JP2005146939A - Engine startability predicting device and starting secondary battery with it - Google Patents

Engine startability predicting device and starting secondary battery with it Download PDF

Info

Publication number
JP2005146939A
JP2005146939A JP2003383549A JP2003383549A JP2005146939A JP 2005146939 A JP2005146939 A JP 2005146939A JP 2003383549 A JP2003383549 A JP 2003383549A JP 2003383549 A JP2003383549 A JP 2003383549A JP 2005146939 A JP2005146939 A JP 2005146939A
Authority
JP
Japan
Prior art keywords
engine
temperature
storage battery
battery voltage
startability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003383549A
Other languages
Japanese (ja)
Inventor
Mikito Hasegawa
幹人 長谷川
Matsuji Ikeda
松治 池田
Kiichi Koike
喜一 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003383549A priority Critical patent/JP2005146939A/en
Publication of JP2005146939A publication Critical patent/JP2005146939A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine startability predicting device capable of predicting startability of an engine according to a peripheral temparture after change even when rapid change of the peripheral temperature of a secondary battery for a vehicle is predicted, and a starting secondary battery integrated with the device. <P>SOLUTION: This engine startability predicting device predicting startability of an engine started by a secondary battery comprises temperature measuring means measuring a secondary battery temperature (T), and a voltage measuring means measuring a secondary battery voltage (V<SB>S</SB>) at the time of starting the engine. When a temperature of the secondary battery at an arbitrary time of starting the engine is designated as a first temperature (T<SB>1</SB>) and a secondary battery voltage (V) is designated as a secondary battery voltage (V<SB>S1</SB>), the secondary battery voltage (V<SB>S</SB>) at the time of starting the engine at a temperature T2 virtually set low based on T<SB>1</SB>and V<SB>S1</SB>is predicted as a secondary battery voltage (V<SB>S2</SB>), so as to predict startability of the engine at the temperature T<SB>2</SB>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は始動用蓄電池のエンジン始動の可否を予測する装置とこの装置を備えた始動用蓄電池に関するものである。   The present invention relates to a device for predicting whether or not an engine of a starting storage battery can be started, and a starting storage battery including this device.

車両のエンジン始動用電源やバックアップ電源といった様々な用途に蓄電池は用いられている。そして車両等、蓄電池を用いた機器の作動不能を回避するために、蓄電池の劣化度や、残存容量あるいは残存寿命を推定する方法が検討されてきている。このような蓄電池の状態を知る方法として、蓄電池の電解液の液面位置や硫酸濃度を計測したり、また、蓄電池の端子電圧や内部抵抗を計測し、これらの計測された情報に基いて蓄電池の劣化度合や残存容量あるいは残存寿命を判定する方法が種々提案されてきた。   Storage batteries are used in various applications such as power sources for starting engines in vehicles and backup power sources. And in order to avoid the malfunction of the apparatus using storage batteries, such as a vehicle, the method of estimating the deterioration degree of a storage battery, a remaining capacity, or a remaining life has been examined. As a method of knowing the state of such a storage battery, the level of the electrolyte of the storage battery and the sulfuric acid concentration are measured, the terminal voltage and the internal resistance of the storage battery are measured, and the storage battery is based on the measured information. Various methods for determining the degree of deterioration, remaining capacity or remaining life have been proposed.

例えば特許文献1には蓄電池の内部インピーダンスを計測し、内部インピーダンスの増加度合いから蓄電池の劣化状態を監視することが示されている。また、特に車両に用いるエンジン始動用蓄電池に関し、特許文献2には蓄電池の端子電圧を計測し、この計測値に応じて蓄電池の状態を表示する装置と、この装置を蓄電池に一体に設けた構成が示されている。
特開平9−134742号公報 特開昭59−94381号公報
For example, Patent Document 1 discloses that the internal impedance of a storage battery is measured and the deterioration state of the storage battery is monitored from the degree of increase in internal impedance. In particular, regarding an engine starting storage battery used in a vehicle, Patent Document 2 discloses a device that measures the terminal voltage of the storage battery and displays the state of the storage battery according to the measured value, and a configuration in which this device is provided integrally with the storage battery. It is shown.
JP-A-9-134742 JP 59-94381 A

しかしながら、前記した特許文献1および特許文献2に示されたものはいずれも蓄電池の周囲温度の変化に関して特段の考慮がなされていない。特に車両用の蓄電池は車両の移動に伴って蓄電池の周囲温度は急激に変化する。例えば比較的温暖な地域から寒冷地への移動時によって蓄電池の周囲温度は急激に低下することがある。このような急激な温度変化は蓄電池の状態検知精度に大きな影響を及ぼす。   However, none of the above-described Patent Document 1 and Patent Document 2 takes special consideration with respect to changes in the ambient temperature of the storage battery. In particular, in a storage battery for a vehicle, the ambient temperature of the storage battery changes rapidly as the vehicle moves. For example, the ambient temperature of the storage battery may suddenly decrease due to movement from a relatively warm region to a cold region. Such a rapid temperature change greatly affects the state detection accuracy of the storage battery.

例えば、状態検知装置を一体に備えた蓄電池を搭載した車両が比較的温暖な地域を出発し、出発地よりも気温の低い寒冷地に移動した場合、出発地で状態検知装置は蓄電池の状態が良好であると判別したものの、到着地では蓄電池の周囲温度が急激に低下することによって、蓄電池の出力が低下し、エンジン始動が不能となる場合があった。   For example, if a vehicle equipped with a storage battery with an integrated state detection device departs from a relatively warm area and moves to a cold place where the temperature is lower than the departure place, the state detection device at the departure place Although it was determined to be good, the ambient temperature of the storage battery suddenly decreased at the arrival place, and the output of the storage battery decreased, and the engine could not be started.

本発明はこのような、車両用の蓄電池の周囲温度が急激に変化することが想定される場合においても、変化後の周囲温度に応じたエンジン始動性予測を行うことができるエンジン始動性予測装置およびこの装置を一体に備えた始動用蓄電池を提供するものである。   The present invention is an engine startability predicting apparatus capable of predicting engine startability according to the changed ambient temperature even when it is assumed that the ambient temperature of the vehicular storage battery changes rapidly. The present invention also provides a starting storage battery that is integrally provided with this device.

前記した課題を解決するために、本発明の請求項1に係る発明は、蓄電池によって始動されるエンジンの始動性を予測するエンジン始動性予測装置であって、蓄電池温度(T)を計測する温度計測手段を備え、前記蓄電池温度(T)においてエンジン始動したときの蓄電池電圧(VS)を計測する電圧計測手段を備え、
任意のエンジン始動時における蓄電池温度(T)を第1の温度(T1)とし、
この第1の温度(T1)におけるエンジン始動時に計測された蓄電池電圧(V)を蓄電池電圧(VS1)としたときに、前記第1の温度(T1)と前記蓄電池電圧(VS1)に基いて前記第1の温度(T1)より仮想的に低く設定された第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS)を蓄電池電圧(VS2)として予測するとともに、前記蓄電池電圧(VS2)に基いて前記第2の温度(T2)おけるエンジン始動性を予測する予測手段と、前記予測手段における予測結果を告知する告知手段とを備えたエンジン始動性予測装置を示すものである。
In order to solve the above-described problem, the invention according to claim 1 of the present invention is an engine startability predicting apparatus for predicting startability of an engine started by a storage battery, and is a temperature at which the storage battery temperature (T) is measured. Voltage measuring means for measuring the storage battery voltage (V S ) when the engine is started at the storage battery temperature (T),
The storage battery temperature (T) at the time of any engine start is set as the first temperature (T 1 ),
When the storage battery voltage (V) measured at the time of starting the engine at the first temperature (T 1 ) is defined as the storage battery voltage (V S1 ), the first temperature (T 1 ) and the storage battery voltage (V S1 ) Based on this, the storage battery voltage (V S ) at the time of engine start at the second temperature (T 2 ) set virtually lower than the first temperature (T 1 ) is predicted as the storage battery voltage (V S2 ). Engine startability prediction comprising prediction means for predicting engine startability at the second temperature (T 2 ) based on the storage battery voltage (V S2 ) and notification means for notifying the prediction result of the prediction means The apparatus is shown.

また、本発明の請求項2に係る発明は、請求項1のエンジン始動性予測装置において、前記予測手段は、前記第1の温度(T1)と前記蓄電池電圧(VS1)基いて任意の蓄電池温度(T)におけるエンジン始動時の蓄電池電圧(VS)との関係を示す第1の関数(VS=f(T))を発生させ、前記第1の関数から前記第2の温度(T2)において行われるエンジン始動時の前記蓄電池電圧(VS2)(ここで、VS2=f(T2))を取得するとともに、前記第2の蓄電池電圧(VS2)の値によってエンジン始動性を予測することを特徴とするものである。 The invention according to claim 2 of the present invention is the engine startability predicting apparatus according to claim 1, wherein the predicting means is an arbitrary one based on the first temperature (T 1 ) and the storage battery voltage (V S1 ). A first function (V S = f (T)) indicating a relationship between the storage battery temperature (T) and the storage battery voltage (V S ) at the time of starting the engine is generated, and the second temperature ( T storage battery voltage at the start of the engine performed in 2) (V S2) (wherein, V S2 = f (T 2) acquires the), the engine start by the value of the second battery voltage (V S2) It is characterized by predicting sex.

また、本発明の請求項3に係る発明は、請求項2に記載のエンジン始動性予測装置において、前記第1の関数(VS=f(T))を式(1)に示すn次関数とすることを特徴とするものである。 The invention according to claim 3 of the present invention is the engine startability predicting apparatus according to claim 2, wherein the first function (V S = f (T)) is an n-order function represented by equation (1). It is characterized by that.

Figure 2005146939
Figure 2005146939

また、本発明の請求項4に係る発明は、請求項2に記載のエンジン始動性予測装置において、前記蓄電池の内部抵抗(R)と前記蓄電池温度(T)との関係を示す第2の関数(R=g(T))を記憶したデータ記憶手段を備え、前記データ記憶手段にはエンジン始動電流(I)値が記憶され、前記第1の関数(VS=f(T))を式(2)に示す関数とすることを特徴とするものである。 The invention according to claim 4 of the present invention is the engine startability predicting apparatus according to claim 2, wherein the second function indicates a relationship between the internal resistance (R) of the storage battery and the storage battery temperature (T). (R = g (T)) is stored, and the engine storage current (I) value is stored in the data storage means, and the first function (V S = f (T)) is expressed by the equation The function is as shown in (2).

Figure 2005146939
Figure 2005146939

さらに、本発明の請求項5に係る発明は、請求項4に記載のエンジン始動性予測装置において、前記第1の温度(T1)において行われたエンジン始動時に計測した第1の蓄電池電圧(VS1)に基いて前記エンジン始動電流(I)値を求めることを特徴とするものである。 Further, the invention according to claim 5 of the present invention is the engine startability predicting device according to claim 4, wherein the first storage battery voltage (measured at the time of engine start performed at the first temperature (T 1 )) ( The engine starting current (I) value is obtained based on V S1 ).

また、本発明の請求項6に係る発明は請求項1のエンジン始動性予測装置において、前記第1の温度(T1)におけるエンジン始動時の蓄電池電圧(VS1)から予め設定された標準温度(TR)におけるエンジン始動時の蓄電池電圧(VSR)を第1の温度補正により求め、前記VSRから前記第2の温度(T2)におけるエンジン始動電圧(VS2)を第2の温度補正により求めることを特徴とするものである。 According to a sixth aspect of the present invention, in the engine startability predicting apparatus of the first aspect, a standard temperature set in advance from a storage battery voltage (V S1 ) at the time of engine start at the first temperature (T 1 ). The battery voltage (V SR ) at the time of engine start at (T R ) is obtained by the first temperature correction, and the engine start voltage (V S2 ) at the second temperature (T 2 ) is obtained from the V SR at the second temperature. It is obtained by correction.

さらに、本発明の請求項7に係る発明は、請求項1〜6のいずれかに記載のエンジン始動性予測装置において、前記第2の温度(T2)を複数設定し、それぞれのT2におけるエンジン始動性予測結果を前記告知手段によって告知することを特徴とするものである。 Furthermore, the invention according to claim 7 of the present invention is the engine startability predicting device according to any one of claims 1 to 6, wherein a plurality of the second temperatures (T 2 ) are set, and each T 2 The engine startability prediction result is notified by the notification means.

また、本発明の請求項8に係る発明は、請求項1〜7のいずれかに記載のエンジン始動性予測装置において、前記第2の温度(T2)を複数設定し、それぞれのT2におけるエンジン始動性予測を行い、エンジン始動が可能と予測される第2の温度(T2)の最低値を前記告知手段によって告知することを特徴とするものである。 The invention according to claim 8 of the present invention, the engine startability prediction apparatus according to claim 1, wherein the second temperature (T 2) sets a plurality of, in each of T 2 The engine startability prediction is performed, and the minimum value of the second temperature (T 2 ) at which engine start is predicted to be possible is notified by the notification means.

さらに本発明の請求項9に係る発明は、請求項1〜8のいずれかに記載のエンジン始動性予測装置において、前記第2の温度(T2)を複数設定し、それぞれのT2におけるエンジン始動性予測を行い、エンジン始動が不可能と予測される前記第2の温度(T2)の最高値を前記告知手段によって告知することを特徴とするものである。 Furthermore the invention according to claim 9 of the present invention, the engine startability prediction apparatus according to claim 1, wherein the second temperature (T 2) sets a plurality of engine in each of the T 2 The startability prediction is performed, and the maximum value of the second temperature (T 2 ) at which the engine start is predicted to be impossible is notified by the notification means.

そして、本発明の請求項10に係る発明は、請求項1〜9のいずれかに記載のエンジン始動性予測装置を一体に備えた始動用蓄電池を示すものである。   And the invention which concerns on Claim 10 of this invention shows the storage battery for starting which was integrally equipped with the engine startability prediction apparatus in any one of Claims 1-9.

本発明のエンジン始動性予測装置もしくはそれを備えた始動用蓄電池を用いることにより、寒冷地への車両運行等により、蓄電池温度が低下すると想定される場合に蓄電池温度の低下を加味したエンジン始動予測を行うことができる。この予測を基に、ユーザは蓄電池を交換する、あるいは補充電する等の適切なメンテナンスを行うことができる。したがって、従来発生していたような、出発地(温暖地)ではエンジン始動可能であったにもかかわらず、目的地(寒冷地)に移動した際にエンジン始動が不能となるという課題を解決するという、従来にはない、顕著な効果を奏することから、工業上、極めて有用である。   By using the engine startability predicting device of the present invention or the starter storage battery equipped with the same, when the storage battery temperature is expected to decrease due to vehicle operation to a cold region, etc., the engine start prediction taking into account the decrease in the storage battery temperature It can be performed. Based on this prediction, the user can perform appropriate maintenance such as replacing the storage battery or performing supplementary charging. Therefore, it solves the problem that the engine cannot be started when moving to the destination (cold region) even though the engine can be started at the departure point (warm region), which has occurred in the past. It is extremely useful industrially because it has a remarkable effect that is not found in the past.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態によるエンジン始動性予測装置1を示す図である。本発明のエンジン始動性予測装置1は車両(図示せず)に搭載・装着された蓄電池2のエンジン始動時における蓄電池電圧(VS)を計測する電圧計測手段3を有している。エンジン始動時において、蓄電池2からエンジンスタータに起動電流が流れるので蓄電池電圧(V)は図2に示したように低下し、エンジン始動が完了すると、レギュレータによって蓄電池は充電され、蓄電池電圧(V)は上昇する。 FIG. 1 is a diagram showing an engine startability predicting apparatus 1 according to an embodiment of the present invention. The engine startability predicting apparatus 1 of the present invention has a voltage measuring means 3 for measuring a storage battery voltage (V S ) at the time of engine start of a storage battery 2 mounted / mounted on a vehicle (not shown). When starting the engine, a starting current flows from the storage battery 2 to the engine starter, so the storage battery voltage (V) decreases as shown in FIG. 2, and when the engine start is completed, the storage battery is charged by the regulator, and the storage battery voltage (V) Will rise.

ここで蓄電池電圧(VS)はエンジン始動時における最低電圧を計測することを目的とするが、実際には数m秒の時間間隔で連続して蓄電池電圧(V)を計測し、その計測データの最低値をエンジン始動時の蓄電池電圧(VS)として扱えばよい。また、エンジン始動性予測装置1にはサーミスタ等の温度センサーを用いた温度計測手段4を備えている。
そして、任意のエンジン始動における蓄電池温度(T)を第1の温度(T1)として計測するとともに、この時の蓄電池電圧(VS)を蓄電池電圧(VS1)として計測する。この蓄電池電圧(VS1)および第1の温度(T1)のデータは予測手段5に送られる。
Here, the storage battery voltage (V S ) is intended to measure the minimum voltage at the start of the engine, but actually, the storage battery voltage (V) is measured continuously at a time interval of several milliseconds, and the measurement data May be treated as the storage battery voltage (V S ) at the time of starting the engine. In addition, the engine startability predicting apparatus 1 includes a temperature measuring means 4 using a temperature sensor such as a thermistor.
Then, while measuring the battery temperature (T) at any engine start as the first temperature (T 1), measuring the battery voltage when the (V S) as battery voltage (V S1). The storage battery voltage (V S1 ) and first temperature (T 1 ) data are sent to the prediction means 5.

そして予測手段5では蓄電池電圧(VS1)および第1の温度(T1)のデータから、第1の温度(T1)よりも仮想的に低く設定される第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS2)を予測する。ここで、第2の温度(T2)は車両の目的地が寒冷地であることを想定した外気温度に予め設定する。例えば、0℃や−15℃といった値に設定する。 Then, the prediction means 5 uses the data of the storage battery voltage (V S1 ) and the first temperature (T 1 ), at the second temperature (T 2 ) that is set virtually lower than the first temperature (T 1 ). Predict the battery voltage (V S2 ) at engine start. Here, the second temperature (T 2 ) is set in advance to an outside air temperature assuming that the destination of the vehicle is a cold district. For example, a value such as 0 ° C. or −15 ° C. is set.

予測手段5はさらに予測された蓄電池電圧(VS2)のデータに基き、蓄電池温度(T)が第2の温度(T2)である場合に、エンジン始動が可能であるかどうかのエンジン始動性予測を行う。この予測は蓄電池電圧(VS2)をある判定電圧(VR)と比較することによって行うことができる。例えば、VS2≧VRの場合にエンジン始動可能と判定し、VS2<VRの場合にエンジン始動不能と判定すれば良い。なお、蓄電池2が12V系鉛蓄電池である場合、この判定電圧(VR)として6.0V〜7.0Vの値を用いることができる。 The predicting means 5 further determines whether the engine can be started when the storage battery temperature (T) is the second temperature (T 2 ) based on the predicted storage battery voltage (V S2 ) data. Make a prediction. This prediction can be made by comparing the storage battery voltage (V S2 ) with a certain determination voltage (V R ). For example, it may be determined that the engine can be started when V S2 ≧ V R , and the engine cannot be started when V S2 <V R. Note that when the storage battery 2 is 12V system lead-acid battery, it is possible to use the value of 6.0V~7.0V as the determination voltage (V R).

そして、この予測手段5における予測結果を告知手段6によりユーザに告知する。この告知は、例えば、発光ダイオードや液晶パネル等による表示手段や、ブザー等によってに行うことができる。   Then, the prediction result in the prediction means 5 is notified to the user by the notification means 6. This notification can be performed by, for example, a display means such as a light emitting diode or a liquid crystal panel, a buzzer, or the like.

このような本発明のエンジン始動性予測装置によれば、車両の出発時のエンジン始動時の温度(第1の温度(T1))と蓄電池電圧(VS1)計測し、これらの値に基いて到着地の気温(第2の温度(T2))における蓄電池電圧(VS2)を予測することによって、到着地でエンジンを再始動する際のエンジン始動性を予測することができる。すなわち、到着地が寒冷地であるがために、出発地ではエンジン始動が可能であったのが、到着地でエンジン始動不能に陥ることを未然に予測することができる。このエンジン始動予測結果に基いて車両ユーザは蓄電池の交換、補充電等の適切なメンテナンスを行うことができ、結果、エンジン始動不能になることを回避することができる。 According to such an engine startability predicting apparatus of the present invention, the temperature at the time of starting the engine (first temperature (T 1 )) and the storage battery voltage (V S1 ) at the time of departure of the vehicle are measured, and based on these values. Thus, by predicting the storage battery voltage (V S2 ) at the temperature of the arrival place (second temperature (T 2 )), the engine startability when the engine is restarted at the arrival place can be predicted. That is, since the arrival place is a cold place, it can be predicted that the engine can be started at the departure place but the engine cannot be started at the arrival place. Based on the engine start prediction result, the vehicle user can perform appropriate maintenance such as replacement of the storage battery, supplementary charging, etc., and as a result, it is possible to prevent the engine from being disabled.

ここで、予測手段5による第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS2)の予測ステップの好ましい例を以下に示す。 Here, a preferable example of the step of predicting the storage battery voltage (V S2 ) at the time of engine start at the second temperature (T 2 ) by the predicting means 5 will be shown below.

1)蓄電池電圧(VS2)の第1の予測ステップ
第1の予測ステップでは任意の蓄電池温度(T)におけるエンジン始動時の蓄電池電圧をVSとした場合に、第1の温度(T1)と、このときのエンジン始動時の蓄電池電圧(VS1)に基いて、蓄電池温度(T)と蓄電池電圧(VS)との関係を示す関数(VS=f(T)、以下第1の関数)を求め、この第1の関数の変数TにT2を代入することによって蓄電池電圧(VS2)を求める。
1) First Prediction Step for Storage Battery Voltage (V S2 ) In the first prediction step, the first temperature (T 1 ) when the storage battery voltage at the time of engine start at an arbitrary storage battery temperature (T) is V S. And a function indicating the relationship between the storage battery temperature (T) and the storage battery voltage (V S ) based on the storage battery voltage (V S1 ) at the time of starting the engine (V S = f (T), hereinafter referred to as the first The battery voltage (V S2 ) is obtained by substituting T 2 for the variable T of the first function.

この第1の関数の求め方として以下のようなステップAを用いることができる。   As a method for obtaining the first function, the following step A can be used.

すなわち、蓄電池2についてエンジン始動電流(I)と蓄電池温度(T)を種々変化させて、エンジン始動時の蓄電池電圧(VS)を予め測定しておく。この測定結果に基き、エンジン始動電流(I)別に蓄電池温度(T)とエンジン始動時の蓄電池電圧(VS)との関係を示す関数を設定する。一例としては、TとVSの相関関係から、VSを最小2乗法等により求めた式(1)に示したTのn次関数を用いることができる。 That is, the storage battery voltage (V S ) at the time of starting the engine is measured in advance by varying the engine starting current (I) and the storage battery temperature (T) for the storage battery 2. Based on this measurement result, a function indicating the relationship between the storage battery temperature (T) and the storage battery voltage (V S ) at the time of engine start is set for each engine start current (I). As an example, it is possible to use an n-order function of T shown in Expression (1) in which V S is obtained from the correlation between T and V S by the least square method or the like.

Figure 2005146939
Figure 2005146939

式(1)はエンジン始動電流(I)別に予め実験により求めておき、エンジン始動性予測装置1内に設けたメモリー等の記憶手段7に格納しておく。   Expression (1) is obtained in advance by experiment for each engine starting current (I) and stored in a storage means 7 such as a memory provided in the engine startability predicting apparatus 1.

任意の第1の温度(T1)において行われたエンジン始動時の蓄電池電圧(VS1)のデータを電圧計測手段3により取得する。そしてエンジン始動電流(I)別に設定されたVS1とT1との関係式に温度計測手段4によって計測した温度T1を代入することによりエンジン始動電流(I)別の蓄電池電圧(VS1´)を求める。この関係式により求めたVS1´と実測により求めたVS1とから両者の差分の絶対値|ΔVS1|(=|VS1−VS1´|)を求める。エンジン始動電流(I)とこの|ΔVS1|との関係において|ΔVS1|が最小となるエンジン始動電流(I0)に対応した蓄電池温度(T)とエンジン始動時の蓄電池電圧(VS)との関係式を記憶手段から参照して第1の関数(VS=f(T))とすれば良い。そして予め設定した第2の温度(T2)を第1の関数に代入して第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS2)を得ることができる。 Data of the storage battery voltage (V S1 ) at the time of engine start performed at an arbitrary first temperature (T 1 ) is acquired by the voltage measuring means 3. Then, by substituting the temperature T 1 measured by the temperature measuring means 4 into the relational expression between V S1 and T 1 set for each engine starting current (I), the storage battery voltage (V S1 ′) for each engine starting current (I) is substituted. ) The 'absolute value from the V S1 Metropolitan determined by actual measurement of both difference | ΔV S1 | (= | V S1 -V S1' | relationship by the determined V S1) obtained. Engine starting current (I) Toko of | [Delta] V S1 | in relation to | [Delta] V S1 | is the minimum engine starting current (I 0) battery temperature corresponding to the (T) and battery voltage at the start of the engine (V S) And the first function (V S = f (T)) may be obtained by referring to the relational expression from the storage means. Then, by substituting the preset second temperature (T 2 ) into the first function, the storage battery voltage (V S2 ) at the time of starting the engine at the second temperature (T 2 ) can be obtained.

また、前記したステップAにかえて、以下に示すステップBによって第1の関数を設定することができる。   Further, in place of the above-described step A, the first function can be set by the following step B.

ステップBでは記憶手段7に蓄電池2の蓄電池温度(T)別の内部抵抗値(R)のデータから最小2乗法等により求めたTとRの近似関数R=g(T)(第2の関数)が格納されている。この第2の関数(R=g(T))と任意の蓄電池温度(T1)におけるエンジン始動時の蓄電池電圧(VS1)から蓄電池温度Tにおけるエンジン始動時の蓄電池電圧(VS)を式(3)により示される。 In step B, an approximate function R = g (T) (second function) obtained from the data of the internal resistance value (R) according to the storage battery temperature (T) of the storage battery 2 in the storage means 7 by the least square method or the like. ) Is stored. The second function (R = g (T)) and any battery voltage when starting the engine from the battery voltage at the time of engine starting (V S1) of the storage battery temperature T at the battery temperature (T 1) (V S) of formula It is indicated by (3).

Figure 2005146939
Figure 2005146939

ここで{g(T)−g(T1)}は蓄電池温度がT1からTに低下したときの蓄電池内部抵抗の増加分であり、これにエンジン始動電流(I)を乗ずることによって、この温度変化による蓄電池電圧の降下分が算出される。この降下分をVS1から差し引くことによって蓄電池温度(T)におけるエンジン始動電圧VSを算出できる。すなわち、第1の関数(VS=f(T))を式(3)を用いることによって、式(2)に示したように設定することができる。 Here, {g (T) −g (T 1 )} is an increase in the internal resistance of the storage battery when the storage battery temperature decreases from T 1 to T, and this is multiplied by the engine starting current (I). A drop in storage battery voltage due to temperature change is calculated. The engine start voltage V S at the storage battery temperature (T) can be calculated by subtracting this drop from V S1 . That is, the first function (V S = f (T)) can be set as shown in Expression (2) by using Expression (3).

Figure 2005146939
Figure 2005146939

なお、このステップBにおいて、エンジン始動電流(I)として、あらかじめその値を記憶手段7にさせておき、必要時にその値を参照することができる。この場合、I値は単一の値に設定されることになるが、車両によって様々に変化するため、車両毎に設定することがより好ましい。このエンジン始動電流(I)の設定方法としては以下の方法を用いることができる。   In step B, the value can be stored in advance in the storage means 7 as the engine starting current (I), and the value can be referred to when necessary. In this case, the I value is set to a single value, but since it varies depending on the vehicle, it is more preferable to set it for each vehicle. The following method can be used as a method for setting the engine starting current (I).

すなわち、任意の第1の温度(T1)において行われたエンジン始動時の蓄電池電圧(VS1)を電圧計測手段3により取得する。そしてエンジン始動電流(I)別に設定されたVS1とT1との関係式に温度計測手段4によって計測した温度T1を代入することによりエンジン始動電流(I)別の蓄電池電圧V(S1´)を求める。この関係式により求めたVS1´と実測により求めたVS1とから両者の差分の絶対値|ΔVS1|(=|VS1−VS1´|)を求め、エンジン始動電流(I)と=|ΔVS1|との関係において|ΔVS1|が最小となるエンジン始動電流(I0)を求める。そしてエンジン始動電流値(I)=I0として、式(2)に代入すればよい。そして予め設定した第2の温度(T2)を第1の関数に代入して第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS2)を得ることができる。 That is, the storage battery voltage (V S1 ) at the time of engine start performed at an arbitrary first temperature (T 1 ) is acquired by the voltage measuring means 3. Then, by substituting the temperature T 1 measured by the temperature measuring means 4 into the relational expression between V S1 and T 1 set for each engine starting current (I), the storage battery voltage V ( S1 ′ for each engine starting current (I) is substituted. ) This relationship 'absolute value of the difference between them from V S1 Metropolitan determined by measurement and | ΔV S1 | (= | V S1 -V S1' | V S1 obtained by equation) is obtained, engine starting current (I) and = | [Delta] V S1 | in relation to | [Delta] V S1 | Find the smallest engine starting current (I 0). Then, the engine starting current value (I) = I 0 may be substituted into equation (2). Then, by substituting the preset second temperature (T 2 ) into the first function, the storage battery voltage (V S2 ) at the time of starting the engine at the second temperature (T 2 ) can be obtained.

2)蓄電池電圧VS2の第2の予測ステップ
前記した蓄電池電圧(VS2)の第1の予測ステップにかえて以下に述べる第2の予測ステップを用いることができる。
2) Second Prediction Step of Storage Battery Voltage V S2 The second prediction step described below can be used instead of the first prediction step of the storage battery voltage (V S2 ).

この第2の予測ステップでは任意の第1の温度(T1)におけるエンジン始動時の蓄電池電圧(VS1)から標準温度(TR)におけるエンジン始動時の蓄電池電圧(VSR)を温度補正して求める。その後、蓄電池電圧(VSR)から任意の第1の温度(T1)よりも低く設定される第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS2)を温度補正して求めるものである。 In this second prediction step, the storage battery voltage (V SR ) at the engine start at the standard temperature (T R ) is corrected from the storage battery voltage (V S1 ) at the engine start at an arbitrary first temperature (T 1 ). Ask. Thereafter, the storage battery voltage (V S2 ) at the time of starting the engine at the second temperature (T 2 ) set lower than the arbitrary first temperature (T 1 ) is obtained by correcting the temperature from the storage battery voltage (V SR ). Is.

このような第2の予測ステップでは、単に第1の温度(T1)と第2の温度(T2)の温度差ΔTから蓄電池電圧の温度傾斜に基いてVS1と第2の温度(T2)からVS2を求める方法とは異なり、より精度の高いVS2の予測が可能となる。このような単に温度差ΔTと温度傾斜からVS2を求める方法ではすべての温度範囲で温度傾斜を一定に設定さぜるを得ない。実際には第2の温度(T2)−第1の温度(T1)の温度範囲が−15℃〜15℃にあるのか、あるいは−10℃〜40℃にあるのかによって適切な温度傾斜を設定する必要がある。本発明の好ましい例においては第1の温度(T1)−標準温度(TR)間と標準温度(TR)−第2の温度(T2)間でそれぞれ独立した第1の補正係数αおよび第2の補正係数βを設定することによってより精度の高いVS2の予測が可能となる。 In such a second prediction step, V S1 and the second temperature (T 2 ) are simply calculated based on the temperature gradient of the storage battery voltage from the temperature difference ΔT between the first temperature (T 1 ) and the second temperature (T 2 ). Unlike the method of obtaining V S2 from 2 ), it is possible to predict V S2 with higher accuracy. In such a method of simply obtaining V S2 from the temperature difference ΔT and the temperature gradient, the temperature gradient must be set constant over the entire temperature range. In practice, an appropriate temperature gradient is obtained depending on whether the temperature range of the second temperature (T 2 ) -first temperature (T 1 ) is -15 ° C to 15 ° C or -10 ° C to 40 ° C. Must be set. In a preferred example of the present invention, the first correction coefficient α is independent between the first temperature (T 1 ) and the standard temperature (T R ) and between the standard temperature (T R ) and the second temperature (T 2 ). Further, by setting the second correction coefficient β, it is possible to predict V S2 with higher accuracy.

この第2の予測ステップの例を以下に述べる。任意の第1の温度T1におけるエンジン始動時の蓄電池電圧(VS1)から標準温度(TR)におけるエンジン始動時の蓄電池電圧(VSR)第1の補正係数αを用いて式(4)により算出する。この第1の補正係数αのTR=25℃と設定した場合の例を表1に示す。 An example of this second prediction step is described below. Using the first correction factor α, the storage battery voltage (V SR ) at the standard temperature (T R ) from the storage battery voltage (V S1 ) at the time of starting the engine at an arbitrary first temperature T 1 (4) Calculated by Table 1 shows an example when the first correction coefficient α is set to T R = 25 ° C.

Figure 2005146939
Figure 2005146939

表1に示した第1の補正係数αにより標準温度(TR)におけるエンジン始動時の蓄電池電圧(VSR)を予測する。この予測式の例として式(4)を用いることができる。 The storage battery voltage (V SR ) at the time of engine start at the standard temperature (T R ) is predicted by the first correction coefficient α shown in Table 1. Formula (4) can be used as an example of this prediction formula.

Figure 2005146939
Figure 2005146939

そしてVSR値から第2の補正係数βを用いて第1の温度(T1)よりも仮想的に低く設定された第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS2)を求める。TR=25℃としたときの第2の補正係数βの例を表2に示す。 Then, the storage battery voltage (V S2 ) at the time of starting the engine at the second temperature (T 2 ) set virtually lower than the first temperature (T 1 ) using the second correction coefficient β from the V SR value. Ask for. Table 2 shows an example of the second correction coefficient β when T R = 25 ° C.

Figure 2005146939
Figure 2005146939

表2に示した第2の補正係数βとにより標準温度(TR)におけるエンジン始動時の蓄電池電圧(VSR)からVS2を求めるための計算式の例として式(5)を用いることができる。ここで一例として、第2の温度(T2)を−10℃とした場合には、β=1.35とする。 Using formula (5) as an example of a calculation formula for obtaining V S2 from the storage battery voltage (V SR ) at the time of engine start at the standard temperature (T R ) by using the second correction coefficient β shown in Table 2. it can. Here, as an example, when the second temperature (T 2 ) is −10 ° C., β = 1.35.

Figure 2005146939
Figure 2005146939

なお、表1および表2に示した第1の補正係数αと第2の補正係数βはそれぞれ蓄電池2に応じて設定される値であり、表1および表2に示した値に限定されるものではない。また、式(4)および式(5)は一例であって、蓄電池の特性に応じ、実測値からVS1−VSR間の関係を示す近似式とVSR−VS2間の関係を示す近似式とを最小2乗法等により設定すればよい。 The first correction coefficient α and the second correction coefficient β shown in Table 1 and Table 2 are values set according to the storage battery 2, respectively, and are limited to the values shown in Table 1 and Table 2. It is not a thing. Moreover, Formula (4) and Formula (5) are examples, and according to the characteristic of a storage battery, the approximate expression which shows the relationship between V S1 -V SR from the measured value, and the approximation which shows the relationship between V SR -V S2 The equation may be set by the least square method or the like.

以上に記した第1の予測ステップもしくは第2の予測ステップによって第1の温度(T1)の温度条件下でエンジン始動を行うことにより、電圧計測手段3で計測されたエンジン始動時の蓄電池電圧(VS1)から第1の温度(T1)よりも仮想的に低く設定される第2の温度(T2)におけるエンジン始動時の蓄電池電圧(VS2)を予測し、このVSR値とエンジン始動性予測のための判定電圧(VR)とを比較することによってエンジン始動性を予測する。 The storage battery voltage at the time of starting the engine measured by the voltage measuring means 3 by starting the engine under the temperature condition of the first temperature (T 1 ) by the first prediction step or the second prediction step described above. It predicts the battery voltage when starting the engine (V S2) in a second temperature which is virtually set lower than the first temperature from (V S1) (T 1) (T 2), and the V SR value The engine startability is predicted by comparing the determination voltage (V R ) for predicting the engine startability.

さらに、前記した本発明の構成において第2の温度(T2)を複数設定することもできる。例えば第2の温度(T2)を0℃、−5℃、−10℃、−15℃に設定し、それぞれのT2におけるエンジン始動性予測結果を告知手段6により告知する。例えば、それぞれのT2に応じてLEDを設け、エンジン始動が可能と予測された第2の温度(T2)に対応するLEDを緑色に、また、エンジン始動が不能と予測された第2の温度(T2)に対応するLEDを赤色に点灯させることにより、ユーザは直感的に告知内容を理解することができる。 Furthermore, a plurality of second temperatures (T 2 ) can be set in the configuration of the present invention described above. For example, the second temperature (T 2 ) is set to 0 ° C., −5 ° C., −10 ° C., and −15 ° C., and the engine startability prediction result at each T 2 is notified by the notification means 6. For example, an LED is provided according to each T 2 , the LED corresponding to the second temperature (T 2 ) predicted to be able to start the engine is green, and the second that is predicted to be impossible to start the engine By turning on the LED corresponding to the temperature (T 2 ) in red, the user can intuitively understand the notification content.

また、前記と同様に第2の温度(T2)を複数設定し、それぞれのT2におけるエンジン始動性予測を行った上で、エンジン始動が可能と予測される第2の温度(T2)の最低値を前記告知手段によって告知することも好ましい。例えば0℃および−5℃での予測結果がエンジン始動可能であり、−10℃および−15℃での予測結果がエンジン始動不可能である場合、告知手段6にエンジン始動可能な最低温度として「−5℃」をセグメントLEDや液晶パネルにより表示することができる。このような表示温度を到着地の予想気温とを照らし合わせればユーザは蓄電池2に対して、交換や補充電といった適切なメンテナンスを実施できる。 Further, the same manner as described above second temperature (T 2) a plurality of settings, after performing engine start prediction in each of T 2, a second temperature which is expected to allow engine starting (T 2) It is also preferable to notify the minimum value of the value by the notification means. For example, when the prediction results at 0 ° C. and −5 ° C. can start the engine, and the prediction results at −10 ° C. and −15 ° C. cannot start the engine, the notification means 6 sets the minimum temperature at which the engine can be started as “ “−5 ° C.” can be displayed by a segment LED or a liquid crystal panel. The user can perform appropriate maintenance such as replacement and supplementary charging for the storage battery 2 by comparing the display temperature with the predicted temperature of the arrival place.

また、前述のようなエンジン始動可能な最低温度の表示にかえて、エンジン始動不能な最高温度を表示することも可能である。−10℃および−15℃での予測結果がエンジン始動不可能である場合、告知手段6にエンジン始動不可能な最高温度として「−10℃」をセグメントLEDや液晶パネルにより表示することができる。   Further, instead of displaying the minimum temperature at which the engine can be started as described above, it is also possible to display the maximum temperature at which the engine cannot be started. When the prediction results at −10 ° C. and −15 ° C. indicate that the engine cannot be started, “−10 ° C.” can be displayed on the notification means 6 as the maximum temperature at which the engine cannot be started by the segment LED or the liquid crystal panel.

また、このときの第2の温度(T2)を比較的狭い温度間隔、例えば0.5℃間隔で設定すれば、より細かい温度表示ができることは言うまでもない。 Needless to say, if the second temperature (T 2 ) at this time is set at a relatively narrow temperature interval, for example, at 0.5 ° C. intervals, a finer temperature display is possible.

また、前記した本発明のエンジン始動性予測装置1を蓄電池2に一体に設けることができる。この場合、蓄電池2の蓋(図示せず)にエンジン始動性予測装置1を収納する収納部(図示せず)を設けるとともに、エンジン始動性予測装置1と蓄電池端子間の電気的接続を行なえば良い。   In addition, the engine startability prediction device 1 of the present invention described above can be provided integrally with the storage battery 2. In this case, if a storage part (not shown) for storing the engine startability predicting device 1 is provided on the lid (not shown) of the storage battery 2 and an electrical connection is made between the engine startability predicting device 1 and the storage battery terminal. good.

これまで述べてきた本発明の構成により、第1の温度(T1)条件下で蓄電池温度が第1の温度(T1)よりも低い、第2の温度(T2)まで低下したときのエンジン始動性を予測することが可能となる。もしくはエンジン始動が可能である温度を予測することが可能となる。さらに第1の予測ステップあるいは第2の予測ステップいずれも蓄電池2の特性に応じてパラメータ設定する必要がある。したがって、本発明のエンジン始動性予測装置は蓄電池に一体に設けることがより好ましい。 The configuration of the present invention described so far, the storage battery temperature first temperature (T 1) conditions lower than the first temperature (T 1), when reduced to second temperature (T 2) The engine startability can be predicted. Alternatively, it is possible to predict the temperature at which the engine can be started. Furthermore, it is necessary to set parameters according to the characteristics of the storage battery 2 in both the first prediction step and the second prediction step. Therefore, the engine startability predicting device of the present invention is more preferably provided integrally with the storage battery.

本発明、寒冷地へ移動した際など急激な温度降下時や冬季におけるのエンジン始動可否を未然に知ることにより、温度低下によりエンジン始動が出来なくなる前に車両ユーザーが適切な処置を行うことが出来る低温エンジン始動性の予測方法と予測装置を提供することから有用である。   By knowing in advance whether or not the engine can be started when the temperature drops suddenly, such as when moving to a cold region, or in winter, the vehicle user can take appropriate measures before the engine cannot be started due to a temperature drop. It is useful because it provides a prediction method and a prediction device for low temperature engine startability.

本発明の始動用蓄電池のエンジン始動性予測装置を示す図The figure which shows the engine startability prediction apparatus of the storage battery for start-up of this invention エンジン始動時における蓄電池電圧(V)の時間変化を示す図The figure which shows the time change of the storage battery voltage (V) at the time of engine starting

符号の説明Explanation of symbols

1 エンジン始動性予測装置
2 蓄電池
3 電圧計測手段
4 温度計測手段
5 予測手段
6 告知手段
7 記憶手段
DESCRIPTION OF SYMBOLS 1 Engine startability prediction apparatus 2 Storage battery 3 Voltage measurement means 4 Temperature measurement means 5 Prediction means 6 Notification means 7 Storage means

Claims (10)

蓄電池によって始動されるエンジンの始動性を予測するエンジン始動性予測装置であって、
蓄電池温度(T)を計測する温度計測手段を備え、
前記蓄電池電圧(T)においてエンジン始動したときの蓄電池電圧(VS)を計測する電圧計測手段を備え、
任意のエンジン始動時における蓄電池温度(T)を第1の温度(T1)とし、
この第1の温度(T1)におけるエンジン始動時に計測された蓄電池電圧をVS1としたときに、前記第1の温度(T1)と前記の蓄電池電圧(VS1)に基いて前記第1の温度T1より仮想的に低く設定された第2の温度(T2)におけるエンジン始動時の蓄電池電圧をVS2として予測するとともに、
前記の蓄電池電圧(VS2)に基いて前記第2の温度(T2)におけるエンジン始動性を予測する予測手段と、前記予測手段における予測結果を告知する告知手段とを備えたことを特徴とするエンジン始動性予測装置。
An engine startability predicting device for predicting startability of an engine started by a storage battery,
A temperature measuring means for measuring the storage battery temperature (T),
Voltage measuring means for measuring a storage battery voltage (V S ) when the engine is started at the storage battery voltage (T);
The storage battery temperature (T) at the time of any engine start is set as the first temperature (T 1 ),
When the storage battery voltage measured at the time of starting the engine at the first temperature (T 1 ) is V S1 , the first temperature (T 1 ) and the first storage battery voltage (V S1 ) The storage battery voltage at the time of engine start at the second temperature (T 2 ) set virtually lower than the temperature T 1 of the engine is estimated as V S2 ,
And a prediction means for predicting engine startability at the second temperature (T 2 ) based on the storage battery voltage (V S2 ), and a notification means for notifying a prediction result in the prediction means. An engine startability prediction device.
前記予測手段は、前記第1の温度(T1)と前記の蓄電池電圧(VS1)に基いて任意の蓄電池温度(T)におけるエンジン始動時の蓄電池電圧(VS)との関係を示す第1の関数(VS=f(T))を発生させ、前記第1の関数から前記第2の温度(T2)において行われた場合のエンジン始動時の蓄電池電圧(VS2 ここで、VS2=f(T2))を取得するとともに、前記蓄電池電圧(VS2)の値によってエンジン始動性を予測することを特徴とする請求項1に記載のエンジン始動性予測装置。 The prediction means, first shows the relationship between the first temperature (T 1) and the battery voltage (V S1) to the basis with battery voltage during engine start at any of the battery temperature (T) (V S) A function (V S = f (T)) of 1 is generated, and the storage battery voltage (V S2 where V S2, where V 1 is the engine temperature when the engine is started at the second temperature (T 2 ) from the first function. 2. The engine startability predicting apparatus according to claim 1, wherein S2 = f (T 2 )) is acquired and engine startability is predicted based on a value of the storage battery voltage (V S2 ). 前記第1の関数(VS=f(T))を式(1)に示すn次関数とすることを特徴とする請求項2に記載のエンジン始動性予測装置。
Figure 2005146939
3. The engine startability predicting apparatus according to claim 2, wherein the first function (V S = f (T)) is an n-th order function shown in Expression (1).
Figure 2005146939
前記蓄電池の内部抵抗(R)と前記蓄電池温度(T)との関係を示す第2の関数(R=g(T))を記憶したデータ記憶手段を備え、前記データ記憶手段にはエンジン始動電流(I)値が記憶され、前記第1の関数(VS=f(T))を式(2)に示す関数とすることを特徴とする請求項2に記載のエンジン始動性予測装置。
Figure 2005146939
Data storage means storing a second function (R = g (T)) indicating a relationship between the internal resistance (R) of the storage battery and the storage battery temperature (T) is provided, and the data storage means includes an engine starting current. The engine startability predicting apparatus according to claim 2, wherein (I) a value is stored, and the first function (V S = f (T)) is a function represented by the formula (2).
Figure 2005146939
前記第1の温度(T1)において行われたエンジン始動時に計測した第1の蓄電池電圧(V1)に基いて前記エンジン始動電流(I)値を求めることを特徴とする請求項4に記載のエンジン始動性予測装置。 5. The engine starting current (I) value is obtained based on a first storage battery voltage (V 1 ) measured at the time of engine starting performed at the first temperature (T 1 ). Engine startability prediction device. 前記第1の温度(T1)におけるエンジン始動時の蓄電池電圧(VS1)から予め設定された標準温度(TR)におけるエンジン始動時の蓄電池電圧(VSR)を第1の温度補正により求め、前記VSRから前記第2の温度(T2)におけるエンジン始動電圧(VS2)を第2の温度補正により求めることを特徴とする請求項1に記載のエンジン始動性予測装置。 A storage battery voltage (V SR ) at the time of starting the engine at a preset standard temperature (T R ) is obtained by a first temperature correction from a storage battery voltage (V S1 ) at the time of starting the engine at the first temperature (T 1 ). 2. The engine startability predicting apparatus according to claim 1, wherein an engine start voltage (V S2 ) at the second temperature (T 2 ) is obtained from the V SR by a second temperature correction. 前記第2の温度(T2)を複数設定し、それぞれのT2におけるエンジン始動性予測結果を前記告知手段によって告知することを特徴とする請求項1〜6のいずれかに記載のエンジン始動性予測装置。 Said second temperature (T 2) sets a plurality of engine startability according to engine startability prediction result in each of T 2 to claim 1, wherein when a notice by the notification means Prediction device. 前記第2の温度(T2)を複数設定し、それぞれのT2におけるエンジン始動性予測を行い、エンジン始動が可能と予測される第2の温度(T2)の最低値を前記告知手段によって告知することを特徴とする請求項1〜7のいずれかに記載のエンジン始動性予測装置。 By said second temperature (T 2) set multiple performs engine start prediction in each of T 2, second temperature (T 2) the notifying means the minimum value of which is expected to enable engine start The engine startability predicting device according to any one of claims 1 to 7, wherein notification is made. 前記第2の温度(T2)を複数設定し、それぞれのT2おけるエンジン始動性予測を行い、エンジン始動が不可能と予測される第2の温度(T2)最高値を前記告知手段によって告知することを特徴とする請求項1〜8のいずれかに記載のエンジン始動性予測装置。 A plurality of the second temperatures (T 2 ) are set, the engine startability is predicted at each T 2 , and the second temperature (T 2 ) maximum value at which the engine start is predicted to be impossible is determined by the notification means. The engine startability predicting device according to any one of claims 1 to 8, wherein notification is made. 請求項1〜9のいずれかに記載のエンジン始動性予測装置を一体に備えたことを特徴とする始動用蓄電池。 A starting storage battery comprising the engine startability predicting device according to any one of claims 1 to 9 integrally.
JP2003383549A 2003-11-13 2003-11-13 Engine startability predicting device and starting secondary battery with it Pending JP2005146939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383549A JP2005146939A (en) 2003-11-13 2003-11-13 Engine startability predicting device and starting secondary battery with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383549A JP2005146939A (en) 2003-11-13 2003-11-13 Engine startability predicting device and starting secondary battery with it

Publications (1)

Publication Number Publication Date
JP2005146939A true JP2005146939A (en) 2005-06-09

Family

ID=34692239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383549A Pending JP2005146939A (en) 2003-11-13 2003-11-13 Engine startability predicting device and starting secondary battery with it

Country Status (1)

Country Link
JP (1) JP2005146939A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
JP2007238001A (en) * 2006-03-10 2007-09-20 Shin Kobe Electric Mach Co Ltd Battery state judging device
JP2007280776A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state evaluation device
JP2007278853A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state determining apparatus
DE102008006542A1 (en) 2007-02-08 2008-09-18 Denso Corp., Kariya Battery condition detecting device
JP2009047093A (en) * 2007-08-21 2009-03-05 Auto Network Gijutsu Kenkyusho:Kk Startability predicting device
JP2009275637A (en) * 2008-05-15 2009-11-26 Denso Corp Engine starting performance determination device
US7733063B2 (en) 2006-02-24 2010-06-08 Denso Corporation Apparatus for calculating quantity indicating charged state of on-vehicle battery
US7805264B2 (en) 2007-03-02 2010-09-28 Nippon Soken, Inc. Method of calculating internal resistance of secondary battery for vehicle
JP2010223215A (en) * 2009-02-24 2010-10-07 Nissan Motor Co Ltd Idle stop control device and idle stop control method
JP2014152676A (en) * 2013-02-07 2014-08-25 Hitachi Automotive Systems Ltd Control device of internal combustion engine
JP2017013695A (en) * 2015-07-03 2017-01-19 アルパイン株式会社 On-vehicle device
JPWO2016157731A1 (en) * 2015-03-27 2018-01-25 パナソニックIpマネジメント株式会社 Secondary battery state estimation device and state estimation method
WO2019023687A3 (en) * 2017-07-28 2019-03-07 Northstar Battery Company, Llc Systems and methods for determining crank health of a battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733063B2 (en) 2006-02-24 2010-06-08 Denso Corporation Apparatus for calculating quantity indicating charged state of on-vehicle battery
DE102007009041B4 (en) * 2006-02-24 2013-06-13 Denso Corporation Apparatus for calculating a quantity indicative of the state of charge of a vehicle battery
US8036839B2 (en) 2006-03-10 2011-10-11 Shin-Kobe Electric Machinery Co., Ltd. Battery state determining apparatus
JP2007238001A (en) * 2006-03-10 2007-09-20 Shin Kobe Electric Mach Co Ltd Battery state judging device
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
JP4702115B2 (en) * 2006-03-10 2011-06-15 新神戸電機株式会社 Battery status judgment device
JP2007280776A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state evaluation device
JP2007278853A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state determining apparatus
JP4626559B2 (en) * 2006-04-07 2011-02-09 新神戸電機株式会社 Battery status determination device
JP4626558B2 (en) * 2006-04-07 2011-02-09 新神戸電機株式会社 Battery status determination device
DE102008006542A1 (en) 2007-02-08 2008-09-18 Denso Corp., Kariya Battery condition detecting device
US7896543B2 (en) 2007-02-08 2011-03-01 Denso Corporation Battery condition detection apparatus
US7805264B2 (en) 2007-03-02 2010-09-28 Nippon Soken, Inc. Method of calculating internal resistance of secondary battery for vehicle
JP2009047093A (en) * 2007-08-21 2009-03-05 Auto Network Gijutsu Kenkyusho:Kk Startability predicting device
JP2009275637A (en) * 2008-05-15 2009-11-26 Denso Corp Engine starting performance determination device
JP2010223215A (en) * 2009-02-24 2010-10-07 Nissan Motor Co Ltd Idle stop control device and idle stop control method
JP2014152676A (en) * 2013-02-07 2014-08-25 Hitachi Automotive Systems Ltd Control device of internal combustion engine
JPWO2016157731A1 (en) * 2015-03-27 2018-01-25 パナソニックIpマネジメント株式会社 Secondary battery state estimation device and state estimation method
JP2017013695A (en) * 2015-07-03 2017-01-19 アルパイン株式会社 On-vehicle device
US11300624B2 (en) 2017-07-28 2022-04-12 Northstar Battery Company, Llc System for utilizing battery operating data
WO2019023687A3 (en) * 2017-07-28 2019-03-07 Northstar Battery Company, Llc Systems and methods for determining crank health of a battery
US10684330B2 (en) 2017-07-28 2020-06-16 Northstar Battery Company, Llc Systems and methods for detecting thermal runaway of a battery
US10816607B2 (en) 2017-07-28 2020-10-27 Northstar Battery Company, Llc Systems and methods for determining a state of charge of a battery
US10823786B2 (en) 2017-07-28 2020-11-03 Northstar Battery Company, Llc Battery with internal monitoring system
US10830826B2 (en) 2017-07-28 2020-11-10 Northstar Battery Company, Llc Systems and methods for determning crank health of a battery
US10830827B2 (en) 2017-07-28 2020-11-10 Northstar Battery Company, Llc Operating conditions information system for an energy storage device
US10921381B2 (en) 2017-07-28 2021-02-16 Northstar Battery Company, Llc Systems and methods for monitoring and presenting battery information
US11243260B2 (en) 2017-07-28 2022-02-08 Northstar Battery Company, Llc Systems and methods for determining an operating mode of a battery

Similar Documents

Publication Publication Date Title
JP2005146939A (en) Engine startability predicting device and starting secondary battery with it
US8489264B2 (en) Battery measuring device, battery control system and vehicle
CN101354432B (en) Battery performance monitor
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
EP1870289B1 (en) Vehicle power supply device and its degradation judgment method
AU2003288666B2 (en) Device and method of monitoring the starting capability of a vehicle&#39;s starter battery
JP4809618B2 (en) Secondary battery deterioration judgment method
US20060250137A1 (en) Method for predicting the residual service life of an electric energy accumulator
JP2009244179A (en) Battery discharge duration prediction method, battery status detection method, battery status detection system, and battery power source system
WO2006129802A1 (en) Charge ratio/remaining capacity estimation method, battery state sensor, and battery power source system
JP5367604B2 (en) Method and apparatus for measuring internal impedance of secondary battery
WO2005015252A1 (en) Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP2006312528A (en) Electric power storage device of elevator
US10150479B2 (en) Battery state of function prediction with self-learning
JP2007055450A (en) Estimating system for deteriorated state of capacitor device
KR20200101390A (en) Parking air conditioner, vehicle battery life warning method and system
JPS6327776A (en) Battery charging control and diagnostic apparatus for car
CN105548888A (en) Methods for monitoring the state of a battery in a motor vehicle
JP2013205125A (en) Device and method for detecting state of secondary battery
JP2005100969A (en) Method and device for measuring internal impedance of secondary battery, and power supply system
JP2009234557A (en) Open voltage value estimation method and open voltage value estimation device
JP2020079723A (en) Secondary battery system
JP2002343444A (en) Status-monitoring system for lead-acid battery
JP2010126126A (en) Battery monitor