JP4686668B2 - Plasma processing method and apparatus - Google Patents

Plasma processing method and apparatus Download PDF

Info

Publication number
JP4686668B2
JP4686668B2 JP2005195125A JP2005195125A JP4686668B2 JP 4686668 B2 JP4686668 B2 JP 4686668B2 JP 2005195125 A JP2005195125 A JP 2005195125A JP 2005195125 A JP2005195125 A JP 2005195125A JP 4686668 B2 JP4686668 B2 JP 4686668B2
Authority
JP
Japan
Prior art keywords
vacuum vessel
plasma
target
switch
ground potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005195125A
Other languages
Japanese (ja)
Other versions
JP2007012560A (en
Inventor
元一 金沢
豊久 浅地
潤二 斎藤
浩文 鍋澤
功 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
National Institute for Materials Science
Tateyama Machine Co Ltd
Original Assignee
Toyama Prefecture
National Institute for Materials Science
Tateyama Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture, National Institute for Materials Science, Tateyama Machine Co Ltd filed Critical Toyama Prefecture
Priority to JP2005195125A priority Critical patent/JP4686668B2/en
Publication of JP2007012560A publication Critical patent/JP2007012560A/en
Application granted granted Critical
Publication of JP4686668B2 publication Critical patent/JP4686668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

この発明は、半導体素子の製造、高分子材料や絶縁材料の微細加工等に際して、プラズマを利用するためのプラズマ処理方法と装置に関する。 The present invention relates to a plasma processing method and apparatus for using plasma in the manufacture of semiconductor elements, the fine processing of polymer materials and insulating materials, and the like.

従来、半導体素子製造工程のなかでシリコンなどの基板表面に微細な溝を加工するために利用されるドライエッチングは、真空ポンプで真空容器内の空気を排気し、真空容器のなかにハロゲンガスなどの反応性ガスを導入し、所定の圧力に制御して、マイクロ波または高周波電流を印加することによりプラズマを発生させ、プラズマ中のイオンや、ラジカル(中性励起ガス種)の物理化学作用によって基板表面を選択的にエッチングするものである。   Conventionally, dry etching, which is used to process fine grooves on the surface of a substrate such as silicon in a semiconductor device manufacturing process, exhausts air in a vacuum vessel with a vacuum pump, and halogen gas or the like in the vacuum vessel. The reactive gas is introduced, and the plasma is generated by applying a microwave or a high-frequency current under a predetermined pressure. By the physicochemical action of ions or radicals (neutral excited gas species) in the plasma The substrate surface is selectively etched.

また、半導体素子製造工程のなかでシリコンなどの基板表面の膜生成に利用されているスパッタ成膜技術は、真空容器にArガスなどの不活性ガスを導入して、真空ポンプで排気しつつ所定の圧力に制御し、真空容器中に設けられ成膜したい膜材料で作られたターゲットに、直流または高周波電圧を印加し、負の電位を与えてプラズマを発生させて、プラズマ中のArイオンをターゲットに衝突させ、膜材料の粒子を飛び出させるものである。飛び出した粒子は、対向する基板に付着して膜を形成する。   In addition, a sputtering film forming technique used for generating a film on the surface of a substrate such as silicon in a semiconductor element manufacturing process introduces an inert gas such as Ar gas into a vacuum vessel and exhausts it with a vacuum pump. The plasma is generated by applying a direct current or a high-frequency voltage to a target made of a film material to be formed in a vacuum vessel, and a negative potential is applied to generate Ar ions in the plasma. It is made to collide with the target and the film material particles pop out. The ejected particles adhere to the opposing substrate and form a film.

さらに、例えば特許文献1にあるように、マイクロ波と磁場の相互作用によりプラズマを発生させ、ドライエッチングやスパッタリングを行うマイクロ波プラズマ処理装置も提案されている。このマイクロ波プラズマ処理装置は、真空容器の側面をセラミックスにより形成し、その部分に導波管を接続して、真空容器内にマイクロ波を導入可能としている。さらに、真空容器の外側には電磁石等の磁界発生装置を設け、その下方には真空容器内で試料台電極と対面した対向電極が設けられ、対向電極をスパッタリングのターゲット材料により形成している。
特開平6−291087号公報
Furthermore, as disclosed in Patent Document 1, for example, a microwave plasma processing apparatus that generates plasma by the interaction between a microwave and a magnetic field and performs dry etching or sputtering has been proposed. In this microwave plasma processing apparatus, the side surface of a vacuum vessel is formed of ceramics, and a waveguide is connected to that portion, so that microwaves can be introduced into the vacuum vessel. Further, a magnetic field generator such as an electromagnet is provided outside the vacuum vessel, and a counter electrode facing the sample stage electrode is provided below the vacuum vessel, and the counter electrode is formed of a sputtering target material.
JP-A-6-29087

上記背景技術において説明したように、一般にスパッタ成膜とエッチングは、半導体素子製造工程のなかで、各々独立した工程である成膜と溝加工工程を受け持つものであり、従来、それを行う装置も全く独立した装置として使用されてきた。したがって、この両者においては、装置設置スペースとコストが各々の工程で必要であった。また、スパッタ成膜とエッチングは真空中で処理を行うため、連続処理のためには素子基板を一旦大気中に取り出して、再び次の真空容器へ移して、その容器を真空にして処理する必要がある。従って、大気中への基板取り出し、及び基板投入容器の真空化に無駄な時間を費やしていた。また、基板を大気に曝す事による表面の汚染問題も発生する。   As described in the background art above, generally, sputter deposition and etching are responsible for film formation and groove processing, which are independent processes in the semiconductor element manufacturing process. It has been used as a completely independent device. Therefore, in both cases, the apparatus installation space and cost are required in each process. In addition, since sputter deposition and etching are performed in a vacuum, it is necessary to remove the element substrate to the atmosphere and transfer it to the next vacuum container again to process it in a vacuum for continuous processing. There is. Therefore, useless time was spent on taking out the substrate to the atmosphere and evacuating the substrate loading container. In addition, surface contamination due to exposure of the substrate to the atmosphere also occurs.

さらに、特許文献1に開示されているように、絶縁物窓を通じてマイクロ波を真空容器側面より導入し、基板と対向した電極にターゲットを配置すれば、エッチングとスパッタ機能を同一真空容器で実現が可能であるが、この装置の場合、スパッタによるマイクロ波導入窓への膜付着は不可避であり、付着膜が導電体の場合、マイクロ波は遮断されて装置の機能を失ってしまうと言う欠点がある。   Furthermore, as disclosed in Patent Document 1, if the microwave is introduced from the side of the vacuum vessel through the insulator window and the target is disposed on the electrode facing the substrate, the etching and sputtering functions can be realized in the same vacuum vessel. Although it is possible, in this apparatus, film adhesion to the microwave introduction window by sputtering is inevitable, and when the adhesion film is a conductor, the microwave is cut off and the function of the apparatus is lost. is there.

この発明は、上記従来の技術に鑑みなされたもので、簡単な装置によりプラズマを利用して、エッチングやスパッタリング等の異なる処理を一つの容器内で行うことができるとともに、高速エッチング及び高速成膜を可能とするプラズマ処理方法と装置の提供を目的とする。 The present invention has been made in view of the above-described conventional technique. By using plasma with a simple apparatus, different processes such as etching and sputtering can be performed in one container, and high-speed etching and high-speed film formation can be performed. It is an object of the present invention to provide a plasma processing method and apparatus that enable the above.

この発明は、内部を真空にすることができる真空容器と、この真空容器に設けられ前記真空容器内に磁場を形成する磁石と、前記真空容器内で間隔を開けて互いに対向して設けられた一対の電極とを備えたプラズマ処理装置を用いてプラズマ処理を行うプラズマ処理方法であって、前記真空容器の側壁に固定され前記真空容器内に突出してマイクロ波を放射し、前記真空容器を共振器としてその真空容器内で、前記磁石とともに電子サイクロトロン共鳴によるプラズマを発生させるアンテナと、前記真空容器内の一方の電極側に接続され直流電圧又は高周波電圧が印加されるターゲットと、前記ターゲットに接続された切り換え部材を有し、一方の接点が前記直流電圧または前記高周波電圧を印加するターゲット用電圧源に接続され、他方の接点が接地電位に接続され、前記ターゲット用電圧源と接地電位とを前記切り換え部材により切り換える第1のスイッチと、前記真空容器内の他方の電極に接続され前記プラズマ処理が施される基板と、前記他方の電極に接続された切り換え部材を有し、一方の接点が高周波電源に接続され、他方の接点が接地電位に接続され、前記高周波電源と接地電位とを前記切り換え部材により切り換える第2のスイッチとを設け、ドライエッチングを行う場合には、前記第1のスイッチを前記接地電位に接続し、前記第2のスイッチを前記高周波電源に接続するとともに、排気された前記真空容器に反応性ガスを導入し、前記アンテナからマイクロ波を前記真空容器内に放射し、前記アンテナから放射されたマイクロ波によりプラズマを発生させ、前記永久磁石の作るミラー磁場に前記プラズマを閉じ込め、そのプラズマ中のイオンにより前記他方の電極上の前記基板を衝撃し、スパッタリングを行う場合に、前記ターゲットが導電性の場合には前記ターゲット用電圧源を前記直流電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続し、排気された前記真空容器に不活性ガスを導入してプラズマを発生させ、前記ターゲットが絶縁性の場合には前記ターゲット用電圧源を前記高周波電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続してプラズマを発生させ、前記スパッタリングに際して、前記ミラー磁場に前記プラズマを閉じ込め、前記プラズマ中のイオンが前記久磁石の作る前記ミラー磁場と前記ターゲットに印加された電圧の作る電界とが直交する箇所で、前記ターゲットに向かう力を受け、前記ターゲットの表面を衝撃し、前記真空容器内で前記各プラズマにより、ドライエッチング処理とスパッタリング処理を連続的に行うプラズマ処理方法である。前記ドライエッチングを行う場合は、前記真空容器に反応性ガスを導入し、10―1Pa程度の圧力に制御し、前記スパッタリングを行う場合には、前記真空容器に不活性ガスを導入し、10―1Pa程度の圧力に制御するものである。 The present invention is provided with a vacuum container that can be evacuated inside, a magnet that is provided in the vacuum container and forms a magnetic field in the vacuum container, and is opposed to each other with a gap in the vacuum container. A plasma processing method for performing plasma processing using a plasma processing apparatus provided with a pair of electrodes, wherein the plasma processing method is fixed to a side wall of the vacuum container and protrudes into the vacuum container to emit microwaves, thereby resonating the vacuum container. In the vacuum vessel as a vessel, an antenna for generating plasma by electron cyclotron resonance together with the magnet, a target connected to one electrode side in the vacuum vessel to which a DC voltage or a high frequency voltage is applied, and a connection to the target It has a switching member which is connected to one contact a target voltage source for applying the DC voltage or the high frequency voltage, the other A substrate where the points are connected to the ground potential, a first switch for switching between ground potential and the voltage source for the target by the switching member, which is connected to the other electrode plasma treatment of the vacuum chamber is subjected, A switching member connected to the other electrode, wherein one contact is connected to a high-frequency power source, the other contact is connected to a ground potential, and a second member that switches between the high-frequency power source and the ground potential by the switching member. When the dry etching is performed, the first switch is connected to the ground potential, the second switch is connected to the high-frequency power source, and the evacuated vacuum vessel is supplied with a reactive gas. introducing the microwave from the antenna radiates in the vacuum chamber to generate plasma by the microwave radiated from the antenna, before Confining the plasma to a mirror magnetic field produced by the permanent magnet, the by ions in the plasma bombard the substrate on the other electrode, when performing sputtering, a voltage source for the target when the target is conductive as the DC voltage, connecting the first switch to the voltage source for the target, connecting the second switch to said ground potential, a plasma by introducing an inert gas into the vacuum vessel is evacuated When the target is insulative, the target voltage source is the high frequency voltage, the first switch is connected to the target voltage source, and the second switch is connected to the ground potential. In the sputtering, the plasma is confined in the mirror magnetic field, and ions in the plasma are At a location where the mirror magnetic field created by the magnet and the electric field created by the voltage applied to the target are orthogonal to each other, the force directed to the target is received, the surface of the target is bombarded, and each plasma in the vacuum vessel, This is a plasma processing method in which a dry etching process and a sputtering process are continuously performed. When performing the dry etching, a reactive gas is introduced into the vacuum vessel and controlled to a pressure of about 10 −1 Pa. When performing the sputtering, an inert gas is introduced into the vacuum vessel. -The pressure is controlled to about 1 Pa.

またこの発明は、内部を真空にすることができる真空容器と、この真空容器に設けられ前記真空容器内に磁場を形成する磁石と、前記真空容器内で間隔を開けて互いに対向して設けられた一対の電極とを備えたプラズマ処理装置であって、前記真空容器の側壁に固定され前記真空容器内に突出してマイクロ波を放射し、前記真空容器を共振器としてその真空容器内で、前記磁石とともに電子サイクロトロン共鳴によるプラズマを発生させるアンテナと、前記真空容器内の一方の電極側に接続され直流電圧又は高周波電圧が印加されるターゲットと、前記ターゲットに接続された切り換え部材を有し、一方の接点が前記直流電圧または前記高周波電圧を印加するターゲット用電圧源に接続され、他方の接点が接地電位に接続され、前記ターゲット用電圧源と接地電位とを前記切り換え部材により切り換える第1のスイッチと、前記真空容器内の他方の電極に接続され前記プラズマ処理が施される基板と、前記他方の電極に接続された切り換え部材を有し、一方の接点が高周波電源に接続され、他方の接点が接地電位に接続され、前記高周波電源と接地電位とを前記切り換え部材により切り換える第2のスイッチとを備え、前記第1のスイッチと前記第2のスイッチとを切り換えて、前記真空容器内でプラズマを各々発生可能に設けられ、ドライエッチングを行う場合には、前記第1のスイッチを前記接地電位に接続し、前記第2のスイッチを前記高周波電源に接続するとともに、排気された前記真空容器に反応性ガスを導入し、前記アンテナからマイクロ波を前記真空容器内に放射し、前記アンテナから放射されたマイクロ波によりプラズマを発生させ、前記永久磁石の作るミラー磁場に前記プラズマを閉じ込め、そのプラズマ中のイオンにより前記他方の電極上の前記基板を衝撃し、スパッタリングを行う場合に、前記ターゲットが導電性の場合には前記ターゲット用電圧源を前記直流電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続し、排気された前記真空容器に不活性ガスを導入してプラズマを発生させ、前記ターゲットが絶縁性の場合には前記ターゲット用電圧源を前記高周波電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続してプラズマを発生させ、前記スパッタリングに際して、前記ミラー磁場に前記プラズマを閉じ込め、前記プラズマ中のイオンが、前記久磁石の作る前記ミラー磁場と前記ターゲットに印加された電圧の作る電界とが直交する箇所で、前記ターゲットに向かう力を受け、前記ターゲットの表面を衝撃し、前記真空容器内で前記各プラズマにより、ドライエッチング処理とスパッタリング処理とを連続的に可能としたプラズマ処理装置である。 The present invention also provides a vacuum vessel capable of evacuating the interior, a magnet provided in the vacuum vessel and forming a magnetic field in the vacuum vessel, and facing each other with a gap in the vacuum vessel. A plasma processing apparatus comprising a pair of electrodes, wherein the plasma processing apparatus is fixed to a side wall of the vacuum vessel and projects into the vacuum vessel to emit microwaves, and the vacuum vessel is used as a resonator in the vacuum vessel, An antenna for generating plasma by electron cyclotron resonance together with a magnet, a target connected to one of the electrodes in the vacuum vessel to which a DC voltage or a high-frequency voltage is applied , and a switching member connected to the target, the contact is connected to a voltage source for the target for applying the DC voltage or the high frequency voltage, the other contact is connected to a ground potential, said target A first switch for switching use voltage source and the ground potential by the switching member, a substrate which is connected to the other electrode plasma treatment of the vacuum chamber is performed, the connected to the other electrode switching member A first switch connected to a high-frequency power source, a second contact connected to a ground potential, and a second switch that switches between the high-frequency power source and the ground potential by the switching member. When the plasma is generated in the vacuum vessel by switching between the first switch and the second switch, and dry etching is performed, the first switch is connected to the ground potential, and the second switch A switch is connected to the high-frequency power source, a reactive gas is introduced into the evacuated vacuum vessel, and a microwave is radiated from the antenna into the vacuum vessel. When generating plasma by microwaves radiated from the antenna, confining the plasma in a mirror magnetic field created by the permanent magnet, bombarding the substrate on the other electrode by ions in the plasma, and performing sputtering When the target is conductive, the target voltage source is the DC voltage, the first switch is connected to the target voltage source, the second switch is connected to the ground potential, and the exhaust is exhausted. An inert gas is introduced into the vacuum vessel generated to generate plasma, and when the target is insulative, the target voltage source is set as the high-frequency voltage, and the first switch is set as the target voltage source. And connecting the second switch to the ground potential to generate plasma, and during the sputtering, The plasma is confined in a mirror magnetic field, and ions in the plasma receive a force directed toward the target at a location where the mirror magnetic field created by the permanent magnet and the electric field created by the voltage applied to the target are orthogonal to each other, and In the plasma processing apparatus, the surface of the target is bombarded, and dry etching processing and sputtering processing can be continuously performed by the respective plasmas in the vacuum vessel .

前記磁石は、永久磁石であり、この永久磁石に対向して前記真空容器の内側に、前記ターゲットが固定されている。 The magnet is a permanent magnet, the inside of the vacuum vessel to face the permanent magnet, the target is fixed.

前記真空容器は、導電性の非磁性体により形成され、前記磁石は前記真空容器の上蓋に設けられ、前記上蓋と前記真空容器側面との間は、絶縁されている。また、前記真空容器の内面は、表面に微細な凹凸が設けられた粗面に形成されているものである。   The vacuum vessel is formed of a conductive non-magnetic material, the magnet is provided on the upper lid of the vacuum vessel, and the upper lid and the side surface of the vacuum vessel are insulated. The inner surface of the vacuum vessel is formed in a rough surface having fine irregularities on the surface.

この発明によれば、一つの真空容器によりエッチングとスパッタリング等の異なる処理を行うことができ、被処理材を真空容器から出さずに複数の処理工程を行うことができる。これにより、半導体プロセス等の中で必要な処理装置の数を削減し、作業効率を上げることができるとともに装置の設置スペースも省くことができる。さらに、プラズマ源にECRを用いているため、エッチングやスパッタリングにおいて高速処理が可能である。   According to the present invention, different processes such as etching and sputtering can be performed by one vacuum container, and a plurality of processing steps can be performed without taking out the material to be processed from the vacuum container. As a result, the number of processing devices required in the semiconductor process or the like can be reduced, the working efficiency can be increased, and the installation space for the devices can be saved. Furthermore, since ECR is used for the plasma source, high-speed processing is possible in etching and sputtering.

以下、この発明の実施の形態について図面を基にして説明する。この実施形態のプラズマ処理装置は、例えば2.45GHzのマイクロ波を利用したECR装置を備える。この実施形態のプラズマ処理装置10は、図1に示すように、アルミニウム等の非磁性体の導体により形成された円筒状の真空容器12と、この真空容器12内にECRプラズマを発生させるためのミラー磁場を形成する所定の環状の永久磁石14を備える。永久磁石14は、真空容器12の上蓋16の内面に固定されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The plasma processing apparatus according to this embodiment includes an ECR apparatus using, for example, a microwave of 2.45 GHz. As shown in FIG. 1, the plasma processing apparatus 10 of this embodiment includes a cylindrical vacuum vessel 12 formed of a non-magnetic conductor such as aluminum, and an ECR plasma generated in the vacuum vessel 12. A predetermined annular permanent magnet 14 for forming a mirror magnetic field is provided. The permanent magnet 14 is fixed to the inner surface of the upper lid 16 of the vacuum container 12.

真空容器12は、円筒状に形成され、マイクロ波の空洞共振器としても機能する。真空容器12の内部は密閉可能に設けられ、真空に近い状態に維持可能なものである。上蓋16は、ゴム等の絶縁リング40を介して真空容器12の側面部12aの端縁部に接続し、気密状態を維持可能であるとともに、上蓋14と真空容器側面部12aとの間を確実に絶縁している。   The vacuum vessel 12 is formed in a cylindrical shape and also functions as a microwave cavity resonator. The inside of the vacuum vessel 12 is provided so as to be able to be sealed, and can be maintained in a state close to a vacuum. The upper lid 16 is connected to the end edge of the side surface portion 12a of the vacuum vessel 12 through an insulating ring 40 such as rubber, and can maintain an airtight state, and can securely connect between the upper lid 14 and the vacuum vessel side surface portion 12a. Insulated.

真空容器12の内面12aは、例えばサンドブラスト処理のような表面処理方法により、微細な凹凸が形成されている。これにより、スパッタ処理もしくはCVD処理を行った際に付着する反応生成物を内面12aに強固に固着させる。   The inner surface 12a of the vacuum vessel 12 has fine irregularities formed by a surface treatment method such as sandblasting. Thereby, the reaction product adhering when the sputtering process or the CVD process is performed is firmly fixed to the inner surface 12a.

上蓋16の永久磁石14の側方には、ガス導入口18が設けられ、真空容器12の下部には、排気ポンプ20が接続され、ガス導入口18から導入されたガスが真空容器12内を通過して、排気ポンプ20により排気される。   A gas inlet 18 is provided on the side of the permanent magnet 14 of the upper lid 16, and an exhaust pump 20 is connected to the lower part of the vacuum vessel 12, so that the gas introduced from the gas inlet 18 passes through the vacuum vessel 12. It passes through and is exhausted by the exhaust pump 20.

真空容器12には、真空容器12内での上記マイクロ波の管内波長のn/2(nは自然数)倍の間隔を隔てて、一方の電極を兼ねる導電性のターゲット22と他方の電極24が設けられている。ターゲット22は、後述するスパッタリングの成膜材料であり、永久磁石14の真空容器側の面に取り付けられている。なお、ターゲット22が絶縁性の材料の場合は、所定の導電性材料の電極上に設けられる。   The vacuum vessel 12 includes a conductive target 22 that also serves as one electrode and the other electrode 24 at an interval of n / 2 (n is a natural number) times the wavelength of the microwave in the vacuum vessel 12. Is provided. The target 22 is a film forming material for sputtering described later, and is attached to the surface of the permanent magnet 14 on the vacuum container side. In addition, when the target 22 is an insulating material, it is provided on an electrode of a predetermined conductive material.

真空容器12の永久磁石14に近い位置の側壁には、マイクロ波を真空容器12内に放射するアンテナ26が取り付けられている。アンテナ26の位置は、ターゲット22が設けられた上蓋16からマイクロ波の管内波長の約1/4の長さ離れた位置に固定されている。このアンテナ26の位置は、真空容器12内のマイクロ波の電磁界モードのうち、TE01モードでの電界強度の値がほぼ最大となる位置である。   An antenna 26 that radiates microwaves into the vacuum vessel 12 is attached to the side wall of the vacuum vessel 12 near the permanent magnet 14. The position of the antenna 26 is fixed at a position separated from the upper lid 16 provided with the target 22 by a length of about ¼ of the in-tube wavelength of the microwave. The position of the antenna 26 is a position where the value of the electric field strength in the TE01 mode among the microwave electromagnetic field modes in the vacuum chamber 12 is almost the maximum.

このプラズマ処理装置10は、真空容器12内でECRによるプラズマを発生させるECR装置であって、真空容器12の中心軸方向において、真空容器12内のマイクロ波の電磁界モードのうち、TE01モードの電界強度の定在波の分布の中で、電界強度がほぼ最大となる位置にアンテナ26が設置され、真空容器12内での永久磁石14による外部磁界の磁力線の向きとマイクロ波によるTE01モードの電界の向きがほぼ直交する位置であって、TE01モードでの電界強度の値がほぼ最大となる位置で、ECR条件にほぼ合致するように永久磁石14が設定されているものである。   The plasma processing apparatus 10 is an ECR apparatus that generates plasma by ECR in the vacuum container 12, and in the central axis direction of the vacuum container 12, among the microwave electromagnetic field modes in the vacuum container 12, the TE01 mode. In the standing wave distribution of the electric field strength, the antenna 26 is installed at a position where the electric field strength is almost the maximum, and the direction of the magnetic field lines of the external magnetic field by the permanent magnet 14 in the vacuum vessel 12 and the TE01 mode of the microwave. The permanent magnet 14 is set so that the direction of the electric field is substantially orthogonal and the electric field intensity value in the TE01 mode is substantially maximum so as to substantially match the ECR condition.

真空容器12の下方には、基板取付部28が位置し、被処理材である基板30が載置される電極24が取り付けられている。   Below the vacuum vessel 12, a substrate mounting portion 28 is located, and an electrode 24 on which a substrate 30 as a material to be processed is placed is mounted.

電極24は、所定の高周波電源32にスイッチ34を介して接続され、スイッチ34は、切り換え部材34aを有し、電極24の接続を高周波電源側の接点34bと接地電位側の接点32cとで切り換える。また、電極を兼ねるターゲット22は、ターゲット用電圧源である所定の直流高電圧源36にスイッチ38を介して接続され、スイッチ38は、切り換え部材38aを有し、ターゲット22の接続を所定の直流高電圧源36側の接点38bと接地電位側の接点38cとで切り換える。   The electrode 24 is connected to a predetermined high-frequency power source 32 via a switch 34. The switch 34 has a switching member 34a, and the connection of the electrode 24 is switched between a high-frequency power source side contact 34b and a ground potential side contact 32c. . The target 22 also serving as an electrode is connected to a predetermined DC high voltage source 36, which is a target voltage source, via a switch 38. The switch 38 includes a switching member 38a, and the target 22 is connected to the predetermined DC. Switching is performed between a contact 38b on the high voltage source 36 side and a contact 38c on the ground potential side.

この実施形態によるプラズマ処理装置10の動作は、ドライエッチングに用いるプラズマ源とスパッタリングに用いるプラズマ源は共用されるものであり、プラズマ源の主要要素である永久磁石14近傍に設置されたターゲット22への電位の掛け方により、エッチングとスパッタリングの切り換えを行うものである。   In the operation of the plasma processing apparatus 10 according to this embodiment, the plasma source used for dry etching and the plasma source used for sputtering are shared, and the operation is performed on the target 22 installed in the vicinity of the permanent magnet 14 which is a main element of the plasma source. Switching between etching and sputtering is performed depending on how the potential is applied.

先ずドライエッチング処理を行う場合は、真空容器12にガス導入口18よりCFまたはOなどの反応性ガスを導入し、10―1Pa程度に排気ポンプ20により排気しつつ、圧力制御する。その後、マイクロ波導入部のアンテナ26から2.45GHz程度のマイクロ波を導入し、真空容器12内に放射する。このとき、スイッチ34は、高周波電源32側に接続し、スイッチ38は接地電位側に接続しておく。そして、高周波電源32から電極24に1〜10数MHzの高周波電力を印加する。 First, when performing a dry etching process, a reactive gas such as CF 4 or O 2 is introduced into the vacuum vessel 12 from the gas inlet 18, and the pressure is controlled while being exhausted to about 10 −1 Pa by the exhaust pump 20. Thereafter, a microwave of about 2.45 GHz is introduced from the antenna 26 of the microwave introduction unit and radiated into the vacuum container 12. At this time, the switch 34 is connected to the high frequency power supply 32 side, and the switch 38 is connected to the ground potential side. A high frequency power of 1 to 10 MHz is applied from the high frequency power supply 32 to the electrode 24.

アンテナ26から放射されたマイクロ波によりプラズマが発生し、永久磁石14の作るミラー磁場に閉じ込められ、ECR条件を満たす領域で効率的に高密度プラズマとなる。プラズマ中のイオンは電極24の高周波によるDCバイアスにより加速され電極24上の基板30を衝撃し、物理化学的に表面をエッチング加工する。この時、ターゲット22は、接地電位に接続されているので、ミラー磁場中のイオンは主として電極に向かって加速され、ターゲット22への衝撃は少ない。   Plasma is generated by the microwave radiated from the antenna 26 and is confined in a mirror magnetic field formed by the permanent magnet 14, and efficiently becomes a high-density plasma in a region that satisfies the ECR condition. Ions in the plasma are accelerated by a DC bias due to the high frequency of the electrode 24, impact the substrate 30 on the electrode 24, and physicochemically etch the surface. At this time, since the target 22 is connected to the ground potential, ions in the mirror magnetic field are accelerated mainly toward the electrode, and the impact on the target 22 is small.

次に、スパッタリングを行う場合は、真空容器12にガス導入口18よりArなどの不活性ガスを導入し、10―1Pa程度に排気ポンプ20により排気しつつ、圧力制御する。そして、スイッチ34は、接地側に接続し、スイッチ38は直流電圧源36側に接続しておく。その後、ターゲット22が導電性の場合には、数100〜1000V程度の直流電圧を直流高電圧源36により印加すると、真空容器12内にプラズマが発生する。上述の通り、ドライエッチングに用いるプラズマ源とスパッタリングに用いるプラズマ源は共用されるものであり、スパッタリングにおいても、プラズマは、永久磁石14が作るミラー磁場に閉じ込められ、効率的に高密度プラズマとなる。なお、ターゲット22が絶縁性の材料の場合は、高周波電圧を印加する。これにより、プラズマ中のArイオンは永久磁石14の作る磁場とターゲット22に印加された電圧の作る電界とが直交する箇所でターゲット22に向かう力を受け、ターゲット22の表面を衝撃し、スパッタリングが発生する。スパッタリングにより飛び出したターゲット材料粒子は、対向する電極24上の基板30の表面に付着して、膜生成が行われる。 Next, when performing sputtering, an inert gas such as Ar is introduced into the vacuum vessel 12 from the gas inlet 18 and the pressure is controlled while exhausting to about 10 −1 Pa by the exhaust pump 20. The switch 34 is connected to the ground side, and the switch 38 is connected to the DC voltage source 36 side. Thereafter, when the target 22 is conductive, when a DC voltage of about several hundred to 1000 V is applied by the DC high voltage source 36, plasma is generated in the vacuum vessel 12. As described above, the plasma source used for dry etching and the plasma source used for sputtering are shared, and also in sputtering, the plasma is confined in the mirror magnetic field created by the permanent magnet 14 and efficiently becomes a high-density plasma. . When the target 22 is an insulating material, a high frequency voltage is applied. Thereby, Ar ions in the plasma receive a force toward the target 22 at a location where the magnetic field generated by the permanent magnet 14 and the electric field generated by the voltage applied to the target 22 are orthogonal to each other, impact the surface of the target 22, and sputtering is performed. appear. The target material particles popped out by sputtering adhere to the surface of the substrate 30 on the opposing electrode 24, and film formation is performed.

この実施形態のプラズマ処理方法と装置によれば、ドライエッチングとスパッタリングの設定切り換えは、ターゲット22と電極24の電位を切り換えるためにスイッチ34,38を切り換えることと、ガス導入口18から真空容器12内へ導入するガスの切り換えのみで行われ、部品交換などは一切必要が無い。したがって、切り換えを極めて短時間に行う事が可能である。さらに、この2種類の処理を連続で行う事も容易に可能であり、従来の装置では2台の装置で行うために、基板30を必ず一旦大気中に取り出さざるを得なかった処理も、真空を保ったまま2種類の処理を実行可能である。そのため、処理時間の短縮のみならず、特に半導体製造において重要とされる高清浄な環境での各種処理が可能となる。 According to the plasma processing method and apparatus of this embodiment, switching between dry etching and sputtering is performed by switching the switches 34 and 38 in order to switch the potential of the target 22 and the electrode 24, and from the gas inlet 18 to the vacuum vessel 12. It is performed only by switching the gas introduced into the interior, and there is no need to replace any parts. Therefore, switching can be performed in a very short time. Furthermore, these two types of processing can be easily performed continuously. In the conventional apparatus, since the two apparatuses are used, the process in which the substrate 30 has to be once taken out to the atmosphere is always performed in a vacuum. Two types of processing can be executed while maintaining Therefore, not only the processing time can be shortened, but also various processes can be performed in a highly clean environment that is particularly important in semiconductor manufacturing.

さらに、真空容器12の内面12aは、微細な凹凸が形成された粗面になっているので、スパッタリング等の異なる処理工程によって内面12aに内面に付着した生成物は、強固に固着させ容易に剥離させない。この処理を内面12aに施さないと、前工程で発生した生成物が容易に内面から剥離、飛散し、真空容器12内部のパーティクル汚染を引き起こすが、この実施形態の場合は、そのような汚染も発生せず、高純度の条件が要求される処理作業も可能となる。   Furthermore, since the inner surface 12a of the vacuum vessel 12 is a rough surface having fine irregularities formed thereon, the product attached to the inner surface 12a by different processing steps such as sputtering can be firmly fixed and easily peeled off. I won't let you. If this treatment is not applied to the inner surface 12a, the product generated in the previous step easily peels off and scatters from the inner surface, causing particle contamination inside the vacuum vessel 12. In this embodiment, such contamination is also caused. Processing operations that do not occur and require high-purity conditions are also possible.

また、この実施形態のような真空装置は、排気ポンプ、真空バルブ、圧力測定器など、使用する部品が高価であり、加工部品においても高清浄度、高精度が必要であり、全体として高価である事から、製作コストが非常に高いものである。これに対して本発明による処理装置は、1台の装置で2種類の機能を持たせることができ、従来2台必要な装置が1台で済むことにより、経済的及び作業スペース上のメリットも非常に大きい。また、アンテナ26が真空容器12中に突出しているので、アンテナ26に導体材料やその他の材料が付着しても、マイクロ波の放射には影響がない。   In addition, the vacuum device as in this embodiment is expensive to use, such as an exhaust pump, a vacuum valve, and a pressure measuring instrument, and requires high cleanliness and high accuracy in the processed parts as well. For some reason, the production cost is very high. On the other hand, the processing apparatus according to the present invention can provide two kinds of functions with one apparatus, and since only one apparatus is required in the past, there is an advantage in terms of economy and work space. Very big. Further, since the antenna 26 protrudes into the vacuum vessel 12, even if a conductive material or other material adheres to the antenna 26, there is no influence on the microwave radiation.

なお、この発明の磁石は永久磁石の他、電磁石でも良く、その数や位置も、適宜設定可能なものである。また、マイクロ波の周波数、発生させるプラズマやイオンの種類も適宜選択できる。また、アンテナの形状も上記実施形態の他、直線状やL字状のロッドアンテナ、ダイポールアンテナ、ループアンテナ等適宜選択し得る。   The magnet of the present invention may be an electromagnet in addition to a permanent magnet, and the number and position thereof can be set as appropriate. Further, the frequency of the microwave and the type of plasma and ions to be generated can be selected as appropriate. In addition to the above embodiment, the shape of the antenna can be appropriately selected from a linear or L-shaped rod antenna, a dipole antenna, a loop antenna, or the like.

この発明の一実施形態のプラズマ処理装置の概略断面図である。It is a schematic sectional drawing of the plasma processing apparatus of one Embodiment of this invention.

10 プラズマ処理装置
12 真空容器
14 永久磁石
16 上蓋
18 ガス導入口
20 排気ポンプ
22 ターゲット
24 電極
26 アンテナ
28 基板取付部
30 基板
32 高周波電源
34,38 スイッチ
36 直流高電圧源
DESCRIPTION OF SYMBOLS 10 Plasma processing apparatus 12 Vacuum vessel 14 Permanent magnet 16 Upper lid 18 Gas inlet 20 Exhaust pump 22 Target 24 Electrode 26 Antenna 28 Substrate attachment part 30 Substrate 32 High frequency power supply 34, 38 Switch 36 DC high voltage source

Claims (4)

内部を真空にすることができる真空容器と、この真空容器に設けられ前記真空容器内に磁場を形成する磁石と、前記真空容器内で間隔を開けて互いに対向して設けられた一対の電極とを備えたプラズマ処理装置を用いてプラズマ処理を行うプラズマ処理方法において、
前記真空容器の側壁に固定され前記真空容器内に突出してマイクロ波を放射し、前記真空容器を共振器としてその真空容器内で、前記磁石とともに電子サイクロトロン共鳴によるプラズマを発生させるアンテナと、
前記真空容器内の一方の電極側に接続され直流電圧又は高周波電圧が印加されるターゲットと、
前記ターゲットに接続された切り換え部材を有し、一方の接点が前記直流電圧または前記高周波電圧を印加するターゲット用電圧源に接続され、他方の接点が接地電位に接続され、前記ターゲット用電圧源と接地電位とを前記切り換え部材により切り換える第1のスイッチと、
前記真空容器内の他方の電極に接続され前記プラズマ処理が施される基板と、
前記他方の電極に接続された切り換え部材を有し、一方の接点が高周波電源に接続され、他方の接点が接地電位に接続され、前記高周波電源と接地電位とを前記切り換え部材により切り換える第2のスイッチとを設け、
ドライエッチングを行う場合には、前記第1のスイッチを前記接地電位に接続し、前記第2のスイッチを前記高周波電源に接続するとともに、排気された前記真空容器に反応性ガスを導入し、前記アンテナからマイクロ波を前記真空容器内に放射し、前記アンテナから放射されたマイクロ波によりプラズマを発生させ、前記永久磁石の作るミラー磁場に前記プラズマを閉じ込め、そのプラズマ中のイオンにより前記他方の電極上の前記基板を衝撃し、
スパッタリングを行う場合に、前記ターゲットが導電性の場合には前記ターゲット用電圧源を前記直流電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続し、排気された前記真空容器に不活性ガスを導入してプラズマを発生させ、前記ターゲットが絶縁性の場合には前記ターゲット用電圧源を前記高周波電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続してプラズマを発生させ、
前記スパッタリングに際して、前記ミラー磁場に前記プラズマを閉じ込め、前記プラズマ中のイオンが前記久磁石の作る前記ミラー磁場と前記ターゲットに印加された電圧の作る電界とが直交する箇所で、前記ターゲットに向かう力を受け、前記ターゲットの表面を衝撃し、
前記真空容器内で前記各プラズマにより、ドライエッチング処理とスパッタリング処理を連続的に行うことを特徴とするプラズマ処理方法。
A vacuum vessel capable of evacuating the inside, a magnet provided in the vacuum vessel and forming a magnetic field in the vacuum vessel, and a pair of electrodes provided facing each other at an interval in the vacuum vessel; In a plasma processing method for performing plasma processing using a plasma processing apparatus comprising:
An antenna that is fixed to a side wall of the vacuum vessel and projects into the vacuum vessel to emit microwaves, and the vacuum vessel is used as a resonator in the vacuum vessel to generate plasma by electron cyclotron resonance together with the magnet;
A target connected to one electrode side in the vacuum vessel and applied with a DC voltage or a high-frequency voltage;
A switching member connected to the target, wherein one contact is connected to a target voltage source for applying the DC voltage or the high-frequency voltage, and the other contact is connected to a ground potential; A first switch for switching a ground potential by the switching member;
A substrate connected to the other electrode in the vacuum vessel and subjected to the plasma treatment;
A switching member connected to the other electrode, wherein one contact is connected to a high-frequency power source, the other contact is connected to a ground potential, and a second member that switches between the high-frequency power source and the ground potential by the switching member. A switch,
When dry etching is performed, the first switch is connected to the ground potential, the second switch is connected to the high-frequency power source, and a reactive gas is introduced into the evacuated vacuum vessel, A microwave is radiated from the antenna into the vacuum container, a plasma is generated by the microwave radiated from the antenna , the plasma is confined in a mirror magnetic field formed by the permanent magnet, and the other electrode is ionized by ions in the plasma. Impact the substrate on top,
When performing sputtering, if the target is conductive, the target voltage source is the DC voltage, the first switch is connected to the target voltage source, and the second switch is connected to the ground potential. An inert gas is introduced into the evacuated vacuum vessel to generate plasma, and when the target is insulative, the target voltage source is the high-frequency voltage, and the first switch is Connect to a target voltage source, connect the second switch to the ground potential to generate plasma,
During the sputtering, the plasma is confined in the mirror magnetic field, and ions directed to the target at a location where the mirror magnetic field generated by the permanent magnet and the electric field generated by the voltage applied to the target are orthogonal to each other in the plasma. Receiving, impacting the surface of the target,
A plasma processing method, wherein dry etching processing and sputtering processing are continuously performed by the respective plasmas in the vacuum vessel.
前記ドライエッチングを行う場合は、前記真空容器に反応性ガスを導入し、10―1Pa程度の圧力に制御し、前記スパッタリングを行う場合には、前記真空容器に不活性ガスを導入し、10―1Pa程度の圧力に制御する請求項1記載のプラズマ処理方法。 When performing the dry etching, a reactive gas is introduced into the vacuum vessel and controlled to a pressure of about 10 −1 Pa. When performing the sputtering, an inert gas is introduced into the vacuum vessel. The plasma processing method according to claim 1, wherein the pressure is controlled to about 1 Pa. 内部を真空にすることができる真空容器と、この真空容器に設けられ前記真空容器内に磁場を形成する磁石と、前記真空容器内で間隔を開けて互いに対向して設けられた一対の電極とを備えたプラズマ処理装置において、
前記真空容器の側壁に固定され前記真空容器内に突出してマイクロ波を放射し、前記真空容器を共振器としてその真空容器内で、前記磁石とともに電子サイクロトロン共鳴によるプラズマを発生させるアンテナと、
前記真空容器内の一方の電極側に接続され直流電圧又は高周波電圧が印加されるターゲットと、
前記ターゲットに接続された切り換え部材を有し、一方の接点が前記直流電圧または前記高周波電圧を印加するターゲット用電圧源に接続され、他方の接点が接地電位に接続され、前記ターゲット用電圧源と接地電位とを前記切り換え部材により切り換える第1のスイッチと、
前記真空容器内の他方の電極に接続され前記プラズマ処理が施される基板と、
前記他方の電極に接続された切り換え部材を有し、一方の接点が高周波電源に接続され、他方の接点が接地電位に接続され、前記高周波電源と接地電位とを前記切り換え部材により切り換える第2のスイッチとを備え、
前記第1のスイッチと前記第2のスイッチとを切り換えて、前記真空容器内でプラズマを各々発生可能に設けられ
ドライエッチングを行う場合には、前記第1のスイッチを前記接地電位に接続し、前記第2のスイッチを前記高周波電源に接続するとともに、排気された前記真空容器に反応性ガスを導入し、前記アンテナからマイクロ波を前記真空容器内に放射し、前記アンテナから放射されたマイクロ波によりプラズマを発生させ、前記永久磁石の作るミラー磁場に前記プラズマを閉じ込め、そのプラズマ中のイオンにより前記他方の電極上の前記基板を衝撃し、
スパッタリングを行う場合に、前記ターゲットが導電性の場合には前記ターゲット用電圧源を前記直流電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続し、排気された前記真空容器に不活性ガスを導入してプラズマを発生させ、前記ターゲットが絶縁性の場合には前記ターゲット用電圧源を前記高周波電圧として、前記第1のスイッチを前記ターゲット用電圧源に接続し、前記第2のスイッチを前記接地電位に接続してプラズマを発生させ、
前記スパッタリングに際して、前記ミラー磁場に前記プラズマを閉じ込め、前記プラズマ中のイオンが、前記久磁石の作る前記ミラー磁場と前記ターゲットに印加された電圧の作る電界とが直交する箇所で、前記ターゲットに向かう力を受け、前記ターゲットの表面を衝撃し、
前記真空容器内で前記各プラズマにより、ドライエッチング処理とスパッタリング処理とを連続的に可能としたことを特徴とするプラズマ処理装置。
A vacuum vessel capable of evacuating the inside, a magnet provided in the vacuum vessel and forming a magnetic field in the vacuum vessel, and a pair of electrodes provided facing each other at an interval in the vacuum vessel; In a plasma processing apparatus comprising:
An antenna that is fixed to a side wall of the vacuum vessel and projects into the vacuum vessel to emit microwaves, and the vacuum vessel is used as a resonator in the vacuum vessel to generate plasma by electron cyclotron resonance together with the magnet;
A target connected to one electrode side in the vacuum vessel and applied with a DC voltage or a high-frequency voltage;
A switching member connected to the target, wherein one contact is connected to a target voltage source for applying the DC voltage or the high-frequency voltage, and the other contact is connected to a ground potential; A first switch for switching a ground potential by the switching member;
A substrate connected to the other electrode in the vacuum vessel and subjected to the plasma treatment;
A switching member connected to the other electrode, wherein one contact is connected to a high-frequency power source, the other contact is connected to a ground potential, and a second member that switches between the high-frequency power source and the ground potential by the switching member. With a switch,
Switching between the first switch and the second switch, each plasma can be generated in the vacuum vessel,
When dry etching is performed, the first switch is connected to the ground potential, the second switch is connected to the high-frequency power source, and a reactive gas is introduced into the evacuated vacuum vessel, A microwave is radiated from the antenna into the vacuum container, a plasma is generated by the microwave radiated from the antenna, the plasma is confined in a mirror magnetic field formed by the permanent magnet, and the other electrode is ionized by ions in the plasma. Impact the substrate on top,
When performing sputtering, if the target is conductive, the target voltage source is the DC voltage, the first switch is connected to the target voltage source, and the second switch is connected to the ground potential. An inert gas is introduced into the evacuated vacuum vessel to generate plasma, and when the target is insulative, the target voltage source is the high-frequency voltage, and the first switch is Connect to a target voltage source, connect the second switch to the ground potential to generate plasma,
During the sputtering, the plasma is confined in the mirror magnetic field, and ions in the plasma are directed to the target at a location where the mirror magnetic field generated by the permanent magnet and the electric field generated by the voltage applied to the target are orthogonal to each other. Receiving force, impacting the surface of the target,
A plasma processing apparatus characterized in that a dry etching process and a sputtering process can be continuously performed by each plasma in the vacuum vessel .
前記磁石は、永久磁石であり、この永久磁石に対向して前記真空容器の内側に、前記ターゲットが固定されていることを特徴とする請求項3記載のプラズマ処理装置。   The plasma processing apparatus according to claim 3, wherein the magnet is a permanent magnet, and the target is fixed inside the vacuum vessel so as to face the permanent magnet.
JP2005195125A 2005-07-04 2005-07-04 Plasma processing method and apparatus Expired - Fee Related JP4686668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195125A JP4686668B2 (en) 2005-07-04 2005-07-04 Plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195125A JP4686668B2 (en) 2005-07-04 2005-07-04 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2007012560A JP2007012560A (en) 2007-01-18
JP4686668B2 true JP4686668B2 (en) 2011-05-25

Family

ID=37750754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195125A Expired - Fee Related JP4686668B2 (en) 2005-07-04 2005-07-04 Plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4686668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3755823A4 (en) * 2018-02-19 2021-11-03 Applied Materials, Inc. Pvd titanium dioxide formation using sputter etch to halt onset of crystalinity in thick films

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119778A (en) * 1984-07-05 1986-01-28 Canon Inc Preparation of amorphous semiconductive membrane
JPH03253560A (en) * 1990-03-02 1991-11-12 Mitsubishi Electric Corp Thin film producing apparatus
JPH06196421A (en) * 1992-12-23 1994-07-15 Sumitomo Metal Ind Ltd Plasma device
JPH0786259A (en) * 1993-07-19 1995-03-31 Hitachi Ltd Apparatus and method for removing contaminant
JPH09153486A (en) * 1995-11-30 1997-06-10 Sharp Corp Plasma processing method and device
JPH09246253A (en) * 1996-03-08 1997-09-19 Nippon Steel Corp Semiconductor manufacturing device and manufacturing method for semiconductor device
JPH1060672A (en) * 1996-08-20 1998-03-03 Nec Corp Plasma treating device and plasma treating method
JPH10335097A (en) * 1997-03-31 1998-12-18 Hitachi Ltd Device and method for processing plasma
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP2001152330A (en) * 1999-11-30 2001-06-05 Canon Inc Film deposition method and film deposition apparatus
JP2002167670A (en) * 2000-11-29 2002-06-11 Matsushita Electric Ind Co Ltd Method and system for sputtering
JP2004152940A (en) * 2002-10-30 2004-05-27 Toyama Prefecture Microwave plasma treating apparatus
JP2005064465A (en) * 2003-07-30 2005-03-10 Sharp Corp Plasma processing apparatus and method of cleaning the same
JP2005072363A (en) * 2003-08-26 2005-03-17 Toyama Prefecture Ecr apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119778A (en) * 1984-07-05 1986-01-28 Canon Inc Preparation of amorphous semiconductive membrane
JPH03253560A (en) * 1990-03-02 1991-11-12 Mitsubishi Electric Corp Thin film producing apparatus
JPH06196421A (en) * 1992-12-23 1994-07-15 Sumitomo Metal Ind Ltd Plasma device
JPH0786259A (en) * 1993-07-19 1995-03-31 Hitachi Ltd Apparatus and method for removing contaminant
JPH09153486A (en) * 1995-11-30 1997-06-10 Sharp Corp Plasma processing method and device
JPH09246253A (en) * 1996-03-08 1997-09-19 Nippon Steel Corp Semiconductor manufacturing device and manufacturing method for semiconductor device
JPH1060672A (en) * 1996-08-20 1998-03-03 Nec Corp Plasma treating device and plasma treating method
JPH10335097A (en) * 1997-03-31 1998-12-18 Hitachi Ltd Device and method for processing plasma
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP2001152330A (en) * 1999-11-30 2001-06-05 Canon Inc Film deposition method and film deposition apparatus
JP2002167670A (en) * 2000-11-29 2002-06-11 Matsushita Electric Ind Co Ltd Method and system for sputtering
JP2004152940A (en) * 2002-10-30 2004-05-27 Toyama Prefecture Microwave plasma treating apparatus
JP2005064465A (en) * 2003-07-30 2005-03-10 Sharp Corp Plasma processing apparatus and method of cleaning the same
JP2005072363A (en) * 2003-08-26 2005-03-17 Toyama Prefecture Ecr apparatus

Also Published As

Publication number Publication date
JP2007012560A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP3482904B2 (en) Plasma processing method and apparatus
JP2001053060A (en) Plasma processing method and apparatus
KR20010052312A (en) Method and apparatus for ionized physical vapor deposition
WO2001039559A1 (en) Method and apparatus for plasma treatment
JPH10223607A (en) Plasma treating apparatus
JP4003305B2 (en) Plasma processing method
JP4686668B2 (en) Plasma processing method and apparatus
JP3417328B2 (en) Plasma processing method and apparatus
JP4640939B2 (en) Plasma processing apparatus and plasma processing method
JP3550466B2 (en) Plasma processing method
KR100272143B1 (en) Dry cleaning method
JP4384295B2 (en) Plasma processing equipment
US6432730B2 (en) Plasma processing method and apparatus
KR100501821B1 (en) Method of plasma generation and apparatus thereof
JP3172757B2 (en) Plasma processing equipment
JP3374828B2 (en) Plasma processing method and apparatus
JPH11340212A (en) Surface wave plasma etching apparatus
JP2001077085A (en) Surface treatment method of specimen
JPH06120140A (en) Semiconductor manufacturing method and equipment
JPH02250325A (en) Plasma treatment apparatus
JPH11330049A (en) Plasma processing method and device thereof
JPH04315797A (en) Plasme processing device and method of cleaning plasma source thereof
JP2001244244A (en) Plasma processing apparatus
JPH11185993A (en) Plasma processing method and device
JP2002280198A (en) Device and method for processing plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

R150 Certificate of patent or registration of utility model

Ref document number: 4686668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees