JP6674139B2 - Vehicle and its battery state detection system - Google Patents

Vehicle and its battery state detection system Download PDF

Info

Publication number
JP6674139B2
JP6674139B2 JP2016113498A JP2016113498A JP6674139B2 JP 6674139 B2 JP6674139 B2 JP 6674139B2 JP 2016113498 A JP2016113498 A JP 2016113498A JP 2016113498 A JP2016113498 A JP 2016113498A JP 6674139 B2 JP6674139 B2 JP 6674139B2
Authority
JP
Japan
Prior art keywords
state
battery
charge
vehicle
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016113498A
Other languages
Japanese (ja)
Other versions
JP2017219404A (en
JP2017219404A5 (en
Inventor
前田 謙一
謙一 前田
大祐 保坂
大祐 保坂
悠 宇田川
悠 宇田川
有広 ▲櫛▼部
有広 ▲櫛▼部
哲也 松本
哲也 松本
近藤 隆文
隆文 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016113498A priority Critical patent/JP6674139B2/en
Publication of JP2017219404A publication Critical patent/JP2017219404A/en
Publication of JP2017219404A5 publication Critical patent/JP2017219404A5/ja
Application granted granted Critical
Publication of JP6674139B2 publication Critical patent/JP6674139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車両およびその電池状態検知システムに係り、特に、車載電池の製造バラツキ等に起因する個体差にかかわらず電池パラメータに基づいて充電状態を正確に検知できる車両およびその電池状態検知システムに関する。   The present invention relates to a vehicle and a battery state detection system thereof, and more particularly to a vehicle and a battery state detection system capable of accurately detecting a state of charge based on battery parameters regardless of individual differences due to manufacturing variations of a vehicle-mounted battery. .

近年、エンジン自動車による排ガスの削減に対応するため、エンジンの自動停止および再始動(ISS:アイドルストップ・スタート)の機能を備えた車両が普及し、車載の鉛電池をアイドルストップ可能な状態に保つ技術が望まれている。   In recent years, vehicles equipped with an automatic stop and restart (ISS: idle stop / start) function of the engine have become widespread in order to cope with the reduction of exhaust gas from engine vehicles, and lead-acid batteries on vehicles are kept in an idle-stoppable state. Technology is desired.

すなわち、ISSを搭載する自動車(車両)では、エンジン停止中のエアコン、カーステレオなどの負荷は全て鉛電池からの電力で賄われる。このため、従来に較べて鉛電池の深い放電が増加し、鉛電池の充電状態が低下する傾向にある。   That is, in an automobile (vehicle) equipped with the ISS, loads such as an air conditioner and a car stereo while the engine is stopped are all covered by the electric power from the lead battery. For this reason, the deep discharge of the lead battery increases as compared with the related art, and the state of charge of the lead battery tends to decrease.

鉛電池の出力はその充電状態に依存するため、エンジン停止中に鉛電池の充電状態が低下すると、エンジンを始動するのに充分な出力が得られなくなり、エンジン停止後の再始動ができなくなるおそれがある。   Since the output of a lead battery depends on its state of charge, if the state of charge of the lead battery drops while the engine is stopped, it may not be possible to obtain sufficient output to start the engine and restart after the engine is stopped. There is.

そのため、エンジンの再始動が可能な状態を保つためには、鉛電池の充電状態(例えば、SOC:State Of Charge)を演算(推定)してエンジン始動に必要な出力の有無を監視し、エンジン始動に必要な出力がある場合にはアイドルストップを許可する一方、エンジン始動に必要な出力がない場合にはアイドルストップを禁止すると共に鉛電池を充電するなどの信号を車両側のコンピュータに送信する必要がある。   Therefore, in order to maintain a state in which the engine can be restarted, the state of charge of the lead battery (for example, SOC: State Of Charge) is calculated (estimated), and the presence or absence of an output necessary for starting the engine is monitored. If there is an output necessary for starting, the idle stop is permitted.If there is no output necessary for starting the engine, the idle stop is prohibited and a signal such as charging a lead battery is transmitted to the computer on the vehicle side. There is a need.

特許文献1,2には、鉛電池の充電状態を、その開回路電圧(OCV)を計測することにより求める技術が開示されている。この先行技術では、充電状態とOCVとの関係が一次式で表されることを利用して、車両停止時に計測したOCVを一次式に代入することにより充電状態が算出される。   Patent Literatures 1 and 2 disclose techniques for determining the state of charge of a lead battery by measuring its open circuit voltage (OCV). In this prior art, the charging state is calculated by substituting the OCV measured when the vehicle is stopped into the linear expression, utilizing the fact that the relationship between the charging state and the OCV is expressed by a linear expression.

特許文献3には、鉛電池の内部抵抗Rを計測することにより、その充電状態を推定する技術が開示されている。この先行技術では、充電状態と内部抵抗Rとの関係を近似式で表し、車両停止時に測定したRをこの近似式に代入することにより充電状態が算出される。   Patent Literature 3 discloses a technique for estimating a state of charge of a lead battery by measuring an internal resistance R of the lead battery. In this prior art, the relationship between the state of charge and the internal resistance R is represented by an approximate expression, and the state of charge is calculated by substituting R measured when the vehicle is stopped into the approximate expression.

特開平4-264371号公報JP-A-4-264371 特開2009-241633号公報JP 2009-241633 A 特許第3687628号公報Patent No. 3687628

図7は、同一仕様の複数の電池について、OCVとSOCとの実測値の関係を示した図であり、同一仕様の電池であっても、製造条件のばらつきや保管条件のばらつき等が原因でOCVとSOCとの関係に個体差が生じることが知られている。   FIG. 7 is a diagram showing the relationship between the measured values of OCV and SOC for a plurality of batteries of the same specifications. Even for batteries of the same specifications, due to variations in manufacturing conditions and storage conditions, etc. It is known that there is an individual difference in the relationship between OCV and SOC.

したがって、1つの近似式でOCVからSOCを精度良く推定することは困難であり、特に充電状態が実際よりも高めに推定されてしまうと、アイドルストップ・スタート時にバッテリの電力によりエンジンの始動ができないという事態に陥る場合がある。このような現象は、内部抵抗RとSOCとの関係についても同様である。   Therefore, it is difficult to accurately estimate the SOC from the OCV with one approximation formula. In particular, if the state of charge is estimated to be higher than the actual state, the engine cannot be started by the battery power at the time of the idle stop / start. May fall into that situation. Such a phenomenon applies to the relationship between the internal resistance R and the SOC.

本発明の目的は、上記の技術課題を解決し、開回路電圧OCVや内部抵抗Rなどの電池パラメータに基づいて、その充電状態を精度よく検知できる車両およびその充電状態検知システムを提供することにある。   An object of the present invention is to solve the above technical problem and provide a vehicle capable of accurately detecting its charge state based on battery parameters such as an open circuit voltage OCV and an internal resistance R and a charge state detection system thereof. is there.

上記の目的を達成するために、本発明は、車載電池の充電状態を検知する電池状態検知システムにおいて、以下の構成を具備した点に特徴がある。   In order to achieve the above object, the present invention is characterized in that a battery state detection system for detecting a state of charge of a vehicle-mounted battery has the following configuration.

(1) 車載電池の開回路電圧を計測する手段と、開回路電圧と充電状態との標準的な対応関係を記憶する手段と、新規に車載された電池の開回路電圧と前記対応関係における満充電状態の開回路電圧との関係を補正する補正係数を算出する手段と、補正係数に基づいて車載電池の開回路電圧の計測結果を補正する手段と、補正後の開回路電圧を前記対応関係に適用して充電状態を求める手段とを具備した。   (1) Means for measuring the open-circuit voltage of the vehicle-mounted battery, means for storing the standard correspondence between the open-circuit voltage and the state of charge, and Means for calculating a correction coefficient for correcting the relationship between the state of charge and the open circuit voltage; means for correcting the measurement result of the open circuit voltage of the vehicle-mounted battery based on the correction coefficient; Means for determining the state of charge by applying to

(2) 車載電池の劣化状態を検知する手段をさらに具備し、前記対応関係を記憶する手段は、車載電池の開回路電圧と充電状態との標準的な対応関係を劣化状態ごとに記憶し、前記充電状態を求める手段は、補正後の開回路電圧を前記劣化状態に対応した対応関係に適用して充電状態を求めるようにした。   (2) further comprising means for detecting the state of deterioration of the vehicle-mounted battery, the means for storing the correspondence, storing a standard correspondence between the open circuit voltage and the state of charge of the vehicle-mounted battery for each deterioration state, The means for determining the state of charge determines the state of charge by applying the corrected open circuit voltage to the correspondence corresponding to the state of deterioration.

本発明によれば、以下のような効果が達成される。   According to the present invention, the following effects are achieved.

(1) 電池パラメータと充電状態との標準的な対応関係を予め求めて登録する一方、各電池に固有の満充電時における電池パラメータに基づいて前記対応関係に対する補正係数Kを求め、この補正係数Kにより電池パラメータの計測結果が較正されるので、各電池の個体差にかかわらず、予め求めておいた電池パラメータと充電状態との典型的な対応関係に基づいて充電状態を正確に推定できるようになる。   (1) While a standard correspondence between the battery parameters and the state of charge is obtained and registered in advance, a correction coefficient K for the correspondence is obtained based on the battery parameter at the time of full charge specific to each battery, and this correction coefficient Since the measurement result of the battery parameter is calibrated by K, the state of charge can be accurately estimated based on the typical correspondence between the previously obtained battery parameter and the state of charge regardless of the individual difference of each battery. become.

(2) 電池パラメータと充電状態との対応関係を表す近似式あるいはマップを電池の劣化状態ごとに構築して登録しておき、劣化状態に応じた対応関係に基づいて充電状態が推定されるようにすれば、電池の劣化状態にかかわらず、その充電状態を電池パラメータに基づいて正確に推定できるようになる。   (2) An approximate expression or map representing the correspondence between the battery parameters and the state of charge is constructed and registered for each state of deterioration of the battery, and the state of charge is estimated based on the correspondence according to the state of deterioration. Thus, the state of charge of the battery can be accurately estimated based on the battery parameters regardless of the state of deterioration of the battery.

本発明の一実施形態に係る電池状態検知システム1の構成を示した機能ブロック図である。1 is a functional block diagram illustrating a configuration of a battery state detection system 1 according to an embodiment of the present invention. 充電状態SOCを推定する機能を示したブロック図である。FIG. 3 is a block diagram showing a function of estimating a state of charge SOC. 本発明の一実施形態に係る充電状態SOCの推定手順を示したフローチャートである。4 is a flowchart showing a procedure for estimating a state of charge SOC according to an embodiment of the present invention. 5つのサンプル電池に関して、補正係数Kocvを用いて計算したSOC推定値および用いずに計算したSOC推定値の各真値との誤差を示した図である。FIG. 10 is a diagram illustrating errors between SOC estimated values calculated using a correction coefficient Kocv and SOC true values calculated without using the five sample batteries with respect to true values. 鉛電池の内部抵抗Rと充電状態SOCとの関係を示した図である。FIG. 4 is a diagram showing a relationship between an internal resistance R of a lead battery and a state of charge SOC. 5つのサンプル電池に関して補正係数KRを用いて計算したSOC推定値および用いずに計算したSOC推定値の各真値との誤差を示した図である。FIG. 9 is a diagram showing errors between SOC estimated values calculated using a correction coefficient K R and true values of SOC estimated values not used for five sample batteries. 鉛電池の開回路電圧OCVと充電状態SOCとの関係に個体差があることを示した図である。FIG. 4 is a diagram showing that there is an individual difference in the relationship between the open circuit voltage OCV and the state of charge SOC of a lead battery.

以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は、本発明の一実施形態に係る電池状態検知システム1の主要部の構成を示した機能ブロック図であり、ここでは、ISS機能を備えて鉛電池12を搭載するガソリンエンジン車への適用を例にして説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing a configuration of a main part of a battery state detection system 1 according to an embodiment of the present invention. Here, the present invention is applied to a gasoline engine vehicle equipped with a lead battery 12 having an ISS function. The application will be described as an example.

電池状態検知システム1は、鉛電池12の温度を測定するサーミスタ等の温度センサ2、差動増幅回路等を有して鉛電池12の外部端子に接続された電圧測定部3、ホール素子等の電流センサ4および鉛電池12の電池状態を検知するマイクロコンピュータ(以下、マイコン)10を主要な構成としている。   The battery state detection system 1 includes a temperature sensor 2 such as a thermistor for measuring the temperature of the lead battery 12, a voltage measurement unit 3 having a differential amplifier circuit and the like and connected to an external terminal of the lead battery 12, a Hall element and the like. A main component is a microcomputer (hereinafter referred to as a microcomputer) 10 for detecting the battery state of the current sensor 4 and the lead battery 12.

鉛電池12は、電池容器となる略角型の電槽を有しており、電槽内には合計6組の極板群が収容されている。電槽の材質には、例えば、ポリエチレン(PE)等の高分子樹脂を用いることができる。各極板群は複数枚の負極板および正極板がセパレータを介して積層されており、セル電圧は2.0Vである。このため、鉛電池12の公称電圧は12Vとされている。電槽の上部は、電槽の上部開口を密閉するPE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池12を電源として外部へ電力を供給するためのロッド状正極端子および負極端子が立設されている。なお、上述した温度センサは電槽の側面部または底面部に固定されている。   The lead battery 12 has a substantially rectangular battery case serving as a battery container, and a total of six sets of electrode plates are accommodated in the battery case. As the material of the battery case, for example, a polymer resin such as polyethylene (PE) can be used. In each electrode plate group, a plurality of negative electrode plates and positive electrode plates are stacked with a separator interposed therebetween, and the cell voltage is 2.0 V. For this reason, the nominal voltage of the lead battery 12 is set to 12V. The upper part of the battery case is adhered or welded to an upper lid made of a polymer resin such as PE which seals the upper opening of the battery case. A rod-shaped positive electrode terminal and a negative electrode terminal for supplying electric power to the outside using the lead battery 12 as a power supply are provided upright on the upper lid. Note that the above-described temperature sensor is fixed to the side surface or the bottom surface of the battery case.

鉛電池12の正極端子は、電流センサ4を介してイグニッションスイッチ(以下、IGN)5の中央端子に接続されている。IGN5は、中央端子とは別にOFF端子、ON/ACC端子およびSTART端子を有しており、中央端子とOFF,ON/ACCおよびSTARTの各端子のいずれかとはロータリ式に切り替え接続が可能である。   The positive terminal of the lead battery 12 is connected to the center terminal of an ignition switch (hereinafter, IGN) 5 via the current sensor 4. The IGN5 has an OFF terminal, an ON / ACC terminal, and a START terminal separately from the center terminal, and the center terminal and any one of the OFF, ON / ACC, and START terminals can be switched and connected in a rotary manner. .

START端子はエンジン始動用セルモータ(スタータ)9に接続されている。セルモータ9は、図示しないクラッチ機構を介してエンジン8の回転軸に回転駆動力の伝達が可能である。ON/ACC端子は、エアコン、ラジオ、ランプ等の補機6および一方向への電流の流れを許容する整流素子を含むレギュレータを介してエンジン8の回転により発電する発電機7の一端に接続されている。すなわち、レギュレータのアノード側は発電機7の一端に、カソード側はON/ACC端子に接続されている。   The START terminal is connected to an engine start cell motor (starter) 9. The starter motor 9 can transmit a rotational driving force to the rotation shaft of the engine 8 via a clutch mechanism (not shown). The ON / ACC terminal is connected to one end of a generator 7 that generates electric power by rotation of the engine 8 via an auxiliary device 6 such as an air conditioner, a radio, a lamp, and a regulator including a rectifying element that allows a current to flow in one direction. ing. That is, the anode side of the regulator is connected to one end of the generator 7, and the cathode side is connected to the ON / ACC terminal.

エンジン8の回転軸は、図示しないクラッチ機構を介して発電機7に動力の伝達が可能である。このため、エンジン8が回転状態にあるときは、クラッチ機構を介して発電機7が作動し、その発電電力が補機6や鉛電池12に供給(充電)される。OFF端子はいずれにも接続されていない。   The rotating shaft of the engine 8 can transmit power to the generator 7 via a clutch mechanism (not shown). For this reason, when the engine 8 is in a rotating state, the generator 7 operates via the clutch mechanism, and the generated power is supplied (charged) to the auxiliary machine 6 and the lead battery 12. The OFF terminal is not connected to any of them.

電圧測定部3の出力は、マイコン10に内蔵されたA/Dコンバータに接続されている。また、温度センサ2および電流センサ4の出力は、マイコン10に内蔵されたA/Dコンバータにそれぞれ接続されている。このため、マイコン10は、鉛電池12の電圧、温度および鉛電池12に流れる電流を所定時間毎にデジタル値で取り込むことができる。なお、マイコン10は、I/Oを介して上位の車両制御システム11と通信可能である。   The output of the voltage measuring unit 3 is connected to an A / D converter built in the microcomputer 10. The outputs of the temperature sensor 2 and the current sensor 4 are connected to A / D converters built in the microcomputer 10, respectively. For this reason, the microcomputer 10 can take in the digital value of the voltage and temperature of the lead battery 12 and the current flowing through the lead battery 12 at predetermined time intervals. The microcomputer 10 can communicate with the host vehicle control system 11 via I / O.

マイコン10は、中央演算処理装置として機能するCPU、電池状態検知システム12の基本制御プログラムや後述するマップや数式等のプログラムデータが格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM、不揮発性のEEPROM等を含んで構成される。   The microcomputer 10 functions as a CPU that functions as a central processing unit, a ROM in which a basic control program of the battery state detection system 12 and program data such as maps and mathematical expressions described later are stored, and serves as a work area of the CPU and temporarily stores data. It is configured to include a storage RAM, a nonvolatile EEPROM, and the like.

発電機7、セルモータ9および補機6の他端、鉛電池12の負極端子およびマイコン10は、それぞれグランド(自動車のシャーシと同電位)に接続されている。なお、本実施形態のマイコン10は、電圧、電流および温度を所定時間毎に(例えば、電圧、電流をそれぞれ2m秒間隔、温度を1秒間隔で)それぞれサンプリングし、サンプリング結果をRAMに格納する。また、電流については、放電電流と充電電流とに分けて、それぞれの積算値を算出している。   The other end of the generator 7, the starter 9 and the auxiliary machine 6, the negative terminal of the lead battery 12, and the microcomputer 10 are connected to the ground (the same potential as the chassis of the automobile). Note that the microcomputer 10 of the present embodiment samples the voltage, current, and temperature at predetermined time intervals (for example, the voltage and current are each at 2 ms intervals and the temperature is at 1 second intervals), and stores the sampling results in the RAM. . The current is divided into a discharge current and a charge current, and the respective integrated values are calculated.

マイコン10に実装されたCPUは、IGN5の電圧に基づいて、その端子位置を判断し、さらにはエンジン状態を検知する。なお、IGN5が端子位置を代表する信号を出力するタイプであれば、その信号または車両制御システム11からの信号によりエンジン状態を検知してもよい。一般に、ガソリンエンジン車やディーゼルエンジン車等の内燃機関を有する自動車では、鉛電池から電力を供給しセルモータを回して、エンジンを始動する。   The CPU mounted on the microcomputer 10 determines the terminal position based on the voltage of the IGN 5, and further detects the engine state. If the IGN 5 outputs a signal representing the terminal position, the engine state may be detected based on the signal or a signal from the vehicle control system 11. Generally, in a vehicle having an internal combustion engine such as a gasoline engine vehicle or a diesel engine vehicle, electric power is supplied from a lead battery and a cell motor is turned to start the engine.

CPUは、エンジン停止後、鉛電池12の分極反応が解消する所定時間が経過すると、電圧測定部3を介して測定した鉛電池12の端子電圧を開回路電圧OCVとして取り込み、それ以降、所定の周期でタイマ割り込みによりOCVの取り込みを繰り返し、それ以外のタイミングでは、タイマのみを作動させそれ制御動作を行わない省電力モードに入る。   After a predetermined time during which the polarization reaction of the lead battery 12 is eliminated after the engine is stopped, the CPU takes in the terminal voltage of the lead battery 12 measured via the voltage measuring unit 3 as the open circuit voltage OCV, and thereafter, the predetermined OCV fetching is repeated by a timer interrupt at regular intervals, and at other times, only the timer is activated and the system enters a power saving mode in which no control operation is performed.

図2は、マイコン10が電池12のOCVに基づいて、その充電状態SOCを推定する機能を示したブロック図であり、マイコン10のCPUがROMあるいはEEPROMに予め記憶されているプログラムおよび各種のデータに基づいて動作することで実現される。   FIG. 2 is a block diagram showing a function of the microcomputer 10 estimating the state of charge SOC of the battery 12 based on the OCV of the battery 12, wherein the CPU of the microcomputer 10 stores programs and various data stored in ROM or EEPROM in advance. It is realized by operating based on.

本実施形態では、車載電池12と同一仕様の多数の鉛電池を対象に環境温度を変えながらOCVとSOCとの関係を求め、これらを統計的に処理することにより、基準温度(例えば、25°C)におけるOCVとSOCとの典型的あるいは標準的な対応関係を求め、これが近似式あるいはマップ形式で対応関係記憶部101に予め登録されている。   In the present embodiment, the relationship between the OCV and the SOC is determined for a number of lead batteries having the same specifications as the vehicle-mounted battery 12 while changing the environmental temperature, and these are statistically processed to obtain a reference temperature (for example, 25 ° C.). A typical or standard correspondence between the OCV and the SOC in C) is obtained, and this is registered in the correspondence storage unit 101 in advance in an approximate expression or a map format.

SOH計算部103は、電池の健康状態SOH(State Of Health)を周期的に計算する。鉛電池のSOHは、車載電池と同一仕様の多数の鉛電池を種々の劣化状態において予め測定しておいた内部抵抗RとSOHとの関係を表すSOHマップ102に内部抵抗Rの計測結果を適用することにより求められる。鉛電池のSOHは、一般に劣化品満充電容量/新品満充電容量×100%で定義され、次式(1)に示すように、内部抵抗R、温度T、開回路電圧OCVの関数として表される。   The SOH calculation unit 103 periodically calculates a battery health state SOH (State Of Health). For SOH of lead batteries, apply the measurement result of internal resistance R to SOH map 102 showing the relationship between internal resistance R and SOH, which was measured in advance in a number of deteriorated states for many lead batteries with the same specifications as on-board batteries It is required by doing. The SOH of a lead battery is generally defined as the deteriorated product full charge capacity / new product full charge capacity x 100%, and is expressed as a function of internal resistance R, temperature T, and open circuit voltage OCV as shown in the following equation (1). You.

新品電池判別部104は、車載の鉛電池12が新品と交換されたか否かを判別する。本実施形態では、前記SOH計算部103により計算されるSOHの更新値と前回のSOHとを比較し、SOHが若返っていると車載電池が新品に交換されたと判別される。   The new battery determining unit 104 determines whether the lead battery 12 mounted on the vehicle has been replaced with a new battery. In the present embodiment, the updated value of the SOH calculated by the SOH calculating unit 103 is compared with the previous SOH, and when the SOH is rejuvenated, it is determined that the onboard battery has been replaced with a new one.

OVC計測部105は、電池の分極反応が解消してOVCが安定しているタイミングで計測された複数のOCVに基づいて、その平均値OCVave0を算出する。補正係数計算部106は、前記標準的な対応関係から求まる満充電状態における開回路電圧OCVmap、および前記OCV計測部105により計測された開回路電圧OCVの平均値OCVave0を次式(2)に適用して補正係数Kocvを計算する。   The OVC measurement unit 105 calculates an average value OCVave0 based on a plurality of OCVs measured at a timing when the polarization reaction of the battery is eliminated and the OVC is stable. The correction coefficient calculation unit 106 applies the open circuit voltage OCVmap in the fully charged state determined from the standard correspondence relationship and the average value OCVave0 of the open circuit voltage OCV measured by the OCV measurement unit 105 to the following equation (2). To calculate the correction coefficient Kocv.

OCV較正部107は、現在の開回路電圧OCV0および前記補正係数Kocvを次式(3)に適用することにより較正済OCV'0を計算する。   The OCV calibrating unit 107 calculates the calibrated OCV'0 by applying the current open circuit voltage OCV0 and the correction coefficient Kocv to the following equation (3).

SOC計算部108は、前記較正済OCV'0を前記対応関係の近似式またはマップに適用して鉛電池12の充電状態SOCを計算し、その結果を出力する。   The SOC calculation unit 108 calculates the state of charge SOC of the lead battery 12 by applying the calibrated OCV'0 to the approximate expression or map of the correspondence, and outputs the result.

図3は、本発明の一実施形態に係る充電状態SOCの推定手順を示したフローチャートであり、ステップS1では、前記SOH計算部103により計算されたSOHに基づいて、車載の鉛電池12が新品と交換されたか否かが、前記新品電池判別部104により判別される。   FIG. 3 is a flowchart showing a procedure for estimating the state of charge SOC according to an embodiment of the present invention. In step S1, a new lead-acid battery 12 is mounted on the vehicle based on the SOH calculated by the SOH calculation unit 103. The new battery determination unit 104 determines whether or not the battery has been replaced.

新品の電池に交換されていればステップS2へ進み、エンジン停止後の経過時間が参照される。その結果、電池の分極反応が解消するのに要する時間(例えば、2時間以上)が経過していると判断されればステップS3へ進み、前記OCV計測部105により現在の開回路電圧OCV0が計測される。   If the battery has been replaced with a new battery, the process proceeds to step S2, and the elapsed time after the engine is stopped is referred to. As a result, if it is determined that the time required for the polarization reaction of the battery to be eliminated (for example, 2 hours or more) has elapsed, the process proceeds to step S3, where the OCV measuring unit 105 measures the current open circuit voltage OCV0. Is done.

ステップS4では計測回数nのカウンタがインクリメントされる。ステップS5では、計測回数nが5回に達したか否かが判定される。5回未満であればステップS3へ戻り、所定の周期(例えば、1秒)でOCV計測が繰り返される。その後、計測回数nが5回に達するとステップS6へ進み、5回分の計測結果から最小値OCVminおよび最大値OCVmaxを除いた残りOCV0の平均値OCVave0が計算される。   In step S4, the counter of the number of measurements n is incremented. In step S5, it is determined whether the number of measurements n has reached five. If less than five times, the process returns to step S3, and the OCV measurement is repeated at a predetermined cycle (for example, one second). Thereafter, when the number of measurements n reaches five, the process proceeds to step S6, and the average value OCVave0 of the remaining OCV0 excluding the minimum value OCVmin and the maximum value OCVmax from the five measurement results is calculated.

ステップS7では、前記平均値OCVave0を上式(2)に代入することで補正係数Kocvが算出される。ステップS8では、開回路電圧OCV0および前記補正係数Kocvを上式(3)に適用することで較正済みOCV'0が計算される。ステップS9では、前記対応関係の近似式またはマップに較正済みOCV'0を適用することで、電池の個体差が補償された充電状態SOCが計算される。   In step S7, the correction coefficient Kocv is calculated by substituting the average value OCVave0 into the above equation (2). In step S8, the calibrated OCV'0 is calculated by applying the open circuit voltage OCV0 and the correction coefficient Kocv to the above equation (3). In step S9, by applying the calibrated OCV'0 to the approximate expression or map of the correspondence, the state of charge SOC in which the individual difference of the battery is compensated is calculated.

図4は、5つのサンプル電池に関して、前記補正係数Kocvを用いて計算した本発明によるSOC推定値(上段)および用いずに計算したSOC推定値(下段)の各真値との誤差(推定値−真値)を示した図であり、本発明を適用することによりSOC推定値の誤差が減少していることが解る。   FIG. 4 shows an error (estimated value) of each of the SOC estimated values (upper row) calculated without using the correction coefficient Kocv and the SOC estimated values (lower row) calculated without using the correction coefficient Kocv for the five sample batteries. FIG. 4 shows true values), and it can be seen that the error of the estimated SOC value is reduced by applying the present invention.

このように、本実施形態によれば各電池に固有の満充電時における開回路電圧OCVに基づいて補正係数Kocvが求められ、この補正係数KocvによりOCVの計測結果が較正されるので、各電池の個体差にかかわらず、一つの近似式またはマップで車載電池の充電状態をOCVに基づいて正確に推定できるようになる。   As described above, according to the present embodiment, the correction coefficient Kocv is determined based on the open circuit voltage OCV at the time of full charge specific to each battery, and the OCV measurement result is calibrated by the correction coefficient Kocv. Regardless of the individual difference, the charging state of the vehicle-mounted battery can be accurately estimated based on the OCV with one approximation formula or map.

なお、上記の実施形態では電池の充電状態を推定する電池パラメータとしてOCVを採用するものとして説明したが、本発明はこれのみに限定されるものではなく、図5に示したように、OCVと同様に環境温度ごとに充電状態SOCと所定の相関関係を示す電池の内部抵抗Rを前記開回路電圧OCVの代わりに採用しても良い。   In the above embodiment, the description has been made assuming that the OCV is used as the battery parameter for estimating the state of charge of the battery. However, the present invention is not limited to this, and as shown in FIG. Similarly, the internal resistance R of the battery that shows a predetermined correlation with the state of charge SOC for each environmental temperature may be employed instead of the open circuit voltage OCV.

この場合は、車載電池と同一仕様の多数の電池を対象に、環境温度Tを変えながら内部抵抗Rと充電状態SOCとの関係を求め、これらを統計的に処理することにより、基準温度おける内部抵抗Rと充電状態SOCとの標準的な対応関係を表す近似式あるいはマップを前記対応関係記憶部101に登録しておけばよい。そして、上記と同様の手順で内部抵抗Rに関する補正係数KRを求め、内部抵抗Rの最新値と補正係数KRとに基づいて内部抵抗Rを較正すれば良い。 In this case, the relationship between the internal resistance R and the state of charge SOC is determined for a number of batteries having the same specifications as the vehicle-mounted battery while changing the environmental temperature T, and these are statistically processed to obtain the internal temperature at the reference temperature. An approximate expression or map representing a standard correspondence between the resistance R and the state of charge SOC may be registered in the correspondence storage unit 101. Then, a correction factor K R relating to the internal resistance R in the same procedure as described above, may be calibrated internal resistance R based on the most recent value of the internal resistance R and the correction coefficient K R.

図6は、5つのサンプル電池に関して、補正係数KRを用いて計算したSOC推定値(上段)および補正係数KRを用いずに計算したSOC推定値(下段)の各真値との誤差(推定値−真値)を示した図であり、補正係数KRを用いることによりSOC推定値の誤差が減少していることが解る。 6, with respect to five samples the battery, an error between the true value of the correction coefficient K R SOC estimation value calculated using (top) and the correction coefficient SOC estimation value calculated without using K R (bottom) ( estimate - a view showing a true value), it can be seen that error in SOC estimation value is decreased by using the correction coefficient K R.

ところで、上記の実施形態では、開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの標準的、典型的な対応関係が唯一であるものとして説明したが、一般的に鉛電池の開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの関係は電池の劣化状態に応じて異なることが知られている。   By the way, in the above embodiment, the standard and typical correspondence between the open circuit voltage OCV or the internal resistance R and the state of charge SOC has been described as the only one. Alternatively, it is known that the relationship between the internal resistance R and the state of charge SOC differs depending on the state of deterioration of the battery.

したがって、車載電池と同一仕様で劣化状態の異なる多数の電池を対象に、環境温度Tを変えながら開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの関係を求め、これらを統計的に処理することにより、基準温度おける開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの対応関係を表す近似式あるいはマップを電池の劣化状態ごとに構築して対応関係憶部101に登録しておき、劣化状態に応じた対応関係に基づいて充電状態SOCが推定されるようにしても良い。鉛電池の劣化状態を代表する指標としては、前記健康状態SOHを採用できる。   Therefore, the relationship between the open circuit voltage OCV or the internal resistance R and the state of charge SOC is determined for a large number of batteries having the same specifications as the vehicle-mounted batteries and having different deterioration states while changing the environmental temperature T, and these are statistically processed. Accordingly, an approximate expression or a map representing the correspondence between the open circuit voltage OCV or the internal resistance R at the reference temperature and the state of charge SOC is constructed for each deterioration state of the battery, registered in the correspondence storage unit 101, and The state of charge SOC may be estimated based on the correspondence relationship according to the state. The above-mentioned health condition SOH can be adopted as an index representing the deterioration state of the lead battery.

このようにすれば、電池の劣化状態にかかわらず、その充電状態SOCを開回路電圧OCVあるいは内部抵抗Rに基づいて正確に推定できるようになる。   In this way, the state of charge SOC can be accurately estimated based on the open circuit voltage OCV or the internal resistance R regardless of the state of deterioration of the battery.

1…電池状態検知システム,2…温度センサ,3…電圧測定部,4…電流センサ,5…IGN,6…補機,7…発電機,8…エンジン,9…エンジン始動用セルモータ,10…マイコン,12…鉛電池,101…対応関係記憶部,102…SOHマップ,103…SOH計算部,104…新品電池判別部,105…OVC計測部,106…補正係数計算部,O107…CV較正部,108…SOC計算部   DESCRIPTION OF SYMBOLS 1 ... Battery state detection system, 2 ... Temperature sensor, 3 ... Voltage measurement part, 4 ... Current sensor, 5 ... IGN, 6 ... Auxiliary equipment, 7 ... Generator, 8 ... Engine, 9 ... Engine start cell motor, 10 ... Microcomputer, 12 lead battery, 101 correspondence storage unit, 102 SOH map, 103 SOH calculation unit, 104 new battery discrimination unit, 105 OVC measurement unit, 106 correction coefficient calculation unit, O107 CV calibration unit , 108 ... SOC calculation unit

Claims (7)

車載電池の充電状態を検知する電池状態検知システムにおいて、
車載電池の開回路電圧を計測する手段と、
車載電池の開回路電圧と充電状態との標準的な対応関係を記憶する手段と、
車載電池が新品に交換されたか否かを判別する手段と、
車載電池が新品に交換されると、当該新品の車載された電池の開回路電圧を計測し、当該計測の結果と前記対応関係における満充電状態の開回路電圧との関係を補正する補正係数を算出する手段と、
前記補正係数に基づいて、前記車載電池の開回路電圧の計測結果を補正する手段と、
前記補正後の開回路電圧を前記対応関係に適用して充電状態を求める手段とを具備したことを特徴とする電池状態検知システム。
In a battery state detection system that detects the state of charge of the vehicle battery,
Means for measuring the open circuit voltage of the vehicle battery;
Means for storing a standard correspondence between the open circuit voltage of the vehicle battery and the state of charge;
Means for determining whether the in-vehicle battery has been replaced with a new one,
When the vehicle-mounted battery is replaced with a new one, the open-circuit voltage of the new vehicle-mounted battery is measured, and a correction coefficient for correcting the relationship between the result of the measurement and the open-circuit voltage in the fully charged state in the correspondence relationship is calculated. Means for calculating;
Means for correcting the measurement result of the open circuit voltage of the vehicle-mounted battery, based on the correction coefficient,
Means for calculating a state of charge by applying the corrected open circuit voltage to the correspondence.
前記対応関係が基準温度における開回路電圧と充電状態との関係を表し、
前記補正係数が前記基準温度の換算値であり、
前記充電状態を求める手段は、前記基準温度での充電状態を求めることを特徴とする請求項1に記載の電池状態検知システム。
The correspondence represents the relationship between the open circuit voltage and the state of charge at the reference temperature,
The correction coefficient is a converted value of the reference temperature,
The battery state detection system according to claim 1, wherein the means for determining the state of charge determines a state of charge at the reference temperature.
車載電池の劣化状態を検知する手段をさらに具備し、
前記対応関係を記憶する手段は、車載電池の開回路電圧と充電状態との標準的な対応関係を劣化状態ごとに記憶し、
前記充電状態を求める手段は、前記補正後の開回路電圧を、前記劣化状態に対応した対応関係に適用して充電状態を求めることを特徴とする請求項1または2に記載の電池状態検知システム。
Further comprising means for detecting the state of deterioration of the vehicle-mounted battery,
The means for storing the correspondence relationship stores a standard correspondence relationship between the open circuit voltage of the vehicle-mounted battery and the state of charge for each deterioration state,
3. The battery state detection system according to claim 1, wherein the means for obtaining the state of charge obtains the state of charge by applying the corrected open circuit voltage to a correspondence relationship corresponding to the state of deterioration. 4. .
前記補正係数を算出する手段は、車載電池の開回路電圧を複数回計測し、最大値および最小値を除いた残りの複数の値に基づいて開回路電圧を求めることを特徴とする請求項1ないしのいずれかに記載の電池状態検知システム。 2. The method according to claim 1, wherein the means for calculating the correction coefficient measures the open circuit voltage of the vehicle-mounted battery a plurality of times, and obtains the open circuit voltage based on a plurality of remaining values excluding the maximum value and the minimum value. 4. The battery state detection system according to any one of claims 3 to 3 . 前記対応関係が、開回路電圧と充電状態との関係を示す近似式であることを特徴とする請求項1ないしのいずれかに記載の電池状態検知システム。 The battery state detection system according to any one of claims 1 to 4 , wherein the correspondence is an approximate expression indicating a relation between an open circuit voltage and a state of charge. 前記対応関係が、開回路電圧と充電状態との関係を示すマップであることを特徴とする請求項1ないしのいずれかに記載の電池状態検知システム。 The battery state detection system according to any one of claims 1 to 4 , wherein the correspondence is a map indicating a relation between an open circuit voltage and a state of charge. 前記請求項1ないしのいずれかに記載の電池状態検知システムを用いて車載電池の状態を検知することを特徴とする車両。 A vehicle that detects the state of a vehicle-mounted battery using the battery state detection system according to any one of claims 1 to 6 .
JP2016113498A 2016-06-07 2016-06-07 Vehicle and its battery state detection system Active JP6674139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113498A JP6674139B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113498A JP6674139B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Publications (3)

Publication Number Publication Date
JP2017219404A JP2017219404A (en) 2017-12-14
JP2017219404A5 JP2017219404A5 (en) 2019-01-31
JP6674139B2 true JP6674139B2 (en) 2020-04-01

Family

ID=60656978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113498A Active JP6674139B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Country Status (1)

Country Link
JP (1) JP6674139B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061521B (en) * 2018-10-30 2021-03-16 四川长虹电源有限责任公司 Storage battery pack charge state calculation method and system
JP7119921B2 (en) * 2018-11-07 2022-08-17 トヨタ自動車株式会社 battery controller
CN110970670B (en) * 2019-03-04 2020-12-08 重庆长安新能源汽车科技有限公司 Power battery management method and device and computer readable storage medium
CN110058177B (en) * 2019-05-06 2021-08-31 奇瑞新能源汽车股份有限公司 Power battery electric quantity SOC correction method
JP7414697B2 (en) 2020-11-27 2024-01-16 株式会社東芝 Battery deterioration determination device, battery management system, battery equipped equipment, battery deterioration determination method, and battery deterioration determination program
TWI790872B (en) * 2021-12-23 2023-01-21 亞福儲能股份有限公司 Battery management system and battery management method
CN116581402B (en) * 2023-07-13 2023-11-17 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985614B2 (en) * 1993-09-29 1999-12-06 日本電池株式会社 Storage battery device with dry-up detection function
JP4057276B2 (en) * 2001-10-26 2008-03-05 古河電気工業株式会社 Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
JP4178898B2 (en) * 2002-10-10 2008-11-12 新神戸電機株式会社 Battery status detection system
JP2004179097A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Uniform charging system of lead battery
JP5170851B2 (en) * 2005-07-15 2013-03-27 古河電気工業株式会社 Storage battery charge state detection method and storage battery charge state detection device
JP5162971B2 (en) * 2007-06-13 2013-03-13 新神戸電機株式会社 Battery state detection system and automobile
JP6260812B2 (en) * 2013-12-05 2018-01-17 パナソニックIpマネジメント株式会社 Battery remaining capacity estimation device, battery remaining capacity determination method, and battery remaining capacity determination program
JP6037369B2 (en) * 2014-02-25 2016-12-07 三菱電機株式会社 Secondary battery SOC estimation device
KR20160017341A (en) * 2014-08-05 2016-02-16 현대모비스 주식회사 Apparatus and Method for estimating battery charging status

Also Published As

Publication number Publication date
JP2017219404A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6674139B2 (en) Vehicle and its battery state detection system
US7962300B2 (en) Battery state judging method, and battery state judging apparatus
US10656210B2 (en) Secondary battery state detection device and secondary battery state detection method
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4288958B2 (en) Degradation estimation method
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
CN108885242B (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP5162971B2 (en) Battery state detection system and automobile
JP6603888B2 (en) Battery type determination device and battery type determination method
JP2009241646A (en) Battery state determination system, and automobile having the system
JP6604478B2 (en) Vehicle and its battery state detection system
JP4548011B2 (en) Deterioration degree judging device
JP4702115B2 (en) Battery status judgment device
JP6607353B2 (en) Vehicle and its battery state detection system
JP5163739B2 (en) Battery state detection system and automobile equipped with the same
JP4178898B2 (en) Battery status detection system
JP2005292035A (en) Method of detecting battery condition
JP4872513B2 (en) Battery current-voltage characteristic detection device and internal resistance detection device using the same
JP4572518B2 (en) Battery status detection method
JP2008291660A (en) Vehicle condition determination device and automobile
JP4670256B2 (en) Battery status detection method
JP2016162728A (en) Battery type determination device and battery type determination method
JP4650380B2 (en) Battery state detection system and automobile equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R151 Written notification of patent or utility model registration

Ref document number: 6674139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250