エンジン始動電圧補正手段は、前記車両の温度をT、温度補正の基準温度をT0、エンジン始動時の前記車両の電気抵抗を前記基準温度T0での値に補正するための温度補正係数をα、0.9〜1.1の範囲をとる定数をAとしたときに、前記エンジン始動電圧Vst1を下記式(1)により演算することを特徴とする請求項1又は請求項2に記載の電池状態判定装置。
Figure 0004702115
The engine start voltage correction means is a temperature correction coefficient for correcting the temperature of the vehicle to T, the reference temperature for temperature correction to T0, and the electric resistance of the vehicle at the time of engine start to a value at the reference temperature T0. The battery according to claim 1 or 2, wherein the engine starting voltage Vst1 is calculated by the following formula (1), where A is a constant taking a range of 0.9 to 1.1. State determination device.
Figure 0004702115
前記温度補正係数αが銅線の電気抵抗の温度補正係数であることを特徴とする請求項3に記載の電池状態判定装置。   4. The battery state determination apparatus according to claim 3, wherein the temperature correction coefficient α is a temperature correction coefficient of electrical resistance of a copper wire. 前記判定電圧演算手段は、新品のバッテリの開回路電圧OCV=OCV0(12.4V≦OCV0≦13.0V)での内部抵抗をr0、バッテリ交換のためのバッテリの内部抵抗しきい値をr_th、車両の電気抵抗をR、0.9〜1.1の範囲をとる定数をBとしたときに、前記バッテリ判定電圧Vst_thを下記式(2)により演算することを特徴とする請求項1又は請求項2に記載の電池状態判定装置。
Figure 0004702115
The determination voltage calculation means has an internal resistance r0 at the open circuit voltage OCV = OCV0 (12.4V ≦ OCV0 ≦ 13.0V) of a new battery, r_th as an internal resistance threshold value of the battery for battery replacement, The battery determination voltage Vst_th is calculated by the following equation (2), where R is the electric resistance of the vehicle and B is a constant taking a range of 0.9 to 1.1. Item 3. The battery state determination device according to Item 2.
Figure 0004702115
前記判定電圧演算手段は、前記式(2)の(r_th/r0)を1.3〜1.6の範囲内の定数として演算することを特徴とする請求項5に記載の電池状態判定装置。   6. The battery state determination device according to claim 5, wherein the determination voltage calculation means calculates (r_th / r0) of the equation (2) as a constant within a range of 1.3 to 1.6. 前記判定電圧演算手段は、新品のバッテリの開回路電圧OCVが前記OCV0をとるときのエンジン始動電圧VstをVst0としたときに、前記式(2)の(r0/R)を下記式(3)により演算することを特徴とする請求項5又は請求項6に記載の電池状態判定装置。
Figure 0004702115
The determination voltage calculation means sets (r0 / R) in the equation (2) to the following equation (3) when the engine start voltage Vst when the open circuit voltage OCV of a new battery takes the OCV0 is Vst0. The battery state determination device according to claim 5, wherein the battery state determination device calculates the battery state.
Figure 0004702115
前記判定電圧演算手段は、前記式(3)のエンジン始動電圧Vst0を下記式(4)により演算することを特徴とする請求項7に記載の電池状態判定装置。
Figure 0004702115
The battery state determination device according to claim 7, wherein the determination voltage calculation means calculates the engine start voltage Vst0 of the equation (3) by the following equation (4).
Figure 0004702115
前記バッテリの温度を測定するバッテリ温度測定手段を更に備え、前記エンジン始動電圧補正手段は、前記バッテリ温度測定手段で測定されたバッテリの温度と1対1に対応する補正量を前記エンジン始動電圧Vst1に加算して前記エンジン始動電圧Vst1を更に補正することを特徴とする請求項1に記載の電池状態判定装置。   Battery temperature measuring means for measuring the temperature of the battery is further provided, and the engine starting voltage correcting means has a correction amount corresponding to the battery temperature measured by the battery temperature measuring means in a one-to-one relationship with the engine starting voltage Vst1. The battery state determination device according to claim 1, wherein the engine start voltage Vst1 is further corrected by adding to the above. 前記エンジン始動電圧補正手段は、前記バッテリ温度測定手段で測定されたバッテリの温度と1対1に対応する補正量を前記エンジン始動電圧Vst1に加算して前記エンジン始動電圧Vst1を更に補正することを特徴とする請求項2に記載の電池状態判定装置。   The engine start voltage correcting means further adds the correction amount corresponding to the battery temperature measured by the battery temperature measuring means to the engine start voltage Vst1 to further correct the engine start voltage Vst1. The battery state determination apparatus according to claim 2, wherein the apparatus is a battery state determination apparatus.
JP2006065280A 2006-03-10 2006-03-10 Battery status judgment device Active JP4702115B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006065280A JP4702115B2 (en) 2006-03-10 2006-03-10 Battery status judgment device
PCT/JP2007/054553 WO2007105595A1 (en) 2006-03-10 2007-03-08 Battery state judging device
US12/282,347 US8036839B2 (en) 2006-03-10 2007-03-08 Battery state determining apparatus
EP07738043.4A EP1995123B1 (en) 2006-03-10 2007-03-08 Battery state judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065280A JP4702115B2 (en) 2006-03-10 2006-03-10 Battery status judgment device

Publications (2)

Publication Number Publication Date
JP2007238001A JP2007238001A (en) 2007-09-20
JP4702115B2 true JP4702115B2 (en) 2011-06-15

Family

ID=38583941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065280A Active JP4702115B2 (en) 2006-03-10 2006-03-10 Battery status judgment device

Country Status (1)

Country Link
JP (1) JP4702115B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163229B2 (en) * 2008-03-28 2013-03-13 新神戸電機株式会社 Battery state detection system and automobile equipped with the same
JP5367320B2 (en) * 2008-07-15 2013-12-11 古河電気工業株式会社 Secondary battery state detection method, state detection device, and secondary battery power supply system
JP5321184B2 (en) * 2009-03-25 2013-10-23 新神戸電機株式会社 Battery diagnostic device and battery
JP2012137297A (en) * 2010-12-24 2012-07-19 Yazaki Corp Battery degradation detecting apparatus
JP2013253809A (en) * 2012-06-05 2013-12-19 Auto Network Gijutsu Kenkyusho:Kk State detection method of secondary battery, rectification circuit and dc/dc converter
JP6435679B2 (en) * 2014-07-17 2018-12-12 株式会社Gsユアサ Lead storage battery deterioration determination device and lead storage battery deterioration determination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025982A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Method of estimating remaining capacity of battery
JP2004042799A (en) * 2002-07-12 2004-02-12 Shin Kobe Electric Mach Co Ltd Battery residual capacity estimating method
JP2005146939A (en) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd Engine startability predicting device and starting secondary battery with it
JP2006015896A (en) * 2004-07-02 2006-01-19 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration and device for estimating degree of deterioration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025982A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Method of estimating remaining capacity of battery
JP2004042799A (en) * 2002-07-12 2004-02-12 Shin Kobe Electric Mach Co Ltd Battery residual capacity estimating method
JP2005146939A (en) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd Engine startability predicting device and starting secondary battery with it
JP2006015896A (en) * 2004-07-02 2006-01-19 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration and device for estimating degree of deterioration

Also Published As

Publication number Publication date
JP2007238001A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP5061907B2 (en) Battery state determination method and battery state determination device
WO2007105595A1 (en) Battery state judging device
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP5338807B2 (en) Battery state determination method and automobile
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP4258348B2 (en) Battery deterioration diagnosis device and on-vehicle power supply control device
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP6674139B2 (en) Vehicle and its battery state detection system
JP4702115B2 (en) Battery status judgment device
JP4457781B2 (en) Deterioration degree estimation method and deterioration degree estimation apparatus
JP4193745B2 (en) Battery state detection method and battery state detection device
JP5162971B2 (en) Battery state detection system and automobile
JP2009241646A (en) Battery state determination system, and automobile having the system
JP4548011B2 (en) Deterioration degree judging device
JP2008074257A (en) Battery deterioration determination device
JP6604478B2 (en) Vehicle and its battery state detection system
CN112912745A (en) Method for determining the state of charge and the state of ageing of an electrochemical cell from an open circuit voltage diagram
JP2005292035A (en) Method of detecting battery condition
JP4835355B2 (en) Battery deterioration judgment device
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus
JP4572518B2 (en) Battery status detection method
JP5321184B2 (en) Battery diagnostic device and battery
JP4670256B2 (en) Battery status detection method
JP4626558B2 (en) Battery status determination device
CN114402136A (en) Method for estimating aging of vehicle battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4702115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250